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Secure lightweight cryptosystem 
for IoT and pervasive computing
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Large volumes of sensitive data are being transferred among devices as the Internet of Things (IoT) 
grows in popularity. As a result, security measures must be implemented to ensure that unauthorized 
parties do not obtain access to the data. It is well acknowledged that IoT devices have restricted 
resources, such as limited battery life, memory, and hence reaction time. Classical encryption 
approaches and methods become inefficient for IoT devices due to memory limits. Large volumes 
of sensitive data are being transferred between devices as the Internet of Things (IoT) grows in 
popularity. This involves the implementation of security safeguards to ensure that unauthorized 
parties do not obtain access to the data. IoT devices are notorious for having limited resources, such 
as battery life, memory, and hence response time. Classical encryption approaches and methods 
become inefficient for IoT devices due to memory limits. As a result, a Lightweight cryptosystem 
that fits the needs of Lightweight devices and ubiquitous computing systems has emerged. The goal 
of this study is to present a Lightweight cryptosystem (LWC) that may be used as a plugin to secure 
data transfers in IoT devices and pervasive computing. To that goal, the researchers employ several 
simple measuring techniques. The suggested system was then implemented on a field-programmable 
gate array (FPGA) board using the Verilog programming language to demonstrate its appropriateness 
for actual security applications. FPGA is also utilized in hardware applications to assess the system’s 
resource usage and performance. Finally, a comparison of the proposed system with previous 
lightweight cryptography systems is performed to reinforce the major goal of this work, which is to 
present a new lightweight cryptosystem.

With the incredible growth of technology over the previous century, computers, machines, and gadgets have been 
able to perform some functions without the need for human participation. IoT1 refers to these devices linked 
as a network of equipment, gadgets, and computers that may communicate with one another. IoT also enables 
data transport and sharing via a network without the need for direct human engagement. IoT may be utilized 
in a variety of sectors in our daily lives, including healthcare and industry. The relevance of IoT is growing fast, 
and it is managing many aspects of our lives; thus, it is critical to preserve and secure the information and data 
utilized in IoT2,3.

To preserve and protect sensitive material, one must encrypt it. Encrypting data increases security by 
prohibiting unauthorized parties from accessing or modifying it (integrity constraints). Encryption is a method 
of hiding original data by using a specific key; this process turns the original data into another shape that hides 
the original data’s essence. In this process, the original data is referred to as plaintext, while the encrypted data 
is referred to as ciphertext. The encryption process should be reversible, allowing the plaintext to be recovered 
from the ciphertext with the help of a key. If the same key is used for encryption and decryption, the encryption 
is symmetric. If, on the other hand, the key used in decryption is different from the key used in encryption, 
the encryption is asymmetric. In asymmetric encryption, one key is private while the other is made public. The 
public key of the receiver is used for encryption, whereas the private key of the receiver is utilized for decryption4.

Internet of Things (IoT) devices include wearable devices, monitors, sensors, and any other computer-capable 
item5. These gadgets often feature a small memory capacity, a short battery life, and a quick response time . 
Because of the resource restrictions of IoT devices, they necessitate a specialized encryption algorithm that saves 
energy usage, accounts for limited accessible memory, and maintains a quicker response time6. Lightweight 
cryptosystems are the name given to these specific cryptosystems.

The suggested system extends the previous stream cipher chaos-based encryption method created by Abutaha 
et al.7. This chaos-based encryption technique is extended to create a LWC. This chaos-based encryption 
technique is extended to create a LWC. This chaos-based encryption method is expanded to produce a LWC. 
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This study’s key contribution is the development of a LWC system that may be employed in embedded systems, 
IoT devices, or any other device with limited resources.

In our new work we present an effective LWC with software and hardware implementation on a field-
programmable gate array (FPGA) board using the Verilog programming language to show its suitability for 
practical security applications. In addition, FPGA is used in hardware applications to evaluate the system’s 
resource utilization and performance. In addition, in our new work, we apply the RAPL and POWERTOP to 
calculate power usage. In addition, we included memory consumption, resource performance, and utilization 
in our comprehensive research.

The “Background and literature review” section explains the key principles and reviews past work on this topic. 
Measurement instruments for power and memory are mentioned in the “Design and methodology” section. The 
“Software and hardware implementation” section describes the system’s software and hardware implementation. 
Under the meanwhile, the findings are displayed in the “Results” section. Finally, the “Conclusion and future 
work” section analyzes the findings and recommendations for further work.

Background and literature review
Background.  Encryption.  Encryption, as seen in Fig.  1, is a method used to conceal the original data 
(plaintext) by transforming it into secret data (ciphertext) using a secret key. To safeguard the original data 
(plaintext), the ciphertext does not reveal anything about it. As a result, only the sender and recipient have access 
to the original data. Cryptography is the study of encryption and decryption8. To maintain data security, most 
apps, computers, and devices (through IoT) employ encryption in their communication. The data is encrypted 
using a secret key to create the ciphertext, which is then sent to the recipient. The key is known to the recipient, 
who uses it to decrypt the ciphertext and obtain the original data. If the key used to encrypt and decode the data 
is the same, the encryption is symmetric, however in asymmetric encryption, we can encrypt the entire data set 
at once, which is known as stream cipher. Otherwise, we can partition the data into blocks, encrypt each one, 
and then transmit them as blocks to be decrypted. Block cipher is the process of dividing data into blocks to be 
encrypted.

Block cipher.  As previously stated, block cipher encryption is a symmetric encryption that encrypts n-bits 
of data at a time to generate n-bits of ciphertext; each n-bit is referred to as a block. If the data size is greater 
than n bits, it can be partitioned into blocks that generate a block of ciphertext for each block of data. After 
partitioning the entire data into blocks based on block size, if some remaining bits do not match the block size, 
padding techniques are used to finish the block so that the remaining bits may be encrypted as a block. 64 bit, 
128 bit, and 256 bit are the most frequent block sizes. There are numerous block cipher algorithms available, 
including Digital Encryption Standard (DES), Triple DES, Advanced Encryption Standard (AES), and others9. 
Furthermore, depending on the mode characteristics, several modes of operation are utilized in a block cipher 
for different purposes.

Stream cipher.  Stream cipher is another sort of Symmetric encryption in which we encrypt 1 bit or byte of 
plaintext at a time. There are several stream cipher algorithms, such as RC410, salsa2011, and Rabbit12.

Stream cipher inventors worked hard to develop the desired cipher, known as the One-Time pad, in which the 
key is equal to or greater than the plaintext length. A mathematical equation with two unknown values is used 
in one-time pad encryption. These are the key and plaintext values. Attempting to solve the equation to obtain 
the key or plaintext with only the ciphertext is theoretically impossible; this is why one-time pad encryption 

Figure 1.   Encryption and decryption process using a key.
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systems guarantee unbreakable encryption in use. Without the right key, it is difficult to decipher the encrypted 
data using one-time pad encryption13.

The key distribution issue with the One-Time Pad (OTP) is the fundamental issue. To make the OTP feasible, 
we must exchange a random (not pseudo-random) key of the message length. One technique (and maybe the 
most promising) to tackle the problem of sharing a large enough, random key to use with the OTP is using 
Quantum Key Distribution (QKD)14,15.

Pseudo‑random number generator (PRNG).  The stream cipher generates a series of random integers using 
mathematical algorithms. This sequence is the produced key value. The numbers in the series almost have the 
qualities of random numbers, making them difficult to predict. The pseudorandom generator must be unexpected, 
which implies there should be no effective technique that can predict the next key from the preceding one with 
a probability greater than 0.516.

Internet of things (IoT).  The machine-to-machine (M2M) concept was created in the late 1970s to explain wired 
or wireless communication between devices. This notion was then used to a variety of applications, including 
data collection via sensors. With the growth of the internet in the 2000s, the M2M idea brought the “IoT,” which 
stands for “Internet of Things.” In this environment, “Things,” which may be apps, machines, sensors, cars, and 
so on, can communicate with one another without the need for user intervention, and they can freely transmit 
data17. It’s a given that “Things” use a computer to communicate with one another. This idea gave rise to the 
phrase “ubiquitous computing”.

Ubiquitous computing indicates that computers are everywhere, and they may be any device, in any place, 
and in any format at any time. Pervasive computing, wearable computing, and tangible computers are examples 
of ubiquitous computing.

Lightweight.  All of the Ubiquitous computing shapes discussed above have one thing in common: they have 
a limited battery life, a small memory space, and a quick response time. This is due to the fact that they are not 
stand-alone computers; they are part of something larger, such as a machine or other hardware.

The phrase ‘Lightweight software’ was created by combining speed limitations, memory use constraints, and 
energy consumption constraints.

Sensors, for example, are classified as IoT devices and are known to be resource-constrained. As a result, 
the lightweight notion is critical to their work. Since a result, softwares, algorithms, programs, protocols, and 
applications should be developed on lightweight standards in order to operate efficiently when implemented in 
IoT devices, as they get greater performance when they are lightweight based.

Lightweight cryptography (LWC).  With the expansion of IoT, there is a lot of sensitive information being sent 
between machines and devices, and we need to encrypt this data to ensure its safety and confidentiality. As 
previously stated, encryption is the process of modifying (encrypting) data so that it cannot be accessed by 
unauthorized people. Unfortunately, most existing encryption algorithms and strategies were designed to secure 
connections between desktop computers and devices with substantial resources, and hence do not operate in 
resource-constrained devices, such as IoT devices18. Classical encryption techniques can be overly sluggish, 
reducing reaction time, and they can also waste a lot of power. As a result, lightweight encryption approaches 
are required.

Lightweight encryption should meet the primary purpose of encryption, which is to secure data between 
sender and receiver, while also ensuring that this process is done at a lower cost and power consumption than 
existing non-lightweight encryption methods19.

Verilog.  Verilog is a Hardware Description Language (HDL) that gives an electrical description of system 
behavior and structure, as well as circuit designs. The language’s behavioral degree of abstraction serves the early 
conceptual phases of design, while structural abstractions support the later implementation stages20. Verilog is 
used for simulation, timing analysis, test analysis, and circuit synthesis21.

FPGA.  Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be modified after they have 
been developed by a manufacturer. In most cases, a hardware description language (HDL) such as Verilog 
is used to define the FPGA setup. FPGAs may be reconfigured after they have been manufactured to fulfill 
specific application or feature requirements. Although one-time programmable FPGAs are accessible, the large 
proportion of FPGAs are founded on Static Random Access Memory (SRAM) and may be reprogrammed as the 
modifications22.

Literature review.  This research focus on three pseudo-chaotic number generators (PCNGs) that employ 
basic chaotic maps. Additionally, it explored three chaotic stream ciphers depending on the evaluated PCNGs. 
The scientists also analyzed the energy, power, and processing time of the chaotic systems in investigation using 
an Real Time Operating System (RTOS) named Xenomai. The study stressed the need of secure data transmission 
in IoT devices in order to ensure data security. Implementing traditional encryption algorithms on low-resource 
devices would need massive quantities of storage, power, and process time, which is inconsistent with embedded 
capabilities. Lightweight cryptosystems are required to deal with the scarce funds of IoT devices. We may deduce 
that the cryptosystems under examination are lightweight cryptosystems by comparing the findings to other 
cryptosystems and examining the energy and power consumption parameters. The investigation also shown that 
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the generated stream ciphers are suitable for use in IoT devices as well as real-time cryptosystems based on an 
RTOS called Xenomai, according to the environmental resources.

Lightweight cryptography.  The Cryptography Research and Evaluation Committees (CRYPTREC)23 clarify 
what Lightweight cryptography is and why it is required. The Internet of Things (IoT) is becoming more popular, 
and there are a growing number of low-resource devices connecting to the internet. When using these limited-
resource devices, we must ensure security and privacy.

Traditional encryption systems have been developed into Lightweight cryptography systems to care for cost, 
energy, and latency.

To account for cost, energy, and delay, conventional encryption methods have indeed been transformed 
into lightweight cryptography systems. A lightweight cryptosystem is one that may be implemented in either 
hardware or software. In hardware implementations, circuit size is important since it has a direct influence 
on cost, power consumption to preserve energy, and other things. The amount of time necessary to perform 
encryption or decryption procedures is referred to as latency. It should be mentioned that real-time operating 
systems and computers demand low latency. Because embedded device CPUs have limited RAM and ROM, 
memory storage is important for program development23. Several block cipher encryption and stream cipher 
algorithms are evaluated and compared with CRYPTREC study to determine the benefits and drawbacks of each 
technique. This article23 presents many cryptosystems, including ChaCha20 (2008), Enocoro (2008), Grain v1 
(2005), and Trivium(2005), and afterwards discusses their characteristics, security analysis, decision alternatives, 
Standardization, industrial adoption, and etc.23.

New lightweight stream cipher based on chaos.  Lina Ding and his colleagues24 used 80-bit encryption techniques 
to create a hardware-oriented lightweight stream cipher approach based on chaos (Logic stream cipher). A 
logistic chaotic map, two Nonlinear Feedback Shift Registers (NFSR), a filter function, and a multiplexer unit 
are all part of the chaotic technique. The Logistic chaotic sequence is mixed with multiplexers and NFSRs after 
digitalization. In this research, the Logic stream cipher was tested against a number of lightweight cryptographic 
algorithms, and it was discovered that it performed well, with a throughput of 78.98 Kbps at 100 kHz and good 
complexity.

Lightweight chaos‑based stream cipher hardware implementation.  The study describes a hardware 
implementation of a chaos-based stream cipher. The hardware implementation is proposed in24 for the Zynq7000 
platform. This implementation is focused with throughput performance and logical resource utilization. The 
system is compared to earlier stream cipher hardware implementations.

The system’s basic foundation is a generator composed of two cells that rely on two separate Chaotic maps 
known as the Skew Tent map and the PieceWise Linear Chaotic (PWLC) map. To acquire the stream key, the 
results of the two maps are XORed.

This system’s findings are compared to those of other stream ciphers in terms of performance, resource 
utilization, and speed. The Xilinx Vivado tool is utilized for this performance comparison. A bit depth (N) of 32 
bits and a delay (D) of 3 were employed in the comparison. This system solution has a throughput of 565 Mbps 
and can run at 18.5 MHz.

Chaotic encryption algorithm design and implementation for real‑time embedded systems.  In their article, Amit 
Pande and Joseph Zambreno25 presented a new chaotic encryption technique for real-time embedded devices.

The system uses the Modified Logistic Map (MLM) as a pseudo-random number generator, which was created 
by changing the Logistic Map to increase uncertainty. They analyzed various current chaotic ciphers to ensure 
that the new modified system can withstand known assaults before proposing this new chaos-based stream 
cipher system. The system’s hardware implementation was then tested on the Xilinx Virtex6 FPGA. The hardware 
implementation, which used 16 hardware multipliers, produced a synthesis clock frequency of 93 MHz and a 
throughput of 1.5 Gbps. The results show that the system is capable of meeting real-time needs.

Design and methodology
This section provides an overview of different measuring techniques for power and memory consumption that are 
suitable for LWC. In addition, we talk about the improved system. Finally, the suggested system’s implementation 
on an FPGA-board is detailed.

Encryption system based on chaos.  The ciphering method is based on chaos, which is a state of 
dynamical systems characterized by seemingly random states of disorder and irregularity that are frequently 
restricted by deterministic rules that are very sensitive to initial conditions. In order to acquire the ciphering data, 
the key-stream generator will construct the proper key streams for each syntactic element. Our previous work 
lends support to the key stream generation7. The internal state, which holds the majority of the cryptographic 
complexity of the system, is composed of two third-order recursive filters. The first recursive cell employs a 
discrete Skew tent map, while the second employs a discrete piecewise linear chaotic map. These chaotic maps 
are created using non-linear filtering. With each key-stream generating call, a new beginning vector IV value is 
generated. This quantity creates a unique key stream sequence for each generation call. In7, designers elaborate 
on the key stream generator’s cryptographic security analysis and thorough construction. Figure 2 displays the 
chaotic map-based key stream generation. This proposed method encrypts the frame’s information bytes using 
a chaos-based stream cipher. The concept of this encrypting system is based on rapid chaotic generation, which 
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employs two chaotic non-linear recursive filters, a disruption mechanism, and a chaos-based multiplexer. It uses 
a stream cipher to encrypt data. In practice, a chaotic generatorbased synchronous cryptography approach was 
used. Both the emitter and receiver require the shared secrete key in order to use the chaos-based generator 
and generate the key-streams required by the encryption and decryption procedures26. Figure  3 depicts the 
construction of this encryption scheme. The formulae for the Discrete Skew Tent and Discrete PWLCM maps 
are provided by7: Discrete Skew Tent Map:

Discrete PWLCM map:

The values created by the recursive cells in the  internal state Xs[n], Xp[n]are sent to the output 
function. The output sequence Xg(n) is then created via chaotic multiplexing controlled by the chaotic 
sequence Xth = X1_s(n− 1)⊕ X1_p(n− 1) and by a threshold Th = 2N−1 , as illustrated in Eq. (3), or by xoring 
X1_s and X1_p as clarified in Eq. (4).
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Figure 2.   The detailed structure of the key stream generator.

Figure 3.   General Stream cipher structure with internal feedback mode.
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The national institute of standards and technology (NIST) statistical test27, among the most widely used 
tests for analyzing the randomization of binary streams, is used to examine the statistical correctness of the 
keystream created. This is a statistics suite comprising 188 tests and subtests for evaluating the randomization 
of random binary sequences. These tests look for several sorts of non-randomness in the sequence. Within each 
secret key, 100 different binary sequences have been created and 31,250 samples (equal to one million bits) were 
then evaluated using the NIST tests. For each test, a set of 100 P value is generated, and a sequence passes a test 
when the P_value ≥ α = 0.01 , where α is the test’s threshold of significance. The setting of α = 0.01 indicates 
that 1 percent of the 100 produced sequences are likely to fail. The percentage of produced sequences that pass 
a test is equal to the number of P_value ≥ α divided by 100. The acquired proportion versus test for delay 1 is 
displayed in Fig. 8. All of the tests and sub-tests pass the national institute of standards and technology (NIST) 
tests, as demonstrated.With the exception of the random excursions variation test, the minimum pass rate for 
each statistical test for 100 binary data is about equal to 0.960150. The random excursions variance testing has 
a pass rate of around 0.952091 for a sample size of 62 binary data.

Measuring lightweight characteristics in software.  Power and energy consumption.  Reduced power 
consumption is a critical component of lightweight systems. Power consumption is crucial since the gadgets 
we’re targeting have a short battery life, thus consuming power reduces their lifespan. We must measure the 
power to see whether it is suitable for Lightweight systems. We use the following tools to measure energy and 
power usage.

•	 RAPL The Intel Running Average Power Limit (RAPL) interface is an effective tool for measuring energy and 
power usage28. As part of the power-coping interface, RAPL is implemented in the Linux kernel. It measures 
the CPU and RAM’s energy consumption precisely. RAPL precisely monitors the energy spent by a physical 
component, followed by the energy consumed by the code executing on that component and the processes .

•	 PowerTop tool PowerTop is a Linux utility offered by Intel. PowerTOP is a tool for measuring and explaining 
power use. It is also used to reduce power usage by experimenting with different power management 
settings29. These power management settings indicate how well the various hardware power-saving capabilities 
are employed. We can quickly define a program’s power inefficiencies using PowerTOP.

Memory usage.  Memory utilization reflects the fact that limited resource devices have a tiny memory size. Due 
to limited memory use, we must reduce the size of the encryption system. Also, because embedded systems have 
limited RAM and ROM, a smaller cryptosystem provides us more alternatives for selecting the CPU, lowering 
the cost. The FELICS framework is used to measure memory utilization.

FELICS framework The Fair Evaluation of Lightweight Cryptographic Systems (FELICS) framework is a 
free and open-source benchmarking framework for Linux operating systems. A benchmarking framework is a 
framework for comparing standards and producing exact results. FELICS is a lightweight encryption software 
implementation. This implementation compares the performance of several IoT embedded devices under 
identical use scenarios. It also compares the new encryption to earlier ciphers using different measurement 
circumstances. FELICS may be used to evaluate lightweight stream or block ciphers by implementing C code 
or assembly. Then we may assess three metrics: execution time, code size, and RAM usage. In the evaluation, 
FELICS may be implemented on three devices: 32-bit ARM, 16-bit MSP, and 8-bit AVR30.

Enhancements on the current system.  The current technique encrypts many types of data with a chaos-based 
stream cipher algorithm. To generate a new key, the system encrypts the plaintext with a secret key and an initial 
vector (IV). The length of the key stream is more than or equivalent to the length of the plaintext. As seen in 
Fig. 431, deploying XOR on the plaintext and the produced key provides the ciphertext. Both the transmitter and 
the recipient must have the same secret key and IV. The system generates the keys through the use of two chaotic 
maps: the discrete skew tent map and the discrete piecewise linear chaotic map (PWLCM). The internal state of 
the system contains one, two, and three delays, as well as two non-linear filters. Both recursive filters use linear 
feedback shift register (LFSR) technology to achieve the necessary confusion.

Encryption operation.  To test the suggested system in the reality, the hardware implementation is done on 
FPGA-board using the Verilog language. The hardware devices only have a limited number of resources. As a 
result, we estimate the suggested hardware system’s resource consumption in order to test its execution capability 
on these devices. Real-time and hardware applications require strong performance and appropriate throughput 
to finish their jobs on time, thus we assess their throughput to check the system performance in hardware.

Result and analysis comparison.  We demonstrate that the improved system satisfies the criteria of lightweight 
cryptosystems. We also demonstrate how the technology may be utilized in FPGA boards and IoT systems. The 
suggested system’s result was reached by using the previously described tools as well as hardware implementation 
using the FPGA-board and Verilog language. These findings are compared to those of other LWC and hardware 
implementations.

(3)Xg(n) =
{

X_s(n), if 0 < Xth ≤ Th
X_p(n), otherwise

(4)Xg(n) = Xs(n)⊕ Xp(n).
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Software and hardware implementation
Software implementation.  In this part, we will go over the software implementation. It is accomplished 
by employing the tools stated before in the Design and methodology section on the system.

Power.  We utilized the RAPL tool to test power consumption in order to determine whether the method 
needed little power to encrypt the data. Using the tool’s data, we were able to determine whether the power 
usage is appropriate. Furthermore, we compared the findings to various stream cipher methods’ power usage.

Using the RAPL interface, we tested the power consumption of our proposed Chaos-Based Stream Cipher 
algorithm32. The average energy usage findings of the proposed system were then compared to four different 
stream cipher techniques. Those stream cryptosysem are CM-SC33, HC-128, CS-SC34 and Rabbit. The power 
consumption comparison is shown in Table 1.

Each RAPL result creates four values. The first is the PKG, which receives the total power usage (CPU) in 
Joules. Following that is the PP0, which indicates the PowerPlane0 (core) for the power consumption of the CPU 
cores only. PP1 on the other hand, stands to uncore power usage. Finally, the DRAM measurements show the 
amount of power consumed by the memory controller35.

Memory (RAM and ROM).  We chose the FELICS tool to estimate memory usage since it is a benchmarking 
framework that provides us with an accurate memory footprint. The amount of memory that a software can 
utilize while executing is referred to as its memory footprint. We assessed the memory usage to see if it was low 
enough to be considered a lightweight cryptosystem and then compared it to other ciphering systems.

We had to download the prerequisites that the FELICS framework relies on in order to obtain it. The 
requirements are the AVR microcontroller, the MSP debugger, and the ARM drivers, which we obtained by 
running the following commands:

sudo apt-get install gcc-Avr
sudo apt-get install gcc-msp430
sudo apt-get install gcc-arm-none-eabi.

Figure 4.   Stream cipher encryption for a plaintext image with it is cipher image31.

Table 1.   RAPL power consumption (J).

Stream cipher Proposed (our proposed system) CM-SC CS-SC Rabbit HC-128

PKG energy (J)32 0.035995 0.078613 0.022672 0.013855 0.038768

PP0 (J) 0.005281 0.036316 0.010297 0.006104 0.020316

PP1 (J) 0.003505 0.007568 0.000112 0.000150 0.000030

DRAM (J) 0.002807 0.012939 0.002669 0.001648 0.003806
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Following that, we completed the necessary settings to set up the framework’s core module. We had the 
framework ready at this point, but in order to evaluate memory usage, we have to follow the framework 
guidelines. The FELICS framework mandates that the algorithm and its files have a certain structure. These files 
must perform certain functions in a specific order, as indicated by the templates provided by the framework. 
Using this framework, we may create the cipher in a variety of settings and test cases.

The architecture separates the algorithm primarily into two parts: encryption and setup. We might include 
more files for our algorithm or code in each section. The setup section provides the code required to obtain the 
key, IV, and settings required for the encryption procedure. Simultaneously, the encryption section includes 
the code that creates the key and performs the encryption operation. We must be careful where and how we 
implement the code in the framework since each modification impacts the RAM or ROM utilization.

FELICS displays the ROM result as a code size in a table that also displays the code size of each file utilized 
in the algorithm. The code size quantifies the amount of data stored in the target device’s Flash memory36. To 
calculate the overall ROM usage, we add the data from the table. The RAM consumption, on the other hand, 
covers both the stack needs and the data requirement result. This result is presented in the form of a table, which 
indicates the RAM sizes of the key, IV, state, data, encryption, and setup. To calculate the overall RAM utilization, 
we add the values from the table.

Hardware implementation.  On this part, we show how to implement the suggested method in FPGA 
using the Verilog programming language. We also demonstrate the algorithm’s performance evaluation.

Utilization.  On the FPGA board, we assess the suggested algorithm’s resource use (Spartan- xc6slx75-
2-csg484). To that aim, we implement the suggested method in Verilog so that it may be used in real-world 
hardware applications.

The Algorithm is built in VHDL using Xilinx ISE Design Suite 14.637, and the VHDL code is then synthesised 
using the Xilinx ISE Design Suite. Following the synthesis procedure, the Xilinx ISE Design Suite provides 
reports. The reports describe resource usage, time, and so forth. We are considered in the resource usage report.

Performance.  We need to assess the throughput and the clock in order to evaluate the performance of the 
proposed system. The throughput of a system is the number of units of information it can handle in a given 
length of time. In our situation, this is how many bits per second. Using the findings of the FPGA board (Spartan- 
xc6slx75-2-csg484), we were able to determine whether or not the performance is satisfactory.

Results
We examine the results and compare them to other systems; we also determine whether the system meets our 
objectives by comparing it to lightweight criteria.

Software result.  Power.  The average energy value is computed after executing the proposed technique 
100 times on the standard Lena picture (256 256 3) with 100 distinct secret keys.

We make a comparative study between acquired power consumption findings with latest stream crypto-system 
in Table 1 (for image size equals 256 256 3). In Fig. 5, we can observe that:

•	 Our suggested system consumes less power overall (PKG energy) than CM-SC and HC-128.
•	 Our proposed system uses the least power in the core power consumption (PP0).
•	 Our suggested system uses less power than CM-SC in the uncore power consumption (PP1).
•	 Our suggested DRAM system uses less power than CM-SC and HC-128.

The preceding findings demonstrate that our system consumes less power than other stream ciphers.

Memory (RAM and ROM).  Using the specified test vectors, the first scenario (Scenario 0) is examined. 
The second scenario (Scenario 1) involves encrypting 128 bytes of data. It addresses the demand for secure 
communication between sensor networks and IoT devices. The second scenario is used to generate the results 
(Scenario 1).

In Table 2, we compare our obtained RAM and ROM (memory) consumption results with some of the known 
stream ciphers. As we can see in Figs. 6 and 7:

•	 In the code size (ROM), our stream cipher consumes fewer bytes than HC-128 and Snow stream ciphers.
•	 In the RAM consumption, our algorithm consumes less memory than 5 of the other stream ciphers. It’s less 

than CM-SC, CS-SC, HC-128, Trivium, and Snow stream ciphers.

The experimental findings suggest that our system consumes less memory than other stream ciphers. They 
also show that the suggested method consumes less than 8 KB of RAM and 32 KB of ROM. This indicates that 
the suggested approach is appropriate for devices with low memory and tiny devices. It is also compatible with 
IoT devices, which are thought to have limited memory.

Hardware result.  This subsection discusses the results and compares them with the other stream hardware 
implementations.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19649  | https://doi.org/10.1038/s41598-022-20373-7

www.nature.com/scientificreports/

Utilization.  At the end of the experiment, we collect the suggested system’s resource use and compare it to 
another pseudo chaotic number generator, as shown in Table 3.

Table 3 shows the consumption of hardware resources by the proposed system and another system38. The 
results denote that the proposed system consumes less resources. They also show that the proposed system 
consumes less slice registers and the fully used LUT-FF pairs than the other system. But the proposed system 
consumes more Number of Slice LUTs and more number of bonded IOBs than the other system.

Performance.  Because the time required to determine the clock frequency is included in the timing report, we 
can calculate the throughput using the clock frequency by using the equation below. The suggested system has a 
throughput of 178.304 Mbps for N = 32 and a clock frequency of 5.572 (in Xilinx Spartan 6 platform), as shown 
in Table 4.

As shown in Table 4, we can get the throughput of the proposed system in different FPGA boards and compare 
them with other systems. According to the table, the proposed system has a higher throughput than the other 
mentioned systems. In addition to the good throughput, the proposed system occupies a small implementation 
area, which reduces the hardware resource consumption. In conclusion, the proposed system is applicable to real 
hardware and IoT applications, with high performance (throughput) and low resource consumption.

Hardware security.  Several tests must be performed to determine the convergence of the proposed system 
with pseudo sequences generator. Every test assesses a unique attribute, such as the relationship between random 

(5)Throughput(Mbps) = N × Clockfrequency.

Figure 5.   The comparison of the RAPL power consumption results.

Table 2.   FELICS memory consumption.

Cryptosystem Size of code (bytes) Memory

Proposed 9817 468

CM-SC 7240 660

CS-SC 6562 564

Rabbit 1714 216

HC-128 23,100 4556

Trivium 5764 1516

Snow 12,861 1741
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and produced sequences. The National Institute of Standards and Technology (NIST) tests are also used to 
determine how near the produced sequence is to a random sequence. Furthermore, we ran many security tests 
to demonstrate our model’s resistance to attacks40.

Phase space test.  The phase space test is applied to the proposed system in41 , as well as the mapping of a sequence 
X(n) formed by 3,125,000 samples out of the 3,125,100 samples generated to reach the transitional regime Tr = 
100, as well as the mapping of 1000 samples from the random X(n). The results of the tests demonstrate that the 
region appears to be utterly disordered, with no relationship between surrounding sample values.

Figure 6.   The comparison of the RAM consumption of the proposed system with different encryption 
algorithms.

Figure 7.   The comparison of the code size (ROM) in the proposed system with different encryption algorithms 
consumption.
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Histogram and chi‑square tests.  The pseudo number generator should produce sequences with a uniform 
distribution. The histogram of the created sequence X(n) in41, which must be checked by the stated chi-square 
test. The experimental value of the chi-square test is smaller than the theoretical value, confirming the uniformity 
of the histogram (Fig. 8).

NIST test.  The generated sequences from the pseudo number generator have to pass the statistical NIST test 
that contain 188 test ans sub-test that evaluate the randomness of long binary sequence. The proposed system 
tested on the NIST test in7,41 and their is a result for 15 statistical tests. According to the final results the proposed 
system generated unrecognizable sequences from random sequences.

Keyspace.  The bigger keyspace method, as we know in encryption, has a high capacity to withstand a brute 
force attack, whereas algorithms with a limited key space suffer from a lack of sequence randomization. The 

Table 3.   Resource consumption rate of the proposed pseudo chaotic number generator for the FPGA board 
(Spartan- xc6slx75-2-csg484).

Logic utilization Available

Proposed 38

Used Utilization (%) Used Utilization (%)

Number of slice Registers 93,296 38 0.04 278 0.30

Number of slice LUTs 46,648 26,631 57.09 19,283 41.34

Number of fully used LUT-FF pairs 19,361 2 0.01 200 1.03

Number of bonded IOBs 328 65 19.82 36 10.98

Number of BUFG/BUFGMUXs 16 1 6.25 1 6.25

Number of DSP48A1s 132 39 29.55 25 18.94

Table 4.   Performance comparison between the proposed system to other systems.

Paper Platform Clock (MHz) Resources Output bits) Mbps

Ours

Xilinx Kintex 7 1178.967 2 FFs, 26,612 LUTs 32 37,726.944

Xilinx Virtex 6 1204.529 2 FFs, 26,612 LUTs 32 38,544.928

Xilinx Spartan 6 599.323 2 FFs, 26,631 LUTs 32 19,178.336

38

Xilinx Kintex 7 12.562 199 FFs, 19,260 LUTs 32 401.984

Xilinx Virtex 6 11.706 19,266 LUTs 32 374.592

Xilinx Spartan 6 5.527 200 FFs, 19,283 LUTs 32 176.864
39 Xilinx Kintex 7 59.492 133 FFs, 311 LUTs – 125 (kbps)
39 Xilinx Virtex 6 90.2445628 43,732 LUTs 32 58.7

0 50 100 150 200
50

60

70

80

90

100
Prop vs Test

Figure 8.   NIST of the acquired key-stream sequences41.
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suggested cryptosystem has distinct keyspaces depending on the delay. The keyspace is about 299 bits in delay = 
1, but it grows to 555 bits in delay = 3. Because of the large number of keyspaces, the proposed cryptosystem is 
resistant to brute force attacks.

Key security and sensitivity attack.  We used two important matrices to evaluate the key sensitivity of our 
proposed cryptosystem: the amount of pixel change rate (NPCR) and the unified Average changing intensity 
(UACI), which show that the proposed proposal is very sensitive to a one-bit change that appears when we 
encrypt the “Lena” image more than 100 times using 100 secret keys with a difference in the least significant bit 
(LSB).

Where

And UACI, which is used to calculate the average intensity difference between two ciphered images, is defined 
as follows:

In the preceding equations, L, C, and P represent the image’s length, width, and plane size, respectively. I, 
j, and p represent the row, column, and plane indexes, respectively. As demonstrated in Table 5, the suggested 
cryptosystem’s NPCR and UACI values are close to the ideal NPCR and UACI values of 99.61 and 33.46, 
respectively42.

Information entropy.  In information theory, the entropy E(X) is a statistical measure of uncertainty43. This is 
how it is defined:

Where X is a random variable and p(xi) is the probability of the gray value xi occuring. Assume there are 256 
states of the information source with the same chance in the red, green, and blue colours of the picture. We can 
obtain an ideal E(X) = 8, which is a completely random source. As shown from Table 6 the information entropy 
of various Cipher Images such as Titanic, Photographer, Manhattan, Camera-man, Lena, and Boat is closer to 
8. Entropy values approaching 8 are found in all ciphers, suggesting that the cipher image is a random collection 
of pixels.

Correlation analysis.  The correlation evaluation is very crucial, especially in the encryption field, because it 
is important to hide information from an attacker who may know some information of the plaintext from the 
encrypted data, so in order to guarantee security, the correlation of the presented stream cipher must be as low 
as possible. We run this test by feeding 10000 adjacent pixels from the plane picture and the encrypted image as 
input to the Eqs. (10), (11), (12) and (13).

(6)NPCR =
1

L× C × P

P
∑

p=1

L
∑

i=1

C
∑

j=1

D(i, j, p)× 100%

(7)D(i, j, p) =
{

0, ifC1(i, j, p) = C2(i, j, p)
1, ifC1(i, j, p) �= C2(i, j, p)

(8)UACI =
1

L× C × P × 255

P
∑

p=1

L
∑

i=1

C
∑

j=1

| C1(i, j, p)− C2(i, j, p) | ×100%

(9)E = −
255
∑

i=0

P(xi) log2 P(xi)

(10)Pxy =
Cov(x, y)

√
D(x)

√

D(y)

(11)Cov(x, y) =
1

N

N
∑

i=1

([xi − E(x)][yi − E(y)])

(12)D(x) =
1

N

N
∑

i=1

(xi − E(x))2

Table 5.   The results of NPCR and UACI matrices.

Algorithm NPCR UACI

Proposed system 99.655 33.439
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In the previous equations, pxy represents the correlation coefficient of two sequences, x and y. The x and y 
values are Xi and Yi, respectively. To demonstrate that the cipher picture is not the same as the original image, 
we utilized correlation analysis of surrounding pixels for both the cipher and the original image. Figure 9a 
demonstrates that adjoining pixels in the plain picture are redundant and correlated, but adjacent pixels in the 
cipher image appear to have as little redundancy and correlation as possible. This is simply one more illustration 
of how our proposed strategy is resistant to statistical assaults.

Conclusion and future work
Conclusion.  We developed a secure lightweight cryptosystem for IoT and tiny devices in this study. The 
technology consumes less power, extending the life of these gadgets. This system also requires less memory, 
making it ideal for IoT and tiny devices (often with less than 8k RAM (Random Access Memory) and 32k ROM) 
(Read Only Memory). The study showed a viable hardware lightweight cryptosystem built on an FPGA board 
using the Verilog programming language. The suggested hardware solution is based on resource usage that is 
appropriate for real-time applications and IoT devices. This system also shown good performance with large 
throughputs to enable real-time data delivery.

Future work.  In the future, the system may be modified to focus on the area of interest (ROI), making the 
encryption process even faster than previously. Furthermore, implementing an encrypted mobile application 
will be a useful step because the system is currently lightweight and works well on mobile devices. In addition, 
we propose a lightweight system using a one-way hashing function.

Received: 15 November 2021; Accepted: 13 September 2022

References
	 1.	 Lee, I. & Lee, K. The internet of things (IoT): Applications, investments, and challenges for enterprises. Bus. Horizons 58, 431–440. 

https://​doi.​org/​10.​1016/j.​bushor.​2015.​03.​008 (2015).

(13)E(x) =
1

N

N
∑

i=1

(xi)

Table 6.   Information entropy of some cipher images.

Ciphered image Titanic Sharukhan41 Manhattan Photographer41 Camera-man Lena Boat41

Results of Entropy 7.999 7.999 7.999 7.999 7.999 7.999 7.999

Figure 9.   Pixels adjacent for plain and cipher image41.

https://doi.org/10.1016/j.bushor.2015.03.008


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19649  | https://doi.org/10.1038/s41598-022-20373-7

www.nature.com/scientificreports/

	 2.	 Kumar, S. A., Vealey, T. & Srivastava, H. Security in internet of things: Challenges, solutions and future directions. In 2016 49th 
Hawaii International Conference on System Sciences (HICSS), 5772–5781 (IEEE, 2016).

	 3.	 Ande, R., Adebisi, B., Hammoudeh, M. & Saleem, J. Internet of things: Evolution and technologies from a security perspective. 
Sustain. Cities Soc. 54, 101728 (2020).

	 4.	 Abu Taha, M. et al. Privacy protection in real time HEVC standard using chaotic system. Cryptography 4, 18 (2020).
	 5.	 Haghi, M., Thurow, K. & Stoll, R. Wearable devices in medical internet of things: Scientific research and commercially available 

devices. Healthc. Inform. Res. 23, 4–15 (2017).
	 6.	 Nishchal, N. K. Optical Cryptosystems (IOP Publishing, 2019).
	 7.	 Abutaha, M., El Assad, S., Queudet, A. & Deforges, O. Design and efficient implementation of a chaos-based stream cipher. Int. J. 

Internet Technol. Secured Trans. 7, 89–114 (2017).
	 8.	 Peter Loshin, M. C. Encryption. https://​searc​hsecu​rity.​techt​arget.​com/​defin​ition/​encry​ption. (Accessed 08 Nov 2019).
	 9.	 Block cipher. https://​www.​tutor​ialsp​oint.​com/​crypt​ograp​hy/​block_​cipher.​htm (Accessed 08 Nov 2019).
	10.	 Sumartono, I. N. M. & Siahaan, A. P. U. Rc4 encryption—A literature survey. IOSR J. Comput. Eng. (IOSR-JCE) 18 (2016).
	11.	 Bernstein, D. J. New Stream Cipher Designs (Springer, 2008).
	12.	 Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J. & Scavenius, O. Rabbit: A New High-Performance Stream Cipher Vol. 

2887 (Springer, 2003).
	13.	 Rijmenants, D. The complete guide to secure communications with the one time pad cipher. 1–27, http://​docsh​are02.​docsh​are.​

tips/​files/​27298/​27298​5487.​pdf (2017).
	14.	 Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without 

quantum repeaters. Nature 557, 400–403 (2018).
	15.	 Liu, W.-B. et al. Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess 

noise tolerance. PRX Quant. 2, 040334 (2021).
	16.	 Pseudorandom generator (prg). http://​www.​crypto-​it.​net/​eng/​theory/​pseud​orand​om-​gener​ator.​html. Accessed (09 Nov 2019).
	17.	 Da Xu, L., He, W. & Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 10, 2233–2243 (2014).
	18.	 Atawneh, B., Layla, A.-H. & Abutaha, M. Power consumption of a chaos-based stream cipher algorithm. In 2020 3rd International 

Conference on Computer Applications & Information Security (ICCAIS), 1–4 (IEEE, 2020).
	19.	 Thakor, V. A., Razzaque, M. A. & Khandaker, M. R. Lightweight cryptography algorithms for resource-constrained IoT devices: 

A review, comparison and research opportunities. IEEE Access 9, 28177–28193 (2021).
	20.	 Donald Thomas, P. M. The Verilog Hardware Description Language (Springer US, 2002).
	21.	 Ding, L., Liu, C., Zhang, Y. & Ding, Q. A new lightweight stream cipher based on chaos. Symmetry 11, 853. https://​doi.​org/​10.​

3390/​sym11​070853 (2019).
	22.	 Field programmable gate array (FPGA). https://​www.​xilinx.​com/​produ​cts/​silic​on-​devic​es/​fpga/​what-​is-​an-​fpga.​html. Accessed 

(02 Sept 2020).
	23.	 Group, L. C. W. et al. Cryptrec cryptographic technology guideline (lightweight cryptography) (2017).
	24.	 Gautier, G., Le Glatin, M., El Assad, S. & Hamidouche, W. Hardware implementation of lightweight chaos-based stream cipher. In 

The Fourth International Conference on Cyber-Technologies and Cyber-Systems 37–40, http://​www.​think​mind.​org/​artic​les/​cyber_​
2019_3_​20_​80055.​pdf (2019).

	25.	 Pande, A. & Zambreno, J. A chaotic encryption scheme for real-time embedded systems: Design and implementation. Telecommun. 
Syst 52, 551–561. https://​doi.​org/​10.​1007/​s11235-​011-​9460-1#​citeas (2013).

	26.	 Xu, F., Curty, M., Qi, B., Qian, L. & Lo, H. K. Discrete-variable measurement-device-independent quantum key distribution suitable 
for metropolitan networks. Nat. Photon. 1 (2015).

	27.	 Pareschi, F., Rovatti, R. & Setti, G. On statistical tests for randomness included in the NIST SP800-22 test suite and based on the 
binomial distribution. IEEE Trans. Inform. Forensics Security 7, 491–505 (2012).

	28.	 Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K. & Ou, Z. Rapl in action: Experiences in using RAPL for power measurements. 
ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 1–26. https://​doi.​org/​10.​1145/​31777​54 (2018).

	29.	 powertop. https://​01.​org/​power​top. (Accessed 21 Dec 2020).
	30.	 Felics. https://​www.​crypt​olux.​org/​index.​php/​FELICS (Accessed 21 Dec 2020).
	31.	 Standards test images for signal processing. https://​sipi.​usc.​edu/​datab​ase/​datab​ase.​php?​volume=​misc (Accessed 20 Dec 2020).
	32.	 B. Atawneh, L. A.-H. & Taha, M. A. Power consumption of a chaos-based stream cipher algorithm. In 2020 3rd International 

Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, Vol. 7, 1–4, https://​doi.​org/​10.​1109/​
ICCAI​S48893.​2020.​90967​30 (2020).

	33.	 O. Jallouli, S. E. A. & Chetto, M. Robust chaos-based stream-cipher for secure public communication channels. In 2016 11th 
International Conference for Internet Technology and Secured Transactions (ICITST), Vol. 7, 23–26, https://​doi.​org/​10.​1109/​ICITST.​
2016.​78566​58 (2016).

	34.	 Jallouli, O., Assad, S. E., Chetto, M. & Lozi, R. Design and analysis of two stream ciphers based on chaotic coupling and multiplexing 
techniques. Multimed. Tools Appl. 77, 13391–13417. https://​doi.​org/​10.​1007/​s11042-​017-​4953-x (2018).

	35.	 Reading RAPL energy measurements from linux. http://​web.​eece.​maine.​edu/​~vweav​er/​proje​cts/​rapl/?​fbclid=​IwAR0​6tI6f​ph57Y​
heCp-​HNwko​BzuXKB-​6QMz9​WDQ33​l4wZI​DuxYF​ZoS-​bDX4Y (Accessed 10 Mar 2020).

	36.	 C. Manifavas, K. F., Hatzivasilis, G. & Rantos, K. Lightweight cryptography for embedded systems-a comparative analysis. In 8th 
International Workshop on Data Privacy Management and Autonomous Spontaneous Security 333–349, https://​doi.​org/​10.​1007/​
978-3-​642-​54568-9_​21.

	37.	 Ise design suite. https://​www.​xilinx.​com/​produ​cts/​design-​tools/​ise-​design-​suite.​html (Accessed 01 Sept 2020).
	38.	 Dridi, F., El Assad, S., Youssef, W. E. & Machhout, M. FPGA implementation of a pseudo-chaotic number generator and evaluation 

of its performance. In 2019 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC) 
231–234, https://​doi.​org/​10.​1109/​IINTE​C48298.​2019.​91121​24 (2017).

	39.	 Karakaya, B., Glten, A. & Frasca, M. A true random bit generator based on a memristive chaotic circuit: Analysis, design and fpga 
implementation. Chaos Solitons Fract. 119, 143–149. https://​doi.​org/​10.​1016/j.​chaos.​2018.​12.​021 (2019).

	40.	 Dridi, F., El Assad, S., El Hadj, Youssef W., Machhout, M. & Lozi, R. The design and FPGA-based implementation of a stream 
cipher based on a secure chaotic generator. Applied Sciences 11, 625. https://​doi.​org/​10.​3390/​app11​020625 (2021).

	41.	 Abutaha, M., Amar, I. & AlQahtani, S. Parallel and practical approach of efficient image chaotic encryption based on message 
passing interface (MPI). Entropy 24, 566 (2022).

	42.	 Wu, Y. et al. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 
1, 31–38 (2011).

	43.	 Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

Acknowledgements
This research is conducted under the Palestinian Quebecer Science Bridge (PQSB), which promotes scientific 
collaboration in research between Quebec, Canada and Palestine through the Palestine Academy for Science 
and Technology and the Fonds de Recherche du Quebec (FRQ), Canada and its three branches; the Fonds de 

https://searchsecurity.techtarget.com/definition/encryption
https://www.tutorialspoint.com/cryptography/block_cipher.htm
http://docshare02.docshare.tips/files/27298/272985487.pdf
http://docshare02.docshare.tips/files/27298/272985487.pdf
http://www.crypto-it.net/eng/theory/pseudorandom-generator.html
https://doi.org/10.3390/sym11070853
https://doi.org/10.3390/sym11070853
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
http://www.thinkmind.org/articles/cyber_2019_3_20_80055.pdf
http://www.thinkmind.org/articles/cyber_2019_3_20_80055.pdf
https://doi.org/10.1007/s11235-011-9460-1#citeas
https://doi.org/10.1145/3177754
https://01.org/powertop
https://www.cryptolux.org/index.php/FELICS
https://sipi.usc.edu/database/database.php?volume=misc
https://doi.org/10.1109/ICCAIS48893.2020.9096730
https://doi.org/10.1109/ICCAIS48893.2020.9096730
https://doi.org/10.1109/ICITST.2016.7856658
https://doi.org/10.1109/ICITST.2016.7856658
https://doi.org/10.1007/s11042-017-4953-x
http://web.eece.maine.edu/%7evweaver/projects/rapl/?fbclid=IwAR06tI6fph57YheCp-HNwkoBzuXKB-6QMz9WDQ33l4wZIDuxYFZoS-bDX4Y
http://web.eece.maine.edu/%7evweaver/projects/rapl/?fbclid=IwAR06tI6fph57YheCp-HNwkoBzuXKB-6QMz9WDQ33l4wZIDuxYFZoS-bDX4Y
https://doi.org/10.1007/978-3-642-54568-9_21
https://doi.org/10.1007/978-3-642-54568-9_21
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://doi.org/10.1109/IINTEC48298.2019.9112124
https://doi.org/10.1016/j.chaos.2018.12.021
https://doi.org/10.3390/app11020625


15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19649  | https://doi.org/10.1038/s41598-022-20373-7

www.nature.com/scientificreports/

recherche du Quebec-Sante (FRQS), the Fonds de recherche du Quebec-Nature et technologies (FRQNT), and 
the Fonds de recherche du Quebec-Societe et culture (FRQSC).

Author contributions
M.A. proposed the system and the methodology, B.A. conceived the experiment(s), L.H. conceived the 
experiment(s), G.K. reviewing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.A. or G.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Secure lightweight cryptosystem for IoT and pervasive computing
	Background and literature review
	Background. 
	Encryption. 
	Block cipher. 
	Stream cipher. 
	Pseudo-random number generator (PRNG). 
	Internet of things (IoT). 
	Lightweight. 
	Lightweight cryptography (LWC). 
	Verilog. 
	FPGA. 

	Literature review. 
	Lightweight cryptography. 
	New lightweight stream cipher based on chaos. 
	Lightweight chaos-based stream cipher hardware implementation. 
	Chaotic encryption algorithm design and implementation for real-time embedded systems. 


	Design and methodology
	Encryption system based on chaos. 
	Measuring lightweight characteristics in software. 
	Power and energy consumption. 
	Memory usage. 
	Enhancements on the current system. 
	Encryption operation. 
	Result and analysis comparison. 


	Software and hardware implementation
	Software implementation. 
	Power. 
	Memory (RAM and ROM). 

	Hardware implementation. 
	Utilization. 
	Performance. 


	Results
	Software result. 
	Power. 
	Memory (RAM and ROM). 

	Hardware result. 
	Utilization. 
	Performance. 

	Hardware security. 
	Phase space test. 
	Histogram and chi-square tests. 
	NIST test. 
	Keyspace. 
	Key security and sensitivity attack. 
	Information entropy. 
	Correlation analysis. 


	Conclusion and future work
	Conclusion. 
	Future work. 

	References
	Acknowledgements


