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Deep‑learning framework 
for fully‑automated recognition 
of TiO2 polymorphs based 
on Raman spectroscopy
Abhiroop Bhattacharya , Jaime A. Benavides , Luis Felipe Gerlein  & Sylvain G. Cloutier *

Emerging machine learning techniques can be applied to Raman spectroscopy measurements 
for the identification of minerals. In this project, we describe a deep learning-based solution for 
automatic identification of complex polymorph structures from their Raman signatures. We propose 
a new framework using Convolutional Neural Networks and Long Short-Term Memory networks for 
compound identification. We train and evaluate our model using the publicly-available RRUFF spectral 
database. For model validation purposes, we synthesized and identified different TiO2 polymorphs 
to evaluate the performance and accuracy of the proposed framework. TiO2 is a ubiquitous 
material playing a crucial role in many industrial applications. Its unique properties are currently 
used advantageously in several research and industrial fields including energy storage, surface 
modifications, optical elements, electrical insulation to microelectronic devices such as logic gates 
and memristors. The results show that our model correctly identifies pure Anatase and Rutile with 
a high degree of confidence. Moreover, it can also identify defect-rich Anatase and modified Rutile 
based on their modified Raman Spectra. The model can also correctly identify the key component, 
Anatase, from the P25 Degussa TiO2. Based on the initial results, we firmly believe that implementing 
this model for automatically detecting complex polymorph structures will significantly increase the 
throughput, while dramatically reducing costs.

Vibrational spectroscopy involves specific optical techniques including Fourier-transform infrared (FTIR), 
Brillouin scattering and Raman spectroscopy1. Classification models for vibrational spectroscopy data can map 
input objects (spectra) to desired outputs (class assignments)2. While building such a classification tool is a 
challenging task, it would benefit a wide range of application sectors including semiconductors, pharmaceutical, 
polymers, forensics, environmental and food sciences, as well as medicine3,4. Also, vibrational spectroscopy data 
often requires additional and complex pre-processing steps before chemometric measurements5. Several data 
pre-processing approaches are used to improve the robustness and accuracy of subsequent multivariate analy-
sis and to increase the interpretability of the data by providing adjustments for the challenges associated with 
spectral data acquisition5. However, pre-processing methods are often proprietary, or they can vary significantly 
depending on the objective of the study and the technique. These expert guided pre-processing pipelines are 
brittle and are based on empirical evidence6. As a result, a pre-processing technique suitable for a given model 
or material system might decrease the performance of another7. The effects of a given pre-processing technique 
also varies significantly with the data sample, often requiring a trained expert’s intervention. Thus, we believe it 
is important to remove the non-standard expert guided pre-processing of signals to ensure better generalization.

Recent advances in the development of instruments coupled with more powerful compute resources and 
tools have brought Raman spectroscopy from a research laboratory-based method to a widely-used method in 
a diverse set of fields. Portable or handheld systems are currently helping clinicians in the detection of cancer-
ous cells and in the identification of unknown chemical substances8–11 Raman spectroscopy provides unique 
fingerprints pertaining to individual molecules and compounds and it requires minimal sample preparation. 
Similarly, Raman spectroscopy can detect and characterize defect states that significantly affect the material’s 
properties12,13. For instance, the presence of surface defects in metal-oxides allow anions and cations to assume 
a variety of charged states contributing to photocatalysis14, corrosion protection15, sensors16, microelectronics17, 
magnetic recording devices12,15 and micro-porous materials18.
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Spectroscopy techniques can be subject to individual interpretations. During manual pre-processing, human 
bias might be added to the data, which can impact the results or their interpretations7. Thus, there is an urgent 
requirement to develop more robust computational tools, which would help users rapidly analyse the spectrum 
patterns in a more uniform and reliable (unbiased) manner. Traditional methods require a highly-skilled expert 
to correctly identify the compound and/or structural properties from the Raman spectroscopy measurements. 
Convolutional Neural Networks (CNNs) have been widely used to extract feature patterns in complex high-
dimensional data. Thus, they can reduce the need for brittle manual pre-processing by highly-skilled experts19. 
Automated real-time CNN models enable professionals from a diverse set of fields to use Raman spectroscopy 
to identify increasingly complex compounds from more affordable (lower-resolution) instruments with minimal 
preprocessing of data.

In this work, we propose a powerful deep-learning framework to accurately identify compounds from their 
Raman spectra. Using the proposed model, we achieve a Top-1 accuracy of 99.12% and a Top-5 accuracy of 
99.30% on the public RRUFF Dataset. To support our findings, we present experimental validations using our 
model to accurately identify both Rutile and Anatase in the synthesized samples. Most importantly, we establish 
that the proposed model does not require any additional expert guided proprietary data pre-processing to achieve 
accurate identification. This leads to better cost efficiencies and standardisation.

Related works
Several researchers worked on the development of spectral-matching algorithms20,21. These algorithms identify 
the similarities between a reference spectrum and the samples in an iterative manner20. These techniques can be 
classified into unsupervised or supervised methods22.

The unsupervised methods tend to reduce the number of dimensions using Principal Component Analysis 
(PCA), and then use a similarity or distance-based algorithm like K-Nearest Neighbour (KNN) to identify 
homogeneous clusters in the spectral data23. The distance-based algorithms maximize the similarity within a class 
and reduce the inter-group similarity24. The reference sample and technique used for dimensionality reduction 
have a significant impact on the performance of the unsupervised method25. In contrast, the similarity-based 
methods either compare the maximum peaks or the full spectrum26. Then, a wide selection of distance metrics 
such as Euclidean distance and least squares can be used to calculate similarity27. These algorithms require 
feature engineering and a reference database to identify compounds. Several researchers report that the feature 
engineering approach is not robust28,29. Feature engineering is usually specific to a dataset and it cannot be eas-
ily applied across different datasets. Furthermore, it provides a gateway for human bias to be introduced in the 
model and it still requires a highly-skilled practitioner to analyse the results.

In contrast, supervised methods minimize the error between the predicted label and the ground truth label 
during training30. As such, they require a labeled corpus of data for the training. The algorithm extracts the 
features from the input spectrum. It then makes a prediction of the compound class based on these features. 
Subsequently, it quantifies the difference between the ground truth and the predicted value using a measure for 
similarity. This loss can then be optimized using different optimisation algorithms. Several researchers have 
applied traditional machine-learning (ML) techniques to classify Raman spectra31,32. Support vector machines 
(SVMs) were used with limited success33,34. Unfortunately, the performance of the SVMs deteriorates rapidly as 
the number of classes increases35.

Fully-connected dense network were recently applied to Raman spectra analysis36. However, dense networks 
are unable to extract features from the spectrum and have a large number of parameters leading to data overfit37. 
Researchers also explored the use of 1D CNNs to analyze Raman spectra35,38,39. Their results suggest that con-
volutional networks can accurately classify the spectra with minimal pre-processing treatment. An accuracy of 
93.3% was reported on the pre-processed samples of the RRUFF dataset35,40. Building on these promising results, 
a two-step model was trained for identifying each compound from their spectra and then performing the iden-
tification of compounds from a mixture with a classification accuracy of 98.8%41. However, this approach is not 
scalable to a mixture of many compounds.

More recent transfer learning and data augmentation techniques are now widely used to reduce overfitting 
and improve the performance of the models42. Augmented spectral datasets were generated by adding various 
offsets, slopes and multiplications on the vertical axis43. Meanwhile, transfer learning was also performed by 
training the network on a spectral database and using the model to predict the observations from a different 
database44. This approach yields an accuracy of 88.4% for the unprocessed data and 94% for the processed data.

Raman spectrum analysis usually requires baseline correction prior to spectral matching. There is a wide 
range of methods for baseline correction, such as a least-squares polynomial curve fitting for the subtraction 
of the baseline45. The literature provides a comprehensive survey of baseline and correction methods46, and 
a comprehensive overview of the applications of convolutional neural networks to vibrational spectroscopy 
measurements46.

In this work, we implement a deep-learning convolutional model to identify compounds from their Raman 
spectra. Using this approach, we perform an experimental verification of the model using anatase and rutile 
TiO2 polymorphs.

The proposed model is an end-to-end framework, which does not require any additional proprietary pre-
processing. To the best of our knowledge, this is the first model using a combination of Long Short Term Memory 
networks (LSTM)47 and convolutional neural networks (CNNs) for Raman spectra analysis. Most importantly, the 
ablation study indicates that LSTM incorporation leads to a significant improvement in classification accuracy. 
In time, we firmly believe such real-time machine learning-assisted compound identification and analysis will 
help rapidly and more accurately identify the mineral and chemical compounds.
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Materials and methods
This section gives a brief overview of the various models used in the paper. The Fig. 1 presents a high-level 
overview of the methodology. The proposed model is trained using the Raman spectra from the database. The 
trained model takes a Raman spectrum as an input and identifies the mineral. We compare the model prediction 
against real world data to validate the model outcome. The section presents a detailed overview of the training 
and experimental methodology.

Proposed model architecture.  The input to the CNN in application to Raman spectrum classification is 
one dimensional and it contains the entire spectrum. Hence, we trained one dimensional convolutional kernel 
in our CNN. We use a ReLU activation for the convolutional layers:

The “Ablation studies” section will compare results using other activation functions. A convolutional layer 
can be expressed as follows:

where xi and yj are the ith input and jth output map, respectively. Kij is a convolutional kernel between the maps 
i and j, * denotes the convolution operator and bj is the bias parameter of the jth map. The convolutional layer is 
followed by a max-pooling layer, in which each neuron in the output map yi pools over an SXS non-overlapping 
region in the input map xi.

Formally, the max-pooling operation is described as:

The output of the max-pooling layer is fed to a Long Short-Term Memory (LSTM) layer to process the one-
dimensional sequence. The LSTM network has a cell state, which can be used to remember the previous times-
tamp. The output of the LSTM is flattened and processed using fully-connected dense layers.

We use ReLU as the non-linear activation for the fully connected layers. The model has four 1D Convolutional 
layers with a kernel size of 2 and same padding. The max pooling layers have a pool size of 2 and a stride of 2. 
The SoftMax operates as a squashing function that re-normalises the K dimensional input vector z of real values 
to real values in the range [0,1] that sum to 1 specifically,

To avoid overfitting, we apply a dropout after the first and second fully-connected layer48. The block diagram 
in Fig. 2 shows the structure of the proposed network. A detailed description of the model and the hyperparam-
eters is provided in the supplementary information in the section “Model Diagram”.

Model training.  The training of the model is performed using RMSProp algorithm49, which is a variant of 
the stochastic gradient descent using 100 epochs with learning rate of 1e -3 and β = 0.9. The layers are first initial-
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Figure 1.   Schematic overview of the process flow.
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ised from a Gaussian distribution with a zero mean and variance equal to 0.05. The framework is implemented 
using the Tensorflow library version50. We use a Tesla T4 graphics processing unit (GPU) to run all experiments.

RRUFF dataset.  The project uses the public RRUFF dataset40. The RRUFF project provides access to X-ray 
diffraction patterns, Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, references, pho-
tographs and characterization data of different minerals. The database is constantly reviewed and updated to 
ensure the quality and durability of data. The database contains the spectral information of 3527 (over 70%) of 
the 4985 known minerals. Public access is provided with reviewed and validated characterizations of 2128 of 
those minerals.

The dataset contains the Raw and baseline-corrected Raman spectra of mineral polymorphs. The Raman 
spectra of the minerals in the project are acquired using several spectrometers. Some of the spectrometers are: 
Downs spectrometer with 514 nm laser, Thermo Almega XR with 532 and 785 nm lasers, Kaiser Optical Systems 
HoloProbe 785 and a Renshaw microRaman system for work at 514.5 and 780 nm. Based on the quality of sample 
collection, the samples are divided into excellent, fair, poor and unrated. These are further divided by the orien-
tation and the processing. A detailed description of the different splits has been provided in the supplementary 
information in the section “Analysis of RRUFF Dataset”.

Evaluation metrics.  Classification models use true positives and false positives for precision and recall 
assessment:

The Precision value indicates the model’s positive predictive value or the ability to avoid false positives (here, 
this would mean predicting it is a given mineral when it is not). Meanwhile, the Recall value indicates the model’s 
true positive rate or sensitivity or the ability to avoid false negatives (here, this would mean predicting it is not a 
given mineral when it is). Balancing the Precision and Recall in the context of a specific application is one of the 
main challenges facing any machine-learning developer51.

Methodology.  We have used a training methodology to train the model and experimental evaluation to 
predict the TiO2 polymorphs from synthetized samples.

Training methodology.  We first randomly divide the whole dataset into training (80%), validation (10%) and 
test (10%) sets. The stochastic gradient descent (SGD) optimizer is used for most of the experiments. Additional 
experiments were performed using the Adam and AdamW optimizers49. However, we find that a variant of SGD 
consistently produces the best results. The same behavior was previously reported in the literature52. The hyper-
parameters are fine-tuned for each model and the detailed list of hyperparameters associated with each model 
is provided in the supplementary section. We trained our model using various Convolutional network architec-
tures and activation functions for comparison.

Experimental evaluation.  TiO2 polymorphs play an essential role in diverse applications ranging from photo-
catalysis to energy-harvesting53,54. Furthermore, researchers have shown that it is possible to have an enhanced 
room temperature photo conversion by utilising a defect-rich synthesis of TiO2

55. Rapid characterization of TiO2 

(5)Precision =
True Positives

True Positives + False Positives

(6)Recall =
True Positives

True Positives + False Negatives

Figure 2.   Proposed Model Architecture. Dark coloured boxes indicate a ReLU activation function at the end 
of a convolution "conv" layer. The max-pooling operation is represented by the nomenclature "mp" and the fully 
connected dense layers are denoted by “fc”.
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polymorphs is crucial for several applications such as additive manufacturing56. To test our model using real 
data from our laboratory, we synthesized standard white anatase, defect rich anatase and rutile TiO2, by sol gel 
chemistry using a protocol described in the literature57. In this context, we can evaluate the performance of our 
model at predicting and identifying crystalline TiO2 phases in a real empirical scenario. We focus on the Top-5 
model predictions for each experimental evaluation in the bar charts presented below. The high Top-5 accuracy 
of our model indicates that for most instances the correct mineral lies within the top 5 predictions of the model. 
The model outputs for all experiments are presented in detail in the Supplementary Information.

Processed dataset.  In the real world, a Raman spectrum might be corrupted by a poor focus (when per-
formed through a microscope), a fluorescence background (from the sample), CCD background noise (from the 
detector), Gaussian noise, stray-light cosmic noise (from the spectrometer)7. All these phenomena can distort 
the Raman spectrum. Whenever possible, it is essential to remove these undesirable artefacts in order to extract 
the best information. In addition to these corrections, it is sometimes necessary to correct for varying sampling 
geometries and highly redundant variables7. The RRUFF database provides both raw and processed data.

First, we train our model using the processed data for benchmark comparisons. This is consistent with the 
state-of-the-art, where researchers usually compare their model performances using the processed RRUFF data 
to evaluate their models. The processed RRUFF dataset has 5681 samples.

Raw dataset.  Pre-processing the Raman spectrum is an essential part of the analysis process. The use of 
specialised software to pre-process the samples significantly increases the cost. Moreover, samples can be pre-
processed separately by different experts leading to significant costs, delays and discrepancies from one expert to 
another. Also, this pre-processing is not versatile, prone to human errors and cannot be easily adapted to differ-
ent environments. During pre-processing, information can be incorporated into or removed from the data, pre-
venting generalization and hampering its performance. On the other hand, deep neural networks are data hun-
gry and training the network on a larger dataset is often necessary to allow better generalization of the model58.

We added a processing step in our framework to treat the raw data before passing it into the neural network. 
We first use the Savitzky Golay filter59 to remove the noise from the sample and subsequently, use penalized least 
square method for subtracting the background noise60. This enables the use of raw oriented samples available in 
the RRUFF dataset for additional training. Thus, we can directly identify the compounds from the raw spectra 
without using any additional expert guided proprietary data pre-processing. Figure 3 shows a typical example of 
pre-processing the raw data using Savitzky Golay filter and background subtraction using penalized least squares. 
The processed data does not suffer from the effects of the noise and fluorescence.

Synthesis of experimental samples.  For the experimental evaluation, first we synthesize the mineral 
samples as per the methodology described below. Subsequently, we obtain our own Raman spectroscopy results 
from the synthesized samples using the WITec Alpha 300 confocal Raman microscope using a 532 nm laser 
excitation through a 10× microscope objective. The software provides a series of correction features. We first 
remove the cosmic ray noise and then the harmonic peaks. Subsequently, we perform background (baseline) 
subtraction. We repeat the same processing for each of the individual samples.

Synthesis of standard white anatase.  To prepare the standard white anatase, we mix 28.8532 g of ethanol (Sigma-
Aldrich 493511) with 10.8604 g of titanium (IV) butoxide (Sigma-Aldrich 244112). This solution is stirred for 
40 min. Then, the hydrolysis reaction is triggered by adding 0.84 mL of deionized water. The precipitation of the 
amorphous white TiO2 occurs within the first few seconds after the reaction is triggered. This mixture is aged 

Figure 3.   The effect of processing the raw data using Savitzky Golay filter and background subtraction using 
penalized least squares. The processed data does not suffer from the effects of the noise and fluorescence.
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for 72 h and then the solvent is evaporated at ambient temperature. The amorphous TiO2 powder is annealed 
at 550 °C for two hours to yield standard white anatase. In the same way, rutile crystalline phase is obtained by 
annealing the amorphous TiO2 at 1100 °C for 2 h.

Synthesis of defect‑rich black anatase.  To prepare the defect-rich black anatase, 28.9024 g of ethanol (Sigma-
Aldrich 493511) are mixed with 1.4748 g of acetylacetone (Sigma-Aldrich 10916). This solution is stirred for 
20 min. Then, 10.8512 g of titanium (IV) butoxide (Sigma-Aldrich 244112) are added and stirred for 40 min 
more. The hydrolysis reaction is triggered by adding dropwise 0.84 mL of deionized water. This solution is cov-
ered with parafilm to restrict the income of air and avoid contamination. Finally, the resulting mixture is stirred 
for 120 min and then aged for 8 months. During the aging time, the ethanol evaporates to precipitate a defect-
rich TiO2 amorphous powder.

These defect-rich TiO2 amorphous powders are annealed at 450 °C for 2 h to obtain defect-rich black anatase. 
In the same way, modified rutile crystalline phase is obtained by annealing at 1100 °C for 2 h.

Commercial Degussa TiO2 powder.  Degussa TiO2 (Sigma-Aldrich 634662) was purchased and used as received. 
The crystalline composition of Degussa is typically around 78% anatase, 14% rutile and around 8% of amor-
phous TiO2

61.

Results and discussions
The results in the Table 1 show that our method can accurately identify pure compounds from the Raman spectra. 
The cited metrics reported in the Table are based on the processed spectra in the “excellent oriented” and “excel-
lent unoriented” subsets of the RRUFF database. Furthermore, the cited authors have split the dataset based on 
the number of samples in the same category. When deploying the model in a real-world scenario, it is likely to 
expect that the dataset will contain a mix of different data qualities. Thus, we have reported the results on a mix 
of excellent, fair, poor and unrated oriented processed spectra without any segmentation. Most importantly, our 
model is able to achieve a similar accuracy on the un-processed data. Compared with the state-of-the-art, our 
proposed model achieves an increase in accuracy of 2% in Top-1 accuracy. Indeed, the model achieves a Top-1 
accuracy of 99.12% and a Top-5 accuracy of 99.30%.

The Top-5 accuracy metric indicates that the correct mineral is 99.30% of the time in the five (5) most likely 
candidates identified by the model. The Top-1 accuracy metric indicates that the correct mineral is 99.12% the 
most probable candidate identified by the model. In this case, the Top-1 accuracy is obviously equal to the recall 
value, while the precision value is slightly higher at 99.30%. As should be expected, the raw unprocessed data 
yield a similar Top-5 accuracy of 99.31% but a slightly lower Top-1 accuracy of 98.61%.

The results clearly show that our model is able to identify the compounds from their Raman spectra. The 
training dataset includes multiple spectra to characterize the same mineral. These spectra have been acquired 
by different operators at different institutes, using different instruments, environments and sample preparation 
conditions. This makes the model resilient to minor changes in the pattern and makes the model generalize to 
the test data.

Misclassification.  There are a few cases where the model is not able to accurately identify a compound. 
In this section, we will investigate these rare instances in further details to better understand the mechanisms 
involved. These misclassifications almost exclusively occur when the model associates a low probability with all 
the predictions. This suggests that the model is confused as it shows a low level of confidence in its prediction. 
To mitigate these cases, we suggest that the users conduct an expert evaluation when the model yields a low 
probability.

We also believe that increasing the training data by including a wider variety of minerals will mitigate this type 
of misclassification. This may be also caused by a spectrum which was not acquired using optimal parameters. 

Table 1.   The table benchmarks our model against the state-of-the-art models from the literature. The bold 
values indicate the results from our proposed model for the processed and raw spectra.

Model Top-1 accuracy (%) Top-5 accuracy (%) Precision (%) Recall (%)

RamanNet (Ibtehaz et al.)62 97.92 99.50 – –

DeepCNN (Liu et al.)35 96.01 99.44 96.60 96.01

DeepCID (Fan et al.)41 96.79 99.55 97.18 96.79

TLCNN (Zhang et al.)44 95.83 99.62 96.53 95.83

CNN (Sang et al.)63 97.72 99.84 97.99 97.72

DRCNN (Zhou et al.)64 97.98 99.81 98.13 97.98

CNN1D 96.83 98.94 97.18 96.83

CNN-LSTM (proposed)
For pre-processed data 99.12 99.30 99.30 99.12

CNN-LSTM (proposed)
For unprocessed (raw) data 98.61 99.31 98.78 98.61
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Often in such cases, the correct prediction is amongst the list of prediction albeit with a low probability. This is 
consistent with measuring a Top-5 accuracy (99.30%) slightly higher than the Top-1 accuracy (99.12%).

However, there are some very rare instances where our model associated a high probability (suggesting a 
high level of confidence) to an incorrect prediction. This usually indicates a generalization problem, where the 
distribution of the test samples is very similar to the distribution of another sample in the training data65. In lay-
man’s terms, this occurs when the distribution of a given test spectra is very similar to a different mineral from 
a training spectrum. For example, this can occur if we have a single low-quality Raman spectrum (very noisy or 
where the crystal structure is not clearly defined) present in the dataset. Impurities in the sample may also lead 
to shifts in the peak or changes in distribution, thus affecting the model. We have provided a specific example 
of such a misclassification error in the supplementary information, which is consistent with this interpretation.

Ablation studies.  The following section presents ablation studies performed on the different constituents of 
the model. An ablation consists in removing and/or modifying certain components of the model and observing 
the effect on the model performances.

LSTM module.  LSTMs are widely used in the literature to analyse time-series data66. It helps the model extract 
features from sequential datasets. In our model, LSTM works in the latent space across feature maps. We observe 
a significant drop of 2.29% in Top-1 accuracy if we remove the LSTM module altogether (CNN1D). Therefore, 
the LSTM module is crucial for improving the model performance. However, we observe that using a Bidirec-
tional LSTM (CNN-BiLSTM) leads to a major deterioration in performances. This can be intuitively expected 
because the ordering and distribution of the peaks defines the Raman spectrum. We also stacked multiple LSTM 
layers (CNN-2LSTM), which also leads to a significant reduction in performances. The addition of layers adds 
levels of abstraction of input observations over time, which may lead to grouping similar observations over 
time67. This can confuse the model between similar spectra and is detrimental to the performance of the model. 
The Table 2 compares the results using different LSTM architectures or no LSTM at all (CNN1D).

Activation function.  We also compare the performances of the model using different activation functions. We 
change the activation function for the convolutional layer and dense layers. We observe that using a ReLU activa-
tion function gives the highest accuracy. As per our observations, the Tanh, LeakyRelu, Selu, Swish and GeLU 
activation functions all show lower performances compared to the ReLU activation. Very interestingly, we get a 
significant performance degradation using the sigmoid activation function. Since the derivative of the sigmoid 
function is always less than one, we believe multiplying the gradient across layers may diminish the signal and 
create a vanishing gradient problem68. The Table 3 compares the model performance using different activation 
functions.

Experimental outcomes.  The Fig. 4a,b shows the predictions from the model. Our model correctly iden-
tifies both anatase (Fig. 4a) and rutile (Fig. 4b) from our pure samples with a high degree of confidence. It yields 
a 80.24% percent confidence for the rutile TiO2 sample, compared with 99.99% for the anatase TiO2 sample.

Table 2.   The table compares the performance using different or no LSTM architectures. The bold values 
indicate the results from our proposed model for the processed and raw spectra.

Model Top1 accuracy (%) Top5 accuracy (%) Precision (%) Recall (%)

CNN1D (no LSTM) 96.83 98.94 97.18 96.83

CNN-BiLSTM 33.39 65.73 74.32 9.67

CNN-2LSTM 12.56 39.02 83.33 1.76

CNN-LSTM 99.12 99.30 99.30 99.12

Table 3.   The table compares the performance of different activation functions. The bold values indicate the 
results from our proposed model for the processed and raw spectra.

Activation function Top1 accuracy (%) Top5 accuracy (%) Precision (%) Recall (%)

ReLU 99.12 99.30 99.30 99.12

Tanh 98.6 99.3 99.5 98.4

LeakyReLU 98.8 99.1 99.1 99.3

Swish 99.0 99.3 99.8 99.0

Gelu 97.2 99.1 99.5 99.1

Selu 98.8 99.3 99.3 98.8

Sigmoid 74.2 95.3 92.0 46.6
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The presence of surface defects on the crystalline lattice of black anatase shifts the Raman spectrum56. This 
presents an interesting challenge for the model. We find that the model is able to identify Anatase in the modified 
Spectrum. Moreover, it assigns a lower probability to the presence of Anatase which may indicate the presence 
of defects in the crystalline structure. It is pertinent to point out that even though the model was not exposed 
to the modified spectrum of black anatase during training, the model is able to recognise it as Anatase. This 
demonstrates an ability of the model to generalise. The Fig. 5a–e shows the prediction of the model given the 
spectrum of black anatase and presents a comparative view of the Raman spectra.

We also wanted to evaluate our model’s ability to recognize the differences in crystalline structure for TiO2 in 
an intermediate phase between anatase and rutile. To do so, a sample was prepared by annealing at 800 °C. The 
TiO2 fully converts from anatase to rutile at 1100 °C. At 800 °C, the crystalline structure resembles rutile, but 
the conversion is not complete69. The Fig. 6a shows the measurements for rutile TiO2 annealed below the full-
conversion temperature. Here, the model still predicts rutile but with a lower confidence level since the Raman 
spectrum is significantly different from the fully-converted rutile. As such, we believe that the probability value 
could potentially be also be used as an indicator for impurities and defects in the crystal structure. However, this 
would require more extensive studies well beyond the scope of this work.

Finally, commercial Degussa (Evonik) P25, Aeroxide TiO2 is a titania photocatalyst that is widely used because 
of its relatively high levels of activity in many photocatalytic reactions systems70. The literature shows that this 
P25 contains more than 70% anatase TiO2, with significantly lower amounts of rutile and amorphous TiO2 
powders61. Figure 6b indicates a dominant anatase Raman structure, with some contributions of the rutile TiO2 
with peaks around 445 cm−1 and 611 cm−1. Accordingly, our model successfully detects the dominant anatase 

Figure 4.   (a) The figure shows the response of the model to our synthesized anatase TiO2 sample. The model 
can identify the presence of anatase with utmost certainty. (b) The figure shows the response of the model to our 
rutile TiO2 sample. The model correctly identifies Rutile with a high degree of confidence. The Raman spectrum 
of the mineral and the image of the sample are presented to provide adequate context. The bar chart shows the 
Top-5 predictions and the other predictions are combined as others.

Figure 5.   (a) The figure shows the response of the model to defect-rich black Anatase. (b–e) shows a detailed 
comparative view of the four main peaks in the Raman spectra of defect rich black Anatase and Standard white 
Anatase. The model correctly identifies Anatase in the modified spectra with a slightly lower level of confidence. 
The ability of the model to correctly characterise the modified spectrum shows the generalisation power of the 
model. The Raman spectrum of the mineral and the image of the sample are presented to provide adequate 
context. The bar chart shows the Top-5 predictions and the other predictions are combined as others.
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TiO2 in the commercial P25 powder. However, the small features at 200 cm−1 and 450 cm−1 are consistent with 
the presence of much smaller concentrations of rutile TiO2 powder. As a result, the model detects anatase with a 
lower confidence (86.71%). However, our model is unable to detect the presence of rutile in the spectrum. Once 
again, we believe that future studies could exploit this lower probability and use it as a good indicator to detect 
the presence of contaminants or defects in the pure compound.

Neophytes sometime describe neural networks as black-box models. However, we believe that it is important 
to look under the hood to achieve a deeper understanding and visualize the patterns recognized by the neural 
network. Feature maps have been previously used to visualize the representations learned by the neural network71. 
We plot the feature maps learned by our model at each layer to show the progression of features learned by the 
model while analysing the spectrum of our pure white anatase powder sample. Figure 7 shows that initially the 
model faintly recognizes the high intensity peak at 150 cm−1. However, as we go deeper, the model learns to rec-
ognize the other peaks. This enables the model to correctly identify the compound with a higher confidence. The 
feature maps for all the layers of the proposed model are provided in the supplementary information.

To further investigate the effect of noise and integration time on the model’s performance, we conduct a 
sensitivity analysis as described in the following section.

Sensitivity analysis.  Performing high-quality Raman micro-spectroscopy analysis on our WITec instru-
ment requires a relatively-high level of expertise to optimize the different instrument and software parameters. 
This high-end equipment allows the expert to adjust the spectrum by controlling a wide range of parameters. 
For our sensitivity analysis, we fixed the accumulations at 100 scans and varied the integration time and inten-
sity. The integration time defines how long the spectrometer’s detector collects light. The longer the integration 
time, the stronger the signal. However, an excessively long integration time may cause the detector to saturate, 
which can result in clipping of the peak and spectrum distortion. The same goes for the stray light entering the 
spectrometer.

We acquired the Raman spectrum for both the pure anatase and rutile samples at three integration times, 
namely 1 s, 5 s and 10 s. As expected, we observe that the signal-to-noise ratio (SNR) in the spectrum decreases 
as we reduce the integration time. Even for the 10 s integration time, we did not observe any saturation at the 
detector.

The intensity of the laser can also be varied by varying the built-in variable attenuator. For the analysis, we 
experimented with different intensities and found that fixing the attenuator to a lower excitation power set-
ting results in a noisy spectrum. If we gradually increase the excitation power, we can observe a much cleaner 
spectrum with a higher signal-to-noise (SNR). The Fig. 8 shows the effect of varying the integration time and 
excitation power density on the Raman spectrum of our pure white anatase sample. The detailed results of the 
sensitivity analysis are provided in the supplementary information.

There, we observe that the model is far less robust to high noise levels. We observe that reducing the SNR by 
significantly reducing the excitation power density or the integration time directly leads to lower confidence or 
even incorrect predictions. We believe that excessive noise reduces the uniqueness of the spectrum, thus increas-
ing the level of confusion for the model. We have presented a study of the misclassification of the noisy Raman 
Spectrum of the Anatase polymorph in the supplementary information. Several researchers have studied the use 
of machine learning models for improving the signal-to-noise ratio of the Raman spectrum72,73. We believe that 
the use of these models in conjunction with our proposed model will address the above-mentioned challenge.

In contrast, we also observe that increasing the SNR significantly helps the model correctly identify the sam-
ple. Thus, users of our model are recommended to ensure that the acquisition of the sample is done at optimal 
excitation power densities and integration times. Most experienced material scientists, chemists and chemical 
engineers regularly use complementary material characterization tools such as FTIR or XRD to correctly identify 

Figure 6.   (a) The figure shows the response of the model to TiO2 at 800 °C, below the 1100 °C temperature 
allowing full-conversion to rutile. The model still identifies rutile with a confidence of 49.59% suggesting an 
intermediate state with incomplete conversion. (b) The figure shows the response of the model to Degussa, 
P25. Degussa contains more than 70% anatase and around 20% rutile and amorphous compounds. The model 
can identify anatase with a lower confidence (86.71%). The Raman spectrum of the mineral and the image of 
the sample are presented to provide adequate context. The bar chart shows the top 5 predictions and the other 
predictions are combined as others.
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compounds. In the near future, we believe that the proposed deep-learning approach could potentially be aug-
mented by adding information from FTIR or XRD for identifying the compounds with even better accuracy 
using fully-automated multi-modal analysis.

Conclusion
This paper presents a deep-learning framework to accurately identify the mineral compounds from their Raman 
spectra. Our proposed framework can accurately identify both raw and pre-processed Raman data. The model 
is lightweight and can achieve a Top-1 accuracy reaching 99.12% on the test samples. Experimental evaluation 
was also performed using TiO2 powders. For the experimental validation in the laboratory, we synthesized white 
anatase and rutile using standard procedures from the literature. The model was able to accurately identify both 
polymorphs from the Raman spectrum.

Furthermore, we evaluated the model for more complex TiO2 samples such as intermediate phases obtained 
with a lower annealing temperature (so-called mixed-phase TiO2). The TiO2 powder in an intermediate (mixed) 
phase was correctly identified as rutile with a lower confidence (probability). With more extensive work, we 
believe that the lower probability can be potentially used as a quantitative indicator to evaluate the presence of 
surface defects or impurities in more complex samples.

We also carried out extensive ablation studies by modifying/removing components of the model. We observe 
that the proposed architecture with the LSTM module and ReLU activation function clearly provides the best 

Figure 7.   The figures shows the feature maps learned by the model while analysing the Raman spectrum of 
white anatase powder annealed at 500 °C. The initial layers recognise a faint representation of the high intensity 
peak at 150 cm−1. However, deeper layers help clearly recognize the other peaks.
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performances. We also evaluated the performances of the model using noisy data, obtained by varying the 
integration time and excitation power density during acquisition of the Raman spectra. We find that our model 
performs best with low-noise samples. Therefore, optimizing the excitation power and the integration time sig-
nificantly helps the model correctly identify the compounds from the Raman data. While we believe it provides a 
major breakthrough in the analysis of complex materials and compounds, we believe that leveraging information 
from other characterization techniques (multimodal analysis) could further increase the model’s performance 
and remove most misclassification issues.

Data availability
The datasets generated and/or analyzed during the current study are available in the RRUFF data repository 
(https://​rruff.​info/).

Received: 29 September 2022; Accepted: 13 December 2022

References
	 1.	 Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, 2017).
	 2.	 Meza Ramirez, C. A., Greenop, M., Ashton, L. & Rehman, I. U. Applications of machine learning in spectroscopy. Appl. Spectrosc. 

Rev. 56, 733–763 (2021).
	 3.	 Penido, C. A., Pacheco, M. T. T., Zângaro, R. A. & Silveira, L. Jr. Identification of different forms of cocaine and substances used in 

adulteration using near-infrared raman spectroscopy and infrared absorption spectroscopy. J. Forensic Sci. 60, 171–178 (2015).
	 4.	 Castro, K., Pérez-Alonso, M., Rodríguez-Laso, M., Fernández, L. Á. & Madariaga, J. On-line FT-Raman and dispersive Raman 

spectra database of artists’ materials (e-VISART database). Anal. Bioanal. Chem. 382, 248–258 (2005).
	 5.	 Zhang, Z.-M. et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. 

Raman Spectrosc. 41, 659–669 (2010).
	 6.	 Gonzalez Zelaya, C. V. Towards explaining the effects of data preprocessing on machine learning. In 2019 IEEE 35th International 

Conference on Data Engineering (ICDE) 2086–2090 https://​doi.​org/​10.​1109/​ICDE.​2019.​00245 (2019).
	 7.	 Bocklitz, T., Walter, A., Hartmann, K., Rösch, P. & Popp, J. How to pre-process Raman spectra for reliable and stable models?. 

Anal. Chim. Acta 704, 47–56 (2011).
	 8.	 Jehlička, J., Culka, A., Bersani, D. & Vandenabeele, P. Comparison of seven portable Raman spectrometers: Beryl as a case study. 

J. Raman Spectrosc. 48, 1289–1299 (2017).
	 9.	 Chandler, L., Huang, B. & Mu, T. T. A smart handheld Raman spectrometer with cloud and AI deep learning algorithm for mixture 

analysis. In Next-Generation Spectroscopic Technologies XII, vol. 10983, 1098308 (International Society for Optics and Photonics, 
2019).

	10.	 Jermyn, M. et al. Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy. Can. 
Res. 77, 3942–3950 (2017).

	11.	 McDevitt, N., Donley, M. & Zabinski, J. Utilization of Raman spectroscopy in tribochemistry studies. Wear 166, 65–72 (1993).
	12.	 Khan, H. & Berk, D. Effect of a chelating agent on the physicochemical properties of TiO2: Characterization and photocatalytic 

activity. Catal. Lett. 144, 890–904 (2014).
	13.	 Benavides, J. A., Trudeau, C. P., Gerlein, L. F. & Cloutier, S. G. Laser selective photoactivation of amorphous TiO2 films to anatase 

and/or rutile crystalline phases. ACS Appl. Energy Mater. 1, 3607–3613 (2018).
	14.	 Dong, F. et al. Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method. 

Phys. Chem. Chem. Phys. 17, 16058–16066 (2015).
	15.	 Wang, D. & Bierwagen, G. P. Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327–338 (2009).
	16.	 Gong, M., Li, Y., Guo, Y., Lv, X. & Dou, X. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant 

surface oxygen vacancy defects. Sens. Actuators B Chem. 262, 350–358 (2018).
	17.	 Stathopoulos, S. et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 17532 (2017).

Figure 8.   The figure shows the anatase spectrum at different excitation power densities and different integration 
times. Increasing integration time and the incident excitation power improves the SNR, which improves the 
spectrum’s quality.

https://rruff.info/
https://doi.org/10.1109/ICDE.2019.00245


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21874  | https://doi.org/10.1038/s41598-022-26343-3

www.nature.com/scientificreports/

	18.	 Pacchioni, G. Oxygen vacancy: The invisible agent on oxide surfaces. ChemPhysChem 4, 1041–1047 (2003).
	19.	 Bengio, Y. & LeCun, Y. Scaling learning algorithms towards AI. Large-scale Kernel Mach. 34, 1–41 (2007).
	20.	 Grotch, S. L. Matching of mass spectra when peak height is encoded to one bit. Anal. Chem. 42, 1214–1222 (1970).
	21.	 Knock, B., Smith, I., Wright, D., Ridley, R. & Kelly, W. Compound identification by computer matching of low resolution mass 

spectra. Anal. Chem. 42, 1516–1520 (1970).
	22.	 Kotsiantis, S. B., Zaharakis, I. & Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. 

Appl. Comput. Eng. 160, 3–24 (2007).
	23.	 Khanum, M., Mahboob, T., Imtiaz, W., Ghafoor, H. A. & Sehar, R. A survey on unsupervised machine learning algorithms for 

automation, classification and maintenance. Int. J. Comput. Appl. 119, 34–39 (2015).
	24.	 Patra, B. K., Nandi, S. & Viswanath, P. A distance based clustering method for arbitrary shaped clusters in large datasets. Pattern 

Recogn. 44, 2862–2870 (2011).
	25.	 Ghodsi, A. Dimensionality reduction a short tutorial. Dept. Stat. Actuarial Sci. Univ. Waterloo Ontario Canada 37, 2006 (2006).
	26.	 Sevetlidis, V. & Pavlidis, G. Effective Raman spectra identification with tree-based methods. J. Cult. Herit. 37, 121–128 (2019).
	27.	 Yang, L. & Jin, R. Distance metric learning: A comprehensive survey. Michigan State Univ. 2, 4 (2006).
	28.	 Roselli, D., Matthews, J. & Talagala, N. Managing bias in AI. In Companion Proceedings of The 2019 World Wide Web Conference 

539–544 (Association for Computing Machinery, 2019). https://​doi.​org/​10.​1145/​33085​60.​33175​90.
	29.	 Whang, S. E. & Lee, J.-G. Data collection and quality challenges for deep learning. Proc. VLDB Endow. 13, 3429–3432 (2020).
	30.	 Hastie, T., Tibshirani, R. & Friedman, J. Overview of supervised learning. In The Elements of Statistical Learning 9–41 (Springer, 

2009).
	31.	 Carey, C., Boucher, T., Mahadevan, S., Bartholomew, P. & Dyar, M. D. Machine learning tools formineral recognition and clas-

sification from Raman spectroscopy. J. Raman Spectrosc. 46, 894–903 (2015).
	32.	 Mao, Y. et al. Machine learning analysis of Raman spectra of MoS2. Nanomaterials 10, 2223 (2020).
	33.	 Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998).
	34.	 Huang, X., Maier, A., Hornegger, J. & Suykens, J. A. Indefinite kernels in least squares support vector machines and principal 

component analysis. Appl. Comput. Harmon. Anal. 43, 162–172 (2017).
	35.	 Liu, J. et al. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 142, 4067–4074 

(2017).
	36.	 Liu, J., Gibson, S. J., Mills, J. & Osadchy, M. Dynamic spectrum matching with one-shot learning. Chemom. Intell. Lab. Syst. 184, 

175–181 (2019).
	37.	 Salman, S. & Liu, X. Overfitting mechanism and avoidance in deep neural networks. arXiv preprint arXiv:​1901.​06566 (2019).
	38.	 Chen, X. et al. Fast and accurate decoding of Raman spectra-encoded suspension arrays using deep learning. Analyst 144, 4312–

4319 (2019).
	39.	 Malek, S., Melgani, F. & Bazi, Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom. 

32, e2977 (2018).
	40.	 Lafuente, B., Downs, R. T., Yang, H. & Stone, N. 1. The power of databases: The RRUFF project. In Highlights in Mineralogical 

Crystallography 1–30 (De Gruyter (O), 2015).
	41.	 Fan, X., Ming, W., Zeng, H., Zhang, Z. & Lu, H. Deep learning-based component identification for the Raman spectra of mixtures. 

Analyst 144, 1789–1798 (2019).
	42.	 Zhao, W. Research on the deep learning of the small sample data based on transfer learning. In AIP Conference Proceedings vol. 

1864, 020018 (AIP Publishing LLC, 2017).
	43.	 Bjerrum, E. J., Glahder, M. & Skov, T. Data augmentation of spectral data for convolutional neural network (CNN) based deep 

chemometrics. arXiv preprint arXiv:​1710.​01927 (2017).
	44.	 Zhang, R. et al. Transfer-learning-based Raman spectra identification. J. Raman Spectrosc. 51, 176–186 (2020).
	45.	 Lieber, C. A. & Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. 

Spectrosc. 57, 1363–1367 (2003).
	46.	 Liu, Y. & Yu, Y. A survey of the baseline correction algorithms for real-time spectroscopy processing. In Real-time Photonic Meas‑

urements, Data Management, and Processing II vol. 10026, 100260Q (International Society for Optics and Photonics, 2016).
	47.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
	48.	 Baldi, P. & Sadowski, P. J. Understanding dropout. in Advances in Neural Information Processing Systems 26, (2013).
	49.	 Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:​1609.​04747 (2016).
	50.	 Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI 16) 265–283 (2016).
	51.	 Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 17, 168–192 (2020).
	52.	 Keskar, N. S. & Socher, R. Improving generalization performance by switching from adam to sgd. arXiv preprint arXiv:​1712.​07628 

(2017).
	53.	 Robel, I., Subramanian, V., Kuno, M. & Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals 

molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. https://​doi.​org/​10.​1021/​ja056​494n (2006).
	54.	 O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 

(1991).
	55.	 Gerlein, L. F., Benavides-Guerrero, J. A. & Cloutier, S. G. Laser-assisted, large-area selective crystallization and patterning of 

titanium dioxide polymorphs. Adv. Eng. Mater. 22, 1901014 (2019).
	56.	 Benavides-Guerrero, J. A. et al. Synthesis of vacancy-rich titania particles suitable for the additive manufacturing of ceramics. Sci. 

Rep. 12, 15441 (2022).
	57.	 Vorkapic, D. & Matsoukas, T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J. Am. 

Ceram. Soc. 81, 2815–2820 (1998).
	58.	 Iwana, B. K. & Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 

16, e0254841 (2021).
	59.	 Schafer, R. W. What is a Savitzky-Golay filter?[lecture notes]. IEEE Signal Process. Mag. 28, 111–117 (2011).
	60.	 Baek, S.-J., Park, A., Ahn, Y.-J. & Choo, J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. 

Analyst 140, 250–257 (2015).
	61.	 Ohtani, B., Prieto-Mahaney, O. O., Li, D. & Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruc-

tion from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol., A 216, 179–182 (2010).
	62.	 Ibtehaz, N. et al. RamanNet: a generalized neural network architecture for Raman spectrum analysis. arXiv preprint arXiv:​2201.​

09737 (2022).
	63.	 Sang, X., Zhou, R., Li, Y. & Xiong, S. One-dimensional deep convolutional neural network for mineral classification from Raman 

spectroscopy. Neural Process. Lett. 54, 677–690 (2022).
	64.	 Zhou, W., Tang, Y., Qian, Z., Wang, J. & Guo, H. Deeply-recursive convolutional neural network for Raman spectra identification. 

RSC Adv. 12, 5053–5061 (2022).
	65.	 Afendras, G. & Markatou, M. Optimality of training/test size and resampling effectiveness in cross-validation. J. Stat. Plan. Infer‑

ence 199, 286–301 (2019).

https://doi.org/10.1145/3308560.3317590
http://arxiv.org/abs/1901.06566
http://arxiv.org/abs/1710.01927
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1712.07628
https://doi.org/10.1021/ja056494n
http://arxiv.org/abs/2201.09737
http://arxiv.org/abs/2201.09737


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21874  | https://doi.org/10.1038/s41598-022-26343-3

www.nature.com/scientificreports/

	66.	 Yu, Y., Si, X., Hu, C. & Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 
31, 1235–1270 (2019).

	67.	 Bengio, Y. Learning Deep Architectures for AI. 56.
	68.	 Rasamoelina, A. D., Adjailia, F. & Sinčák, P. A review of activation function for artificial neural network. In 2020 IEEE 18th World 

Symposium on Applied Machine Intelligence and Informatics (SAMI) 281–286 (IEEE, 2020).
	69.	 Ricci, P. C. et al. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. J. Phys. Chem. C 117, 7850–7857 

(2013).
	70.	 Janus, M. & Morawski, A. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposi-

tion. Appl. Catal. B 75, 118–123 (2007).
	71.	 Qin, Z., Yu, F., Liu, C. & Chen, X. How convolutional neural network see the world—A survey of convolutional neural network 

visualization methods. arXiv preprint arXiv:​1804.​11191 (2018).
	72.	 Zhao, X. Y., Liu, G. Y., Sui, Y. T., Xu, M. & Tong, L. Denoising method for Raman spectra with low signal-to-noise ratio based on 

feature extraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 250, 119374 (2021).
	73.	 Pan, L. et al. Noise Reduction Technique for Raman Spectrum using Deep Learning Network. Preprint at arXiv:​2009.​04067 (2020).

Acknowledgements
Sylvain G. Cloutier thanks the Canada Research Chair and the NSERC Discovery programs for their support.

Author contributions
The concept and methodology were planned and done by A.B. and S.G.C. The synthesis of the different TiO2 
samples was done by JAB. Analysis and discussion of the results were done by A.B., J.A.B., L.F.G., S.G.C. The 
first version of manuscript was written by A.B., J.A.B. and L.F.G. The manuscript was reviewed and commented 
by S.G.C.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​26343-3.

Correspondence and requests for materials should be addressed to S.G.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://arxiv.org/abs/1804.11191
http://arxiv.org/abs/2009.04067
https://doi.org/10.1038/s41598-022-26343-3
https://doi.org/10.1038/s41598-022-26343-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep-learning framework for fully-automated recognition of TiO2 polymorphs based on Raman spectroscopy
	Related works
	Materials and methods
	Proposed model architecture. 
	Model training. 
	RRUFF dataset. 
	Evaluation metrics. 
	Methodology. 
	Training methodology. 
	Experimental evaluation. 

	Processed dataset. 
	Raw dataset. 
	Synthesis of experimental samples. 
	Synthesis of standard white anatase. 
	Synthesis of defect-rich black anatase. 
	Commercial Degussa TiO2 powder. 


	Results and discussions
	Misclassification. 
	Ablation studies. 
	LSTM module. 
	Activation function. 

	Experimental outcomes. 
	Sensitivity analysis. 

	Conclusion
	References
	Acknowledgements


