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Abstract

Objective. To develop a novel patient-specific cardio-respiratory motion prediction approach for
X-ray angiography time series based on a simple long short-term memory (LSTM) model. Approach.
The cardio-respiratory motion behavior in an X-ray image sequence was represented as a sequence of
2D affine transformation matrices, which provide the displacement information of contrasted moving
objects (arteries and medical devices) in a sequence. The displacement information includes
translation, rotation, shearing, and scaling in 2D. A many-to-many LSTM model was developed to
predict 2D transformation parameters in matrix form for future frames based on previously generated
images. The method was developed with 64 simulated phantom datasets (pediatric and adult patients)
using a realistic cardio-respiratory motion simulator (XCAT) and was validated using 10 different
patient X-ray angiography sequences. Main results. Using this method we achieved less than 1 mm
prediction error for complex cardio-respiratory motion prediction. The following mean prediction
error values were recorded over all the simulated sequences: 0.39 mm (for both motions), 0.33 mm
(for only cardiac motion), and 0.47 mm (for only respiratory motion). The mean prediction error for
the patient dataset was 0.58 mm. Significance. This study paves the road for a patient-specific cardio-
respiratory motion prediction model, which might improve navigation guidance during cardiac
interventions.

1. Introduction

Cardiovascular disease (CVD) is a leading cause of death worldwide today (Scott et al 2013). Image-guided
interventional procedures are minimally invasive treatments for CVD and have been gaining popularity in the
last two decades. Catheter-based procedures using fluoroscopy are prevalent within image-guided interventions
and are becoming increasingly complex modern tools for planning and guiding cardiac interventions
(Ackermann and Ender 2019). Fluoroscopy is commonly used in the navigation of cardiac interventions. In the
process, 2D X-ray images are acquired in real-time during the visualization of contrasted arteries. It provides
adequate temporal and spatial information from the visible targets in images (contrasted arteries, medical
devices, etc) (Dauer 2011).

During X-ray acquisitions, multiple organs, including the arteries, move with the heartbeat, respiration and
with occasional unexpected patient movements. Such movements cause artifacts in the image acquisition
process and render the navigation process challenging. Overall, image-guided cardiac interventions are greatly
affected by cardio-respiratory motion (Shechter et al 2004, McClelland et al 2013). The cardiac motion, being
distinct for each patient, and hardly perceptible on angiographies, generates additional complexity for

© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd


https://doi.org/10.1088/1361-6560/acaba8
https://orcid.org/0000-0003-2014-4477
https://orcid.org/0000-0003-2014-4477
mailto:fariba.azizmohammadi.1@ens.etsmtl.ca
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/acaba8&domain=pdf&date_stamp=2023-01-05
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/acaba8&domain=pdf&date_stamp=2023-01-05
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Phys. Med. Biol. 68 (2023) 025010 F Azizmohammadi et al

cardiologists. Moreover, respiratory motion degrades the detection and quantification capabilities of imaging
modalities. Mismatches between some imaging techniques due to respiratory motion also result in additional
attenuation correction (AC) artifacts and inaccurate localization.

Accurate image-guided treatments in CVDs are very important. Thus, an accurate method ensuring the
reduction of the effects of respiratory, cardiac, and unexpected motions during cardiology interventions is
needed. In recent years, numerous methods have been proposed for controlling respiratory and cardiac motion,
as well as for minimizing its effects.

One approach that has been put forward to overcome the problems caused by organs moving during image
acquisitions and image-guided interventions is called breath-holding. With this, the respiratory motion is
suppressed by having a patient to practice multiple short breath-holds. However, when a breath-hold ends, the
patients chest and internal organs move due to realignment. There are other limitations, such as scan time
constraints in data acquisition that can limit the image signal-to-noise ratio and accordingly spatial resolution
and poor steady breath-holding with this technique (Oshinski et al 1996). Given these limitations of breath-
holding techniques, free-breathing techniques are more popular these days. Thus, there has been more focus on
improving free-breathing methods (Taylor et al 1997, Nehrke et al 2001).

Other methods propose solutions to estimate and predict cardio-respiratory motion during image
acquisition. Image-based cardio-respiratory motion estimation approaches are mainly based on surrogate data
tracking. Diaphragm tracking for respiratory motion and catheter tracking for cardiac movements are the most
popular image-based motion estimation approaches aimed at making up for the effects of cardio-respiratory
motion during image-guided interventions (Schweikard et al 2000, Shechter et al 2005, Timinger et al 2005,
Kesner and Howe 2010, Ma et al 2011). However, these approaches usually require multi-modality imaging
(ultrasonic, X-ray fluoroscopy, and magnetic resonance imaging (MRI)) (Roujol etal 2013, Baka et al 2015).
Several methods have been developed to segment and track visible medical devices under X-ray images in
realtime. Deep convolutional neural networks are applied in approaches performing realtime tracking of the
segmented catheters and guidewires in 2D X-ray fluoroscopic sequences. For input, the network takes the
current and the three previous images and segments the catheter and guidewire in the current image (Ambrosini
etal2017).

Motion prediction strategies can be either model-based, model-free, or hybrid. Model-based motion
prediction algorithms propose a mathematical model such as linear prediction, Bayesian filtering, sinusoidal
model, finite state model, etc. A motion model takes surrogate data as input and estimates the motion as output
(Gierga et al 2005, Ernst and Schweikard 2009, Werner et al 2009, Riaz et al 2009, Ruan and Keall 2010, Kalet et al
2010, Schneider et al 2010, Jung et al 2013). Model-free methods are learning-based methods that use a large
amount of data and artificial neural network structures to find a pattern for cardio-respiratory motion that
predict the motion signal (Sharp et al 2004, Dieterich and Murphy 2006, Pokhrel and Murphy 2009). For the
respiratory motion prediction, there are learning-based methods presented in (Lee and Motai 2014) that have
achieved less than a 2mm prediction error, which is promising for cardiac applications. Hybrid motion
prediction algorithms combine model-based and model-free methods and leverage the advantages of both
algorithms, which is why they can outperform the individual methods (Feldkamp and Puskorius 1994,
Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS), 2005, Schilling et al
2007).

2. Proposed contribution

We present a novel patient-specific cardio-respiratory motion prediction approach using a simple supervised
long short-term memory (LSTM) network for angiography sequences. The 2D displacements of the moving
objects in an angiography sequence are extracted from the images and represented through 2D affine
transformation matrices. Then, a many-to-many LSTM model is trained for every sequence to predict the next
geometrical transformation of the arteries in the future frames of the sequence from previous ones.

3. Materials and methods

2D transformation parameters (translation, rotation, scaling, and shearing) are extracted from the X-ray
angiography sequences representing the motion features in matrix form. Thus, a sequence of affine
transformation matrices resulting from frame-by-frame image registrations of the original X-ray sequence is fed
into the sequential LSTM model for training. Then, the future displacements of the moving targets (contrasted
arteries and medical devices) in the upcoming frames are predicted.
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Figure 1. Pre-processing steps (segmentation, denoising, and centerline extraction) on simulated data. The first row is a Right
Coronary Artery (RCA) branch and the second row shows the Left Coronary Artery (LCA).

3.1.Data description

This approach was developed with a simulated X-ray angiography dataset using a realistic XCAT computational
phantom simulator (Segars et al 2010, 2013) and was validated with real patient X-ray angiography sequences
from Sainte-Justine Hospital.

Computerized phantoms play a major role in medical imaging research today. They are very helpful in that
they provide a practical means for evaluating and improving imaging techniques and devices. In this study, we
employed realistic XCAT computational phantoms with the cardio-respiratory motion for both adult and
pediatric patients. Initially, our experiments were done on three different adult patients (Azizmohammadi et al
2019). Thelength of the sequences used to capture at least two to five heart and/or respiratory cycles varied
between 75 and 150 frames. For each patient, three different types of motions (only cardiac, only respiratory, and
both motions) were generated. Respiratory motion is not gated with cardiac motion, and the misalignment
between the motions makes the motion estimation more complicated. Therefore, in this method, we simulated
different motion modes to assess the predictions based on the motion complexity. Simulations were also carried
out for different circumstances, with the patient having normal and abnormal respiratory and heartbeat cycles.
A normal heartbeat cycle is 1 a second long, while the respiratory cycle, is 5 seconds. These values can vary
between patients and change if the patient is under stress or not breathing normally. We then simulated 64
pediatric and adult patients (36 male and 28 female) falling within the 8-month newborn to 85-year age range,
including the left and right coronary arteries. The pediatric simulated dataset included 112 sequences (2
sequences per patient, showing either the left coronary artery or right coronary artery), while our adult simulated
dataset included 12 sequences.

For the real patient dataset, we selected 10 different sequences with lengths ranging between 84 and 166
frames and having visible moving objects (contrasted arteries and/or medical devices such as catheters and guide
wires).

3.2. Preprocessing: segmentation and centerline extraction of simulated and patient X-rays sequences
To track the motion signal in an X-ray sequence, pre-processing steps were applied to segment and extract the
centerlines of the moving targets. Using the Frangi filter and the connected components, we segmented the
arteries and skeletonized the segmentation to extract the centerlines. The 2D motion features were extracted by
registering the X-ray images, frame-by-frame in the sequence.

For the simulated data, the vascular structures were extracted from the image frames for each sequence and
segmented by applying image processing filters and connected components to remove the small objects.
Figures 1 and 2 show the vessel structures extracted from the original X-rays (simulated and patient data,
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Figure 2. Pre-processing steps on patient data (segmentation, denoising, and centerline extraction).

respectively). The Frangi filter parameters were found experimentally. For the scale parameter (sigma), an
interval of [1, 6] was considered with a step size of 0.1. These values for the parameters were set based on the
visual inspection of the images in both simulated and patient datasets.

We applied the same segmentation steps for the patient data, although the segmentation was noisy in the
background as compared to the simulated images. Moreover, since the arteries’ structures were not
continuously contrasted in all the image frames of a given sequence, we segmented medical devices as moving
objects, where the arteries were not visible or faded in some frames. We changed the Frangi filter parameters as a
function of the visible objects in the patient sequences.

3.2.1. Coherent point drift (CPD) registration

The point set registration algorithm is widely used in computer vision problems such as image registration. The
registration can be rigid or non-rigid. Given two point sets (centerlines of two consequent frames), we applied
CPD as anon-rigid registration to map one point set to the other, yielding a non-rigid transformation. Non-
rigid transformations include affine transformations such as scaling and shear, as well as translation and rotation
mapping.

The CPD algorithm is a Gaussian Mixture Model (GMM) based algorithm that assigns correspondence
points between two sets of point clouds. It retrieves the transformations for mapping each point cloud to the
other using a specified registration (Myronenko and Song 2010). The alignment of the two point clouds isa
probability density estimation problem. The first point set is centered on the second one by fitting the GMM
algorithm and maximizing the likelihood. The GMM moves coherently and retains the topological structure of
the point sets (Myronenko and Song 2010). A coherence constraint is imposed for affine registration by re-
parametrizing the GMM centroid locations with affine transformation parameters (translation, rotation,
shearing, scaling). These parameters are concatenated to build the Affine Transformation (AT) matrix as
follows:

sy cos(f) s, sin(0) x — cys,cos(f) — ¢y, sin(0)

AT = [ —s,sin(0) s,cos(0) y + cysysin(@) — ¢s, cos(9) 1
0 0 1
A00 AO01 Tx
ATM = | A10 A1l Ty |. @)
0 0 1

While Agy = s, cos(8), Ag1 = s, sin(0), Ajg = —s, sin(0), A, = s, cos(8),
T; = x — cesccos(0) — ¢,spsin(@)and T, = y + cs, sin(f) — ¢, s, cos(0). We used notations Agg, Ag1, A1,
Ay, Ty, T, for the predicted parameters. The extracted centerlines of the arteries are considered as bright point
sets. Every centerline point set in each frame is registered to the previous frame in a sequence using the CPD
algorithm.

3.3.LSTM models for sequence prediction

LSTM is arecurrent neural network (RNN)-based architecture with optimized memory which can solve the
vanishing and exploding gradient problem in conventional RNNs. LSTM structures have memory blocks which
include memory cells that can store the temporal information of sequential data as well as specific multiplicative
units, called gates, to control the flow of information. Each memory block contains an input gate to control the
flow of input activations into the memory cell, an output gate to control the output flow of cell activations into
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Figure 3. Many-to-one structure of the sequential prediction.
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Figure 4. Many-to-many structure of the sequential prediction.

the rest of the network, and a forgetting gate . Therefore, a LSTM network can keep only the necessary
information from the past and forget the rest, thus optimizing its memory.

Initially, the model could predict the transformation matrix for a single future frame given the previous
frames using a many-to-one LSTM structure such that given a sequence of frames as an input, we were expecting
one single frame as output. The new proposed model can forecast multiple values in the future after receiving
multiple inputs to improve time complexity. Figures 3 and 4 show the structures of many-to-one and many-to-
many frame prediction respectively. In both models, the input for the model is a sequence of transformation
matrices extracted from the X-ray images by registering the consequent frames in pairs, and the LSTM network
is trained to predict the arteries’ transformation in the next frame/s from the previous ones.

Considering N = 6 as the number of 2D affine transformation parameters representing translation, rotation,
shearing, and scaling (T, Ty, A00, A01, A10, A11), and T as the number of transformation matrices. To
effectively feed the models we sort the parameters in a vector X * of size N*T. This vector is called the
transformation parameter vector (TP). Then, the values in the TP vector are normalized to be fed into the
network. The normalization was required since the range of values for some parameters is so small or big and in
that case, the network can notlearn or converges slowly. Then, at the end of the prediction, they can be de-
normalized to have the actual values. Now, the prediction problem is defined as solving the predictor of X*
(denoted by X") viaa series of previously measured TP vectors.

Compared to the primarily (many-to-one) model, the new (many-to-many) model was developed to predict
all the N = 6 transformation parameters at the same time, for multiple matrices. In the primarily (many-to-one)
model, we assumed that all the parameters were independent of each other. Thus, to predict the vector X', the
model was able to predict only one element or parameter x;at a time by feeding the LSTM one vector
(x4 X{»-.-x.) of sizen = Tatatime. Yet, in the new model, the many-to-many model could predictall N =6
parameters simultaneously. To feed the input matrix sequences to the model, a fixed number of previous frames
(matrices) including enough information (at least one heart cycle) was considered as a time window from which
to learn to predict the new TPs in the future (figures 5).

Figure 6 shows the deep LSTM model structure. First, the input image sequence is pre-processed and the TP
vectors are extracted and then the deep LSTM model is fed by multiple TP vectors. The output of the N-layer
LSTM model is passed by a linear regression layer and the output of the model is multiple future TP vectors.
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Figure 5. The many-to-many LSTM model. All TP elements are predicted at the same time. W = 15 is the window size and the
number of outputs or predictionsis P = 5.
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Figure 6. The deep LSTM model structure for multiple TP predictions. The required pre-processing steps to extract the input matrics
are shown on the left. The metrics are flattened to be fed into the input layer. The network has N = 500 hidden layers and a linear
regression layer to generate multiple outputs.

4. Experiments and results

We used 64 patients (pediatric and adult) simulated in normal and abnormal modes for different motions
(cardiac only, respiratory only, and both motions). The sequences simulated with both motions were 75 frames
in length, while other sequences having only cardiac or only respiratory motion were generated using a 150
frame length. Additionally, 10 sequences from the patient dataset with between 84 and 166 frames in length were
selected based on the visibility of contrasted arteries or medical devices through the sequences.

The motion features extracted from the centerlines of the segmented arteries were represented as 6 affine
transformation parameters collectively called the TP vector translations Tx, Ty, and rotation, shearing, scaling
was considered as 15 matrics to capture at least two heart cycles and one breathing cycle in average. The number
of predictions with the model was set to 5 (one over third of the window size). For each sequence, the LSTM
model was trained separately with a sequence of TP vectors, while 80 percent of each sequence was considered as
the training set and 20 percent as the testing set. TP vectors were normalized by dividing by the maximum value
in each TP vector. Since the prediction is considered a regression problem, we used a linear activation function
for our model and the RMSProp as an optimizer for compilation. Based on the experiments, the optimal
number of epochs within the 100 to 1000 range was 500 for the simulated data with a length of 150 frames and
200 for sequences with 75 frames. We trained the patient data sets with 500 epochs as well.

Keras library was used to build and train the model. The accuracy of the method was evaluated by computing
the Mean Absolute Error (MAE) between the predicted values using our model and the results of the CPD
registration as the ground truth (tables 1 and 2). Figures 7 and 8 depict the TP predictions for a simulated data
sample and figures 9, 10 and 11 show a patient data TP prediction sample. The patient dataset contains motion
irregularities, as illustrated in figures 10 and 11. Nevertheless, the imposed patient movement represented as
irregularities in the motion signal did not affect the predictions.
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Table 1. MAE between the ground truth and predicted transformation
parameter values for simulated data.

Both motions

MAE (pixel) Tx Ty a00 a01 alo all
Mean 0.24 0.21 0.32 0.35 0.32 0.32
Max 0.41 0.42 0.40 0.51 0.52 0.51
Min 0.00 0.00 0.06 0.07 0.02 0.06
Only cardiac motion
Mean 0.13 0.11 0.14 0.12 0.13 0.13
Max 0.35 0.43 0.42 0.42 0.44 0.45
Min 0.00 0.00 0.00 0.06 0.00 0.05
Only Respiratory motion
Mean 0.10 0.13 0.11 0.14 0.11 0.15
Max 0.21 0.43 0.37 0.50 0.41 0.45
Min 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. MAE between the ground truth and predicted of transformation
parameter values for patient data over 10 examples.

Patient data

MAE (pixel) Tx Ty a00 a0l al0 all
Mean 0.19 0.20 0.20 0.20 0.18 0.17
Max 0.55 0.45 0.54 0.55 0.39 0.47
Min 0.02 0.03 0.01 0.00 0.02 0.01

To evaluate the overall error of predicted transformed centerlines, we first calculated the distance transform
of the original centerline images. For each pixel of the background, we obtained its distance to the closest
centerline point. The distance transform or distance field for each white pixel on the extracted centerline assigns
anumber, which is the distance between that pixel and the nearest nonzero pixel of the vessels. Thus, to calculate
the final distance, we projected the predicted transformed centerline on the distance transform matrix and
averaged the obtained values as the overall prediction error.

We applied the predicted parameters in matrix form to transform the arteries’ centerlines and overlaid the
transformed centerlines with predicted parameters on the distance transform of the extracted centerlines from
the original images. Figures 12, 13 and 14 show the overlay of the transformed segmented vessels with predicted
transformation parameters and the original transformed images for simulated and patient data, respectively.

Therefore, we first evaluated our results by computing the Mean Absolute Error between the predicted TP
values and the ground truth TP (resulting from CPD registration) (tables 1 and 2), and then we compared our
results to the original images by applying for the CPD registration on the originally extracted and predicted
centerlines (3). Apart from the simulated data, we validated our results by applying the method on 10 real
patients, with a more realistic and noisy segmentation of the moving objects.

As shown in the results presented in table 3, we obtained a low accumulated error for the prediction of the
transformation matrix using the distance transform of the original segmented arteries for both simulated data
with different motions as well as the patient data samples.

5. Discussion

We have presented alearning-based patient-specific cardio-respiratory motion prediction method using a
simple LSTM model. This model can predict the temporal and spatial changes for moving objects (contrasted
arteries and/or medical devices) in a sequence. This approach is an extension of our previous work
(Azizmohammadi et al 2019). We applied the same pre-processing and motion feature extraction while we
extended the data for development and validation. Here are the differences between the newly presented work
and our previous study: (1) The preliminary results of the first model were obtained by developing and validating
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Figure 7. Simulated data example for prediction of 2D transformation parameters (400, A01, A10, A11) for moving arteries with both
cardiac and respiratory motions. The ground truth values are shown in dark purple, while the yellow dashed lines show the
predictions.
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Figure 8. Simulated data example for prediction of 2D translation parameters (Tx, Ty) for moving arteries with both cardiac and
respiratory motions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.

the deep LSTM model on only 3 synthetic datasets (only adult patients). The new results were obtained on 64
synthetic datasets (pediatric and adults), including adults and pediatric patients. Then, we validated our final
results using actual patient data (10 different sequences from different patients). Hence, the proposed motion
prediction method was validated on a wide range of simulated cardiac and respiratory rates for pediatric and
adult phantoms as well as a patient dataset. The resulting prediction error of this method (average 0.58 mm) on
the patient data is promising since, in a few samples for the patient dataset, we had an unexpected patient motion
that appeared as irregularity in the cardio-respiratory motion signal. Figure 11 represents the 2D translation of
the moving objects in the sequences, there are irregularities in the cardio-respiratory motion signal extracted
from a 150-frame sequence. Nevertheless, the imposed patient movement did not affect the predictions. (2) The
preliminary deep LSTM model was a many-to-one structure. The input is a sequence of transformation
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Figure 9. Patient data example for prediction of 2D transformation parameters (A00, A01) for moving arteries with both cardiac and
respiratory motions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.
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matrices, and the output is the prediction of the single matrix at position 7 + 1. In a many-to-one model, to
generate the output, the final input must be entered into the model. The performance of the updated model was
improved by extending it to have multiple output predictions using a many-to-many structure. The many-to-
many model generates the output whenever each input is read. Thus, a many-to-many model can understand
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Figure 11. Patient data example for prediction of 2D translation parameters (Tx, Ty) for moving arteries with both cardiac and
respiratory motions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.

Figure 12. Simulated data example for overlaying the transformed LCA and RCA arteries with predicted transformation parameters
(blue colored centerlines) with the original transformed images.

the feature of each token (matrix) in the input sequence. Compared to other learning-based predictive methods
with a 2mm prediction error (Lee and Motai 2014), our both models have achieved a prediction error of less than
1 mm (0.58 mm-new approach).

For the patient data, the medical devices such as guide wires or catheters were considered as moving objects
in a sequence since they are continuously visible and contrasted under the X-ray images. Hence, the visible
devices can represent the movement of arteries, while the contrasted arteries gradually become faded through a
sequence as theylose their contrast. Motion prediction is thus not completely dependent on the visibility of the
contrasted arteries with the contrast agent.

The presented motion tracking approach can be applied for the estimation of future heart trajectory in
robotic-assisted operations on a free-beating heart as a robust prediction algorithm. The training time for each
sequence depends on the length of the input sequence. We trained the model using CPU, and each step for
training took 6ms. Aside from other factors such as the hardware (CPU or GPU) and optimized
implementation, the time complexity for training would grow linearly by increasing the length of the input
sequence. Moreover, no additional imaging modality and preoperative information are required for motion
tracking using this approach. Not only this model-free cardio-respiratory motion prediction approach can
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Figure 13. Simulated data example for overlaying the transformed arteries in 6 consecutive frames with predicted transformation
parameters (blue colored centerlines) with the original transformed images.

Figure 14. Two different patient data samples for overlaying the transformed vessels with predicted transformation parameters (blue
colored vessel) with the original transformed images.

Table 3. Average overall sample distance transform error of the original
centerline image to the predicted transformed one in mm.

Mean DT Patient
error(mm) Both Cardiac Respiratory data (Both)
0.39 mm 0.33 mm 0.47 mm 0.58 mm

facilitate the navigation process of cardiac interventions but also potentially aids in reducing the required
amount of contrast agent and radiation dose for cardiac interventions.

The accuracy of the prediction indirectly depends on the accuracy of the segmentation and registration
algorithms in the pre-processing steps. Segmentation and centerline extraction for the moving objects (arteries
and medical devices) was challenging, especially for the patient data. In our preprocessing steps, we used the
fixed parameters for simulated and patient datasets. With the connected component approach, small objects
were removed, and the centerline of the segmented objects was extracted using skeletonization. Hence, the
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segmentation and centerline extraction error accumulated into the final prediction error. In figure 14, the
extracted centerlines for the arteries are the edges of the contrasted guide wires and not the actual centerlines of
the arteries. Future work will include investigating an accurate state-of-the-art method based on a
Convolutional Neural Network (CNN) for automatizing the segmentation in our pre-processing steps.
Moreover, we are planning to integrate this motion prediction approach into an End-to-End system for xXray
image prediction.

6. Conclusion

This study investigated an RNN-based motion prediction model that can be used for cardio-respiratory motion
tracking in the navigation of cardiac interventions with X-ray angiographies. We developed a simple LSTM
model that can predict the 2D transformation of visible moving objects in an X-ray sequence. This patient-
specific motion prediction approach can estimate the cardio-respiratory motion signal with a less than 1 mm
prediction error.
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