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Abstract
Objective.Todevelop a novel patient-specific cardio-respiratorymotion prediction approach for
X-ray angiography time series based on a simple long short-termmemory (LSTM)model.Approach.
The cardio-respiratorymotion behavior in anX-ray image sequencewas represented as a sequence of
2D affine transformationmatrices, which provide the displacement information of contrastedmoving
objects (arteries andmedical devices) in a sequence. The displacement information includes
translation, rotation, shearing, and scaling in 2D. Amany-to-many LSTMmodel was developed to
predict 2D transformation parameters inmatrix form for future frames based on previously generated
images. Themethodwas developedwith 64 simulated phantomdatasets (pediatric and adult patients)
using a realistic cardio-respiratorymotion simulator (XCAT) andwas validated using 10 different
patient X-ray angiography sequences.Main results.Using thismethodwe achieved less than 1mm
prediction error for complex cardio-respiratorymotion prediction. The followingmean prediction
error values were recorded over all the simulated sequences: 0.39mm (for bothmotions), 0.33mm
(for only cardiacmotion), and 0.47mm (for only respiratorymotion). Themean prediction error for
the patient dataset was 0.58mm. Significance.This study paves the road for a patient-specific cardio-
respiratorymotion predictionmodel, whichmight improve navigation guidance during cardiac
interventions.

1. Introduction

Cardiovascular disease (CVD) is a leading cause of deathworldwide today (Scott et al 2013). Image-guided
interventional procedures areminimally invasive treatments for CVDand have been gaining popularity in the
last two decades. Catheter-based procedures usingfluoroscopy are prevalent within image-guided interventions
and are becoming increasingly complexmodern tools for planning and guiding cardiac interventions
(Ackermann and Ender 2019). Fluoroscopy is commonly used in the navigation of cardiac interventions. In the
process, 2DX-ray images are acquired in real-time during the visualization of contrasted arteries. It provides
adequate temporal and spatial information from the visible targets in images (contrasted arteries,medical
devices, etc) (Dauer 2011).

During X-ray acquisitions,multiple organs, including the arteries,movewith the heartbeat, respiration and
with occasional unexpected patientmovements. Suchmovements cause artifacts in the image acquisition
process and render the navigation process challenging. Overall, image-guided cardiac interventions are greatly
affected by cardio-respiratorymotion (Shechter et al 2004,McClelland et al 2013). The cardiacmotion, being
distinct for each patient, and hardly perceptible on angiographies, generates additional complexity for
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cardiologists.Moreover, respiratorymotion degrades the detection and quantification capabilities of imaging
modalities.Mismatches between some imaging techniques due to respiratorymotion also result in additional
attenuation correction (AC) artifacts and inaccurate localization.

Accurate image-guided treatments inCVDs are very important. Thus, an accuratemethod ensuring the
reduction of the effects of respiratory, cardiac, and unexpectedmotions during cardiology interventions is
needed. In recent years, numerousmethods have been proposed for controlling respiratory and cardiacmotion,
as well as forminimizing its effects.

One approach that has been put forward to overcome the problems caused by organsmoving during image
acquisitions and image-guided interventions is called breath-holding.With this, the respiratorymotion is
suppressed by having a patient to practicemultiple short breath-holds. However, when a breath-hold ends, the
patients chest and internal organsmove due to realignment. There are other limitations, such as scan time
constraints in data acquisition that can limit the image signal-to-noise ratio and accordingly spatial resolution
and poor steady breath-holdingwith this technique (Oshinski et al 1996). Given these limitations of breath-
holding techniques, free-breathing techniques aremore popular these days. Thus, there has beenmore focus on
improving free-breathingmethods (Taylor et al 1997,Nehrke et al 2001).

Othermethods propose solutions to estimate and predict cardio-respiratorymotion during image
acquisition. Image-based cardio-respiratorymotion estimation approaches aremainly based on surrogate data
tracking. Diaphragm tracking for respiratorymotion and catheter tracking for cardiacmovements are themost
popular image-basedmotion estimation approaches aimed atmaking up for the effects of cardio-respiratory
motion during image-guided interventions (Schweikard et al 2000, Shechter et al 2005, Timinger et al 2005,
Kesner andHowe 2010,Ma et al 2011). However, these approaches usually requiremulti-modality imaging
(ultrasonic, X-ray fluoroscopy, andmagnetic resonance imaging (MRI)) (Roujol et al 2013, Baka et al 2015).
Severalmethods have been developed to segment and track visiblemedical devices under X-ray images in
realtime. Deep convolutional neural networks are applied in approaches performing realtime tracking of the
segmented catheters and guidewires in 2DX-ray fluoroscopic sequences. For input, the network takes the
current and the three previous images and segments the catheter and guidewire in the current image (Ambrosini
et al 2017).

Motion prediction strategies can be eithermodel-based,model-free, or hybrid.Model-basedmotion
prediction algorithms propose amathematicalmodel such as linear prediction, Bayesian filtering, sinusoidal
model,finite statemodel, etc. Amotionmodel takes surrogate data as input and estimates themotion as output
(Gierga et al 2005, Ernst and Schweikard 2009,Werner et al 2009, Riaz et al 2009, Ruan andKeall 2010, Kalet et al
2010, Schneider et al 2010, Jung et al 2013).Model-freemethods are learning-basedmethods that use a large
amount of data and artificial neural network structures tofind a pattern for cardio-respiratorymotion that
predict themotion signal (Sharp et al 2004,Dieterich andMurphy 2006, Pokhrel andMurphy 2009). For the
respiratorymotion prediction, there are learning-basedmethods presented in (Lee andMotai 2014) that have
achieved less than a 2mmprediction error, which is promising for cardiac applications. Hybridmotion
prediction algorithms combinemodel-based andmodel-freemethods and leverage the advantages of both
algorithms, which is why they can outperform the individualmethods (Feldkamp and Puskorius 1994,
Respiratorymotion prediction by using the adaptive neuro fuzzy inference system (ANFIS), 2005, Schilling et al
2007).

2. Proposed contribution

Wepresent a novel patient-specific cardio-respiratorymotion prediction approach using a simple supervised
long short-termmemory (LSTM)network for angiography sequences. The 2Ddisplacements of themoving
objects in an angiography sequence are extracted from the images and represented through 2D affine
transformationmatrices. Then, amany-to-many LSTMmodel is trained for every sequence to predict the next
geometrical transformation of the arteries in the future frames of the sequence fromprevious ones.

3.Materials andmethods

2D transformation parameters (translation, rotation, scaling, and shearing) are extracted from theX-ray
angiography sequences representing themotion features inmatrix form. Thus, a sequence of affine
transformationmatrices resulting from frame-by-frame image registrations of the original X-ray sequence is fed
into the sequential LSTMmodel for training. Then, the future displacements of themoving targets (contrasted
arteries andmedical devices) in the upcoming frames are predicted.
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3.1.Data description
This approachwas developedwith a simulatedX-ray angiography dataset using a realistic XCAT computational
phantom simulator (Segars et al 2010, 2013) andwas validatedwith real patient X-ray angiography sequences
fromSainte-JustineHospital.

Computerized phantoms play amajor role inmedical imaging research today. They are very helpful in that
they provide a practicalmeans for evaluating and improving imaging techniques and devices. In this study, we
employed realistic XCAT computational phantomswith the cardio-respiratorymotion for both adult and
pediatric patients. Initially, our experiments were done on three different adult patients (Azizmohammadi et al
2019). The length of the sequences used to capture at least two tofive heart and/or respiratory cycles varied
between 75 and 150 frames. For each patient, three different types ofmotions (only cardiac, only respiratory, and
bothmotions)were generated. Respiratorymotion is not gatedwith cardiacmotion, and themisalignment
between themotionsmakes themotion estimationmore complicated. Therefore, in thismethod, we simulated
differentmotionmodes to assess the predictions based on themotion complexity. Simulationswere also carried
out for different circumstances, with the patient having normal and abnormal respiratory and heartbeat cycles.
A normal heartbeat cycle is 1 a second long, while the respiratory cycle, is 5 seconds. These values can vary
between patients and change if the patient is under stress or not breathing normally.We then simulated 64
pediatric and adult patients (36male and 28 female) fallingwithin the 8-month newborn to 85-year age range,
including the left and right coronary arteries. The pediatric simulated dataset included 112 sequences (2
sequences per patient, showing either the left coronary artery or right coronary artery), while our adult simulated
dataset included 12 sequences.

For the real patient dataset, we selected 10 different sequences with lengths ranging between 84 and 166
frames and having visiblemoving objects (contrasted arteries and/ormedical devices such as catheters and guide
wires).

3.2. Preprocessing: segmentation and centerline extraction of simulated and patient X-rays sequences
To track themotion signal in anX-ray sequence, pre-processing stepswere applied to segment and extract the
centerlines of themoving targets. Using the Frangifilter and the connected components, we segmented the
arteries and skeletonized the segmentation to extract the centerlines. The 2Dmotion features were extracted by
registering the X-ray images, frame-by-frame in the sequence.

For the simulated data, the vascular structures were extracted from the image frames for each sequence and
segmented by applying image processing filters and connected components to remove the small objects.
Figures 1 and 2 show the vessel structures extracted from the original X-rays (simulated and patient data,

Figure 1.Pre-processing steps (segmentation, denoising, and centerline extraction) on simulated data. Thefirst row is a Right
Coronary Artery (RCA) branch and the second row shows the Left Coronary Artery (LCA).
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respectively). The Frangifilter parameters were found experimentally. For the scale parameter (sigma), an
interval of [1, 6]was consideredwith a step size of 0.1. These values for the parameters were set based on the
visual inspection of the images in both simulated and patient datasets.

We applied the same segmentation steps for the patient data, although the segmentationwas noisy in the
background as compared to the simulated images.Moreover, since the arteries’ structures were not
continuously contrasted in all the image frames of a given sequence, we segmentedmedical devices asmoving
objects, where the arteries were not visible or faded in some frames.We changed the Frangi filter parameters as a
function of the visible objects in the patient sequences.

3.2.1. Coherent point drift (CPD) registration
The point set registration algorithm iswidely used in computer vision problems such as image registration. The
registration can be rigid or non-rigid. Given two point sets (centerlines of two consequent frames), we applied
CPDas a non-rigid registration tomap one point set to the other, yielding a non-rigid transformation. Non-
rigid transformations include affine transformations such as scaling and shear, as well as translation and rotation
mapping.

TheCPD algorithm is aGaussianMixtureModel (GMM) based algorithm that assigns correspondence
points between two sets of point clouds. It retrieves the transformations formapping each point cloud to the
other using a specified registration (Myronenko and Song 2010). The alignment of the two point clouds is a
probability density estimation problem. Thefirst point set is centered on the second one byfitting theGMM
algorithm andmaximizing the likelihood. TheGMMmoves coherently and retains the topological structure of
the point sets (Myronenko and Song 2010). A coherence constraint is imposed for affine registration by re-
parametrizing theGMMcentroid locationswith affine transformation parameters (translation, rotation,
shearing, scaling). These parameters are concatenated to build the AffineTransformation (AT)matrix as
follows:
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While ( )q=A s cosx00 , ( )q=A s siny01 , ( )q= -A s sinx10 , ( )q=A s cosy11 ,
( ) ( )q q= - -T x c s c scos sinx x x y y and ( ) ( )q q= + -T y c s c ssin cosy x x y y .We used notationsA00,A01,A10,

A11,Tx,Ty for the predicted parameters. The extracted centerlines of the arteries are considered as bright point
sets. Every centerline point set in each frame is registered to the previous frame in a sequence using theCPD
algorithm.

3.3. LSTMmodels for sequence prediction
LSTM is a recurrent neural network (RNN)-based architecture with optimizedmemorywhich can solve the
vanishing and exploding gradient problem in conventional RNNs. LSTM structures havememory blocks which
includememory cells that can store the temporal information of sequential data aswell as specificmultiplicative
units, called gates, to control the flowof information. Eachmemory block contains an input gate to control the
flowof input activations into thememory cell, an output gate to control the outputflowof cell activations into

Figure 2.Pre-processing steps on patient data (segmentation, denoising, and centerline extraction).
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the rest of the network, and a forgetting gate . Therefore, aLSTMnetwork can keep only the necessary
information from the past and forget the rest, thus optimizing itsmemory.

Initially, themodel could predict the transformationmatrix for a single future frame given the previous
frames using amany-to-one LSTMstructure such that given a sequence of frames as an input, wewere expecting
one single frame as output. The new proposedmodel can forecastmultiple values in the future after receiving
multiple inputs to improve time complexity. Figures 3 and 4 show the structures ofmany-to-one andmany-to-
many frame prediction respectively. In bothmodels, the input for themodel is a sequence of transformation
matrices extracted from theX-ray images by registering the consequent frames in pairs, and the LSTMnetwork
is trained to predict the arteries’ transformation in the next frame/s from the previous ones.

ConsideringN= 6 as the number of 2D affine transformation parameters representing translation, rotation,
shearing, and scaling (Tx,Ty,A00,A01,A10,A11), andT as the number of transformationmatrices. To
effectively feed themodels we sort the parameters in a vectorXt of sizeN*T. This vector is called the
transformation parameter vector (TP). Then, the values in the TP vector are normalized to be fed into the
network. The normalizationwas required since the range of values for some parameters is so small or big and in
that case, the network can not learn or converges slowly. Then, at the end of the prediction, they can be de-
normalized to have the actual values. Now, the prediction problem is defined as solving the predictor ofXt

(denoted by X̂
t ) via a series of previouslymeasured TP vectors.

Compared to the primarily (many-to-one)model, the new (many-to-many)model was developed to predict
all theN= 6 transformation parameters at the same time, formultiplematrices. In the primarily (many-to-one)
model, we assumed that all the parameters were independent of each other. Thus, to predict the vectorXt, the
model was able to predict only one element or parameter xtnat a time by feeding the LSTMone vector
( )¼x x x, , ,t t

n
t

0 1 of size n= T at a time. Yet, in the newmodel, themany-to-manymodel could predict allN= 6
parameters simultaneously. To feed the inputmatrix sequences to themodel, afixed number of previous frames
(matrices) including enough information (at least one heart cycle)was considered as a timewindow fromwhich
to learn to predict the newTPs in the future (figures 5).

Figure 6 shows the deep LSTMmodel structure. First, the input image sequence is pre-processed and the TP
vectors are extracted and then the deep LSTMmodel is fed bymultiple TP vectors. The output of theN-layer
LSTMmodel is passed by a linear regression layer and the output of themodel ismultiple future TP vectors.

Figure 3.Many-to-one structure of the sequential prediction.

Figure 4.Many-to-many structure of the sequential prediction.
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4. Experiments and results

Weused 64 patients (pediatric and adult) simulated in normal and abnormalmodes for differentmotions
(cardiac only, respiratory only, and bothmotions). The sequences simulatedwith bothmotionswere 75 frames
in length, while other sequences having only cardiac or only respiratorymotionwere generated using a 150
frame length. Additionally, 10 sequences from the patient dataset with between 84 and 166 frames in lengthwere
selected based on the visibility of contrasted arteries ormedical devices through the sequences.

Themotion features extracted from the centerlines of the segmented arteries were represented as 6 affine
transformation parameters collectively called the TP vector translations Tx, Ty, and rotation, shearing, scaling
was considered as 15matrics to capture at least two heart cycles and one breathing cycle in average. The number
of predictionswith themodel was set to 5 (one over third of thewindow size). For each sequence, the LSTM
model was trained separately with a sequence of TP vectors, while 80 percent of each sequencewas considered as
the training set and 20 percent as the testing set. TP vectors were normalized by dividing by themaximumvalue
in eachTP vector. Since the prediction is considered a regression problem,we used a linear activation function
for ourmodel and the RMSProp as an optimizer for compilation. Based on the experiments, the optimal
number of epochswithin the 100 to 1000 rangewas 500 for the simulated datawith a length of 150 frames and
200 for sequenceswith 75 frames.We trained the patient data sets with 500 epochs aswell.

Keras library was used to build and train themodel. The accuracy of themethodwas evaluated by computing
theMeanAbsolute Error (MAE) between the predicted values using ourmodel and the results of theCPD
registration as the ground truth (tables 1 and 2). Figures 7 and 8 depict the TP predictions for a simulated data
sample andfigures 9, 10 and 11 show a patient data TP prediction sample. The patient dataset containsmotion
irregularities, as illustrated infigures 10 and 11.Nevertheless, the imposed patientmovement represented as
irregularities in themotion signal did not affect the predictions.

Figure 6.The deep LSTMmodel structure formultiple TP predictions. The required pre-processing steps to extract the inputmatrics
are shown on the left. Themetrics areflattened to be fed into the input layer. The network hasN = 500 hidden layers and a linear
regression layer to generatemultiple outputs.

Figure 5.Themany-to-many LSTMmodel. All TP elements are predicted at the same time.W = 15 is the window size and the
number of outputs or predictions isP = 5.
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To evaluate the overall error of predicted transformed centerlines, wefirst calculated the distance transform
of the original centerline images. For each pixel of the background, we obtained its distance to the closest
centerline point. The distance transformor distancefield for eachwhite pixel on the extracted centerline assigns
a number, which is the distance between that pixel and the nearest nonzero pixel of the vessels. Thus, to calculate
thefinal distance, we projected the predicted transformed centerline on the distance transformmatrix and
averaged the obtained values as the overall prediction error.

We applied the predicted parameters inmatrix form to transform the arteries’ centerlines and overlaid the
transformed centerlines with predicted parameters on the distance transformof the extracted centerlines from
the original images. Figures 12, 13 and 14 show the overlay of the transformed segmented vessels with predicted
transformation parameters and the original transformed images for simulated and patient data, respectively.

Therefore, wefirst evaluated our results by computing theMeanAbsolute Error between the predicted TP
values and the ground truth TP (resulting fromCPD registration) (tables 1 and 2), and thenwe compared our
results to the original images by applying for theCPD registration on the originally extracted and predicted
centerlines (3). Apart from the simulated data, we validated our results by applying themethod on 10 real
patients, with amore realistic and noisy segmentation of themoving objects.

As shown in the results presented in table 3, we obtained a low accumulated error for the prediction of the
transformationmatrix using the distance transformof the original segmented arteries for both simulated data
with differentmotions as well as the patient data samples.

5.Discussion

Wehave presented a learning-based patient-specific cardio-respiratorymotion predictionmethod using a
simple LSTMmodel. Thismodel can predict the temporal and spatial changes formoving objects (contrasted
arteries and/ormedical devices) in a sequence. This approach is an extension of our previous work
(Azizmohammadi et al 2019).We applied the same pre-processing andmotion feature extractionwhile we
extended the data for development and validation.Here are the differences between the newly presentedwork
and our previous study: (1)The preliminary results of the firstmodel were obtained by developing and validating

Table 1.MAEbetween the ground truth and predicted transformation
parameter values for simulated data.

Bothmotions

MAE (pixel) Tx Ty a00 a01 a10 a11

Mean 0.24 0.21 0.32 0.35 0.32 0.32

Max 0.41 0.42 0.40 0.51 0.52 0.51

Min 0.00 0.00 0.06 0.07 0.02 0.06

Only cardiacmotion

Mean 0.13 0.11 0.14 0.12 0.13 0.13

Max 0.35 0.43 0.42 0.42 0.44 0.45

Min 0.00 0.00 0.00 0.06 0.00 0.05

OnlyRespiratorymotion

Mean 0.10 0.13 0.11 0.14 0.11 0.15

Max 0.21 0.43 0.37 0.50 0.41 0.45

Min 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.MAEbetween the ground truth and predicted of transformation
parameter values for patient data over 10 examples.

Patient data

MAE (pixel) Tx Ty a00 a01 a10 a11

Mean 0.19 0.20 0.20 0.20 0.18 0.17

Max 0.55 0.45 0.54 0.55 0.39 0.47

Min 0.02 0.03 0.01 0.00 0.02 0.01
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the deep LSTMmodel on only 3 synthetic datasets (only adult patients). The new results were obtained on 64
synthetic datasets (pediatric and adults), including adults and pediatric patients. Then, we validated ourfinal
results using actual patient data (10 different sequences fromdifferent patients). Hence, the proposedmotion
predictionmethodwas validated on awide range of simulated cardiac and respiratory rates for pediatric and
adult phantoms aswell as a patient dataset. The resulting prediction error of thismethod (average 0.58mm) on
the patient data is promising since, in a few samples for the patient dataset, we had an unexpected patientmotion
that appeared as irregularity in the cardio-respiratorymotion signal. Figure 11 represents the 2D translation of
themoving objects in the sequences, there are irregularities in the cardio-respiratorymotion signal extracted
froma 150-frame sequence.Nevertheless, the imposed patientmovement did not affect the predictions. (2)The
preliminary deep LSTMmodel was amany-to-one structure. The input is a sequence of transformation

Figure 7. Simulated data example for prediction of 2D transformation parameters (A00,A01,A10,A11) formoving arteries with both
cardiac and respiratorymotions. The ground truth values are shown in dark purple, while the yellow dashed lines show the
predictions.

Figure 8. Simulated data example for prediction of 2D translation parameters (Tx,Ty) formoving arteries with both cardiac and
respiratorymotions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.
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matrices, and the output is the prediction of the singlematrix at position n+ 1. In amany-to-onemodel, to
generate the output, thefinal inputmust be entered into themodel. The performance of the updatedmodel was
improved by extending it to havemultiple output predictions using amany-to-many structure. Themany-to-
manymodel generates the outputwhenever each input is read. Thus, amany-to-manymodel can understand

Figure 9.Patient data example for prediction of 2D transformation parameters (A00,A01) formoving arteries with both cardiac and
respiratorymotions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.

Figure 10.Patient data example for prediction of 2D transformation parameters (A10,A11) formoving arteries with both cardiac and
respiratorymotions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.
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the feature of each token (matrix) in the input sequence. Compared to other learning-based predictivemethods
with a 2mmprediction error (Lee andMotai 2014), our bothmodels have achieved a prediction error of less than
1 mm (0.58mm-new approach).

For the patient data, themedical devices such as guidewires or catheters were considered asmoving objects
in a sequence since they are continuously visible and contrasted under the X-ray images. Hence, the visible
devices can represent themovement of arteries, while the contrasted arteries gradually become faded through a
sequence as they lose their contrast.Motion prediction is thus not completely dependent on the visibility of the
contrasted arteries with the contrast agent.

The presentedmotion tracking approach can be applied for the estimation of future heart trajectory in
robotic-assisted operations on a free-beating heart as a robust prediction algorithm. The training time for each
sequence depends on the length of the input sequence.We trained themodel usingCPU, and each step for
training took 6ms. Aside fromother factors such as the hardware (CPUorGPU) and optimized
implementation, the time complexity for trainingwould grow linearly by increasing the length of the input
sequence.Moreover, no additional imagingmodality and preoperative information are required formotion
tracking using this approach. Not only thismodel-free cardio-respiratorymotion prediction approach can

Figure 11.Patient data example for prediction of 2D translation parameters (Tx,Ty) formoving arteries with both cardiac and
respiratorymotions. The ground truth values are shown in dark purple, while the yellow dashed lines show the predictions.

Figure 12. Simulated data example for overlaying the transformed LCA andRCA arteries with predicted transformation parameters
(blue colored centerlines)with the original transformed images.
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facilitate the navigation process of cardiac interventions but also potentially aids in reducing the required
amount of contrast agent and radiation dose for cardiac interventions.

The accuracy of the prediction indirectly depends on the accuracy of the segmentation and registration
algorithms in the pre-processing steps. Segmentation and centerline extraction for themoving objects (arteries
andmedical devices)was challenging, especially for the patient data. In our preprocessing steps, we used the
fixed parameters for simulated and patient datasets.With the connected component approach, small objects
were removed, and the centerline of the segmented objects was extracted using skeletonization.Hence, the

Figure 13. Simulated data example for overlaying the transformed arteries in 6 consecutive frameswith predicted transformation
parameters (blue colored centerlines)with the original transformed images.

Figure 14.Two different patient data samples for overlaying the transformed vessels with predicted transformation parameters (blue
colored vessel)with the original transformed images.

Table 3.Average overall sample distance transform error of the original
centerline image to the predicted transformed one inmm.

MeanDT

error(mm) Both Cardiac Respiratory

Patient

data (Both)

0.39mm 0.33mm 0.47mm 0.58mm
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segmentation and centerline extraction error accumulated into thefinal prediction error. Infigure 14, the
extracted centerlines for the arteries are the edges of the contrasted guidewires and not the actual centerlines of
the arteries. Futureworkwill include investigating an accurate state-of-the-artmethod based on a
ConvolutionalNeural Network (CNN) for automatizing the segmentation in our pre-processing steps.
Moreover, we are planning to integrate thismotion prediction approach into an End-to-End system for xXray
image prediction.

6. Conclusion

This study investigated anRNN-basedmotion predictionmodel that can be used for cardio-respiratorymotion
tracking in the navigation of cardiac interventions withX-ray angiographies.We developed a simple LSTM
model that can predict the 2D transformation of visiblemoving objects in anX-ray sequence. This patient-
specificmotion prediction approach can estimate the cardio-respiratorymotion signal with a less than 1 mm
prediction error.
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