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ABSTRACT By integrating communications in different domains, integrated radio and optical networks
can serve a wider range of applications and services. Integrated radio and optical network scenarios will
involve more weak-computation-ability network nodes, such as small-cell base stations. To pursue efficient
integrated radio and optical networks, more efficient ways to conduct transmission under the demand of edge
and cloud collaboration are required. The lack of forward-looking resource allocation may easily lead to a
waste of network resources without an expected return. Therefore, an efficient resource allocation scheme
needs to consider certain issues: 1) a comprehensive perspective of traffic prediction; 2) a release of pressure
on the transmission pipeline during the prediction process; and 3) a reduction of loss of edge nodes due to the
computation. In this paper, benefiting from machine learning, we propose a resource allocation with edge-
cloud collaborative traffic prediction (TP-ECC) in integrated radio and optical networks, where an efficient
resource allocation scheme (ERAS) is designed based on the prediction results with the gated recurrent
unit model. We maximize the utilization of limited resources to improve the awareness of network status.
We present three evaluation indicators and build a network architecture to evaluate our resource allocation
scheme. Through edge-cloud collaboration, our proposal can improve traffic prediction accuracy by 9.5%
compared with single-point traffic prediction, and resource utilization is also improved by edge-cloud
collaborative traffic prediction.

INDEX TERMS Integrated radio and optical networks, resource allocation, edge-cloud collaboration, traffic
prediction.

I. INTRODUCTION
The integrated radio and optical networks can serve diver-
sified applications and services by introducing the Internet
of Things (IoT) supporting technology which can provide
seamless interconnection among heterogeneous devices [1].
With the access of a large number of network devices, a high
volume of data would be stored or processed at the edge
of weak-computation-ability nodes in integrated radio and
optical networks. The architecture of mobile edge computing
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(MEC) with cloud platform and edge nodes become a new
and attractive computing paradigm,which integrates the com-
puting power of the cloud platform with the flexible tasks of
edge nodes. It can support various computationally complex
delay-sensitive service applications, such as face recognition,
natural language processing, and interactive games [2], [3],
[4]. Therefore, the MEC architecture has become a typical
networking mode for integrated radio and optical networks.
However, the available resources in a single edge node (such
as a small cell base station) are very limited, which is still
an important issue in this scenario [5]. Although there have
been some works to upload computing tasks that exceed the
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capacity of edge node to the remote cloud, the total resource
consumption in the system may be high due to the bandwidth
occupation on the transmission pipeline [6], [7]. In other
words, the limited resource of a single edge node severely
degrades the performance of integrated radio and optical
networks.

A reasonable resource allocation algorithm can achieve
load balancing among edge nodes, which enables the
resource-constrained edge nodes to help each other to real-
ize more flexible sharing for workloads and resources [8].
In computing-intensive tasks, it can meet the heterogeneous
needs of access terminals [9]. For resource allocation, traffic
prediction can be regarded as a key and important first-hand
operation that would be regrettable to be skipped. High-
precise traffic prediction can instruct people to not only make
flexible switch adjustments but also form backup paths in
burst traffic [10], which may further enable them to break the
limitation in integrated radio and optical networks, so as to
improve resource utilization and reduce the blocking rate as
well as average queue delay.

Machine learning has been applied to the present traf-
fic prediction, including Recurrent Neural Network (RNN),
Long Short TermMemory (LSTM), and Hierarchical Tempo-
ralMemory (HTM) [11], [12], [13], which can iteratively pre-
dict the next traffic flow of network in time series. Although
it has received great attention, most of the existing solutions
simplify the assumption that the perception of network state
is only based on the commanding perspective of the cloud
platform without taking into account those of edge nodes.
Motivated by this, we consider and forecast traffic from the
perspective of both cloud and edge nodes. Compared with the
case where the neural network is executed in a single location,
we propose an edge-cloud collaborative traffic prediction
(TP-ECC), which is more promising in obtaining higher pre-
diction accuracy. Besides, considering the limited computing
capacity in edge nodes, a simple traffic prediction model is
required to support the function, which also needs to support
the rapid processing of large-scale datasets in cloud nodes.
Thus, a gated recurrent unit (GRU) is adopted to forecast
the traffic in the TP-ECC model, which has a simpler gate
structure than the LSTM traffic prediction model [14]. With
the designed edge-cloud collaboration system architecture,
the TP-ECC module may improve the accuracy of network
state perception, and give an accurate forecast of edge node
traffic.

Based on the proposed TP-ECC, we further propose a new
efficient resource allocation scheme (ERAS) in integrated
radio and optical networks. On the basis of node traffic
prediction results, ERAS uses the load balancing theory to
allocate the resources among the edge nodes in order to
carry end-to-end services. The proposed ERAS algorithm
together with the traffic prediction can make continuous
strategic adjustments based on the real-time network status,
formulate an optimal strategy that meets the needs of users,
and send the results to quickly execute network configuration
in the device. This optimized resource allocation method

provides a new solution for service-oriented network intel-
ligent optimization configuration. We also design a control
experiment in the simulation environment to demonstrate the
effectiveness of the whole system architecture and strategy
through data analysis. The performance evaluation with the
simulation of ERAS shows that the accuracy of TP-ECC
module performs well. Under its guidance, the performances
of ERAS are generally better than that of the previous works.

The main contribution of this paper can be summarized in
the following aspects.

1) A system architecture is set up to support edge cloud
collaboration in integrated radio and optical networks, which
is composed of several modules arranged on the cloud plat-
form and edge nodes. We discuss the function and workflow
of each module in detail.

2) An edge-cloud collaboration based traffic prediction
mechanism is proposed with the adoption of GRU, which can
effectively improve the accuracy of traffic prediction, thereby
contributing to the resource allocation scheme.

3) Based on the traffic prediction, an efficient resource
allocation method is further proposed. The service recon-
figuration and migration process are triggered by the load
balancing technology, and the transmission path with the
minimum resource consumption is selected to achieve the
purpose of resource-saving in integrated radio and optical
network scenarios.

The rest of the paper is organized as follows. A sum-
mary of the literature is provided in Section II. In Sec-
tion III, we present the model with edge and cloud archi-
tecture considered in this paper and define the relations
among the involved nodes and neural networks. In Section IV,
we explain how the edge-cloud collaboration traffic pre-
diction takes place. Section V designs the derived resource
allocation algorithm. Further, in Section VI, we present the
dataset and define the metrics used for the evaluation, and
we also evaluate the performances of our algorithm. Finally,
Section VII concludes this manuscript.

II. RELATED WORKS
With the improvements in network infrastructure and the
high demands of network users, the network scale continues
expanding, and multiple service providers and network oper-
ators coexist, leading to the emergence of tidal flow effects.
Although the tide peaks can be predicted as many as possible,
they still may bring uncertainty to network operation and
maintenance [15]. In order to solve this problem, a reconfig-
urable network supporting a software-defined network (SDN)
has recently attracted much attention and can adapt to the
service demand flow as much as possible [16], [17]. The
general reconfiguration framework based on SDN technology
consists of two parts, including modeling and forecasting
traffic demand flow, and using prediction for active (offline)
network optimization between predefined (reconfiguration)
time points [18]. The overall goal is to find a resource alloca-
tion strategy that is most suitable for the future traffic demand
of network [19].
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Generally, the previousworksmainly have focused on opti-
mizing the efficiency of the resource allocation scheme, with-
out considering the uniformity and sustainability of occupied
resources [17], [18], , [21]. In this case,
although the resource allocation strategy can be solved in
a very short time, it is easy to lead to highly unbalanced
allocation, and especially after the network reconfiguration,
each edge node does not pay enough attention to the quality
of service for services.

FIGURE 1. The proposed system architecture in integrated radio and
optical networks.

In addition, the existing machine learning-assisted traf-
fic prediction is usually based on a unilateral perspective,
either cloud or edge, without considering the complemen-
tary perspective of the edge and cloud [22], [23]. Prediction
based on unilateral perspective may lead to inappropriate
resource allocation decisions. Specifically, a unified analysis
in cloud via uploading massive raw data not only wastes
considerable transmission resources but also fails to provide
a timely response for terminals. Nevertheless, the storage
ability of edge nodes is insufficient to further improve the
accuracy of prediction, which relies heavily on historical
data [24].

Both edge and cloud participation in traffic prediction have
been considered in [25]. This work analyzed the characteris-
tics of resource demand and load and proposed an adaptive
selection strategy and error adjustment factor to select a
better prediction algorithm based on a dynamic threshold.
Additionally, a short-term forecast of resource demand on
the cloud platform was developed. However, the prerequi-
site is that all access nodes need to regularly report a large
amount of traffic data information to the cloud platform for
analysis. This step additionally occupies a large amount of
transmission pipeline resources, which affects the regular
performance of the network. Moreover, the authors of [26]
disclosed a traffic forecasting approach for optical backbone
network traffic scheduling optimization, which integrates
RNN and GRU at the access node for long-term (1 hour
in advance) traffic prediction. However, this proposal used

several recursive short-term prediction processes (5 minutes
each) to obtain the alternative effect of long-term traffic
prediction, which inevitably led to cumulative errors and low
reliability.

Motivated by the drawbacks above, the traffic prediction of
edge cloud collaboration with GRU is explicitly considered in
this paper. The purpose is to break the boundary of resource
sharing between cloud and edge nodes, so as to provide a
more responsive and accurate resource allocation strategy.
Although there have been various resource allocation meth-
ods using the results of traffic prediction, load balancing algo-
rithms and their related service reconfiguration mechanism
have been the focus of network research in recent years.
Specifically, load balancing resource allocation scheme has
been studied in a wireless network, SDN IP network, and
transmission control protocol (TCP) network [13], [15], [16],
[27], [28], [29]. However, to the best of our knowledge, few
load balancing schemes consider the traffic prediction results
based on edge-cloud collaboration in integrated radio and
optical networks.

III. SYSTEM MODEL
A. NETWORK ARCHITECTURE
As shown in Fig. 1, the system of integrated radio and optical
networks considered in this paper includes a cloud platform,
at least one access (edge) node, and at least one terminal
device, where an optical transmission network supports the
transmission channel.
Cloud Platform refers to an abstraction of the underlying

infrastructure of the integrated radio and optical networks,
the resources and services of which may be obtained over
a transmission network by components of the integrated
radio and optical networks through network virtualization
techniques.
Access (Edge) Node is a network node that provides mutual

access between a wireless workstation and a wired local area
network. The cloud platform and the access node are con-
nected through the transmission network. The transmission
network provides transparent transmission channels for vari-
ous services [30]. The switching devices in the transmission
network are referred to as transmission network nodes. Their
function is to exchange data streams, including distributing
and receiving data traffic, over the transmission channels
through Ethernet ports. Therefore, an access node is con-
nected to at least one of the transmission network nodes. The
cloud platform is also connected to at least one transmission
network node in the transmission network.
Terminal Device is a part of a physical layer of integrated

radio and optical network architecture. In an IoT system, for
example, it may include a temperature and humidity sensor,
a QR code tag, a radio frequency identification (RFID) tag,
a reader-writer, a camera, a global positioning system (GPS)
and other perception terminals. The terminal device may also
be connected to at least one access node through a wireless
channel [31].
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B. STRUCTURE OF EDGE-CLOUD COLLABORATION
As shown in Fig. 1, an access node may include a data
collecting module, a data clustering module, an access traffic
prediction model, and an information uploading module.
Data Collecting Module is to collect traffic data of the

access node through NetFlow technology. The traffic data of
the current access node, after being collected, is stored in a
database in the format of a tuple, i.e., <date, time, duration,
size of traffic, source node IP, destination node IP, source
node port, destination node port, collection node ID>.

TABLE 1. Mathematical definitions.

Data Clustering Module is to cluster the traffic data col-
lected by the data collecting module according to the path
information. Specifically, it determines whether the traffic
data is the access traffic data or the network traffic data
based on the source node IP and the destination node IP in
the path information of the traffic data. In addition, if traffic
data information is generated between the access node and a
transmission network node or between access nodes, the path
information thereof needs to be recorded. However, if it is
generated between a terminal device and the access node, the
path information is directly marked as the access traffic. For
example, it can be recorded as Nan, without recording the IP
address and port information of the source/destination node
of the traffic, in order to save storage cost of edge nodes.

For easy understanding, we will denote some definitions
that may be frequently mentioned in the following as sym-
bols, which are summarized in Table 1.
Access Traffic Prediction Model is to take the access traffic

data as input, and output a prediction result raccess,pt+1 of access
traffic at the next moment. It adds the access traffic data to
a training set and perform a real-time training to update the
access traffic prediction neural network.
Information Uploading Module is to upload the prediction

result raccess,pt+1 output by the access traffic prediction model
as well as the network traffic data to the cloud platform.
The volume of data to be forwarded will be measured first,
by comparing raccess,pt+1 with the traffic threshold hpt . When
raccess,pt+1 < hpt , the information uploading module will upload
raccess,pt+1 as well as the network traffic data to the cloud
platform. When raccess,pt+1 ≥ hpt , the information uploading

module will back up the network traffic data locally at first,
then upload raccess,pt+1 and the size of the network traffic data
spt to the cloud platform. It should be noted that the traffic
threshold hpt is determined and issued to each access node
by the cloud platform according to (1) where Mp denotes
the physical traffic limit for each access node and raccess,pt−1
denotes the prediction result of network traffic at the last
moment t-1.

hpt = Mp − raccess,pt−1 (1)

Furthermore, the information uploading module also
uploads the network traffic data backed up locally to the cloud
platform in chronological order according to the size of the
local data required to be uploaded to the cloud platform at the
next moment issued from the cloud platform. Such an oper-
ation can make the best of the advantage of storage resource
of the cloud platform by transferring the storage task of the
access node without the heavy burdens of forwarding data
to the cloud platform. In this way, limited edge computing
resources of the access node can be spared, and the network
operation and maintenance costs can be reduced.

The access node may further include a data cleaning mod-
ule between the data collectingmodule and the data clustering
module, and a data conversion module between the data
clustering module and the access traffic prediction model.
The former is to clean incomplete, repeated data records and
records roaming to the local in the traffic data information
collected by the data collecting module. In this solution, the
traffic data information is sample-edited before being upload
to the cloud platform, so that the burden on transmission
channel can be greatly reduced while reserving effective
information. The latter is to convert the access traffic data into
a data format of a training set for the access traffic prediction
model.

As shown in Fig. 1, a cloud platform may include a data-
receiving module, a network traffic prediction model, and a
traffic prediction module.

The data-receiving module is to receive network traffic
data reported by each access node and the prediction result
of access traffic at the next moment through the transmission
network.

The network traffic prediction model is to take the network
traffic reported by each access node as input, and output the
prediction result of traffic to be forwarded of node p on port n,
which can be denoted as rnetwork,p,nt+1 . Obviously, we have (2).

rnetwork,pt+1 =

∑
n
rnetwork,p,nt+1 (2)

Further, the network traffic prediction model also regularly
adds the network traffic data to the training set and performs
real-time training in order to update the network traffic pre-
diction model.

The traffic prediction module is to determine and output
the prediction result of traffic at the next moment for each
access node, respectively according to the prediction result
raccess,pt+1 reported by each access node, and the prediction
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result rnetwork,pt+1 calculated by cloud and data to be uploaded
to the cloud platform at the next moment.

In examples of the present disclosure, the prediction result
of traffic at the next moment for the access node p may be
determined through the following equation.

rpt+1 = rnetwork,pt+1 + raccess,pt+1 (3)

The cloud platform may further include a traffic threshold
determination module and a parameter issuing module. The
former is to determine the traffic threshold for each access
node corresponding to the next moment according to the
prediction result of network traffic for each access node,
respectively.

FIGURE 2. Procedure of TP-ECC.

IV. TRAFFIC PREDICTION BASED ON EDGE CLOUD
COLLABORATION
A. PRINCIPLE OF NEURAL NETWORKS IN EDGE-CLOUD
COLLABORATION
In this subsection, we illustrate that in the integrated radio and
optical networks with edge-cloud architecture considered in
this paper, how the neural networks are deployed and enabled
on cloud and edge nodes, respectively.

The access traffic collected by each edge node is denoted
as a time series. For the neural network deployed at each edge
node, the primary task is to take the access traffic series of its
host node as a training set, and to predict the possible access
traffic value at the next moment by time iterations.

Obviously, the prediction accuracy is supported by the
amount of data, but it also needs to occupy the resource of

excessive storage for historical data. Therefore, we appro-
priately shorten the time window of these neural networks.
In other words, truncate backpropagation through time, and
hand over the tasks of storage as well as learning long-term
traffic characteristics to cloud nodes.

For the neural network deployed at the cloud platform,
it learns the traffic pattern of the entire network topology from
a macro perspective. The pre-processed traffic information
regularly uploaded by each edge node is used as a training
set. The neural network will iteratively acquire multiple other
input features besides traffic data, including the connection
relationship between nodes and network macro events, and
so on. This is a significant improvement to the weakness of
the edge nodes with their insufficient computing power and
limited vision.

B. TRAFFIC PREDICTION BASED ON EDGE CLOUD
COLLABORATION WITH GRU MODEL
We present a traffic prediction strategy based on edge-cloud
collaboration (TP-ECC) with GRU model. To capture the
feature of traffic, we first construct the GRU model, which
can be expressed as follows.

ut = σ (Wu [xt , ht−1] + bu) (4)

rt = σ (Wr [xt , ht−1] + br ) (5)

ct = tanh (Wc [xt , (rt · ht−1)] + bc) (6)

ht = ut · ht−1 + (1 − ut) · ct (7)

where ut represents the update gate that is used to control
the degree of to which the status information at the previous
time is brought into the current status, rt represents the reset
gate that is used to control the degree of ignoring the status
information at the previous moment, ct represents the mem-
ory content stored at time t , ht−1 represents the historical state
at time t-1. xt and ht represent the input and output state at
time t .W and b are the weights and biases in the GRU training
process.

Then, the entire procedure is shown in Fig. 2. We will
elaborate on the traffic prediction process with the help of
mathematical formulas, which can be broken down into the
following steps.

Step 1, each access node collects traffic data, respectively.
During the process of traffic prediction, the data collecting

module of each edge node detects and records the raw data of
traffic flow sequence of access terminals in real time. Each
access node may collect time series data as the traffic data
through NetFlow technology.

Step 2, each access node clusters the collected traffic data
according to the path information thereof and classifies the
collected traffic data into the access traffic data and the
network traffic data.

Step 3, each access node inputs the access traffic data
into the access traffic prediction model configured thereon,
respectively, to obtain the prediction result of access traffic
at the next moment raccess,pt+1 output by the traffic prediction
model.
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Step 4, each access node uploads the prediction result of
access traffic at the next moment raccess,pt+1 and the network
traffic data to the cloud platform, respectively.

Firstly, for a port n at an access node, the traffic threshold
corresponding to the next moment is calculated according to
the prediction result of traffic rnetwork,p,nt+1 to be forwarded at
the next moment through the following equation.

hp,nt+1 = m0 −

∑
i
rnetwork,p,it+1 , i ∈ I (8)

where m0 is the physical maximum bearing traffic limit for
the access node. I is a set of ports having path dependencies
with the port n.

Secondly, the traffic threshold determination module cal-
culates the traffic threshold for the port n of the access node p
corresponding to the next moment according to the traffic
threshold for the port n of the access node p corresponding
to the next moment through the following equation, where N
is a set of all ports of the access node p.

hpt+1 =

∑
n
hp,nt+1, n ∈ N (9)

Step 5, the cloud platform receives network traffic data
and the prediction result of access traffic at the next moment
reported by each access node through the transmission net-
work. A macro traffic prediction that considers much more
features is going to be performed in the cloud.

Meanwhile, the size of the local data required to be
uploaded to the cloud platform at the next moment by each
access node is determined by the parameter issuing module
through the following method.

When hpt+1> 0, the size of the local data required to be
uploaded to the cloud platform by the access node at the next
moment may be set as (10).

kpt+1 = spt − spt−1 (10)

When hpt+1 ≤ 0, the size of local data required to be
uploaded to the cloud platform by the access node at the next
moment may be set as kpt+1= 0. In this case, the parameter
issuing module may further send alarm information to the
access node p and establish a standby link, so as to divert the
traffic accessing the node p to other access nodes as much as
possible.

Step 6, the cloud platform inputs the network traffic data
into the network traffic prediction model to obtain the pre-
diction result of network traffic for each access node at the
next moment output by the network traffic prediction model.
After that, the cloud platform adds the network traffic data
to the training set of the network traffic prediction model
and performs real-time training to update the network traffic
prediction model.

At the same time, the size of the local data required to
be uploaded to the cloud platform at the next moment by
each access node and the traffic threshold for each access
node corresponding to the next moment are issued to the
corresponding access node, respectively.

Step 7, the cloud platform determines and outputs the
prediction result of traffic for each access node according to
the prediction result of access traffic raccess,pt+1 , the prediction
result of network traffic rnetwork,pt+1 , and the size of the data
required to be uploaded to the cloud platform kpt+1 at the next
moment.

The prediction result of traffic at the next moment for
the access node p may be determined through the following
equation.

rpt+1 = rnetwork,pt+1 + raccess,pt+1 + kpt+1 (11)

As can be seen, TP-ECC solves two important pain points
of edge nodes, which are crucial to traffic prediction. First,
macro network events like link or node failures can trigger a
whole body in flow fluctuation. Second, in a fixed topology,
the influence of the connection relationship between nodes
cannot be ignored when extracting traffic characteristics. The
above problems have to, and can only be considered with the
perspective and capabilities of cloud.
In TP-ECC, the method of traffic prediction for edge nodes

can predict a relatively long-term network traffic trend by
utilizing the cloud platform. Also, the method of traffic pre-
diction for edge nodes can predict a relatively short-term
access traffic change by utilizing the access nodes. Fur-
ther, by combining the relatively long-term network traffic
trend and the relatively short-term access traffic change, the
one-sidedness and limitation caused by a single position of a
prediction module in a network and a single time granularity
configuration can be avoided. Thus, the accuracy of traffic
prediction for the system can be greatly improved. Further-
more, the access traffic prediction model and the network
traffic prediction model have good cycle stability, with no
significant change in performance after a plurality of tests and
experiments.

V. EFFICIENT RESOURCE ALLOCATION SCHEME
In practical scenarios, the network transmission ability is
restricted by its own hardware capacity, and the iteration and
expansion of infrastructure require high economic costs. Con-
sidering the input-output ratio of hardware, many network
operators and service providers are deterred. However, the
limitation of infrastructure resources is often the main cause
of service congestion. Therefore, how to reasonably allocate
resources and provide bandwidth for carrying services under
the premise of limited resources is the main goal of this
resource allocation algorithm [32].
In this section, we propose an efficient resource alloca-

tion strategy that makes full use of the prediction result of
TP-ECC. Based on the idea of shortest routing, ERAS intro-
duces constructing auxiliary graph routing, which combines
the routing process with real-time resources, and simplifies
the virtual network mapping process in integrated radio and
optical networks. In order to describe the algorithm con-
veniently, we first establish a simplified schematic network
topology and a set of service request sets as an example,
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FIGURE 3. (a) Schematic diagram of business request setting (b) schematic diagram of the optical network of the data center (c) the auxiliary diagram of
proposed Efficient Resource Allocation Scheme (ERAS).

shown in Fig. 3 (a). The yellow circle represents the virtual
access node, which is the edge node in edge-cloud collabora-
tion. The orange circle represents the virtual cloud platform,
the red hexagon denotes the switching resources required
by the virtual edge node, the red octagon is the application
resources required by the virtual cloud platform for the per-
ception of network status, and the blue quad indicates the
bandwidth resources required by the access service request.

On the basis of the above network topology and service
request definition, Fig. 3 (b) shows the schematic diagram of
the integrated radio and optical networks with the edge-cloud
architecture, in which the yellow circle represents the physi-
cal access (edge) node, the orange circle is the cloud platform,
the red hollow hexagon represents the remaining switching
resources of the physical edge node, the red hollow octagon
indicates the remaining application resources of the cloud
platform, and the purple triangle represents the number of
remaining ports of the physical edge node or cloud platform.
The blue quadrilateral represents the remaining bandwidth
resource of the optical link.

Fig. 3 (c) shows the auxiliary diagram of ERAS process.
First, judge whether the remaining application resources of
the cloud platform corresponding to the optimal and subop-
timal virtual cloud platform meet the access service require-
ments in turn. If they meet the requirements, use double solid
lines to connect them. If both cloud platforms are lack of
resources, the mapping fails, and then traverse all the physical
edge nodes. If the remaining switching resources meet the
needs of the virtual edge node, use the dotted line to connect
them. Otherwise, the link between the node and other nodes
is regarded as open circuit.

After drawing the auxiliary diagram, ERAS supplements
the weight value for each link. The weight of the dotted line
is set to a maximum integer value, which is far more than
the total weight of all links in the topology. The weight value
of the real line comprehensively considers the demand and
residual relationship of nodes and links, as the equilibrium
factor 1, which can be calculated by (12).

1 =
Bi,jreq

Bi,jres
+

√
Rireq
Rires

·
1

RiNumres + 1

√√√√Rjreq

Rjres
·

1

RjNumres + 1
(12)

where Bi,jreq denotes the bandwidth requirement of access
services with i and j as source and destination nodes. Bi,jres
denotes the remaining bandwidth of the optical link with i
and j as the source and destination nodes. Rireq denotes the
number of end-to-end service requests accessed from node i.
Rires denotes the remaining bandwidth resources of node i that
can be used for forwarding services after TP-ECC prediction.

It can be seen that the request resource is proportional to
the weight, and the residual resource is inversely proportional
to the weight. This setting follows the idea that the more
sufficient the residual resource is, the smaller the weight will
be, which is more advantageous in the routing process.

When a service can be mapped to a physical network with
multiple routing options, the equilibrium factor of each link
is calculated one by one, and the path with the least sum
of weights is selected, and the result is associated with the
virtual node pair. In the case of severe resource constraints,
the priority of traffic distribution to the node with less heavy
load to route can maximize the reduction of network blocking
rate and traffic delay.

Since the evaluation of cloud platform has been completed
in the front stage, the weight value of double solid line is
taken as 1 to reduce the impact on the calculation of the
shortest path as much as possible. On the basis of the previous
step, the auxiliary graph topology after updating the weight
is rerouted, and the shortest path is selected for mapping. The
whole ERAS algorithm above can be abstractly summarized
in Algorithm 1.

In the stage of creating auxiliary graph, the time complex-
ity is O(m2)+O(l), where m is the number of virtual cloud
platforms and l is the number of links in physical topology.
In the stage of routing calculation, the shortest path is calcu-
lated based on the topology with updated weight, and the time
complexity is O(n3), so the comprehensive time complexity
of the algorithm is O(m2)+O(l)+O(n3).

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
Experiments in this section are designed to demonstrate the
traffic prediction accuracy of TP-ECC as well as the overall
performance of ERAS.

Python is used to generate the underlying physical topol-
ogy [34], in which 200 nodes are evenly distributed in four
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Algorithm 1 Efficient Resource Allocation Scheme
Input: Virtualization business request RPi (S,D, d,Cp);
Output: Virtualization resource allocation mapping results,
Success / False;
1: for each working cycle
2: Initialize virtualization mapping results Rov as False.
3: for virtual cloud platform dv in set D do
4: if the remaining application resources of the

corresponding cloud platform meet the demand,
that is, Ar

(
dpi

)
> A(dv) then

5: Use double solid lines to connect the
corresponding cloud platform.

6: end if
7: end for
8: for virtual edge node dv in set D do
9: if the remaining exchange resources of

corresponding nodes meet the demand, that
is, Cr

(
vpi

)
> C(vv) then

10: Use dotted lines to connect the
corresponding nodes.

11: else
12: Remove the physical edge node.
13: end if
14: end for
15: Add weight value for all links.
16: The shortest path of virtual network mapping is

calculated on the basis of Gp =
{
Pnj, x∗

nk

}
after the link weight is supplemented.

17: Set virtualization mapping results Rov as True.
end for

18: return
{
Pnj, x∗

nk

}
,Rov

domains, each domain contains a cloud platform, and the
total content in the cloud platform is set to 800. The other
switching nodes are divided into advanced switching nodes
and middle and low-end switching nodes. In the simulation,
the difference between them is mainly reflected in the size
of switching capacity. The former’s switching capacity is set
to 1800, and the latter’s switching capacity is set to 400.
In addition to the above parameters, the number of ports of
the former is 128, and the latter is 10. The resources of the
links connecting the above nodes are represented by the free
spectrum slots, and the total amount of link resources is set to
358 [35]. We generated traffic data with 4510 optical nodes
in the State Key Laboratory in July 2019, comprising over
27,180,000 traffic flows and 3,000 queries around 3.5GB.
The services in the network are composed of end-to-end
services and networking services. The number of switching
resources and application resources requested by nodes are
randomly generated, and the link resources requested by
virtual links are randomly selected, and the content of service
request is randomly selected, the number of service nodes
is set as a random integer between 5 and 10. The length

of service queue in a single simulation is set to 1000, and
the average value of multiple simulation data is taken as the
simulation result.

B. ACCURACY OF TRAFFIC PREDICTION
Figure 4(a) shows the prediction results of TP-ECC and the
ground traffic series. The API of neural networks used in the
TP-ECC algorithm are based on TensorFlow 1.2.1 in Python
2.6. It can be seen that the prediction is generally accurate,
and some special phenomena can be further explained. First,
the prediction results are not disturbed by any instantaneous
traffic reductions, so the future results are still reasonable.
This is because the cloud’s grasp of the overall trend pre-
vents edge nodes from being over-sensitive to those abnormal
reduction data. Second, early predictions are made precisely
for the accidental traffic spikes. The reason is that when the
storage task is transferred to the cloud, the edge node has
more resource to ensure the local prediction is refined and
efficient.

FIGURE 4. Results on traffic prediction: (a) prediction of TP-ECC
(b) Comparison on SMAPE.

In Fig. 4(b), by analyzing the Symmetric Mean Absolute
Percentage Error (SMAPE) of prediction, we compare the
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FIGURE 5. Network performance: (a) blocking rate (b) average queue
delay (c) resource utilization.

performance of TP- ECC with the methods in which neural
networks are deployed in different locations, including on
the cloud or edge alone, or both on the cloud and edge
but not coordinated. Obviously, the SMAPE of TP-ECC is
the lowest in all test groups, which indicates that it has the
best accuracy. Quantitatively, it is 8.1%, 9.5%, and 8.8%
higher than the average accuracy of the other three methods.
This numerically proves that the complementary character-
istics of edge nodes and cloud can improve each other by
TP-ECC, which is helpful for optical network to establish
countermeasures in the traffic fluctuation introduced by large

scale access terminal sets in integrated radio and optical
networks.

C. NETWORK PERFORMANCE OF ERAS SCHEME
In this section, we analyze the overall performance of ERAS
by comparing it with the other three conventional resource
allocation algorithms which are the shortest routing algo-
rithm, the scale constraint algorithm and the high bandwidth
virtualization algorithm. The evolution is conducted from
three aspects including traffic blocking rate, average queue
delay and resource utilization.

Figure 5(a) shows the relationship between the traffic
blocking rate and the running time under the action of the
four algorithms, respectively. It can be seen that all of the
four algorithms have experienced a very low blocking rate
in the initial stage, and then the blocking rate surges with
the passage of time, and finally the increasing rate gradu-
ally decreases to a stable level, but at this stage, different
algorithms have different blocking rate performance. This is
because at the beginning, the network resources are sufficient,
and the controller has more space to select the required
resources for services. When more services flow in, some
resources are occupied but not released, such as the current
hot application resources or key switching nodes, resulting in
the failure of some subsequent services mapping. In the later
period, the occupation and release of network resources tend
to be stable, and the blocking rate of services also presents
a corresponding trend. In the stable stage, for the end-to-end
traffic, the load balancing virtualization algorithm has a lower
blocking rate, which is 6.91% lower than the shortest routing
algorithm. The analysis shows that it can carry more traffic
at the same time because of the optimal path selected after
fully considering the resource occupation when calculating
the routing.

Then, the simulation data of average queue delay shown in
Fig. 5(b) is analyzed. As a whole, no matter which algorithm
is used, the average queue delay increases gradually with
the increase of traffic intensity. This is because when the
resources become tight, the algorithm can only select the opti-
mal path that meets the conditions as far as possible under the
current resource occupation. However, in terms of stability,
for end-to-end services, the shortest route virtualization algo-
rithm selects the shortest path, which has more advantages in
the calculation of routing stage and information transmission
nodes, and the average delay is reduced by 15.61% compared
with the ERAS algorithm which increases with the increase
of traffic intensity.

Finally, we observe the statistics of resource utilization
in the network. As shown in Fig. 5(c), with the increase
of service intensity, it has experienced a process of first
increasing and then gradually stabilizing. In the stable stage,
the load balancing virtualization algorithm presents a higher
resource utilization, which is 8.64% higher than the shortest
routing algorithm. To summarize, for end-to-end access ser-
vice, ERAS algorithm achieves lower traffic blocking rate and
higher resource utilization at the cost of delay.
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VII. CONCLUSION
In this paper, we have first proposed a new deployment archi-
tecture in order to achieve edge cloud collaboration in inte-
grated radio and optical networks. Then, using the functional
entities of the architecture, we have proposed the accurate
traffic prediction algorithm TP-ECC which is based on edge
cloud collaboration with GRU model. We further have pro-
posed a resource allocation scheme ERAS based on load bal-
ancing theory. Their performance has been demonstrated by
experiments in integrated radio and optical networks testbed.

We also have evaluated the performance of the proposed
algorithm for end-to-end services under heavy traffic load,
and compared it with other conventional resource allocation
schemes. Numerical results have shown that with large ter-
minal sets, TP-ECC is fully capable to improve the accuracy
rates of traffic prediction by up to 9.5%, compared with
the methods without edge-cloud collaboration. Furthermore,
ERAS can improve the resource utilization of the whole net-
work, while reducing the average queue delay and blocking
probability.

In the future, we would like to study more complex
resource allocation optimization technology and edge cloud
collaboration architecture, which can jointly mobilize the
resources of cloud and edge nodes and further enhance the
security, reliability, and accuracy of the fast-growing inte-
grated radio and optical networks.
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