
1 

Abstract—The recent popularity of using deep learning models 

for the forecasting of time series calls for methods to not only 

predict the target but also measure the uncertainty of the 

prediction accurately. Working with time series requires reliable 

and stable forecasters. An essential component of the reliability of 

machine learning (ML) and deep learning (DL) models is the 

estimation of the uncertainty. In this work, we address building 

and characterizing time series forecasters, including N-Beats, 

Long Short-Term Memory (LSTM) and Multilayer Perceptron 

(MLP) against the Naive model, and define the confidence 

margins, and uncertainty for the selected model.  

All the implementations are conducted in Python programming 

language. Random sampling is performed to avoid overfitting. 

Our target field data is North American Service Provider data sets 

(NASP). Among the implemented models, the MLP model is 

selected to measure the uncertainty and confidence level, and the 

Monte Carlo dropout, which approximates Bayesian uncertainty, 

is applied during inference to render the implementation of 

uncertainty calculations. Quantile Regression is also implemented 

on the MLP algorithm as a baseline to predict the confidence 

intervals and to evaluate our strategy for estimating uncertainty. 

To establish reliable uncertainty estimation in time series 

predictions, we performed uncertainty calibration. Motivated by 

recent developments in Expected Uncertainty Calibration Error 

(UCE), we modified the uncertainty calculated by the probabilistic 

Bayesian estimations. Detailed experiments and architectures of 

the solution are presented. 

Index Terms— Time series, Forecaster, N-Beats, LSTM, MLP, 

Hyperparameter, Uncertainty, Bayesian approximation, 

confidence intervals, quantile regression 

I. INTRODUCTION

HE increasing rate of data traffic due to the popularity of

video on demand and cloud applications, as well as 

emerging 5G and internet of things (IoT) technologies, requires 

an efficient increase in the total capacity of optical networks at 

a minimal cost. This was the main motivation for the 

development and deployment of elastic optical networks 

(EON). The main component of EON that makes it flexible and 

efficient is a bandwidth variable transponder (BVT) which has 

the ability to dynamically tune its data rate and optical 

bandwidth through the adjustments of certain parameters, such 
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as modulation format, forward error corrections (FEC) coding, 

and optical spectrum shaping, with respect to the quality of 

transmission (QoT) and the optical reach of the lightpath. 

With this level of flexibility, the challenge becomes to 

guarantee the QoT of the lightpath in transparent networks 

where no optical-to-electrical-to-optical (OEO) conversion 

occurs in the middle nodes [1]. This becomes more complex 

with the number of factors that can affect the performance of 

the lightpaths, such as equipment degradation, fiber aging and 

power fluctuations together with the uncertainties of physical 

parameters used as the input for the QoT estimator and of its 

own uncertainties [2]. Thus, when a lightpath is planned, 

operators introduce a mandatory signal-to-noise ratio (SNR), or 

system margin, to ensure service remains unobstructed 

throughout the lifespan of the network. This margin hinders 

operator efforts to fully use the available network bandwidth. 

 To reduce the need for system margins, it is helpful to know 

the future QoT of the lightpath because this will enable 

operators to respond proactively to performance degradation of 

lightpaths in service. As such, research has recently been 

undertaken to forecast QoT of lightpaths, thanks to the 

availability of field data collected by coherent receivers which 

make it possible to leverage machine learning (ML) in QoT 

forecast. In this context, deep learning algorithms based on the 

feed-forward network, recurrent neural network (RNN), 

convolutional neural network (CNN), and residual neural 

network (ResNet), were investigated to minimize the QoT 

prediction error, for different horizon periods. The results 

obtained showed that ML is a promising application for 

predicting QoT with very low prediction percentage error [3].  

On the other hand, for operators to fully rely on the 

forecasting model’s prediction to lower system margins, the 

prediction error is not an appropriate metric and the level of 

certainty of the algorithms’ prediction must be provided. 

Moreover, it is also essential for the forecasting algorithms to 

output the confidence of their predictions.  

Among the deep Learning algorithms that have been applied 

to predict the QoT for the North American Service provider 

(NASP) data set, multilayer perceptron (MLP) model 

demonstrated the highest accuracy [3]. In this work, we propose 

a first approach for uncertainty estimation in time series 

predictions. Uncertainty analysis using the Monte Carlo 

dropout method is performed. The predicted confidence 
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margins are evaluated using Quantile Regression and the 

uncertainty is assessed via UCE calculations. 

The remaining sections are organized as follows: Related 

work on lightpath QoT forecasting is presented in Section II, 

followed by an overview of the methods for estimating 

uncertainty. Section III details the methodology and field 

dataset used for building the forecasting models and their 

implementation. Then, the uncertainty tool used is illustrated 

and the way it is implemented in the chosen forecasting models 

is explained. We also illustrate details about the quantile 

regression, the confidence margin baseline used in this work. 

Section IV shows the forecasting results obtained and the 

uncertainty margin. Finally, Section V concludes with a 

summary of this work and future research directions. 

II. RELATED WORK 

A. Forecasting Lightpath QoT 

Time series are sequences of data occurring over time and 

which can exhibit patterns such as seasonality and trends [4]. 

They have a wide range of applications from monitoring 

industrial processes to tracking business trends. Forecasting 

times series accurately can have a huge financial impact, in the 

millions of dollars for businesses [5]. Forecasting with 

statistical forecasting methods becomes more complex in areas 

that have temporal components like optical communication and 

networks [6][5]. Thus, in the last years, ML has been explored 
to help optical network operators predicting future traffic, 

equipment degradation, and the QoT of the lightpath [7].  

Previous studies have investigated the prediction of QoT in 

complex optical networks using machine learning techniques 

[8]–[13]. Aladin et al. [2] employed support vector machine 

(SVM) and recurrent neural networks based on Long Short-

Term Memory (LSTM), Encoder-Decoder LSTM and Gated 

Recurrent Unit (GRU) to estimate lightpath QoT of 

unestablished lightpaths with 13-months field data. Using the 

root-mean-square (RMSE) and R-square metrics for comparing 

models, GRU was shown to yield the best overall performance. 

    Allogba et al. [14] implemented SVM and NN models for the 

real-time estimation of lightpath QoT. Univariate and 

multivariate LSTM and GRU models were also compared for 

forecasting tasks. SVM showed a more reliable QoT estimation 

compared to the NN models, whereas a lower RMSE and 

absolute maximum error (AME) was observed for single-step 

univariate LSTM over the multi-step encoder-decoder LSTM 

and GRU. In [8], Ayassi et al. studied various ML models to 

estimate the QoT of lightpaths and assessed the feasibility of 

lightpath establishment in terms of the contributing parameter 

uncertainties. Ayoub et al [9] proposed an approach based on 

Exploiting Explainable Artificial Intelligence (XAI) to help 

understand the behavior of models for lightpath QoT 

estimation. A long short-term memory (LSTM) deep neural 

network (DNN) architecture was employed to forecast SNR for 

one lightpath over a 24-hour horizon based on 13-month 

historical field data collected in a production network [12]. This 

work was extended to include, in addition to LSTM, encoder-

decoder LSTM and Gated Recurrent Unit (GRU) DNN 

architectures to forecast SNR over a 96-hour horizon based on 

field data [11][2]. A 1D Convolutional Neural Network (CNN) 

trained with historical field data has also been used to predict 

lightpath SNR over a 24-hour horizon [15]. In these works, the 

models were trained with field data sets of limited size. In the 

research conducted by Chouman et al. [3], a multilayer 

perceptron (MLP) DNN architecture was trained using field 

data from 52 lightpaths deployed in two optical networks, and 

its performance compared with that of the LSTM model and 

linear regression methods. DNN models have been shown to 

leverage the historical field performance metrics collected by 

the network control system for predicting lightpath 

performance. 

In this work, we compare several forecasting methods: 

naive, multilayer perceptron (MLP) based on a feed-forward 

network, LSTM based on RNN networks and the N-Beats 

model based on ResNet [5]. The naive method predicts a future 

value in the time series based on the last time series value seen. 

The metrics used in our work, to quantify the performance of 

the prediction algorithms, were the root-mean-square error 

(RMSE), R-Squared, and training time. RMSE is calculated as 

the square root of the mean of the squared differences between 

the ground truth value and predictions. Thus, it is the standard 

deviation of the residual (prediction errors). RMSE is a measure 

of how spread out these residuals are. In other words, it tells 

you how concentrated the data is around the line of best fit. The 

R-Squared is a relative metric used to compare the model’s 

performance with the baseline models that is trained on the 
same data. The model’s training time is relevant in industrial 

applications due to computing costs. Those metrics are those 

typical used in ML to quantify algorithm performance. 

However, the learning algorithms need to also output their 

confidence in their prediction. Thus, in this work, we intend to 

investigate the model from a new perspective: the confidence 

of the model and its level of uncertainty.  

B. Uncertainty 

Despite numerous studies on ML and its fast deployment in 

measuring systems, there is a relatively smaller number of 

works on implementing uncertainty in models. The calculation 

of uncertainty is a necessity if ML is to be adopted in 

commercial services and products because the accuracy of the 

prediction is just as important [6], [16], [17][16]–[21]. 

Stigler [22] noted for the first time the transformation from 

the point estimation to the distribution estimation [23]. This can 

be done by forecasting a collection of points instead of one 

point for a particular quantity. This quantifying of the variances 

in the prediction is defined as probabilistic forecasting [24]. 

Two of the main approaches for distribution estimation are the 

conditional quantile regression and conditional expectile 

regression, both performing inference around quantile 

functions [23], [25]. To estimate the regression coefficients 

induced by the training data, quantile regression uses 

asymmetric piecewise scoring functions for the τ quantile [23], 

[25], [26]. Expectile regression is similar to quantile regression, 

the principal difference being that it is based on a quadratic 

scoring function [23], [27], [28]. Although these methods 

extend regression beyond the simple prediction of the mean, 

they can also lead to crossing quantile curves in case of small 

data set or with dense quantiles [29]. 

One approach that can be used to obtain probabilistic 

forecasting is to predict a collection of points using ensemble 

learning [24], [30]. Then, this ensemble of prediction models 
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can be statistically corrected using post-processing methods, 

such as non-homogeneous regression and ensemble model 

output statistics, as proposed by Gneiting et al. [31]. This 

method offers powerful techniques for statistical post-

processing, including non-homogenous regression (NR), 

ensemble model output statistics (EMOS) [31] and Bayesian 

averaging (BMA) [32]. 

Another approach that is employed to obtain probabilistic 

forecasting is the Bayesian inference method. This method 

assigns distribution to parameters based on prior experience 

before data collection and applies Bayes’ theorem to revise the 

distribution after obtaining data [10]. The drawback of the 

Bayesian approach is its complex and high cost computation 

[20]. Many approaches have been developed to solve the 

complexity of the Bayesian methods by proposing 

approximations such as the Markov chain Monte-Carlo 

methods, variational approximations, sequential Monte-Carlo 

and expectation-propagation [33], [34]. Still, this method 

suffers from high computational cost, which hinders its use in 

practical applications [20].  

Variational inference applied to Bayesian neural networks 

showed little success [35]. Even sampling-based variational 

inference and stochastic variational inference [36], [37], [20], 

as in the approximation to the Bayesian approach, were limited 

in the means of application due to the computational costs. In 
practice, the sample-based variational method is equivalent to 

using Monte Carlo for sampling from the posterior distribution 

[35]. This procedure involves performing random moves in the 

weight space according to their probabilities.  Stochastic 

variational inference is a scalable algorithm for the 

approximation of the posterior. The main idea is using 

stochastic optimization to optimize a variational objective [38]. 

The method was designed to build a classifier adapted to handle 

huge datasets; however, it is more complex to deploy for 

purposes other than classification.  

Therefore, using some approximations to the Bayesian 

probabilistic approach could be helpful. Teye et al. [39] showed 

that Batch Normalization could be used as an approximation to 

the Bayesian model. This method can lead to variational output, 

by introducing randomness to the model as in Ioffe et al. [40], 

and results in uncertainty estimation. 

Gal et al. [20] use a dropout method as an approximation for 

the Bayesian theory. In fact, dropout is used in ML as a 

regularization tool to prohibit over-fitting. However, they 

showed that applying dropout before every weight-layer in a 

network with any arbitrary depth and non-linearity is 

mathematically equivalent to a well-known probabilistic model 

known as the Gaussian Process (GP) [21]. Therefore, applying 

dropout in the inference time produces different outputs for the 

same input because, in each run, the input is passing through a 

slightly different network due to the dropped units. This is 

known as the Monte-Carlo dropout. Using this method can 

provide target variable distribution instead of point estimation. 

In this study, we aim to estimate the uncertainty of prime ML 

models for QoT prediction. Our study focuses on well-known 

methods that are easy to implement and can be employed on 

any network. Among the Bayesian approximation approaches, 

the dropout-based method was selected for due to its simplicity 

and relatively low computational costs. As second method to 

assess uncertainFty, we investigated quantile regression which 

is also simple to implement but avoids the costly sampling 

process. 

C. Deep Quantile Regression 

Quantile regression is a statistical method to estimate and 

perform inference about conditional quantile functions [41]. 

Introduced by Koenker and Bassett [26], this method seeks to 

predict the conditional median of the target. A special case of 

quantile regression is the Least Absolute Deviation (LAD) [26] 

that fits the medians to the linear function of the covariates. An 

attractive property of LAD estimation is that the median offers 

a more robust measure than then mean.  

In regression, the most commonly used loss function is the 

mean squared error (MSE). Therefore, when we predict using a 

neural net that minimizes this loss, we are predicting the mean 

value of the output which may have been noisy in the training 

set. In contrast, the quantile regression function is the weighted 

sum of absolute deviations, which is a robust measure of 

location. Therefore, the estimated vector of coefficients is not 

sensitive to the outliers of the dependent variables. Moreover, 

in the case of a non-normal error term, quantile regression could 

be more efficient than the least square error [41]. Deep quantile 

regression has been leveraged to calculate QoT uncertainty 

estimation over the unseen lightpaths [42]. Margin reduction 

and more accurate decisions for q-quantiles as lower estimate 

bounds were observed.  

One strategy to tackle the problem of investigating the 

forecasting model’s uncertainty is to combine deep learning and 

statistical tools such as quantile regression. The deep quantile 

regression method is based on minimizing quantile regression 

loss function in DNN learning models. This provides a 

quantitative assessment of the prediction methods for 

uncertainty estimation. Related works have obtained promising 

results using neural networks to approximate QoT and SNR 

uncertainties by minimizing the MSE function on the training 

set [13], [43].This paper aims to use deep quantile regression as 

the baseline for assessing the uncertainty of the forecasted data. 

III. METHODOLOGY 

This section details the knowledge base of this study as well 

as the training and testing of the lightpath QoT forecast models.  

A. Data Preprocessing 

The knowledge base used in this study is composed of the 

field bit error rate (BER) collected for 140 channels in the 

NASP production network and sampled at 15-minute intervals 

as part of the performance metrics (PMs) collection process. 

Each channel includes 32,000 samples. After windowing the 

time series from randomly selected channels, the resulting 

dataset includes 5120 samples. From the preprocessed data set, 

70%, 15% and 15% of data are used for the train, validation, and 

test sets containing 3300, 910 and 910 data windows, 

respectively. To prevent overfitting of the models, historical 

sequences of data have been randomly picked and their 

corresponding target horizons were chosen as the data 

windows. The length of the history and target data are 

adjustable. Two days of history and one target in various time 
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intervals ranging from 1 h to 16 h have been considered. 

B. Forecasting Models 

In this work, we compare several forecasting methods: 

multilayer perceptron (MLP) based on the feed-forward 

network, LSTM based on RNNs and more recently the N-Beats 

model based on ResNet [5], using a naive method as baseline. 

The naive method predicts a future value in the time series using 

the value last seen in the time series.  

MLP, LSTM and N-beats algorithms are based on a DNN, 

which is a part of ML methods based on artificial neural 

networks (ANNs), also called neural networks (NNs). DNN 

consists of an input layer of source nodes, one or more hidden 

layers of nodes and an output layer, which has one node for the 

value of the network output [44]: MLP is a simple class of feed-

forward neural network, which maps an input (historical 

window) to an output (future target). 

In a feed-forward network, there are no feedback 

connections in which outputs of the model are fed back into 

itself. When feed-forward neural networks are extended to 

include feedback connections, they are called RNNs. RNNs are 

a family of neural networks for processing sequential data. The 

LSTM is a popular type of RNN with an internal memory setup 

to allow long-term dependencies to affect the output [44], [45]. 

ResNet networks are called “residual” because at each stage 

of the network some output of the stage is subtracted from the 

input of the stage and the difference (the “residual”) is 

forwarded to the next[5].  N-beats proposes a deep neural 

architecture based on backward and forward residual links and 

a very deep stack of fully connected layers [5]. 

Our deep learning models MLP LSTM and N-Beats are 

implemented with the Keras library. As shown in Fig. 1, the 

MLP model contains two dense layers of 16 neurons, with 

ReLU activation function, and a single neuron in the final layer 

with the linear activation function, which corresponds to 33 

neurons in total. No dropout layer is employed for 

regularization. Selecting this structure for our MLP model is 

based on the experiments on the performance of the model after 

hyperparameter optimization. 

The LSTM model is implemented with three LSTM layers 

of 256, 128, 64 and 32 neurons and an output dense layer of 1 

neuron. The number of neurons is selected based on the 

validation set, kept the same for most of the experiments and 

adopted according to the hyperparameter tuning for other 

experiments. The number of neurons in the LSTM layers were 

selected based on the hyperparameter tuning.  

Our N-Beats architecture is composed of three stacks [5]. 

Each stack contains 4 blocks. Each block includes 3 dense 

layers and 2 theta layers, each one corresponding to the forecast 

and backcast followed by the forecast and backcast layers, 

respectively and the residual layer at the end [5]. In the dense 

layers, the theta layers, and the backcast layers contain 64 

neurons per layer. The forecast layers contain 1 neuron, which 

corresponds to 3,468 neurons in total.  

The first objective of this research is to compare these models 

against our baseline naive model, and select the best performing 

forecaster, i.e., the one with the lowest RMSE to estimate its 

uncertainty using the Monte-Carlo dropout method at the 

inference phase. 

C. Uncertainty Calculations 

There are three forms of uncertainty in regression problems 

[46]: model uncertainty or epistemic [47], model 

misspecification, and inherent noise. Model uncertainty refers 

to the blind spots near the model’s parameters, and these can be 

decreased by increasing the number of training samples [47]. 

Inherent noise grasps the uncertainty in the process of data 

generation and is irreducible [46]. Maximizing the likelihood is 

how we learn the distribution parameters. The uncertainty is 

encoded by some of these parameters. 

A well-known method to address estimating the model’s 

uncertainty quantitively uses the variational inference Monte 

Carlo dropout [20] which employs dropout to sample from the 

posterior distribution [48].  

In this section, we discuss the implementation of the dropout 

method in the inference phase as an approximation to the 

Bayesian approach and how the loss function is calculated. 

 

1) Uncertainty Implementation 

To estimate the uncertainty using Monte Carlo dropout, the 

dropout is applied during the inference phase.  Our strategy is 

to pre-train a MLP model with the optimized set of 

hyperparameters and to use the weights for the prediction model 

with dropout layers. Running the model N number of times 

along with inference, generates distributions for the predictions.  

Different MLP structures have been deployed to estimate 

the uncertainty. Specifically, we compared two models: a pre-

trained MLP model with and without dropout while training, 

and prediction MLP model with dropout after the weight layers 

in the inference time have been compared. We implemented 

MLP models with 16, 128 and 1024 neurons in the dense layers 

to perform the experiments. 

Applying dropout during inference causes differences in the 

output. Using the dropout for the regularization purposes causes 

the input elements to be randomly set to zero, which will 

decrease the output. Thus, to have a constant output,  non-

dropped elements are rescaled [49]. For instance, if elements of 

 

 
 

(a)                                                         (b) 

Fig. 1.  The MLP models with and without dropout: a) the MLP model without 

dropout, b) the MLP model with dropout and with rescaling the dropout. 
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input x are dropped (set to zero) with a given probability rate, 

then (1-𝑟𝑎𝑡𝑒) will remain. The remaining elements will be 

scaled by 1/(1-rate) [50][44]). This way, the output values will 

stay intact. Since we did not apply the dropout during training, 

so that TensorFlow (or any other framework used for the 

implementation) could rescale the output, we needed to do the 

rescaling explicitly. Hence, we added layers to multiply the 

output of each dropout later by 1/(1-rate) so that we could 

have the dropout for the uncertainty approximation and, 

simultaneously, rescale outputs to the expected values as shown 

in Fig. 2. It is worth noting that failing to do rescaling causes a 

shift to appear in the PDF diagrams (this will be discussed in 

the results). The greater the dropout rate, the greater the shift is. 

Therefore, performing this rescaling is essential. 

When we run the model at the test time N number of times 

(N→), according to the central limit theorem, the 

accumulation of a set of random variables is also random and it 

increasingly becomes Gaussian. 

 

2) Applying Dropout with Inference 

With dropout, the output of the network is multiplied by a 

Bernoulli distribution of random variables [17]. For each run, it 

randomly drops some units, which generates different networks 

and consequently yields a different output for each network.  

We consider the input data set {x1, … , xN}, the outputs {y1, … , 

yN} and the prediction vector {ŷ1, … , ŷN}, and the goal is to 

estimate function y = f(x). Following the Bayesian approach, 

our task is to find the distribution of the posterior, having our 

data set over the space of function p(f)  [21]. 

p(f|X, Y) ∝ p(Y|X, f)p(f) (1) 

Considering a NN in its simplest expression, that is, only one 

hidden layer [49], we denote the weight matrix between the first 

layer and the hidden layer as W1, and the one connecting the 

hidden layer to the output layer as W2  [49]. These are the linear 

transforms before applying the nonlinearity, which is activation 

function σ(.), such as ReLU or hyperbolic tangent (TanH). The 

bias is added to shift the non-linearity and denoted by b. We 

assume that the output has the dimension of D while its inputs 

are the vectors with Q dimension, and we have K hidden layers. 

Thus, we have two matrices: W1  with dimension Q × K  and 

W2 with dimension K × D  and b, which is a D dimensional 

vector. The output of a standard NN is formulated as [49]:  

ŷ = σ(x W1 + b)W2 (2) 

During the optimization process, a regularization term could 

be added. L2 regularization could be applied by a weight decay 

λ while minimizing the loss function (Eq. 1) [20]: 

ℒdropout =  
1

N
∑ E(yi, ŷi

N

i=1

) +  λ ∑(‖Wi‖2
2 + ‖bi‖2

2)

L

i=1

 
(3) 

 

in which E(yi, ŷi)  is the Euclidean loss function of the 

output value and the prediction, and bi is the bias term in each 

layer of the network. When the dropout is applied, two binary 

vectors of dimensions Q and K are taken into consideration, z1 

and  z2 . The elements follow the Bernoulli distribution with 

parameters pi  ∈  [0, 1], for  i = 1, 2 . The value of each binary 

variable is 1 with a probability pi for layer 𝑖. If the value of the 

binary value is 0, the unit will be dropped  [49].  

With dropout, if we consider an input x, the 1-pi portion of 

this input is set to zero. Considering the two Bernoulli 

distributions of 𝑧1 and 𝑧2 , we can rewrite Eq. (2) as: 

ŷ =  σ(x (z1W1) + b)(z2W2)                     (4) 

The same procedure is repeated for a network with more layers. 

Here, by z1 we mean the diag(z1). The loss function of Eq. (3) 

is now extended as Eq. (5). 

 

ℒdropout = E + λ1‖W1‖2
2 + λ2‖W2‖2

2 + λ3‖b‖2
2 

    (5)  

D. Deep Quantile Regression Implementation 

For a quantile regression, some information about linear 

regression is required. In a simple linear regression model, we 

have a function relating the independent variables x to the 

dependent variable y: 

yi =  β0 + β1xi1 + ⋯ + βpxnp                 (7) 

in which, p is the number of regressors and i ∈ {1, … , n}  

defines the number of data points. One of the best error 

estimators for linear regression is MSE: 

MSE =  
1

N
 ∑(yi − (β0 + β1xi1 + ⋯ +  βpxip))2

N

i=1

   (8) 

The quantile regression model equation for the τ-th quantile 

becomes: 

Qτ(yi) = β0(τ) + β0(τ)xi1 + ⋯ + β0(τ)xip (9) 

where, again, p is the number of regressor variables and n, 

the number of data points. The β coefficients are dependent on 

the quantile. Finding the β coefficients at the specific quantile 

 
Fig. 2.  Upper and lower bounds, true value, and median, using dropout method. 
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is a similar process as for linear regression except in calculating 

the median absolute deviation (MAD): 

MAD =  
1

n
∑ ρτ(yi − (β0 + β1xi1 + ⋯ + βpxip)

n

i=1

) 
       

(10) 

Here, we use the check function [27] which gives asymmetry 

to the error regarding the defined quantile. We can define ρ as: 

ρτ(u) =  {
  τ max(u, 0) ,               u ≥ 0  
(1 − τ) max(−u, 0),  u < 0

 
(11) 

In this equation, u is the error, which implies that if the error 

is positive, the check function will return the error multiplied 

by the quantile (𝜏), and if the error is negative, it will return the 

absolute error multiplied by the quantile (1- 𝜏 ). 

To implement quantile regression, we use our MLP model, 

and compile the model using the loss function defined in Eq. 10.  

Thus, for the defined quantile value of interest, we can find the 

region where the mass of the data is located. For instance, we 

can consider 5% and 95% quantiles, define the distributional 

mass, and compare the results with the upper and lower bounds 

of what we calculated earlier using the dropout method as the 

approximation to the GP. 

IV. PERFORMANCE RESULTS AND ANALYSIS 

The RMSE results for all the algorithms for the NASP data 

set are shown over all the horizons (1 h, 2 h, 4 h, 8 h and 16 h) 

in Table 1. Remember that the time series in this data set do not 

exhibit any seasonality and trend. 

The RMSE increases for the longer horizons. N-Beats 

shows nearly 0.13 to 0.18 dB prediction error for channel SNR 

in the NASP data set. Its error increases gradually from 1-h to 

16-h horizon. Naive exhibits the minimum RMSE, increasing 

from nearly 0.03 to 0.09 dB. The closest RMSE values to that 

of Naive belong to the MLP model, 0.06 dB. N-Beats represents 

a moderate raise in RMSE from 0.13 to 0.18 dB. The RMSE of 

LSTM shows a slight increase from 1.89 dB to 1.99 dB. Still, 

comparing the RMSE of all the algorithms, the prediction error 

of LSTM is the highest for the NASP data set.  

According to the performances of the DL models presented 

in Table 1, the MLP model shows minimum RMSE.  We chose 

to work with the NASP dataset with 1-h time interval time 

series as the data set for the experiments for implementing 

uncertainty. We used the same window format setting (192 

SNR data as the history to predict a point data in the future) and 

performed random sampling. We conducted a series of 

experiments with different dropout rates to define the best rate 

and the number of runs during the test time. With the MLP 

structure of 16 neurons, dropout rates 0.01, 0.02, 0.05, 0.1 and 

0.2, and 100 number of variational inferences were considered 

for the test time. The variational inference of each prediction is 

a vector with Gaussian distribution due to the central limit 

theorem. To select the number of runs, we calculated the mean 

of the standard deviation for each prediction and the mean of 

RMSE of the test set for different dropout rates. The mean of 

the standard deviation of each distribution was closer to the 

mean RMSE of the whole test set in case of 0.01 dropout and 

100 runs. Therefore, we selected 100 runs for inference.  

Fig. 3 represents the Probability Distribution Function 

(PDF) of the residuals, calculated as the subtraction of the 

distributions of each prediction from their corresponding actual 

value. Residuals are defined as 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  Ym − Ŷm×n, 

where Ym is the vector of the actual values and Ŷm×n is the 

matrix of variational inference.  A m × n matrix of residuals (m 

being the number of predictions, or the number of test 

instances) and n being the number of runs (100)) is generated. 

The observed positive tails for all PDFs imply that most 

variational inference values are less than the actual values 

 
Fig. 3. PDF of the residuals per rate. 

  

TABLE 1 

RMSE METRIC VS. FORECAST HORIZON. NASP DATA SET 

RMSE 1 h 2 h 4 h 8 h 16 h 

MLP 0.06 0.06 0.07 0.09 0.10 

LSTM 1.86 1.90 1.89 1.90 1.99 

N-BEATS 0.13 0.14 0.14 0.16 0.18 

NAIVE 0.03 0.04 0.05 0.07 0.09 

 

 
Fig. 4.  The upper and lower bounds, the true value and the median, as obtained 

by using quantile regression.  
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(Fig. 2). Therefore, since almost all the variational inference 

values are less than the actual values, we only have positive 

residuals (Fig. 3). 

To calculate the upper and lower bounds of the data with the 

dropout method, we used the quantile of the variational 

inference data. We selected the 5 and 95% quantiles for lower 

and upper bounds, respectively. Due to the very low residual 

(RMSE = 0.062 dB), the difference between the true value and 

the prediction is minimal. Moreover, as expected, the upper 

bound is very close to the actual value because, as shown in 

Fig. 3, the negative tail is very short. On the other hand, since 

the tails of the distributions are all in the positive region (Fig. 

3), the difference between the lower bound and true value 

attains 4 dB. 

To evaluate the upper and lower bounds, we used quantile 

regression. This method yielded the median value, and upper 

and lower limit of the 95% quantile (Fig. 4). In Fig. 4, the upper 

and lower bounds are at the same distance from the median 

(nearly 0.1 dB). 

As can be observed from Fig. 3 and 4, the two lower bounds 

are different. The reason for this is that the dropout method 

generated the distribution of the values during inference in the 

credible region (−∞, y]. Most of the data are centered around 

the most probable values (Fig. 4), and the frequency of lower 

values is very small. However, to capture the 90% (or 95%) 

quantile, we included all the infrequent data. This is why, Fig. 4 

obtained from the approximation to the GP, the lower bound 

(green line) is considerably different from the prediction. 

Moreover, earlier, we assumed that using the Gaussian 

process (approximation to the Bayesian probabilistic) would 

result in Gaussian distribution in the inference. However, in this 

case, true distributions were not completely Gaussian (Fig. 3). 

In fact, uncertainty calculated using the Bayesian approach 

tends to be uncalibrated [48], [51], [52], and further processes 

are required to achieve calibrated uncertainty measures. In this 

work, we chose to use Uncertainty Calibration Error (UCE), 

developed by [48].  

 

Uncertainty Calibration 

Calibration measures are performed to adjust the lower 

bound of the prediction in the Bayesian uncertainty method. 

The calibration measures are assessed using sets of 

visualizations and UCE calculations. 

 

 

Uncertainty Calibration Error 

The expected Uncertainty Calibration Error (UCE) is the 

extension of the term for classification. Following Guo et al. 

[53] and Laves et al. [48],  the uncertainty of the DL models is 

divided into M bins of equal size. UCE can be calculated as the 

weighted average of the difference between the predictive error 

and uncertainty of the bin:  

𝑈𝐶𝐸 =  ∑
|𝐵𝑚|

𝑛
|𝑒𝑟𝑟(𝐵𝑚) − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐵𝑚)|

𝑀

𝑚=1

 

where n is the number of inputs and m the indices of the bins 

(𝐵𝑚), for which the uncertainty falls into. The error per bin and 

the uncertainty per bin are defined as: 

𝑒𝑟𝑟( 𝐵𝑚) =  
1

|𝐵𝑚|
 ∑ ‖𝑦𝑖 − 𝑦̂𝑖‖2

𝑖∈𝐵𝑚
 

and 

      𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦( 𝐵𝑚) =  
1

|𝐵𝑚|
∑ (𝜎𝑖

2
𝑖∈𝐵𝑚

) 

where 𝜎 is the variance and the uncertainty is denoted with 

percentage ([48]).  

Calibration is performed after training using the validation 
dataset. To perform the UCE calculations, we considered 

different scenarios: increasing the number of neurons in each 

layer, increasing the number of variational inferences, varying 

the dropout rates, and adding the dropout layers while training 

as well as the inference time. Previously, the PDF of residual 

distributions for 0.01 dropout and 100 variational inference 

(Fig. 3) showed asymmetry to the right. Therefore, to quantify 

miscalibration, we designed the experiments to establish the 

MLP forecaster architecture so that the UCE is at a minimum 

and as for the results, the uncertainty is calibrated. Several 

experiments were conducted, increasing the number of 

variational inferences from 100 to 500, varying the number of 

neurons (16, 128, 1024), and considering different dropout rates 

during training (0, 0.01, 0.1) and test (0.001, 0.005, 0.01, 0.1, 

1).  The resulting uncertainty vs. MSE curves are shown in Fig. 

5 and Fig. 6 (without dropout during training), and Fig. 7 (with 

dropout during training). On these curves, the miscalibration is 

revealed by the degree of inequality to the identity function. 

The experiments demonstrate that once the number of 

variational inferences increases to 500, when the dropout rate is 

1%, for the basic MLP time series forecaster with 16 neurons in 

 
                                    (a)                                                                             (b)                                                                               (c) 

Fig. 5. MLP with 16 neurons in each layer, 500 variational inferences during the test time, and no dropout while training, with dropout rates during testing  

time of: a) 1% (UCE 1.34); b) 0.1% (UCE = 0.08); c) 0.05% (UCE = 0.03). The best correlation between the MSE and the variance is at 0.05% dropout ratio.  
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each layer, the correlation between MSE and the variance of the 

distribution increases and the calibration error is 1.3% (Fig. 5).  

When the dropout rate decreases to 0.1% and 0.05%, with the 

same number of variational inferences, the UCE drops (from 

0.08 to 0.03). The best correlation between the variance and 

MSE is obtained at 0.05% dropout. Increasing the number of 

neurons to 128 for each layer with 500 variational inferences at 

the test time improves the UCE (Fig. 6) from 0.11 for 0.1% rate  

 (Fig. 6.a) to 0.001 (Fig. 6.c). for 0.005% rate of dropout during 

the test time. Simultaneously, the correlation between the MSE 

and variance of the distributions increases (Fig. 6.a, 6.c), with 

the best correlation occurring at 0.01% dropout rate (Fig. 6.b).  

However, decreasing the rate of test dropout to 0.001% does 

improve the correlation between MSE and distribution 

variance, nor does it improve the UCE (Fig. 6.d, UCE = 0.002). 

Increasing the number of neurons to 1024 does not bring any 

improvement neither.  

The improvement of the uncertainty after calibration can be 

observed in the PDF of the residuals distributed around zero 

(Fig. 8). The skewness of the PDFs (Fig. 4) has been modified, 

the PDF is symmetrical and is concentrated around zero. The 

 
(a)                                                                                            (b) 

 
(c)                                                                                          (d) 

 

Fig. 6. MLP with 128 neurons in each layer, and no dropout during training with dropout rates of: a) 0.1% (UCE = 0.11); b) 0.01% (UCE = 0.003);  

c) 0.005% (UCE = 0.001); d) 0.001% (UCE = 0.002). 500 variational inferences.  

 
(a)                                                                                               (b) 

Fig. 7. MLP with 128 neurons and: a) 0.01% dropout rate during training and 0.01% dropout during testing (UCE = 0.002); b) 0.1% dropout during training and 

0.01% dropout rate during testing (UCE = 0.0008). 
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upper and lower bounds of the predictions show less difference 

with the predictions (Fig. 9) as compared to those calculated 

with the Monte Carlo dropout and quantile regression (Fig. 2 

and 4, respectively).   

Comparing Fig. 7 with Fig. 6.b, the MLP forecaster with the 

same architecture but with dropout at the train time, Fig. 7.a and 

Fig. 7.b, show better UCE and correlation between the variance 

and the MSE of the distributions. Therefore, MLP time series 

forecaster with 0.1% train dropout and 0.01% test dropout, 

outperforms all the architectures considered in this study. 

V. CONCLUSION 

This paper successfully explored the application of DL 

forecasters for time series analysis in the field of optical signal 

transmission. Implementing N-Beats, whose code is not yet 

offered as a library in Python, and having it outperform other 

forecasters were some of the contributions of this article. For 

the target time series of this project, the performance of the 

naive model was better for the point prediction of the time 

intervals of choice. A naive model shows optimal performance 

when the behavior of the WDM channel is stable over time.  

The uncertainty estimation was implemented using the 

Monte-Carlo dropout with the MLP model. The margins as the 

indicators of having variational inference, instead of point 

prediction, were also evaluated by the margins found with the 

Quantile Regression method. The results of the two approaches 

differed.  

UCE calculations were performed to calibrate the 

uncertainty. We found the architecture of the forecaster directly 

affects the calibration and propose a MLP structure with 

minimum UCE and maximum correlation between variance and 

MSE of the variational inference distribution. 
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