
1

Abstract—The recent popularity of using deep learning models

for the forecasting of time series calls for methods to not only

predict the target but also measure the uncertainty of the

prediction accurately. Working with time series requires reliable

and stable forecasters. An essential component of the reliability of

machine learning (ML) and deep learning (DL) models is the

estimation of the uncertainty. In this work, we address building

and characterizing time series forecasters, including N-Beats,

Long Short-Term Memory (LSTM) and Multilayer Perceptron

(MLP) against the Naive model, and define the confidence

margins, and uncertainty for the selected model.

All the implementations are conducted in Python programming

language. Random sampling is performed to avoid overfitting.

Our target field data is North American Service Provider data sets

(NASP). Among the implemented models, the MLP model is

selected to measure the uncertainty and confidence level, and the

Monte Carlo dropout, which approximates Bayesian uncertainty,

is applied during inference to render the implementation of

uncertainty calculations. Quantile Regression is also implemented

on the MLP algorithm as a baseline to predict the confidence

intervals and to evaluate our strategy for estimating uncertainty.

To establish reliable uncertainty estimation in time series

predictions, we performed uncertainty calibration. Motivated by

recent developments in Expected Uncertainty Calibration Error

(UCE), we modified the uncertainty calculated by the probabilistic

Bayesian estimations. Detailed experiments and architectures of

the solution are presented.

Index Terms— Time series, Forecaster, N-Beats, LSTM, MLP,

Hyperparameter, Uncertainty, Bayesian approximation,

confidence intervals, quantile regression

I. INTRODUCTION

HE increasing rate of data traffic due to the popularity of

video on demand and cloud applications, as well as

emerging 5G and internet of things (IoT) technologies, requires

an efficient increase in the total capacity of optical networks at

a minimal cost. This was the main motivation for the

development and deployment of elastic optical networks

(EON). The main component of EON that makes it flexible and

efficient is a bandwidth variable transponder (BVT) which has

the ability to dynamically tune its data rate and optical

bandwidth through the adjustments of certain parameters, such

Manuscript submitted on November 23, 2022. This work was supported in

part by Mitacs under grant IT14046 and Ciena Corp.

S. Yousefi, H. Chouman, C. Tremblay and C. Desrosiers are from the École

de technologie supérieure, Montréal, QC, Canada (e-mail: christine.tremblay@
etsmtl.ca).

as modulation format, forward error corrections (FEC) coding,

and optical spectrum shaping, with respect to the quality of

transmission (QoT) and the optical reach of the lightpath.

With this level of flexibility, the challenge becomes to

guarantee the QoT of the lightpath in transparent networks

where no optical-to-electrical-to-optical (OEO) conversion

occurs in the middle nodes [1]. This becomes more complex

with the number of factors that can affect the performance of

the lightpaths, such as equipment degradation, fiber aging and

power fluctuations together with the uncertainties of physical

parameters used as the input for the QoT estimator and of its

own uncertainties [2]. Thus, when a lightpath is planned,

operators introduce a mandatory signal-to-noise ratio (SNR), or

system margin, to ensure service remains unobstructed

throughout the lifespan of the network. This margin hinders

operator efforts to fully use the available network bandwidth.

 To reduce the need for system margins, it is helpful to know

the future QoT of the lightpath because this will enable

operators to respond proactively to performance degradation of

lightpaths in service. As such, research has recently been

undertaken to forecast QoT of lightpaths, thanks to the

availability of field data collected by coherent receivers which

make it possible to leverage machine learning (ML) in QoT

forecast. In this context, deep learning algorithms based on the

feed-forward network, recurrent neural network (RNN),

convolutional neural network (CNN), and residual neural

network (ResNet), were investigated to minimize the QoT

prediction error, for different horizon periods. The results

obtained showed that ML is a promising application for

predicting QoT with very low prediction percentage error [3].

On the other hand, for operators to fully rely on the

forecasting model’s prediction to lower system margins, the

prediction error is not an appropriate metric and the level of

certainty of the algorithms’ prediction must be provided.

Moreover, it is also essential for the forecasting algorithms to

output the confidence of their predictions.

Among the deep Learning algorithms that have been applied

to predict the QoT for the North American Service provider

(NASP) data set, multilayer perceptron (MLP) model

demonstrated the highest accuracy [3]. In this work, we propose

a first approach for uncertainty estimation in time series

predictions. Uncertainty analysis using the Monte Carlo

dropout method is performed. The predicted confidence

P. Djukic and F. Golaghazadeh are from Ciena Corp., Nepean, ON, Canada.

.

Forecasting Lightpath Quality of Transmission and

Implementing Uncertainty in the Forecast Models

Somaiieh Yousefi, Hussein Chouman, Petar Djukic, Firouzeh Golaghazadeh, Christine Tremblay,

Christian Desrosiers

T

Authors' accepted manuscript. Article to be published in Journal of Lightwave Technology, 2023
https://doi.org/10.1109/JLT.2023.3252441

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

margins are evaluated using Quantile Regression and the

uncertainty is assessed via UCE calculations.

The remaining sections are organized as follows: Related

work on lightpath QoT forecasting is presented in Section II,

followed by an overview of the methods for estimating

uncertainty. Section III details the methodology and field

dataset used for building the forecasting models and their

implementation. Then, the uncertainty tool used is illustrated

and the way it is implemented in the chosen forecasting models

is explained. We also illustrate details about the quantile

regression, the confidence margin baseline used in this work.

Section IV shows the forecasting results obtained and the

uncertainty margin. Finally, Section V concludes with a

summary of this work and future research directions.

II. RELATED WORK

A. Forecasting Lightpath QoT

Time series are sequences of data occurring over time and

which can exhibit patterns such as seasonality and trends [4].

They have a wide range of applications from monitoring

industrial processes to tracking business trends. Forecasting

times series accurately can have a huge financial impact, in the

millions of dollars for businesses [5]. Forecasting with

statistical forecasting methods becomes more complex in areas

that have temporal components like optical communication and

networks [6][5]. Thus, in the last years, ML has been explored
to help optical network operators predicting future traffic,

equipment degradation, and the QoT of the lightpath [7].

Previous studies have investigated the prediction of QoT in

complex optical networks using machine learning techniques

[8]–[13]. Aladin et al. [2] employed support vector machine

(SVM) and recurrent neural networks based on Long Short-

Term Memory (LSTM), Encoder-Decoder LSTM and Gated

Recurrent Unit (GRU) to estimate lightpath QoT of

unestablished lightpaths with 13-months field data. Using the

root-mean-square (RMSE) and R-square metrics for comparing

models, GRU was shown to yield the best overall performance.

 Allogba et al. [14] implemented SVM and NN models for the

real-time estimation of lightpath QoT. Univariate and

multivariate LSTM and GRU models were also compared for

forecasting tasks. SVM showed a more reliable QoT estimation

compared to the NN models, whereas a lower RMSE and

absolute maximum error (AME) was observed for single-step

univariate LSTM over the multi-step encoder-decoder LSTM

and GRU. In [8], Ayassi et al. studied various ML models to

estimate the QoT of lightpaths and assessed the feasibility of

lightpath establishment in terms of the contributing parameter

uncertainties. Ayoub et al [9] proposed an approach based on

Exploiting Explainable Artificial Intelligence (XAI) to help

understand the behavior of models for lightpath QoT

estimation. A long short-term memory (LSTM) deep neural

network (DNN) architecture was employed to forecast SNR for

one lightpath over a 24-hour horizon based on 13-month

historical field data collected in a production network [12]. This

work was extended to include, in addition to LSTM, encoder-

decoder LSTM and Gated Recurrent Unit (GRU) DNN

architectures to forecast SNR over a 96-hour horizon based on

field data [11][2]. A 1D Convolutional Neural Network (CNN)

trained with historical field data has also been used to predict

lightpath SNR over a 24-hour horizon [15]. In these works, the

models were trained with field data sets of limited size. In the

research conducted by Chouman et al. [3], a multilayer

perceptron (MLP) DNN architecture was trained using field

data from 52 lightpaths deployed in two optical networks, and

its performance compared with that of the LSTM model and

linear regression methods. DNN models have been shown to

leverage the historical field performance metrics collected by

the network control system for predicting lightpath

performance.

In this work, we compare several forecasting methods:

naive, multilayer perceptron (MLP) based on a feed-forward

network, LSTM based on RNN networks and the N-Beats

model based on ResNet [5]. The naive method predicts a future

value in the time series based on the last time series value seen.

The metrics used in our work, to quantify the performance of

the prediction algorithms, were the root-mean-square error

(RMSE), R-Squared, and training time. RMSE is calculated as

the square root of the mean of the squared differences between

the ground truth value and predictions. Thus, it is the standard

deviation of the residual (prediction errors). RMSE is a measure

of how spread out these residuals are. In other words, it tells

you how concentrated the data is around the line of best fit. The

R-Squared is a relative metric used to compare the model’s

performance with the baseline models that is trained on the
same data. The model’s training time is relevant in industrial

applications due to computing costs. Those metrics are those

typical used in ML to quantify algorithm performance.

However, the learning algorithms need to also output their

confidence in their prediction. Thus, in this work, we intend to

investigate the model from a new perspective: the confidence

of the model and its level of uncertainty.

B. Uncertainty

Despite numerous studies on ML and its fast deployment in

measuring systems, there is a relatively smaller number of

works on implementing uncertainty in models. The calculation

of uncertainty is a necessity if ML is to be adopted in

commercial services and products because the accuracy of the

prediction is just as important [6], [16], [17][16]–[21].

Stigler [22] noted for the first time the transformation from

the point estimation to the distribution estimation [23]. This can

be done by forecasting a collection of points instead of one

point for a particular quantity. This quantifying of the variances

in the prediction is defined as probabilistic forecasting [24].

Two of the main approaches for distribution estimation are the

conditional quantile regression and conditional expectile

regression, both performing inference around quantile

functions [23], [25]. To estimate the regression coefficients

induced by the training data, quantile regression uses

asymmetric piecewise scoring functions for the τ quantile [23],

[25], [26]. Expectile regression is similar to quantile regression,

the principal difference being that it is based on a quadratic

scoring function [23], [27], [28]. Although these methods

extend regression beyond the simple prediction of the mean,

they can also lead to crossing quantile curves in case of small

data set or with dense quantiles [29].

One approach that can be used to obtain probabilistic

forecasting is to predict a collection of points using ensemble

learning [24], [30]. Then, this ensemble of prediction models

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

can be statistically corrected using post-processing methods,

such as non-homogeneous regression and ensemble model

output statistics, as proposed by Gneiting et al. [31]. This

method offers powerful techniques for statistical post-

processing, including non-homogenous regression (NR),

ensemble model output statistics (EMOS) [31] and Bayesian

averaging (BMA) [32].

Another approach that is employed to obtain probabilistic

forecasting is the Bayesian inference method. This method

assigns distribution to parameters based on prior experience

before data collection and applies Bayes’ theorem to revise the

distribution after obtaining data [10]. The drawback of the

Bayesian approach is its complex and high cost computation

[20]. Many approaches have been developed to solve the

complexity of the Bayesian methods by proposing

approximations such as the Markov chain Monte-Carlo

methods, variational approximations, sequential Monte-Carlo

and expectation-propagation [33], [34]. Still, this method

suffers from high computational cost, which hinders its use in

practical applications [20].

Variational inference applied to Bayesian neural networks

showed little success [35]. Even sampling-based variational

inference and stochastic variational inference [36], [37], [20],

as in the approximation to the Bayesian approach, were limited

in the means of application due to the computational costs. In
practice, the sample-based variational method is equivalent to

using Monte Carlo for sampling from the posterior distribution

[35]. This procedure involves performing random moves in the

weight space according to their probabilities. Stochastic

variational inference is a scalable algorithm for the

approximation of the posterior. The main idea is using

stochastic optimization to optimize a variational objective [38].

The method was designed to build a classifier adapted to handle

huge datasets; however, it is more complex to deploy for

purposes other than classification.

Therefore, using some approximations to the Bayesian

probabilistic approach could be helpful. Teye et al. [39] showed

that Batch Normalization could be used as an approximation to

the Bayesian model. This method can lead to variational output,

by introducing randomness to the model as in Ioffe et al. [40],

and results in uncertainty estimation.

Gal et al. [20] use a dropout method as an approximation for

the Bayesian theory. In fact, dropout is used in ML as a

regularization tool to prohibit over-fitting. However, they

showed that applying dropout before every weight-layer in a

network with any arbitrary depth and non-linearity is

mathematically equivalent to a well-known probabilistic model

known as the Gaussian Process (GP) [21]. Therefore, applying

dropout in the inference time produces different outputs for the

same input because, in each run, the input is passing through a

slightly different network due to the dropped units. This is

known as the Monte-Carlo dropout. Using this method can

provide target variable distribution instead of point estimation.

In this study, we aim to estimate the uncertainty of prime ML

models for QoT prediction. Our study focuses on well-known

methods that are easy to implement and can be employed on

any network. Among the Bayesian approximation approaches,

the dropout-based method was selected for due to its simplicity

and relatively low computational costs. As second method to

assess uncertainFty, we investigated quantile regression which

is also simple to implement but avoids the costly sampling

process.

C. Deep Quantile Regression

Quantile regression is a statistical method to estimate and

perform inference about conditional quantile functions [41].

Introduced by Koenker and Bassett [26], this method seeks to

predict the conditional median of the target. A special case of

quantile regression is the Least Absolute Deviation (LAD) [26]

that fits the medians to the linear function of the covariates. An

attractive property of LAD estimation is that the median offers

a more robust measure than then mean.

In regression, the most commonly used loss function is the

mean squared error (MSE). Therefore, when we predict using a

neural net that minimizes this loss, we are predicting the mean

value of the output which may have been noisy in the training

set. In contrast, the quantile regression function is the weighted

sum of absolute deviations, which is a robust measure of

location. Therefore, the estimated vector of coefficients is not

sensitive to the outliers of the dependent variables. Moreover,

in the case of a non-normal error term, quantile regression could

be more efficient than the least square error [41]. Deep quantile

regression has been leveraged to calculate QoT uncertainty

estimation over the unseen lightpaths [42]. Margin reduction

and more accurate decisions for q-quantiles as lower estimate

bounds were observed.

One strategy to tackle the problem of investigating the

forecasting model’s uncertainty is to combine deep learning and

statistical tools such as quantile regression. The deep quantile

regression method is based on minimizing quantile regression

loss function in DNN learning models. This provides a

quantitative assessment of the prediction methods for

uncertainty estimation. Related works have obtained promising

results using neural networks to approximate QoT and SNR

uncertainties by minimizing the MSE function on the training

set [13], [43].This paper aims to use deep quantile regression as

the baseline for assessing the uncertainty of the forecasted data.

III. METHODOLOGY

This section details the knowledge base of this study as well

as the training and testing of the lightpath QoT forecast models.

A. Data Preprocessing

The knowledge base used in this study is composed of the

field bit error rate (BER) collected for 140 channels in the

NASP production network and sampled at 15-minute intervals

as part of the performance metrics (PMs) collection process.

Each channel includes 32,000 samples. After windowing the

time series from randomly selected channels, the resulting

dataset includes 5120 samples. From the preprocessed data set,

70%, 15% and 15% of data are used for the train, validation, and

test sets containing 3300, 910 and 910 data windows,

respectively. To prevent overfitting of the models, historical

sequences of data have been randomly picked and their

corresponding target horizons were chosen as the data

windows. The length of the history and target data are

adjustable. Two days of history and one target in various time

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

intervals ranging from 1 h to 16 h have been considered.

B. Forecasting Models

In this work, we compare several forecasting methods:

multilayer perceptron (MLP) based on the feed-forward

network, LSTM based on RNNs and more recently the N-Beats

model based on ResNet [5], using a naive method as baseline.

The naive method predicts a future value in the time series using

the value last seen in the time series.

MLP, LSTM and N-beats algorithms are based on a DNN,

which is a part of ML methods based on artificial neural

networks (ANNs), also called neural networks (NNs). DNN

consists of an input layer of source nodes, one or more hidden

layers of nodes and an output layer, which has one node for the

value of the network output [44]: MLP is a simple class of feed-

forward neural network, which maps an input (historical

window) to an output (future target).

In a feed-forward network, there are no feedback

connections in which outputs of the model are fed back into

itself. When feed-forward neural networks are extended to

include feedback connections, they are called RNNs. RNNs are

a family of neural networks for processing sequential data. The

LSTM is a popular type of RNN with an internal memory setup

to allow long-term dependencies to affect the output [44], [45].

ResNet networks are called “residual” because at each stage

of the network some output of the stage is subtracted from the

input of the stage and the difference (the “residual”) is

forwarded to the next[5]. N-beats proposes a deep neural

architecture based on backward and forward residual links and

a very deep stack of fully connected layers [5].

Our deep learning models MLP LSTM and N-Beats are

implemented with the Keras library. As shown in Fig. 1, the

MLP model contains two dense layers of 16 neurons, with

ReLU activation function, and a single neuron in the final layer

with the linear activation function, which corresponds to 33

neurons in total. No dropout layer is employed for

regularization. Selecting this structure for our MLP model is

based on the experiments on the performance of the model after

hyperparameter optimization.

The LSTM model is implemented with three LSTM layers

of 256, 128, 64 and 32 neurons and an output dense layer of 1

neuron. The number of neurons is selected based on the

validation set, kept the same for most of the experiments and

adopted according to the hyperparameter tuning for other

experiments. The number of neurons in the LSTM layers were

selected based on the hyperparameter tuning.

Our N-Beats architecture is composed of three stacks [5].

Each stack contains 4 blocks. Each block includes 3 dense

layers and 2 theta layers, each one corresponding to the forecast

and backcast followed by the forecast and backcast layers,

respectively and the residual layer at the end [5]. In the dense

layers, the theta layers, and the backcast layers contain 64

neurons per layer. The forecast layers contain 1 neuron, which

corresponds to 3,468 neurons in total.

The first objective of this research is to compare these models

against our baseline naive model, and select the best performing

forecaster, i.e., the one with the lowest RMSE to estimate its

uncertainty using the Monte-Carlo dropout method at the

inference phase.

C. Uncertainty Calculations

There are three forms of uncertainty in regression problems

[46]: model uncertainty or epistemic [47], model

misspecification, and inherent noise. Model uncertainty refers

to the blind spots near the model’s parameters, and these can be

decreased by increasing the number of training samples [47].

Inherent noise grasps the uncertainty in the process of data

generation and is irreducible [46]. Maximizing the likelihood is

how we learn the distribution parameters. The uncertainty is

encoded by some of these parameters.

A well-known method to address estimating the model’s

uncertainty quantitively uses the variational inference Monte

Carlo dropout [20] which employs dropout to sample from the

posterior distribution [48].

In this section, we discuss the implementation of the dropout

method in the inference phase as an approximation to the

Bayesian approach and how the loss function is calculated.

1) Uncertainty Implementation

To estimate the uncertainty using Monte Carlo dropout, the

dropout is applied during the inference phase. Our strategy is

to pre-train a MLP model with the optimized set of

hyperparameters and to use the weights for the prediction model

with dropout layers. Running the model N number of times

along with inference, generates distributions for the predictions.

Different MLP structures have been deployed to estimate

the uncertainty. Specifically, we compared two models: a pre-

trained MLP model with and without dropout while training,

and prediction MLP model with dropout after the weight layers

in the inference time have been compared. We implemented

MLP models with 16, 128 and 1024 neurons in the dense layers

to perform the experiments.

Applying dropout during inference causes differences in the

output. Using the dropout for the regularization purposes causes

the input elements to be randomly set to zero, which will

decrease the output. Thus, to have a constant output, non-

dropped elements are rescaled [49]. For instance, if elements of

(a) (b)

Fig. 1. The MLP models with and without dropout: a) the MLP model without

dropout, b) the MLP model with dropout and with rescaling the dropout.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

input x are dropped (set to zero) with a given probability rate,

then (1-𝑟𝑎𝑡𝑒) will remain. The remaining elements will be

scaled by 1/(1-rate) [50][44]). This way, the output values will

stay intact. Since we did not apply the dropout during training,

so that TensorFlow (or any other framework used for the

implementation) could rescale the output, we needed to do the

rescaling explicitly. Hence, we added layers to multiply the

output of each dropout later by 1/(1-rate) so that we could

have the dropout for the uncertainty approximation and,

simultaneously, rescale outputs to the expected values as shown

in Fig. 2. It is worth noting that failing to do rescaling causes a

shift to appear in the PDF diagrams (this will be discussed in

the results). The greater the dropout rate, the greater the shift is.

Therefore, performing this rescaling is essential.

When we run the model at the test time N number of times

(N→), according to the central limit theorem, the

accumulation of a set of random variables is also random and it

increasingly becomes Gaussian.

2) Applying Dropout with Inference

With dropout, the output of the network is multiplied by a

Bernoulli distribution of random variables [17]. For each run, it

randomly drops some units, which generates different networks

and consequently yields a different output for each network.

We consider the input data set {x1, … , xN}, the outputs {y1, … ,

yN} and the prediction vector {ŷ1, … , ŷN}, and the goal is to

estimate function y = f(x). Following the Bayesian approach,

our task is to find the distribution of the posterior, having our

data set over the space of function p(f) [21].

p(f|X, Y) ∝ p(Y|X, f)p(f) (1)

Considering a NN in its simplest expression, that is, only one

hidden layer [49], we denote the weight matrix between the first

layer and the hidden layer as W1, and the one connecting the

hidden layer to the output layer as W2 [49]. These are the linear

transforms before applying the nonlinearity, which is activation

function σ(.), such as ReLU or hyperbolic tangent (TanH). The

bias is added to shift the non-linearity and denoted by b. We

assume that the output has the dimension of D while its inputs

are the vectors with Q dimension, and we have K hidden layers.

Thus, we have two matrices: W1 with dimension Q × K and

W2 with dimension K × D and b, which is a D dimensional

vector. The output of a standard NN is formulated as [49]:

ŷ = σ(x W1 + b)W2 (2)

During the optimization process, a regularization term could

be added. L2 regularization could be applied by a weight decay

λ while minimizing the loss function (Eq. 1) [20]:

ℒdropout =
1

N
∑ E(yi, ŷi

N

i=1

) + λ ∑(‖Wi‖2
2 + ‖bi‖2

2)

L

i=1

(3)

in which E(yi, ŷi) is the Euclidean loss function of the

output value and the prediction, and bi is the bias term in each

layer of the network. When the dropout is applied, two binary

vectors of dimensions Q and K are taken into consideration, z1

and z2 . The elements follow the Bernoulli distribution with

parameters pi ∈ [0, 1], for i = 1, 2 . The value of each binary

variable is 1 with a probability pi for layer 𝑖. If the value of the

binary value is 0, the unit will be dropped [49].

With dropout, if we consider an input x, the 1-pi portion of

this input is set to zero. Considering the two Bernoulli

distributions of 𝑧1 and 𝑧2 , we can rewrite Eq. (2) as:

ŷ = σ(x (z1W1) + b)(z2W2) (4)

The same procedure is repeated for a network with more layers.

Here, by z1 we mean the diag(z1). The loss function of Eq. (3)

is now extended as Eq. (5).

ℒdropout = E + λ1‖W1‖2
2 + λ2‖W2‖2

2 + λ3‖b‖2
2

 (5)

D. Deep Quantile Regression Implementation

For a quantile regression, some information about linear

regression is required. In a simple linear regression model, we

have a function relating the independent variables x to the

dependent variable y:

yi = β0 + β1xi1 + ⋯ + βpxnp (7)

in which, p is the number of regressors and i ∈ {1, … , n}

defines the number of data points. One of the best error

estimators for linear regression is MSE:

MSE =
1

N
 ∑(yi − (β0 + β1xi1 + ⋯ + βpxip))2

N

i=1

 (8)

The quantile regression model equation for the τ-th quantile

becomes:

Qτ(yi) = β0(τ) + β0(τ)xi1 + ⋯ + β0(τ)xip (9)

where, again, p is the number of regressor variables and n,

the number of data points. The β coefficients are dependent on

the quantile. Finding the β coefficients at the specific quantile

Fig. 2. Upper and lower bounds, true value, and median, using dropout method.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

is a similar process as for linear regression except in calculating

the median absolute deviation (MAD):

MAD =
1

n
∑ ρτ(yi − (β0 + β1xi1 + ⋯ + βpxip)

n

i=1

)

(10)

Here, we use the check function [27] which gives asymmetry

to the error regarding the defined quantile. We can define ρ as:

ρτ(u) = {
 τ max(u, 0) , u ≥ 0
(1 − τ) max(−u, 0), u < 0

(11)

In this equation, u is the error, which implies that if the error

is positive, the check function will return the error multiplied

by the quantile (𝜏), and if the error is negative, it will return the

absolute error multiplied by the quantile (1- 𝜏).

To implement quantile regression, we use our MLP model,

and compile the model using the loss function defined in Eq. 10.

Thus, for the defined quantile value of interest, we can find the

region where the mass of the data is located. For instance, we

can consider 5% and 95% quantiles, define the distributional

mass, and compare the results with the upper and lower bounds

of what we calculated earlier using the dropout method as the

approximation to the GP.

IV. PERFORMANCE RESULTS AND ANALYSIS

The RMSE results for all the algorithms for the NASP data

set are shown over all the horizons (1 h, 2 h, 4 h, 8 h and 16 h)

in Table 1. Remember that the time series in this data set do not

exhibit any seasonality and trend.

The RMSE increases for the longer horizons. N-Beats

shows nearly 0.13 to 0.18 dB prediction error for channel SNR

in the NASP data set. Its error increases gradually from 1-h to

16-h horizon. Naive exhibits the minimum RMSE, increasing

from nearly 0.03 to 0.09 dB. The closest RMSE values to that

of Naive belong to the MLP model, 0.06 dB. N-Beats represents

a moderate raise in RMSE from 0.13 to 0.18 dB. The RMSE of

LSTM shows a slight increase from 1.89 dB to 1.99 dB. Still,

comparing the RMSE of all the algorithms, the prediction error

of LSTM is the highest for the NASP data set.

According to the performances of the DL models presented

in Table 1, the MLP model shows minimum RMSE. We chose

to work with the NASP dataset with 1-h time interval time

series as the data set for the experiments for implementing

uncertainty. We used the same window format setting (192

SNR data as the history to predict a point data in the future) and

performed random sampling. We conducted a series of

experiments with different dropout rates to define the best rate

and the number of runs during the test time. With the MLP

structure of 16 neurons, dropout rates 0.01, 0.02, 0.05, 0.1 and

0.2, and 100 number of variational inferences were considered

for the test time. The variational inference of each prediction is

a vector with Gaussian distribution due to the central limit

theorem. To select the number of runs, we calculated the mean

of the standard deviation for each prediction and the mean of

RMSE of the test set for different dropout rates. The mean of

the standard deviation of each distribution was closer to the

mean RMSE of the whole test set in case of 0.01 dropout and

100 runs. Therefore, we selected 100 runs for inference.

Fig. 3 represents the Probability Distribution Function

(PDF) of the residuals, calculated as the subtraction of the

distributions of each prediction from their corresponding actual

value. Residuals are defined as 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = Ym − Ŷm×n,

where Ym is the vector of the actual values and Ŷm×n is the

matrix of variational inference. A m × n matrix of residuals (m

being the number of predictions, or the number of test

instances) and n being the number of runs (100)) is generated.

The observed positive tails for all PDFs imply that most

variational inference values are less than the actual values

Fig. 3. PDF of the residuals per rate.

TABLE 1

RMSE METRIC VS. FORECAST HORIZON. NASP DATA SET

RMSE 1 h 2 h 4 h 8 h 16 h

MLP 0.06 0.06 0.07 0.09 0.10

LSTM 1.86 1.90 1.89 1.90 1.99

N-BEATS 0.13 0.14 0.14 0.16 0.18

NAIVE 0.03 0.04 0.05 0.07 0.09

Fig. 4. The upper and lower bounds, the true value and the median, as obtained

by using quantile regression.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

(Fig. 2). Therefore, since almost all the variational inference

values are less than the actual values, we only have positive

residuals (Fig. 3).

To calculate the upper and lower bounds of the data with the

dropout method, we used the quantile of the variational

inference data. We selected the 5 and 95% quantiles for lower

and upper bounds, respectively. Due to the very low residual

(RMSE = 0.062 dB), the difference between the true value and

the prediction is minimal. Moreover, as expected, the upper

bound is very close to the actual value because, as shown in

Fig. 3, the negative tail is very short. On the other hand, since

the tails of the distributions are all in the positive region (Fig.

3), the difference between the lower bound and true value

attains 4 dB.

To evaluate the upper and lower bounds, we used quantile

regression. This method yielded the median value, and upper

and lower limit of the 95% quantile (Fig. 4). In Fig. 4, the upper

and lower bounds are at the same distance from the median

(nearly 0.1 dB).

As can be observed from Fig. 3 and 4, the two lower bounds

are different. The reason for this is that the dropout method

generated the distribution of the values during inference in the

credible region (−∞, y]. Most of the data are centered around

the most probable values (Fig. 4), and the frequency of lower

values is very small. However, to capture the 90% (or 95%)

quantile, we included all the infrequent data. This is why, Fig. 4

obtained from the approximation to the GP, the lower bound

(green line) is considerably different from the prediction.

Moreover, earlier, we assumed that using the Gaussian

process (approximation to the Bayesian probabilistic) would

result in Gaussian distribution in the inference. However, in this

case, true distributions were not completely Gaussian (Fig. 3).

In fact, uncertainty calculated using the Bayesian approach

tends to be uncalibrated [48], [51], [52], and further processes

are required to achieve calibrated uncertainty measures. In this

work, we chose to use Uncertainty Calibration Error (UCE),

developed by [48].

Uncertainty Calibration

Calibration measures are performed to adjust the lower

bound of the prediction in the Bayesian uncertainty method.

The calibration measures are assessed using sets of

visualizations and UCE calculations.

Uncertainty Calibration Error

The expected Uncertainty Calibration Error (UCE) is the

extension of the term for classification. Following Guo et al.

[53] and Laves et al. [48], the uncertainty of the DL models is

divided into M bins of equal size. UCE can be calculated as the

weighted average of the difference between the predictive error

and uncertainty of the bin:

𝑈𝐶𝐸 = ∑
|𝐵𝑚|

𝑛
|𝑒𝑟𝑟(𝐵𝑚) − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐵𝑚)|

𝑀

𝑚=1

where n is the number of inputs and m the indices of the bins

(𝐵𝑚), for which the uncertainty falls into. The error per bin and

the uncertainty per bin are defined as:

𝑒𝑟𝑟(𝐵𝑚) =
1

|𝐵𝑚|
 ∑ ‖𝑦𝑖 − 𝑦̂𝑖‖2

𝑖∈𝐵𝑚

and

 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐵𝑚) =
1

|𝐵𝑚|
∑ (𝜎𝑖

2
𝑖∈𝐵𝑚

)

where 𝜎 is the variance and the uncertainty is denoted with

percentage ([48]).

Calibration is performed after training using the validation
dataset. To perform the UCE calculations, we considered

different scenarios: increasing the number of neurons in each

layer, increasing the number of variational inferences, varying

the dropout rates, and adding the dropout layers while training

as well as the inference time. Previously, the PDF of residual

distributions for 0.01 dropout and 100 variational inference

(Fig. 3) showed asymmetry to the right. Therefore, to quantify

miscalibration, we designed the experiments to establish the

MLP forecaster architecture so that the UCE is at a minimum

and as for the results, the uncertainty is calibrated. Several

experiments were conducted, increasing the number of

variational inferences from 100 to 500, varying the number of

neurons (16, 128, 1024), and considering different dropout rates

during training (0, 0.01, 0.1) and test (0.001, 0.005, 0.01, 0.1,

1). The resulting uncertainty vs. MSE curves are shown in Fig.

5 and Fig. 6 (without dropout during training), and Fig. 7 (with

dropout during training). On these curves, the miscalibration is

revealed by the degree of inequality to the identity function.

The experiments demonstrate that once the number of

variational inferences increases to 500, when the dropout rate is

1%, for the basic MLP time series forecaster with 16 neurons in

 (a) (b) (c)

Fig. 5. MLP with 16 neurons in each layer, 500 variational inferences during the test time, and no dropout while training, with dropout rates during testing

time of: a) 1% (UCE 1.34); b) 0.1% (UCE = 0.08); c) 0.05% (UCE = 0.03). The best correlation between the MSE and the variance is at 0.05% dropout ratio.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

each layer, the correlation between MSE and the variance of the

distribution increases and the calibration error is 1.3% (Fig. 5).

When the dropout rate decreases to 0.1% and 0.05%, with the

same number of variational inferences, the UCE drops (from

0.08 to 0.03). The best correlation between the variance and

MSE is obtained at 0.05% dropout. Increasing the number of

neurons to 128 for each layer with 500 variational inferences at

the test time improves the UCE (Fig. 6) from 0.11 for 0.1% rate

 (Fig. 6.a) to 0.001 (Fig. 6.c). for 0.005% rate of dropout during

the test time. Simultaneously, the correlation between the MSE

and variance of the distributions increases (Fig. 6.a, 6.c), with

the best correlation occurring at 0.01% dropout rate (Fig. 6.b).

However, decreasing the rate of test dropout to 0.001% does

improve the correlation between MSE and distribution

variance, nor does it improve the UCE (Fig. 6.d, UCE = 0.002).

Increasing the number of neurons to 1024 does not bring any

improvement neither.

The improvement of the uncertainty after calibration can be

observed in the PDF of the residuals distributed around zero

(Fig. 8). The skewness of the PDFs (Fig. 4) has been modified,

the PDF is symmetrical and is concentrated around zero. The

(a) (b)

(c) (d)

Fig. 6. MLP with 128 neurons in each layer, and no dropout during training with dropout rates of: a) 0.1% (UCE = 0.11); b) 0.01% (UCE = 0.003);

c) 0.005% (UCE = 0.001); d) 0.001% (UCE = 0.002). 500 variational inferences.

(a) (b)

Fig. 7. MLP with 128 neurons and: a) 0.01% dropout rate during training and 0.01% dropout during testing (UCE = 0.002); b) 0.1% dropout during training and

0.01% dropout rate during testing (UCE = 0.0008).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

upper and lower bounds of the predictions show less difference

with the predictions (Fig. 9) as compared to those calculated

with the Monte Carlo dropout and quantile regression (Fig. 2

and 4, respectively).

Comparing Fig. 7 with Fig. 6.b, the MLP forecaster with the

same architecture but with dropout at the train time, Fig. 7.a and

Fig. 7.b, show better UCE and correlation between the variance

and the MSE of the distributions. Therefore, MLP time series

forecaster with 0.1% train dropout and 0.01% test dropout,

outperforms all the architectures considered in this study.

V. CONCLUSION

This paper successfully explored the application of DL

forecasters for time series analysis in the field of optical signal

transmission. Implementing N-Beats, whose code is not yet

offered as a library in Python, and having it outperform other

forecasters were some of the contributions of this article. For

the target time series of this project, the performance of the

naive model was better for the point prediction of the time

intervals of choice. A naive model shows optimal performance

when the behavior of the WDM channel is stable over time.

The uncertainty estimation was implemented using the

Monte-Carlo dropout with the MLP model. The margins as the

indicators of having variational inference, instead of point

prediction, were also evaluated by the margins found with the

Quantile Regression method. The results of the two approaches

differed.

UCE calculations were performed to calibrate the

uncertainty. We found the architecture of the forecaster directly

affects the calibration and propose a MLP structure with

minimum UCE and maximum correlation between variance and

MSE of the variational inference distribution.

REFERENCES

[1] H. Choi and S. S. Yang, “Network Survivability in Optical

Networks with IP Prospective,” Encyclopedia of Internet

Technologies and Applications, 2008. https://www.igi-

global.com/chapter/network-survivability-optical-

networks-prospective/www.igi-

global.com/chapter/network-survivability-optical-

networks-prospective/16874 (accessed Jul. 21, 2021).

[2] S. Aladin, A. V. S. Tran, S. Allogba, and C. Tremblay,

“Quality of Transmission Estimation and Short-Term

Performance Forecast of Lightpaths,” Journal of

Lightwave Technology, vol. 38, no. 10, pp. 2807–2814,

May 2020, doi: 10.1109/JLT.2020.2975179.

[3] H. Chouman, P. Djukic, C. Tremblay, and C. Desrosiers,

“Forecasting Lightpath QoT with Deep Neural

Networks,” in 2021 Optical Fiber Communications

Conference and Exhibition (OFC), Jun. 2021, pp. 1–3.

[4] 2.3 Time series patterns | Forecasting: Principles and

Practice (2nd ed). Accessed: Aug. 01, 2022. [Online].

Available: https://otexts.com/fpp2/tspatterns.html

[5] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio,

“N-BEATS: Neural basis expansion analysis for

interpretable time series forecasting,” arXiv:1905.10437

[cs, stat], Feb. 2020, Accessed: Jul. 12, 2020. [Online].

Available: http://arxiv.org/abs/1905.10437

[6] J. Brownlee, “What Is Time Series Forecasting?,”

Machine Learning Mastery, Dec. 01, 2016.

https://machinelearningmastery.com/time-series-

forecasting/ (accessed Aug. 02, 2021).

[7] Y. Ujjwal and J. Thangaraj, “Review and analysis of

elastic optical network and sliceable bandwidth variable

transponder architecture,” OE, vol. 57, no. 11, p. 110802,

Nov. 2018, doi: 10.1117/1.OE.57.11.110802.

[8] R. Ayassi, A. Triki, M. Laye, N. Crespi, R. Minerva, and

C. Catanese, “An Overview on Machine Learning-Based

Solutions to Improve Lightpath QoT Estimation,” in 2020

22nd International Conference on Transparent Optical

Networks (ICTON), Bari, Italy, Jul. 2020, pp. 1–4. doi:

10.1109/ICTON51198.2020.9203755.

[9] O. Ayoub et al., “Towards explainable artificial

intelligence in optical networks: the use case of lightpath

QoT estimation,” Journal of Optical Communications and

Networking, vol. 15, no. 1, pp. A26–A38, Jan. 2023, doi:

10.1364/JOCN.470812.

[10] G. Bergk, B. Shariati, P. Safari, and J. K. Fischer, “ML-

assisted QoT estimation: a dataset collection and data

visualization for dataset quality evaluation,” Journal of

Optical Communications and Networking, vol. 14, no. 3,

pp. 43–55, Mar. 2022, doi: 10.1364/JOCN.442733.

[11] S. Aladin, S. Allogba, A. V. S. Tran, and C. Tremblay,

“Recurrent Neural Networks for Short-Term Forecast of

Fig. 8. PDF of MLP model with 128 neurons and no dropout during training.

Fig. 9. Upper and lower bounds of time series forecast after UCE calculations

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Lightpath Performance,” in Optical Fiber Communication

Conference (OFC) 2020 (2020), paper W2A.24, Mar.

2020, p. W2A.24. doi: 10.1364/OFC.2020.W2A.24.

[12] C. Tremblay, S. Allogba, and S. Aladin, Quality of

transmission estimation and performance prediction of

lightpaths using machine learning. 2019, p. 23 (3 pp.).

doi: 10.1049/cp.2019.0757.

[13] F. Usmani et al., “Cross-feature trained machine learning

models for QoT-estimation in optical networks,” OE, vol.

60, no. 12, p. 125106, Dec. 2021, doi:

10.1117/1.OE.60.12.125106.

[14] S. Allogba, S. Aladin, and C. Tremblay, “Machine-

Learning-Based Lightpath QoT Estimation and

Forecasting,” Journal of Lightwave Technology, vol. 40,

no. 10, pp. 3115–3127, May 2022, doi:

10.1109/JLT.2022.3160379.

[15] A. Mezni, D. W. Charlton, C. Tremblay, and C.

Desrosiers, “Deep Learning for Multi-Step Performance

Prediction in Operational Optical Networks,” in

Conference on Lasers and Electro-Optics (2020), paper

STh4M.1, May 2020, p. STh4M.1. doi:

10.1364/CLEO_SI.2020.STh4M.1.

[16] D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating

and Calibrating Uncertainty Prediction in Regression

Tasks,” arXiv:1905.11659 [cs, stat], Feb. 2020, Accessed:
Jun. 10, 2021. [Online]. Available:

http://arxiv.org/abs/1905.11659

[17] H. Al Osman and S. Shirmohammadi, “Machine Learning

in Measurement Part 2: Uncertainty Quantification,”

IEEE Instrumentation & Measurement Magazine, vol. 24,

pp. 23–27, May 2021, doi: 10.1109/MIM.2021.9436102.

[18] A. Brando, J. A. Rodríguez-Serrano, M. Ciprian, R.

Maestre, and J. Vitrià, “Uncertainty Modelling in Deep

Networks: Forecasting Short and Noisy Series,” in

Machine Learning and Knowledge Discovery in

Databases, Cham, 2019, pp. 325–340. doi: 10.1007/978-

3-030-10997-4_20.

[19] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D.

Wierstra, “Weight Uncertainty in Neural Networks,”

arXiv:1505.05424 [cs, stat], May 2015, Accessed: Feb.

14, 2021. [Online]. Available:

http://arxiv.org/abs/1505.05424

[20] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian

Approximation: Representing Model Uncertainty in Deep

Learning,” arXiv:1506.02142 [cs, stat], Oct. 2016,

Accessed: Sep. 08, 2020. [Online]. Available:

http://arxiv.org/abs/1506.02142

[21] C. E. Rasmussen, “Gaussian Processes in Machine

Learning,” in Advanced Lectures on Machine Learning:

ML Summer Schools 2003, Canberra, Australia, February

2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003,

Revised Lectures, O. Bousquet, U. von Luxburg, and G.

Rätsch, Eds. Berlin, Heidelberg: Springer, 2004, pp. 63–

71. doi: 10.1007/978-3-540-28650-9_4.

[22] S. M. Stigler, “The transition from point to distribution

estimation,” Bulletin of the International Statistical

Institute, vol. 46, no. 2, 1975.

[23] A. Koochali, P. Schichtel, A. Dengel, and S. Ahmed,

“Probabilistic Forecasting of Sensory Data With

Generative Adversarial Networks – ForGAN,” IEEE

Access, vol. 7, pp. 63868–63880, 2019, doi:

10.1109/ACCESS.2019.2915544.

[24] T. Gneiting and M. Katzfuss, “Probabilistic Forecasting,”

Annual Review of Statistics and Its Application, vol. 1, no.

1, pp. 125–151, 2014, doi: 10.1146/annurev-statistics-

062713-085831.

[25] “Roger Koenker - Quantile Regression (2005) | PDF,”

Scribd.

https://www.scribd.com/document/600212035/Roger-

Koenker-Quantile-Regression-2005 (accessed Jan. 11,

2023).

[26] R. Koenker and G. Bassett, “Regression Quantiles,”

Econometrica, vol. 46, no. 1, pp. 33–50, 1978, doi:

10.2307/1913643.

[27] “Efron, B. (1991). Regression percentiles using

asymmetric squared error loss. Vol.1, No.1.”

http://www3.stat.sinica.edu.tw/statistica/j1n1/j1n16/j1n1

6.htm (accessed Feb. 13, 2021).

[28] W. K. Newey and J. L. Powell, “Asymmetric Least

Squares Estimation and Testing,” Econometrica, vol. 55,

no. 4, pp. 819–847, 1987, doi: 10.2307/1911031.

[29] T. Kneib, “Beyond mean regression,” Statistical

Modelling, Aug. 2013, doi: 10.1177/1471082X13494159.

[30] B. Lakshminarayanan, A. Pritzel, and C. Blundell,

“Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles,” arXiv:1612.01474 [cs, stat],

Nov. 2017, Accessed: Dec. 02, 2021. [Online]. Available:

http://arxiv.org/abs/1612.01474

[31] T. Gneiting and A. E. Raftery, “Weather Forecasting with

Ensemble Methods,” Science, vol. 310, no. 5746, pp. 248–

249, Oct. 2005, doi: 10.1126/science.1115255.

[32] A. E. Raftery, T. Gneiting, F. Balabdaoui, and M.

Polakowski, “Using Bayesian Model Averaging to

Calibrate Forecast Ensembles,” Monthly Weather Review,

vol. 133, no. 5, pp. 1155–1174, May 2005, doi:

10.1175/MWR2906.1.

[33] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K.

Saul, “An Introduction to Variational Methods for

Graphical Models,” Machine Learning, vol. 37, no. 2, pp.

183–233, Nov. 1999, doi: 10.1023/A:1007665907178.

[34] A. Doucet, N. de Freitas, and N. Gordon, “An Introduction

to Sequential Monte Carlo Methods,” in Sequential Monte

Carlo Methods in Practice, A. Doucet, N. de Freitas, and

N. Gordon, Eds. New York, NY: Springer, 2001, pp. 3–

14. doi: 10.1007/978-1-4757-3437-9_1.

[35] G. E. Hinton and D. van Camp, “Keeping the neural

networks simple by minimizing the description length of

the weights,” in Proceedings of the sixth annual

conference on Computational learning theory - COLT

’93, Santa Cruz, California, United States, 1993, pp. 5–13.

doi: 10.1145/168304.168306.

[36] J. Paisley, D. Blei, and M. Jordan, “Variational Bayesian

Inference with Stochastic Search,” arXiv:1206.6430 [cs,

stat], Jun. 2012, Accessed: Oct. 28, 2021. [Online].

Available: http://arxiv.org/abs/1206.6430

[37] M. Titsias and M. Lázaro-Gredilla, “Doubly Stochastic

Variational Bayes for non-Conjugate Inference,” in

International Conference on Machine Learning, Jun.

2014, pp. 1971–1979. Accessed: Oct. 28, 2021. [Online].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Available:

https://proceedings.mlr.press/v32/titsias14.html

[38] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley,

“Stochastic Variational Inference.” arXiv, Apr. 22, 2013.

Accessed: Feb. 01, 2023. [Online]. Available:

http://arxiv.org/abs/1206.7051

[39] M. Teye, H. Azizpour, and K. Smith, “Bayesian

Uncertainty Estimation for Batch Normalized Deep

Networks,” in Proceedings of the 35th International

Conference on Machine Learning, Jul. 2018, vol. 80, pp.

4907–4916. [Online]. Available:

http://proceedings.mlr.press/v80/teye18a.html

[40] S. Ioffe and C. Szegedy, “Batch Normalization:

Accelerating Deep Network Training by Reducing

Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar.

2015, Accessed: Jul. 12, 2021. [Online]. Available:

http://arxiv.org/abs/1502.03167

[41] R. Koenker, “Quantile Regression: 40 Years On,” Annual

Review of Economics, vol. 9, no. 1, pp. 155–176, 2017,

doi: 10.1146/annurev-economics-063016-103651.

[42] H. Maryam, T. Panayiotou, and G. Ellinas, “Learning

quantile QoT models to address uncertainty over unseen

lightpaths,” Computer Networks, vol. 212, p. 108992, Jul.

2022, doi: 10.1016/j.comnet.2022.108992.

[43] E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier,
“Learning process for reducing uncertainties on network

parameters and design margins,” Journal of Optical

Communications and Networking, vol. 10, no. 2, pp.

A298–A306, Feb. 2018, doi: 10.1364/JOCN.10.00A298.

[44] R. Lambrugh, Deep Learning With Python by Francois

Chollet. Accessed: Jul. 13, 2020. [Online]. Available:

https://www.academia.edu/40318927/Deep_Learning_W

ith_Python_by_Francois_Chollet

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. MIT Press, 2016.

[46] N. Chan, “Uncertainty estimation for Neural Network —

Dropout as Bayesian Approximation,” Medium, Feb. 02,

2019. https://towardsdatascience.com/uncertainty-

estimation-for-neural-network-dropout-as-bayesian-

approximation-7d30fc7bc1f2 (accessed Jun. 05, 2022).

[47] C. M. Bishop, “Mixture density networks,” 1994.

http://publications.aston.ac.uk/id/eprint/373/ (accessed

Feb. 14, 2021).

[48] M.-H. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T.

Ortmaier, “Well-Calibrated Regression Uncertainty in

Medical Imaging with Deep Learning,” in Proceedings of

the Third Conference on Medical Imaging with Deep

Learning, Sep. 2020, pp. 393–412. Accessed: Jun. 05,

2022. [Online]. Available:

https://proceedings.mlr.press/v121/laves20a.html

[49] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian

Approximation: Appendix,” arXiv:1506.02157 [stat],

May 2016, Accessed: May 26, 2021. [Online]. Available:

http://arxiv.org/abs/1506.02157

[50] “tf.nn.dropout | TensorFlow Core v2.5.0,” TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/nn/dropo

ut (accessed Jul. 09, 2021).

[51] M.-H. Laves, S. Ihler, and T. Ortmaier, “Uncertainty

Quantification in Computer-Aided Diagnosis: Make Your

Model say ‘I don’t know’ for Ambiguous Cases,” arXiv,

arXiv:1908.00792, Aug. 2019. doi:

10.48550/arXiv.1908.00792.

[52] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate

Uncertainties for Deep Learning Using Calibrated

Regression,” arXiv:1807.00263 [cs, stat], Jun. 2018,

Accessed: Feb. 14, 2021. [Online]. Available:

http://arxiv.org/abs/1807.00263

[53] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On

Calibration of Modern Neural Networks,” in Proceedings

of the 34th International Conference on Machine

Learning, Jul. 2017, pp. 1321–1330. Accessed: Jun. 05,

2022. [Online]. Available:

https://proceedings.mlr.press/v70/guo17a.html

	I. INTRODUCTION
	II. Related Work
	A. Forecasting Lightpath QoT
	B. Uncertainty
	C. Deep Quantile Regression

	III. Methodology
	A. Data Preprocessing
	B. Forecasting Models
	C. Uncertainty Calculations
	1) Uncertainty Implementation
	2) Applying Dropout with Inference

	D. Deep Quantile Regression Implementation

	IV. Performance Results and Analysis
	V. Conclusion
	References

