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a b s t r a c t

Intelligent Transportation Systems are essential due to the increased number of traffic congestion
problems and challenges nowadays. Traffic Signal Control (TSC) plays a critical role in optimizing
the traffic flow and mitigating the congestion within the urban areas. Various research works have
been conducted to enhance the behavior of TSCs at intersections and subsequently reduce the traffic
congestion. Researchers recently leveraged Deep Learning (DL) and Reinforcement Learning (RL)
techniques to optimize TSCs. In RL framework, the agent interacts with surrounding world through
states, rewards and actions. The formulation of these key elements is crucial as they impact the
way the RL agent behaves and optimizes its policy. However, most of existing frameworks rely on
hand-crafted state and reward designs, restricting the RL agent from acting optimally. In this paper,
we propose a novel approach to better formulate state and reward definitions in order to boost
the performance of the traffic signal controller agent. The intuitive idea is to define both state and
reward in a consistent and straightforward manner. We advocate that such a design approach helps
achieving training stability and hence provides a rapid convergence to derive best policies. We consider
the double deep Q-Network (DDQN) along with prioritized experience replay (PER) for the agent
architecture. To evaluate the performance of our approach, we conduct series of simulations using the
Simulation of Urban MObility (SUMO) environment. The statistical analysis of our results show that
the performance of our proposal outperforms the state-of-the-art state and reward design approaches.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the rise of traffic congestion within urban
reas has become a major and challenging issue especially in
rowded cities. Traffic congestion causes a substantial economic
oss due to the increasing amount of travel delays and fuel con-
umption in the world. For instance, it is found that the traffic
ongestion costs nearly $87 billions, with an average of $1,348
er driver yearly in the USA according to the 2018 global traffic
corecard report by INRIX company [1]. Therefore, cost-effective
pproaches aiming at optimizing traffic signal control (TSC) are of
rucial importance to deal with such a costly traffic congestion.
SC is known to be a non-trivial and complex problem since
he traffic environment is confronted with the characteristics of
ynamic, complexity and uncertainty [2]. Traditional TSC systems
hat are mostly used nowadays all over the world, often fail to
educe the congestion cost as they are designed upon a set of

∗ Corresponding author.
E-mail address: salahb@uaeu.ac.ae (S. Bouktif).
ttps://doi.org/10.1016/j.knosys.2023.110440
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
pre-made assumptions about the traffic that usually deviate from
the real world traffic conditions [3]. Examples of these systems
include Fixed-Time [4] and adaptive traffic signal control sys-
tems (e.g., SOTL [5], Max-Pressure [6]). However, these systems
mostly suffer from scalability issues especially with the increas-
ing traffic volume and the subsequent congestion occurrences.
The motivation for many researchers to propose smarter traffic
signal controllers that can better perceive different situations of
traffic states and better decide the TSC behavior, animates our
current research works. Hence, in the last decade, the standard
Reinforcement Learning (RL) technique (i.e., Q -learning [7]) has
been widely used for many control and optimization problems,
in particular, it was used to devise various solutions for the TSC
problem [8,9]. Recently, with the flourishing Deep Learning (DL)
as a technique having the potential of learning complex patterns
in many domains, the combination of RL and DL (DRL) takes
the TSC solution a step further towards more intelligent traffic
intersections [10,11]. DRL-based solutions for TSC are mainly
built on top of the deep Q-Network (DQN) architecture [12] and

show a noticeable performance improvement over the traditional
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echniques since it can handle flexibly different traffic densities
nd dynamic flow patterns [13].
In the framework of reinforcement learning, the RL agent

erceives the surrounding environment through the states of the
nvironment, interacts by executing actions and receives immedi-
te rewards that evaluate the associate actions correspondingly.
hese key elements are crucial as they impact the way the RL
gent behaves and optimizes its policy (i.e., the rule of perform-
ng actions). A common issue that impacts the customization
f reinforcement learning techniques to TSC problem, is how
o formulate a proper design for both state and reward such
hat the agent learns optimal action-selection policy. Accordingly,
iscounted definition of state and reward will eventually worsen
he convergence of the learning operation of the agent and con-
equently lead to a sub-optimal policy. On the other hand, the
tate and reward designs have to be realistic and applicable in
eal-world scenarios rather than a theoretical formula that uses
ssumptions that are more suitable in simulation contexts. In this
ork, we tailor the DRL framework in the context of TSC and
ropose an alternative definition for both state and reward based
n a simple and intuitive idea that strives consistency among
tate and reward.
Striving for consistency among state and reward aims at defin-

ng an agent feedback that best guides the learning process to an
ptimal policy. By consistency, the reward functions reproduce
imilar properties as the state representation. The latter should be
onducive to direct reward specification and provide the appro-
riate level of abstraction – (e.g., having the appropriate building
locks). For example, in the case of state representation based
n single information (e.g., number of vehicles in each lane),
onsistency suggests to design a monolithic reward function that
uides the learning process towards a monolithic goal which
ends, in this case, to minimize the number of vehicles at the
ntersection. The consistency also suggests to define a continuous
eward function if the state space is continuous, and similarly
or the discrete case. A good reward function should be concise,
imple and tied with how we define state space representation.
nother dimension of the consistency, that we advocate in this
aper, is the simplicity of defining reward and state. Indeed,
voiding complicated state representation and determining how
uch information is enough and effective to describe the state of
n intersection, are interesting research questions.
What encourages striving for the consistency concept is the

ature of the reward in the problem of traffic signal control (TSC).
lthough the reward may actually be a consequence of some
omplex temporally extended agent behavior, in our TSC prob-
em, the reward functions are inherently Markovian (i.e., they
epend mostly on the current state). They typically map current
tate, or state and action, to a scalar reward value, which incites
implicity. Therefore, with a simple representation of the state,
he training process will explore a smaller state space, which
educes the learning time. Moreover, a consistent definition of
eward that reflects the goodness of the current state, will be
relevant input for the learner to accurately estimate the best
ction-value appropriate for best-action selection. This means
hat at each step in the training process, the agent performance
s bounded with no excessive fluctuations around action-value
stimates. Such a training stability leads to a faster convergence
o the best performance, hence, our consistency based approach
s expected to derive an optimal policy for more intelligent TSC.

In short, the main contributions of this paper can be summa-
ized in the followings:

• We propose a new way of tailoring RL for TSC that strives
for consistency among state representation and reward def-

inition.

2

• We particularly propose three pairs of definitions for state
representation and reward supporting consistency and sim-
plicity.

• We carry out an extended empirical study that illustrates
how striving for consistency improves the training conver-
gence and stability, and subsequently learns the optimal
policy to best operate the TSC. The experiments conducted
within this study aims also to evaluate our proposal ap-
proach on various non-uniform synthetic traffic flow data,
and to compare it with state-of-the-art benchmarks.

The rest of this paper is organized as follows. In Section 2,
we review the literature and discuss the related works. Section 3
provides preliminaries and theoretical backgrounds. Section 4
states the problem solved in this research work. Our proposed
methodology is described in Section 5. In Section 6, we present an
experimental evaluation of our proposal and discuss the results.
Finally, in Section 8, we draw our conclusions and discuss our
future works.

2. Literature review

Reinforcement Learning (RL) based approaches have received a
considerable interest resulting in various contributions in several
domains ranging from video games [14], and energy conserva-
tion [15], to VANETs security [16,17], especially after the Deep
Learning (DL) flourishing. Recently, Deep reinforcement learning
(DRL) have been leveraged in various research works in order to
replace traditional traffic signal control systems by more intel-
ligent ones [11,18–21]. These research works aim at improving
TSCs in one or more of four enhancement paths, namely, (1) state
representation, (2) reward definition, (3) action space definition,
and (4) agent mission and architecture improvements. In the
following, we will describe each of these aspects.

2.1. State representation

In the DRL-based TSC literature, the state represents what the
agent perceives from traffic intersections in order to perform an
appropriate action at each time step. The way of defining the
state is critical since the agent behavior is highly dependent on
the state received from the environment. For instance, Genders
et al. [11] proposed the concept of discrete traffic state encoding
(DTSE) which has been the most popular state definition since
then. In DTSE, a length l of each lane is segmented into cells of
length c . For each cell c , a set of information that is relevant to
he state of a vehicle approaching the intersection is considered.
ormally, DTSE is composed of three vectors, (1) the presence
r absence of a vehicle, (2) its speed and (3) the current phase
f the traffic. These vectors are then stacked to compose an
mage-like array to be fed into Convolutional Neural Networks
CNN) [22]. Beyond the DTSE resolution, other researchers [23]
onsidered using a virtual snapshot image of the current intersec-
ion extracted from the simulator. The obtained image is divided
nto a grid of cells where each cell contains information like the
osition and speed of the vehicle. Instead of overwhelming the

state by a dense matrix of information, it has been decided in
other works [24] to use a feature-based value vector to represent
the state of the traffic at the intersection. In such vector rep-
resentation, each element of the vector v can store information
about a given lane, like the number of vehicles, the queue length,
and updated waiting time of vehicles. These are common choices
as adopted in [25]. As long as the sensors and the induction
loops are already installed, vector-based representation can be
widely implemented at intersections as opposed to the afore-
mentioned complex representations. Sometimes trying simpler
state representation as advocated by Zheng et al. [24] can work
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etter and show superior performance of RL agent. Indeed, in the
atter work, a concise state and reward design represented by
he number of vehicles and queue length for state and reward
espectively. Though the results by Zheng et al. [24] are superior,
he state and reward definitions need to be re-examined and
urther enhanced as it is investigated in this work.

.2. Reward definition

The reward is the feedback obtained from the environment to
he agent after performing an action. It defines what are the good
nd bad events for the agent [26]. Though it is a scalar value,
efining the reward has crucial implications on the learning of
he reinforcement learning agent. When optimizing traffic control
sing RL, the common global objective of the TSC agent is to
inimize the average travel time of vehicles starting from their
rigin location to their destination [11]. Since the average travel
ime is a long-term objective where the agent does not receive
he action awards until the end of episode, it cannot be fed
irectly to the agent as a reward formula. Instead, it is required to
se alternative reward definitions to better approximate the main
bjective. Various reward formulae have been suggested. Most
ommon choices of reward definitions include change in total
aiting time, change in queue length, and change in cumulative
ehicle delay [10,11,22,24]. A more elaborated reward definition
as proposed by Wei et al. [25] to define the reward as the
eighted sum of multiple versions of reward. More recently,
heng et al. [24] conducted a comparative of different formula
nd found that formulating reward as queue length achieves
etter performance than the above mentioned formulae includ-
ng the weighted sum of different reward definitions. Supported
y traditional algorithms, Wei et al. [13] adopted the concept
f ‘‘pressure’’ as a reward formula. Their approach proves an
mprovement in performance over previous works. Our work is
argely inspired by Zheng et al. [24]. In particular, we further ex-
end the formulation and the design of state and reward together
y simply striving consistency in both definitions. Explicitly, we
dopt the idea of having concise and similar formulae for both
tate and reward. We hypothesize that such a design approach
elps converging rapidly to good policies since the state and
eward are of uncomplicated formulae and thus effortless search
or optimal policies.

.3. Action space definition

When behaving optimally, The RL agent should take the ap-
ropriate action for the current observed state that yields the
ptimal discounted cumulative reward. The definition of action
pace varies depending on the application. In RL with traffic signal
ontrol research, the action affects the phase of traffic signals in
arious ways. Mostly, action spaces fall into three types. First, a
inary action which decides whether to extend the current phase
r change into the next phase from a predefined sequence of
hases [24,25]. A second type consists of a larger action space
here the agent chooses among four or eight phases in a four-leg

ntersection where the agent executes an action without sticking
o any order. These two types of discrete action spaces are the
ost common choices found in the literature [11,13,27]. A third

ype employed in other works, uses a continuous space where the
gent predicts the most appropriate phase duration splits in the
ixed cycle length [28].

.4. Agent’s architecture

The agent is the brain in reinforcement learning that learns
rom the environment and performs actions to get maximum
3

cumulative reward. In deep RL based TSC, different agent archi-
tectures can be found according to the large number of developed
deep learning architectures. For instance, for the vector-based
feature state, the multi-layer perceptron (MLP) neural network
is commonly used [24,25,28] where the output of the network is
the Q-value of action–state pair. When using an image-like array
of features as DTSE representation, an appropriate choice would
be the convolutional neural networks CNN architecture. CNN can
capture useful features from image pixels and map them into
actions [11,25,29]. To capture temporal sequential dependencies
of the intersection status, recurrent neural networks RNN (e.g.,
ong Short-Term Memory LSTM) architectures are commonly
tilized [30]. LSTMs are most suitable for improving the agent’s
ecision making since they provide the ability to encode the
istory of intersection (different lengths of sequence of states)
nto one vector.

Unquestionably, existing research works in traffic signal con-
rol have been focusing on contributing in one of the four previ-
usly mentioned directions. The problem of how to formulate the
tate and reward in reinforcement learning specifically for TSC
s still an open area for contribution. In this paper, we extend
he work by [24] and propose an alternative way to formulate
he state and reward definitions for traffic signal control which
trives simplicity and consistency among both state and reward
ormulae.

. Background and preliminaries

In this section we introduce essential notions and theoreti-
al background in the field of reinforcement learning and deep
einforcement learning used throughout this paper.

.1. Reinforcement learning

Reinforcement learning (RL) refers to both a learning problem
enerally aiming to control a system by maximizing a long-term
bjective. RL is a paradigm of machine learning [31] where the
earner named the ’agent ’ learns control policies by interact-
ng with the surrounding environment through ‘‘trial and error’’
earning. Formally, RL problems can be formulated in the frame-
ork of Markovian Decision Processes (MDPs) [26], characterized
y a set of terms ⟨S,P,A,R, γ ⟩. Where S is the state space, P is

the probability of transition,A is the action space,R is the reward
and γ is the discount factor.

State Space S: S is a finite set of Markov states st of the
nvironment that can be used by the agent to decide what to
ecide next. if a state is Markovian, the history of states can be
eglected, and the agent can rely on the current state st solely
nstead of the whole history.

Action Space A: A is a set of legal actions at that can be taken
y the agent. At a time step t , the agent selects the optimal action
rom action space A following a policy π which maximizes the
ong-term expected return.

Transition Probability P . For each triplet (st , at , st+1) ∈ S ×

× S, there is a probability of transition P(st+1|st , at ) which gives
he probability of moving from state st to state st+1 by taking an
ction at .
Reward R: The agent performs an action at at the time step t

ccording to its policy and obtains an immediate reward Rt from
he environment, where Rt ∈ R is a scalar variable given by a
eward function r : S ×A → R. The expected return Gt is defined
s the total discounted reward starting from the time step t:

t = Rt + γ Rt+1 + · · · =

n∑
γ kRt+k (1)
k=0
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here γ ∈ [0, 1] is the discount factor multiplying the future
expected rewards. It denotes the importance of future rewards
versus the immediate rewards.

The goal of the agent is to find a policy π (rule of choosing
an action given a state) in a way that maximizes the cumu-
lative discounted reward. In our approach, we use Q-learning
dynamic programming algorithm [7], a model-free value-based
and off-policy (policy is learned implicitly) type of reinforcement
learning. In Q -learning, the Q -function estimates the expectation
of discounted rewards of an action given a state (i.e., It measures
how good is the chosen action given the current state).

Q π (s, a) = E[Gt |s, a, π] (2)

Given that the optimal action-value function Q ∗(s, a) is the
one which gives the maximum expected return, then the optimal
policy π∗ can be found by choosing the action at that gives
maximum Q -value for the given state s:

a∗
= argmax

a∈A
Q ∗ (s, a) (3)

The optimal Q -function follows Bellman equation and it can
be learned through an iterative update process.

Qt+1 (s, a) = Qt (s, a) + α δt+1 (4)

where 0 < α < 1 is the learning rate, and δt+1 is the temporal
ifference TD-error:

t+1 (s, a) = Rt + γ max
at+1∈ A

Qt (st+1, at+1) − Qt (s, a) (5)

e denote yt = Rt + γ max
at+1∈ A

Qt (st+1, at+1) as TD-target.

.2. Deep reinforcement leaning

In the standard Q-learning algorithm [7], the values of state–
ction pairs (Q-values) are stored in a tabular structure which is
omputationally inefficient and expensive for high-dimensional
tate spaces. As an alternative to linear function approximators,
eep neural networks can handle high dimensional state spaces
nd capture complex state features to approximate the Q-values
ore efficiently. Deep Q-network (DQN) [32] is the standard
eep reinforcement learning algorithm which is composed of an
nput layer which takes states (images or vectors) as input, a
umber of hidden layers to learn features, and an output layer
o approximate Q-values of state–action pair. DQN uses a neural
etwork function approximator with weights θ and an experience
eplay memory to store the past experiences by adding at every
ime step et = (st , at ,Rt , st+1) to a memory. During the learning
rocess, a mini-batch b is randomly sampled from the experience
eplay memory to apply the Q-learning updates using target
alues yt as defined in Eq. (4):

t
DQN

= Rt + γ max
at+1∈ A

Qt (st+1, at+1; θ) (6)

The aim of the learning process is to have a Q-network that
ccurately predicts the target values in Eq. (6). Thus, the objective
f the learning algorithm is to minimize the loss function:

t (θ) = E[(yt − Q (st , at; θt ))2] (7)

Due to some stability issues faced in deep Q-learning, Hasselt
t al. [33] proposed an extension of DQN by adding a separate
arget network that is involved in calculating the target values
t . Target network with weights θ− are fixed and updated after
−steps by cloning the main Q -network weights θ. Formally,
t
DDQN is defined as follows:

t
DDQN

= Rt + γ Qt

(
st+1, argmaxQt (st+1, a; θ); θ−

)
(8)
at+1∈ A

4

Fig. 1. Four-lane Four-armed Traffic Intersection.

4. Problem definition

Before diving into the details of our approach, we first provide,
in this section, the problem definition for our DRL formulation for
the TSC.

Definition. Given a traffic signal intersection as the environment
E, the agent G receives a state st ∈ S , performs an action at ∈ A
and collects rewards Rt from the environment. The goal of the
agent is to decide the optimal action at (selection of a phase P) for
each perceived state st which results in minimizing the average
vehicular travel time by maximizing the expected discounted
return, where the discounted return is defined as follows:

Gt =

n∑
k=0

γ kRt+k (9)

where γ is the discount factor, t is the current time-step, n is the
final time-step and Rt+k are the future rewards.

In order to sustainably ensure the best decision when taking
actions, the agent perpetually learn and improve his policy of
taking decision. The dynamic nature of the TSC environment
needs a continuous learning of the decision policy.

In the following, we describe each key element from our
problem definition, including the environment E, phase of signal
P , agent G, and travel time TT.

Environment E. The environment E is defined as a four-
direction (i.e., East ‘E’, West ‘W’, North ‘N’, South ‘S’) and four-
lane intersection. There are 8 distinct vehicle movements with
a green signal for each movement (e.g., straight East–West ‘EW’,
East–West-left ‘EW-L’). Restricted by road safety measures, we
combine non-conflicting green signals forming 4 phases. Left-
turn movements are considered separately, and right-turns are
jointed to ‘going-straight ’ movements. As an illustrative example,
Fig. 1 shows the environment structure with phase East–West
activated.

Phase of signals P. The phase of signals P is defined as a
set of signals (‘G’ for green, ‘r’ for red and ‘y’ for yellow) at an
intersection. For instance, the phase ‘GrGr’ means green for north
and south directions and red for east and west directions. For
safety restrictions, green signals must be set such as no conflicting
movements occur and must be followed by a yellow phase for a
short period of time (e.g., ‘yryr’ after ‘GrGr’).

Agent G. The agent G is the main component which observes
the state of the environment E (intersection), selects an action (a
phase P) according to its policy and receives an immediate reward
Rt at each time step. A general structure of agent-environment
interaction is shown in Fig. 2.
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Fig. 2. Process of reinforcement learning for the traffic signal control problem.

Travel Time TT. The travel time for a vehicle can be defined as
he time it takes for the vehicle to accomplish its planned route
tarting from an origin location until it reaches its destination.
he travel time is calculated as follows:

ravel Time = tj_start − tj_end (10)

here tj_start is the time the vehicle j enters the environment and
j_end is the time the vehicle j exited the environment. For the
ake of clarity, a list of important notations used in this paper
s summarized in Table 1.

. Approach: Deep reinforcement learning for traffic signal
ontrol

In this section, we describe the proposed approach that adopts
deep reinforcement learning framework as a general solution
f the TSC problem. We also tailor this framework and propose a
pecific solution that strives Consistency among State and Reward
efinitions ‘‘CSRD’’.
Fig. 3 depicts the reinforcement learning framework adopted

or our specific CSRD solution. First, at the time step t the agent
cquires the current state st , describing the intersection envi-

ronment, as a vector. Using this vector and according to its
current policy of controlling the traffic signal, the agent decides
the optimal action at . The output action consists in selecting a
particular light phase. The agent then observes the next state st+1
s a result of its taken action, from which the reward R is at
he same time extracted. The reward R eventually undergoes a
enalty process and finally a tuple of ⟨st , at ,R, st+1⟩ is stored in

the agent’s memory M . At specific moments, the agent learns and
updates its policy from minibatches sampled from the memory as
described in Section 3.

The most essential components of the proposed framework
include the state vector, reward function, penalty process, ac-
tion space and agent’s learning architecture. In the following
paragraphs, we describe each of these elements.

5.1. State space

In our framework, we propose the state to be enough repre-
sentative of the environment in the form of a simple vector. The
idea is to define the state and the reward in a consistent and
concise manner by which the agent is expected to converge to
the optimal policy. Therefore, we define the state as one of the
following alternatives:

(a) The number of all vehicles vl in each horizon H of each
lane l at time step t . We consider the total number of lanes
L = 16.
5

Table 1
Notations.
Notation Description

s State
a Action
R Reward
G Agent
E Environment
P Phase of signals
L Number of lanes
H Horizon of detected vehicles on a lane
EW East–West movement
NS North–South movement
EW-L East–West-Left movement
NS-L North–South-Left movement
vl Number of vehicles on lane l
ql Queue length on lane l
Wtl Waiting time of vehicles on lane l

(b) The queue length of vehicles ql in each lane l at time step
t . Queuing vehicles are those with speed less than 0.1 m/s.

(c) The waiting time Wtl for all vehicles on the lane l at time
step t .

In addition, the current phase of signals Pt at the intersection is
included in the state vector and represented by an integer from
the set {0, 1, 2, 3}. The notation of the state vector representation
for a selected definition (e.g., λ = v, q,Wt) at a given time step t
is defined as:

st (λ) =

⎡⎢⎢⎢⎢⎢⎣
λ0t
λ1t
.

.

λL−1t
Pt

⎤⎥⎥⎥⎥⎥⎦ (11)

where st ∈ RL+|P| and |P| is the dimension of the current signal
phase vector (i.e., |P| = 1).

In the above suggested definitions of the state representation,
consistency is achieved by the simplicity of specifying a reward
function based on the information used to represent the state, for
example, in Definition (a), the state is represented by a vector
where each coordinate represents the number of vehicles per
lane, and an extra coordinate for the current signal phase. For
the sake of consistency, the reward will be defined using simply
the number of vehicles. Explicitly, the reward is defined as the
negative sum the number of vehicles, similarly for Definitions
(b) and (c). In practical applications, the proposed state and
reward function can be captured by sensors. A good criterion
of choosing among the alternatives is the amount of error asso-
ciate with the concerned traffic information. It also depends on
the availability of infrastructure and the ease of the collection
process. Accordingly, the appropriateness of each alternative can
be evaluated. However, in this paper, our aim is rather to show
that the consistency and simplicity of state representation and
reward function for the TSC problem can be achieved with many
definition alternatives of state and reward as long as they are
striving for consistency.

5.2. Reward function

Striving for consistency among state and reward design, and
according to the above state definitions, we propose three reward
functions obtained from observing the state at the time step t+1.

Consistent with either (a), (b) or (c) state definitions, the re-
ward R is defined as the negative sum of the number of vehicles,
t
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ueuing vehicles or total waiting time respectively, across all
anes l ∈ L located in front of the intersection, formulated as:

t = −

L−1∑
l=0

st+1(λl) (12)

Where λ = v, q or Wt according to the state definition. In the
bove formula, the negative sign of the reward means that the
bjective of the agent is to maximize the reward value.

.3. Penalty process

Along with the defined reward, we introduce a penalty func-
ion that eventually assigns a negative score p called ‘‘penalty va-
lue’’ to the reward when the episodic sum of rewards ep_rewards
is inferior to a certain threshold ‘threshold’. We refer to this
penalty process as ‘‘Type 1’’. Penalizing the agent decision is anal-
ogous to mimic penalizing a player in game scenarios when the
latter crashes and the episode ends. By applying such a penalty,
we guide the agent to avoid taking worst actions in future when
learning from experiences.

Rt =

{
p, if ep_rewards ≤ threshold

Rt otherwise
(13)

An alternative penalty process, namely, the teleporting can be
applied in simulation. Teleporting consists of withdrawing the
vehicle from the simulation and reinserting it into the network
if there is enough place in the lane which allows to continue
its drive [34]. Formally, a vehicle is said to be ‘‘teleported’’, if
its waiting time Wtvehicle in the intersection exceeds a certain
time interval Tteleport . If teleporting occurs during the simulation,
a penalty value p’ is assigned to the reward and the episode ends.
We refer to the latter penalty process as ‘‘Type 2’’. It is important
to note that teleporting is simply a phenomenon that works as a
flag in the simulation to invoke the penalty process on the agent.

With respect to real intersection, the teleporting operation
does not happen, but it can be replaced by any tool of detecting
vehicles that wait for an excessive time (exceeding a certain
threshold). Hence, by detecting these stuck vehicles, the agent’s
6

decision will be penalized.

Rt =

{
p′, if Wtvehicle ≥ Tteleport
Rt otherwise

(14)

The p and p’ in Eqs. (15) and (16) are determined following
a rule of thumb manner. That means, when the traffic at the
intersection reaches such a terrible state, this is a big mistaken
action decision made by the agent, and it has to be given an
extreme negative reward (e.g., 10, 20 or even 30 time less than
the usual negative reward) so next time the agent has to avoid
earlier these worsening actions that lead the traffic to such a bad
state. the threshold value is chosen not to be very low that it
curbs the agent from trial-and-error, and not to be very high with
no impact on the learning process.

5.4. Action space

The agent’s action at at the time t will be performed by
selecting any light phase from a set A of four phases without
ny prefixed order (i.e., east–west EW-green, north–south NS-
reen, EW-Left-green, NS-Left-green) where each phase allows
traffic movement to cross the intersection for a duration of

ime followed by a yellow signal for safety reasons. The actions
re labeled by numerical labels as from the discrete action space
= {0, 1, 2, 3}.

5.5. Agent’s architecture

We consider the Double DQN architecture as the network
structure of our agent, accompanied with a prioritized experience
replay PER memory [35]. Two multilayer perceptron neural net-
works are employed, the first one which is the main network, is
used to predict Q -values of actions. While the second network,
namely, the target network, is involved in updating the first
network as expressed in Eq. (8). Both networks enclose an input
layer to receive the input vector of state of size L + 1, where L is
the number of lanes. The input layer should fit the state vector of
size L+ 1, holding L information for L lanes (e.g., queue length in
a lane), in addition to the signal phase information. The networks

also enclose three hidden layers with 64 neurons each and a ReLU
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ctivation function for each layer. The output layer is composed
f 4 neurons and a Linear activation function to approximate the
-values. During the learning phase, the agent perceives the state

t of the environment at each time step t , selects and performs
n action at according to ϵ-greedy action selection policy:

t =

{
a random action from A with probability ϵ,

argmax
at∈A

Q (st , at; θ) with probability 1 − ϵ, (15)

The agent then receives an immediate reward Rt as a feedback
or its action at . The tuple ⟨st , at ,Rt , st+1⟩ is used to update
he model weights θ of the main network. Target network is
pdated once each τ updates of the main network by copying
he weights of the main network. Algorithm 1 provides a brief
seudo-code of our approach : Double-DQN with PER memory for
raffic signal control regarding the state and reward definitions in
ddition to suggested penalty procedures during learning process
Algorithm 2).

Algorithm 1 DDQN-PER for TSC with CSRD

1: Initialize θ and θ−, PER Memory M , minibatch size b,
Penalty_Type, τ , counter C , n_updates, start_learning .

2: for episode = 1, . . . , N do
3: Observe initial state s0, take initial action a0
4: for t = 1, . . . , T do
5: Observe state st , take action at
6: Observe next state st+1 and get Rt from st+1
7: Execute Penalty Process (Penalty_Type)
8: Calculate TDerror

TDerror = yt DDQN − Qt (st , at; θt )

9: Store < TDerror , < st , at ,Rt , st+1 >> in M.
10: If episode ≥ start_learning do
11: for i = 1, . . . , n_updates do
12: Sample a random mini batch of size b from M.
13: Update the agent weights θ and increment C .
14: If mod(C)==τ do
15: Copy θ weights to θ− weights .
16: End if
17: end for
18: End if

Algorithm 2 Penalty Process

1: Initialize threshold, penalty values p, p′, Tteleport
2: If Penalty_type == 1 do ▷ Type 1: episode rewards penalty

Rt =

{
penalty value p, if ep_rewards ≤ threshold
Rt otherwise

3: Else If Penalty_type == 2 do ▷ Type 2: teleporting penalty

Rt =

{
penalty value p’, if Wtvehicle ≥ Tteleport
Rt otherwise

4: Else
5: Pass

6. Experiments

In this section, we begin by posing the research questions
e aim to answer and the hypotheses we seek to verify. We
7

then describe the simulation settings used to evaluate the pro-
posed CSRD framework and validate our assumptions. These set-
tings include the intersection environment structure, the vehic-
ular flow data, and a set of tuned hyper parameters used during
training and validation processes. We finally present and discuss
the performance results while comparing our approach to other
benchmarks including traditional and DRL approaches.

6.1. Hypotheses

By performing the set of the upcoming experiments using our
approach and the benchmarks, we aim to answer the follow-
ing research questions, (1) how does the proposed CSRD design
approach anticipate the Travel Time TT minimization objective,
(2) how much of improvement will the proposed CSRD approach
introduce as compared with the Fixed Time and the Deep RL
benchmarks, (3) how an agent trained using penalty process
performs against an agent trained without penalty process, and
finally (4) how the selection of green duration affects the per-
formance of the traffic signal control. Based on these research
question, we proposed a set of hypotheses to be tested on four
traffic simulation experiments. In the four performed experi-
ments, we assume that our proposed approach is, on one hand,
performs better than the Fixed Time approach, and on the other
hand, is a good as the best approach in the benchmarks. In line
with these assumptions, we formulated and tested the following
hypotheses on the four experiments stated in Table 2.

1. H1 : The proposed CSRD design approach anticipates well
the travel time TT minimization objective i.e., CurveCSRD ∝

CurveTravel Time.
2. H2 : The proposed CSRD approach performs notably better

than the Fixed Timed approach in all simulated experi-
ments.

3. H3 : The performance of our CSRD approach is at least as
high as the state-of-the-art Pressure-based approach in all
simulated experiments.

4. H4 : The agent trained with penalty process performs at
least as good as the agent trained without penalty process.

6.2. Simulation settings

To experiment our approach in traffic signal control, we use
the well-known open source Simulation of Urban MObility (SUMO
simulator,1 to simulate the intersection environment [36]. SUMO
is a flexible simulator that helps to customize traffic environment
and integrate intelligence in order to model and investigate sev-
eral intelligent solutions in different modes and circumstances of
the traffic network including flow characteristics. With SUMO, we
implement and experiment our proposed algorithms to control
traffic signal functions. The different settings are described in the
following paragraphs:

6.2.1. Intersection environment structure
We consider a 4-way geometry of intersection (i.e., East, West,

orth, South), where each incoming/outgoing road have 4 lanes.
ll lanes are of 750 meters length. The maximum lane speed is set
o 13.89 m/s (i.e., the urban areas common speed limit [37]) and
all lanes have the same priority and the same width. The left-most
lane is dedicated for turning left solely and the rest of lanes can be
occupied by straight or right-turn movements. Each green phase
duration is 15 seconds followed by a yellow phase of 3 seconds.

1 https://www.eclipse.org/sumo

https://www.eclipse.org/sumo
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Table 2
Traffic flow configurations.
Distribution Type Generated flow q Flow rate category

Weibull Dist Flow1 4000 High
Flow2 1500 Low

Normal Dist Flow3 4000 High
Flow4 1500 Low

Table 3
Values used for training parameters.
Parameter Description Value

N Number of training episodes 501
max_size PER Memory maximum size 20000
b Minibatch size 32
lr Learning rate 0.001
γ Gamma factor 0.95
eps_min minimum value of epsilon 0.02
C Target network update counter 5

yellow duration Yellow phase duration 3 s
green duration Green phase duration 15 s

6.2.2. Traffic flow
In order to simulate what happens in an intersection, the

raffic flow of vehicles must be close enough to real traffic sce-
ario. An ordinary traffic flow starts with low vehicular density
t the beginning and increases until the peak of the flow, it
hen decreases back until the end of simulation. Common choices
or such traffic flow scenarios that are widely reported in the
iterature [11,25,27] include the following types of random dis-
ributions: Burr distribution, Poisson random distribution, and
eibull Distribution. The latter type as well as the Normal dis-

ribution are selected to be adopted in our experiment as they
imulate well the traffic flow behavior over time. Traffic flow is
xpressed in vehicles/hour and is generated as a configuration
f the simulation. For each distribution type, we generate a syn-
hetic traffic flow in every episode for a duration of 3600 seconds.
ach vehicle of the flow has an Origin point and a Destination
oint (OD) and follows a route from origin to destination. Vehicle
outes include going straight movements (North–South and East–
est) and turning movements (Left-turns and Right-turns). We

enerate a percentage of 75% and 25% for straight movements
nd turning movements, respectively. Details about traffic flow
onfigurations are shown in Table 2.

.2.3. Parametric and training settings
After several runs of experiments and tuning of algorithm

arameters, we set the latter as follows: the number of training
pisodes N = 501, where an episode lasts for 3800 seconds.

After the episode start_learning = 5 and at the end of every
pisode, the agent updates its main network and learns its new
olicy on minibatches of b = 32 experiences (i.e., one experience
s a tuple of ⟨st , at ,Rt , st+1⟩) for n_updates = 3 iterations. The
gent’s target network is updated every τ = 5 updates of the
ain network. For both networks, we used a learning rate of
.001 using RMSProp [38]. The discount gamma factor is set to
= 0.95 for updating the Q -values. The size of the prioritized

xperience memory M is set to max_size = 20,000 to store
xperiences along with their temporal difference error TD-error.
n ϵ−greedy action selection policy, we anneal ϵ from 1 down to
psilon_min = 0.02. The geographic horizon H of state detection
sing ‘‘number of vehicles’’ is set to a distance of 150 m which
as shown to be more practical choice than all-lane long. When
e use the penalty process type 1, the threshold value is set
mpirically depending on the chosen reward definition. While
n the type 2, we penalize the agent if we have more than 1
8

Table 4
Scenarios of flow and state-reward definitions.
Scenarios State and reward Flow config.

Combinations of S&R
with flow configurations

Definition(a)
Definition(b)
Definition(c)

[Flow1, Flow2]

Combinations of S&R
with flow configurations

Definition(a)
Definition(b)
Definition(c)

[Flow3, Flow4]

teleported vehicles. Table 3 summarizes various parameters used
with their associated values.

Upon the traffic flow configurations listed in Table 2, we setup
the training and testing scenarios based on state and reward defi-
nitions proposed in Section 5. To strive consistency, the definition
options of state and reward are combined as follow (state option
(a) with reward option (a)), (state option (b) with reward option
(b)), and (state option (c) with reward option (c)). The three
combinations are respectively termed in Table 4, Definition (a),
efinition (b), and Definition (c).

.3. Performance evaluation metrics

To evaluate the performance of different methods of control-
ing the traffic signals, three metrics are considered in several
revious studies [11,13,24] that we will use in our experiments,
1) the average travel time used as the main performance metric,
ince it is the prime metric to be minimized (2) the queue length
nd (3) the waiting time of vehicles. The different performance
easures are defined as follows.

.3.1. Average travel time (ATT)
It is defined as the total travel time of all vehicles divided

y the number of vehicles, formally expressed by the following
quation:

TT =
1

Nveh

Nveh∑
j=0

(tj,start − tj,end). (16)

here Nveh is the total number of vehicles.

.3.2. Queue length (QL)
The queue length of a lane is the total number of vehicles

ueuing on a lane. The queuing vehicles are those with a speed
ess than 0.1 m/s on a given lane (known in SUMO as vehicle in
‘halting’ state).

6.3.3. Waiting time (WT)
This measure corresponds to the waiting time spent by all

vehicles on lanes. A vehicle is considered as waiting if its speed is
less than 0.1 m/s. We will be using both accumulated and average
waiting time of all vehicles across the intersection.

6.4. Benchmarks

For a practical evaluation of our proposed method, we select
the following state-of-the-art benchmarks: Discrete Traffic State
Encoding (DTSE), Light Intelligent Traffic (LIT) and Pressure-based
(PressLight) approaches. In this paper we opt for the comparison
of our approach with the above benchmarks rather than with
traditional TSC methods because the aforementioned benchmarks
were already compared to the traditional methods such as Green
Wave, SOTL and Fixed Time, and shown to be more performant
than them. However we keep comparing our approach to one
of the traditional TSC methods to record and emphasize again
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he significant outperformance of RL based approaches and in
articular ours over the traditional TSC methods.
We introduce the benchmarks approaches in the following

aragraphs.

.4.1. DTSE-based
This approach uses deep reinforcement learning DQN agent,

ith the state design proposed by Genders et al. [11]. We utilize
he implementation of DTSE provided by Vidali A. et al. [27]
nd we modify the DDQN-PER architecture to be similar to their
rchitecture. We build the learning network architecture as a fully
onnected neural network of 4 layers of 400 neurons each, trained
onger for more than 700 episodes. The state vector is based on
oth DTSE representation with variable cell size and the current
hase state. The reward is defined as the change in waiting time
etween two action steps.

.4.2. Pressure-based (PressLight)
This approach uses the pressure across the intersection as the

eward function. This is the state-of-the-art reward definition
roposed by [13]. The state formula involves both the number
f incoming and outgoing vehicles in each lane as well as the
hase status Pt . We use the DDQN-PER as the architecture for
he pressure-based approach instead of the DQN used in their
roposal to ensure a fair comparison to our approach among the
roposed state and reward formula.

.4.3. Light Intelligent Traffic (LIT)
This approach is proposed by Zheng et al. [24] for the state

nd reward definitions. Namely, they proposed the state formula
ased on the number of vehicles in each lane and, the sum of
ueue lengths for the reward formula. They stated that this design
s sufficient for the RL agent to find the optimal policy under
niform traffic. Additionally, we use the DDQN-PER for the agent
rchitecture of the LIT approach.

.4.4. Fixed time approach
is the most common traditional traffic control approach that

ses fixed phase duration with fixed cycle length and fixed or-
er [39]. The duration of green phases is set to 30 seconds and
he yellow phase duration is 3 seconds.

.5. Results and discussion

To verify the hypotheses and answer the research questions,
e present the obtained results of the experiments using the
roposed approach based on the performance metrics mentioned
arlier. The agent is trained and evaluated using different syn-
hetic flow configurations and various state and reward formulae
here the training is made on high flow Flow1 and evaluation

s made on all the flow configurations. Further evaluations are
ade by comparing our approach to the benchmarks during the
cenarios described in Table 4. The effect of adding the penalty
rocess is studied and, the performance of our approach using
ifferent values of phase duration is evaluated as well.

.5.1. How does the CSRD approach facilitate the TT minimization
bjective compared to alternative approaches during the learning
rocess?
We tested the hypothesis (1) related to this question for

hree variants of state and reward formulae: Queue state and
eward QSR (Definition (a)), Number of vehicles state and reward
SR (Definition (b)), and Waiting time state and reward WSR
Definition (c)).
9

Table 5
Statistical analysis results of QSR, NSR and WSR curves versus Travel Time curve
during training.

QSRCurve NSRCurve WSRCurve

Mean 52.69 3324.01 47675.73
STDEV 56.88 1058.75 47564.59
ρ 0.96 0.98 0.96
p-value < 0.0001 < 0.0001 < 0.0001
TT vs. * (Two-tail)

6.5.1.1. Impact of the consistency on the training performance. In
order to show the impact of consistency among state and reward
on the training performance, and subsequently on the long-term
travel time optimization, we conducted four experiments to in-
vestigate the training process of QSR, NSR and WSR agents on
four traffic configurations (i.e., Flow 1,2,3 and 4). The results are
illustrated in the subplots of Fig. 4. As it can be noticed from
these subplots, the reward’s training curve related to QSR, NSR
and WSR stably converge over episodes with nearly identical
trends as the average travel time curve, which demonstrates that
maximizing the proposed rewards (i.e., minimizing its opposite)
leads directly to minimizing the travel time. This illustration
supports, on one hand, that the idea of having consistent state
and reward implemented in QSR, NSR and WSR, facilitates the
training of the agent by speeding up the latter’s convergence. On
the other hand, the four subplots of Fig. 4 show, in different traffic
configurations, that the proposed state and reward formulae are
good estimators of the long-term travel time objective.

6.5.1.2. Training performance comparison: convergence speed and
stability. To investigate on the benefits of consistent state and
reward design on the training convergence speed and stabil-
ity, we have conducted three experiments, each in which, we
compare our approach implementations, namely, QSR, WSR and
NSR, to one of the state-of-the-art benchmarks (DTSE, LIT, and
PressLight). The training curves resulting from each experiments
are depicted in one sub-figures (a), (b) and (c) of Fig. 5. In terms
of the training performance, stability and convergence speed, one
can observe from that our approach implementations (QSR, NSR
and WSR) outperform the LIT and DTSE as shown in Fig. 5(a) and
Fig. 5(b) and compete with the PressLight as shown in Fig. 5(c). In-
deed, PressLight convergence is slightly slower than our approach
convergence, however, it achieves a very comparable training
performance after several episodes. Such results are expected
since they reflect the effective impact of consistency among state
and reward. Indeed, PressLight is the closest competitor to our
approach thanks to its reward function that, to some extent,
strives for consistency more than LIT and DTSE.

The statistical analysis of the results using t-test (see Table 5)
shows that the null hypothesis H0, assuming that the correlation
between QSR/NSR/WSR curves against the Travel Time curve is
zeros i.e., ρ = 0, is rejected with a very strong evidence (i.e.,
p-value < 0.001) in favor of the alternative hypothesis. This fact
is true since the correlation coefficient is very high among the
curves (see Table 5). As a response to question (1), it can be
said that the proposed CSRD design approach facilitates well the
travel time TT minimization objective and thus validating our
hypothesis (1).

6.5.2. How is the performance of our approach compared with the
performance of the state of the art benchmarks?

To answer the above research question, we present the testing
performance of the trained agent on the different aforemen-
tioned flow scenarios. In this empirical evaluation, we would like
to compare our approach to the three mentioned benchmarks
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Fig. 4. Learning curves during Training of the QSR, NSR, and WSR agents on Flow1, Flow2, Flow3, and Flow4 respectively (curves are smoothed with 10 episodes
window size).
Table 6
Performance comparison of our approaches to others with respect to average
travel time (s).

Flow1 Flow2 Flow3 Flow4

Fixed-Time 260.69 164.48 217.30 161.42
DTSE 156.59 140.1 155.3 140.4
LIT 159.26 145.96 156.32 139.18
PressLight agent 145.54 138.4 144.16 136.11

QSR (ours) 147.20 140.36 144.81 138.57
NSR (ours) 142.77 137.30 141.45 135.16
WSR (ours) 145.20 139.68 143.44 138.26

namely, DTSE, LIT and PressLight agents in terms of testing per-
formance. This comparison will serve to verify the Hypotheses
H2 which states that ‘‘the proposed CSRD approach performs
notably better than the Fixed Timed approach in all simulated
experiments’’ and H3 which states that ‘‘the performance of our
SRD approach is at least as high as the state-of-the-art PressLight
pproach in all simulated experiments’’.

.5.2.1. Comparison based on travel time. In our comparison we
se the average travel time as the main performance measure
eing the primary term to be minimized. We run the simulations
or the four flows Flow1 to Flow4 using 10 random seeds for all
he proposed agents and the benchmarks. Table 6 summarizes
he average travel time performance results obtained by our
pproach as well as by other benchmarks. The lower the average
ravel time score, the better is the performance. The comparison
hows clearly that the Fixed-Time based traffic control algorithm
10
achieved the lowest performance due to its static behavior that
does not consider the traffic flow dynamic settings. With respect
to deep reinforcement based benchmark approaches, the perfor-
mance is significantly higher than that of the Fixed-Time solution
due to the readiness of Deep RL based frameworks to deal flex-
ibly with dynamic traffic flow patterns. However, our proposed
solution outperformed methods like PressLight agent, LIT, and
DTSE by better minimizing the average travel time. Moreover,
our proposed variants of our approach, namely, QSR, NSR and
WSR outperformed the other methods including the PressLight
approach which achieved the highest performance among the
benchmarks.

6.5.2.2. Interpretation of consistency analysis. From consistency
perspective, the designs of state and reward in Pressure-based
agent approach are more consistent than those of DTSE and LIT
approaches, which explains the reason why it out-performs both
of them. Indeed, the Pressure-based approach uses the number of
vehicles as the state definition and, pressure (which is a function
based on the number of incoming/outgoing vehicles) for the
reward definition. The impact of consistency, is emphasized by
our proposed design approach where the state and the reward
are more consistent than in the other approaches.

6.5.2.3. Comparison based on queue length. In this comparison we
use the queue length as a performance measure at the intersec-
tion which is another important factor that is a good available
estimator of the travel time. The results showing the Queue
length performance achieved by our approach as well as the

other approaches during an episode of simulation are depicted
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Fig. 5. Learning curves of each benchmark compared to QSR, NSR and WSR agents during various traffic scenarios. (curves are smoothed with 10 episodes window
ize).
Fig. 6. Performance comparison of our approach and benchmarks during traffic simulation based on queue length (smoothed with 10 episodes window size).
n Fig. 6. At first glance, we notice that the Fixed-Time approach
erformance is out of competition as it cannot deal with dynamic
raffic flow. Out of the Deep reinforcement learning approaches,
11
we specifically observe that NSR agent has a lower and steady
queue length curve (better performance and stability) as op-
posed to PressLight and the rest of benchmarks. In addition, one
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Fig. 7. Queue Length comparison of QSR with and without adding the penalty process (smoothed with 10 episodes window size). Agent trained with penalty has
better queue length performance.
Table 7
Statistical analysis of CSRD approach against Pressure and Fixed benchmarks on
high/low flow (Flow1/Flow2).

NSR Fixed Time PressLight

Mean 142.7/137.3 260.6/164.4 145.5/137.7
STDEV 0.57/0.56 16.4/2.2 1.0/0.6
p-value 2.3E−9/5.9e−12 7.3e−6/2.5e−4
NSR vs. * (One-tail)

Table 8
Statistical analysis of CSRD approach against Pressure and Fixed benchmarks on
high/low flow (Flow3/Flow4).

NSR Fixed Time PressLight

Mean 141.4/135.1 217.3/161.4 144.1/136.1
STDEV 0.36/0.40 8.77/0.57 0.72/0.32
p-value 5.2e−10/1.3e−15 5.8e−8/4.7e−5
NSR vs. * (One-tail)

major advantage of our design approach is its simplicity to be
implemented in real-life intersections since it requires a simple
environment perception that uses few sensors for both state and
reward formulae. Responding to research question (2), we verify
the hypotheses (2) and (3) using the statistical analysis from
Table 7 and Table 8. Using the results of the t-test, the null
hypothesis H0, which assumes that the proposed CSRD approach
presents no improvements over the Fixed-Time approach and is
not at least as high as the state-of-the art PressLight approach
in all simulated experiments, is rejected with a very strong (p-
value < 0.001) in the four experiment scenarios (see Table 7 and
Table 8).

6.5.3. How an agent trained using penalty process performs against
an agent trained without penalty process?

To evaluate the effect of adding a penalty process to our
approach and verify the hypothesis (4), we trained the QSR
agent along with the penalty type 1 in a flow configuration
Flow1. When the episodic reward reaches a value inferior to
some threshold it will penalize and feed the agent with a critical
negative penalty value. This process notifies the agent to avoid
12
Table 9
Statistical Queue comparison of QSR trained with penalty
process versus QSR without.

QSR QSR with PP

Mean 40.8 26.5
STDEV 20.61 12.38
p-value 0.001142

such bad actions affecting not only the penalized current action
but also a number of previous actions. Fig. 7 presents the queue
length performance of a QSR agent with and without the penalty
process. Clearly, adding the penalty process during the learning of
the agent keeps it away from negative awards and as a result will
affect the final performance of the agent. The statistical analysis
in Table 9 shows that the null hypothesis H0, assuming that the
effect of adding penalty process presents no improvement, is
rejected using t-test with a strong evidence (i.e., p-value < 0.01)
at a significance level of 1%. This result holds up our assumption
that the agent trained with penalty process performs at least as
good as the agent trained without it. The idea of introducing
penalty can be adopted not only in video games but also in other
reinforcement learning frameworks such as control and robotic
applications.

6.5.4. How does the selection of green duration affect the perfor-
mance of the TSC agent?

Previously, the applied green duration is fixed for all phases at
the intersection. However, the choice of green phase duration can
indeed improve/worsen the behavior of the traffic signal control.
We attempt to evaluate the effect of varying the green phase
duration by training and testing the agent on multiple green dura-
tions of 10, 15, and 30 s long. In Fig. 8, one can observe how does
adjusting the phase duration impact the performance of traffic
signal control. We notice that small green phase duration can
be insufficient for all queuing vehicles to cross the intersection.
On the other side, having long green phase duration might be
over sufficient for emptying the vehicles queue, where the green
phase might be meaninglessly turn-on for no waiting vehicles.
Accordingly, as a response to research question (4), it turns out
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Fig. 8. Queue Length comparison of WSR on Flow1 with different green phase durations smoothed with 10 episodes window size (Lower curve is better).
Fig. 9. Training curves of the conducted Ablation study: Double DQN with PER, DQN with PER, Double DQN without PER and DQN without PER respectively.
that properly choosing the right green phase duration affects the
performance of the TSC and is essential when designing the traffic
signal control agent.

6.6. Ablation study

In the ablation study in general, we conduct a set of ex-
eriments in which some components of the machine learning
ystem are removed/replaced in order to measure the impact of
hese components on the performance of the system [40]. In our
RL system, the ablation study involves excluding respectively
he use of Double DQN, the Prioritized Experience Replay mem-
ry, and both of the components. The results are reported in the
lobal Fig. 9, and detailed in Fig. 10, Fig. 11 and Fig. 12 where the
blation of one of the two options or both shown in the following
ubsections.
13
6.6.1. Ablation of double DQN
The ablation of Double DQN from our DRL framework results

in DQN with PER memory based system. We run the training
with these ablation settings and the obtained results are depicted
in Fig. 10. When compared to our choice (DDQN with PER), the
ablation of DDQN resulted in a slightly slower convergence with
very few fluctuations of the performance.

6.6.2. Ablation of PER
The ablation of Prioritized Experience Replay memory (PER)

from our DRL system results in DDQN without PER memory (a
simple replay memory is used instead). After executing the train-
ing based on the aforementioned settings, the learning curves
are illustrated and shown in Fig. 11. The curve of DDQN without
PER shows that the ablation of PER causes the DRL system to be
slightly less stable, with a very similar convergence speed.
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Fig. 10. Training curves of the conducted Ablation study: Effect of removing Double DQN.
Fig. 11. Training curves of the conducted Ablation study: Effect of removing PER.
6.6.3. Ablation of both DDQN and PER
In this case, we exclude both of Double DQN and PER compo-

nents from the DRL system. We run the simulated training with
these new settings and the resulting training curves are plotted
in Fig. 12. The impact of removing both DDQN and PER options
from the DRL system is also similar to the previous ablations as
it introduces few fluctuations of the performance causing a slight
instability and a slight slowness of the convergence.

The ablation study shows that the adoption of the DDQN and
PER options improve slightly the stability of learning. But it is still
not easy to conclude the positive impact on performance as well
as the speed of convergence. As a first finding, is that with non-
ideal settings, striving for consistency is the main cause of the
convergence improvement, however, we do not exclude that the
use DDQN and PER can be at the origin of a limited improvement
of the training stability on the top of consistency. Therefore use
of DDQN and PER within our consistency based approach is still
recommended.
14
7. Threats to validity

In this section, we discuss the potential threats to validity
that can affect our experimental results. In the current work the
threats to internal validity, is related to the extent to which we
can be confident that striving for consistency among the state
and reward definitions will improve the performance of traffic
signal control. To make sure that this improvement cannot be
explained by other factors, we proposed three pairs of state and
reward definitions preserving consistency. the obtained results
showed reasonably higher performance over the alternative ap-
proaches. With regard to construct validity of our study, we have
discussed and selected a number of performance measures that
reflect the efficiency of the traffic light performance measures.
Indeed, we have used three different evaluation measures that are
commonly used in the literature for evaluating the traffic signal
control efficiency, namely (1) the average travel time [11], (2) the
queue length [24], and (3) the waiting time [13]. Thus, we be-
lieve that the selected multiple performance measures represent
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Fig. 12. Training curves of the conducted Ablation study: Effect of removing both DDQN and PER.
what would be different perceptions of traffic light signal perfor-
mances, which makes negligible the threat to construct validity.
Threats to external validity, mostly concerned with the gener-
alizability of study treatments, conditions, and findings. Indeed
our experiments are founded on a widely used open source tool,
Simulation of Urban MObility (SUMO) simulator [36]. Together
with synthetic traffic datasets, SUMO efficiently simulates typical
intersection environment with possibility to cover a wide range
of traffic signal configurations. Towards generalizing our findings,
we have compared our approach to state of the art benchmarks
with high conformity replication. We used the same experiment
setting and implementation choices provided by Vidali et al.
in [27] to replicate the DTSE-based state [11] with the corre-
sponding DDQN-PER architecture. As for the PressLight agent [13]
and LIT [24] agent, we also used the double deep Q-Network
(DDQN) along with prioritized experience replay (PER) to ensure a
fair comparison with our approach. Besides, our approach is using
SUMO, and founder on DDQN-PER implementation for easing
replication and comparison. With respect to conclusion threats to
validity in our work, we are concerned at drawing the right con-
clusion about the relationship between the performance of our
approach and those of the benchmarks. Indeed, in our empirical
evaluation, we statistically analyzed the obtained results using
the t-test statistical analysis which provided strong evidence for
validating our ideas and assumptions. Hence, we believe that
there is negligible threat to the validity of our conclusions.

8. Conclusions and future works

In this paper, we address the state and reward formulation
in reinforcement learning based traffic signal control. We intro-
duced an effective and practical Deep RL traffic signal control
approach based on the idea of striving consistency among state
and reward. Three variants of consistent dual definition for both
state and reward are implemented. They are respectively based
on, queue length, number of vehicles and waiting time (i.e., QSR,
SR, and WSR). The proposed approach variants are evaluated
n synthetic traffic flow and compared to other state-of-the-
rt approaches. The results show that our approach outperforms
15
the benchmarks in all experiment instances. Moreover, a new
mechanism of penalty is proposed to enhance our approach by
mimicking the behavior of reinforcement learning in gaming
environment where the agent is forced to avoid bad experiences
and thus, the learning convergence as well as the performance
are improved. A major advantage of our design approach is that it
is straightforward and cost-effective to be installed in real world
intersections compared with the benchmarks. One limitation of
our traffic signal control approach is related to its restriction by
the duration of the signal phase. As we discussed earlier, the
duration of the green phase does indeed impact the performance
of the traffic signals.

Future works would be directed towards including a novel
agent architecture able to predict simultaneously the proper
phase as well as its right duration. This can be achieved using
both the discrete and continuous deep reinforcement learning
algorithms in a hybrid architecture. Moreover, the experiments
would be extended by testing the framework on multi-intersection
scenarios and on traffic data collected from real intersections
for instance. Another extension of our work will be concerned
with defining metrics to assess the economical, energetic and
even environmental gains resulting from application of our TSC
approach.
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Fig. A.13. Travel time curves corresponds to different learning rates α during the learning process.
Fig. A.14. Travel time curves corresponds to the initialization methods Glorot_uniform, Truncated_Normal and He_Uniform during the training process.
Appendix. Training stability across different hyper-parameters

The parameters selection in the DRL framework has a great
overall impact on the learning process and affects consequently
the resulting performance of the agent [41]. The DRL frame-
work parameters include: the environment settings, the action
selection, the reward function, the objective function and the
agent hyper-parameters. In the following we will focus on experi-
menting different agent hyper-parameters accompanied with the
illustrating figures.

A.1. Effect of learning rate

The learning rate is a very important hyper-parameter that
have to be taken into account when preparing the training pro-
cess. it is a hyper-parameter that controls how much to change
the model in response to the estimated error each time the model
weights are updated [42]. When the learning rate is too small
16
it can cause the model to get stuck at certain point, whereas a
learning rate that is too large can cause the model to quickly
converge to a sub-optimal solution. Fig. A.13 shows three train-
ing curves of our model where each curve is corresponded to
one learning rate from the set {0.001, 0.0005, 0.0001}. It can be
observed from the curve that there is not much of performance
fluctuation when changing the learning rate, which leads to the
fact that our approach is more stable with respect to the learning
rate hyper-parameter.

A.2. Effect of initialization techniques

The selection of the weight initialization technique is another
important factor that should be well taken when developing the
deep learning model. The weight initialization role is to prevent
the outputs of activation layer from exploding or vanishing gradi-
ents during the forward propagation which are both a real prob-
lem in may delay the convergence of the model if it converges
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Fig. A.15. Travel time performance curves corresponds to different ϵ − decaying rates during the training process.
t all. One of the most common techniques in weight initial-
zation are the Glorot-Uniform initialization [43] (also known as
avier technique), He initialization [44] and Truncated initializa-
ion technique. These three techniques are use during the training
rocess and are illustrated together in Fig. A.14. Notably, changing
he initialization technique hyper-parameter causes a small fluc-
uation in the learning performance among the training curves
f our DRL agent. This supports the stability and robustness of
ur approach with respect to the change of the initialization
echnique.

.3. Effect of ϵ − decay rate

ϵ − decay rate parameter another hyper-parameter that takes
control of the exploration policy. Tuning this parameter affects
the exploration/exploitation policy of the decision-maker (the
agent) during the learning process, as the agent follows the ϵ −

reedy action selection policy. This policy balances between the
xploration and exploitation by choosing an action between them
andomly. A probability of ϵ leads the agent to take a random
ction and explore, while the 1 − ϵ probability forces the agent

to exploit what the agent have learned so far. During the learning
process, ϵ value decays from the value of 1 (full exploration) to
a very small value (exploitation) using a decaying rate r i.e. ϵ =

∗ repisode. Fig. A.15, illustrates three training curves where each
curve corresponds to a ϵ − decaying rate. When changing the

− decaying rate value, there is a noticeably small amount of
erformance fluctuations during the training process of the agent,
hich can be an indication to the stability of our approach with
espect to the change of this hyper-parameter.
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