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Abstract: An electric vehicle uses multiple energy-storage systems to power the traction motor.
Dual-source inverters (DSIs) are used for single-stage power conversion by skipping the dc/dc
boost converter stage; therefore, eliminating the passive magnetic storing element which improves
the overall efficiency of the drive; moreover, multiple energy-storage systems improve the power
density of the system. This article discusses the fine control of a traction motor from zero speed
to rated speed supplied through a dual-source inverter. Field-oriented control with space vector
modulation technique is applied to achieve closed-loop control. Two dc sources are used, one having
a higher-voltage battery and one a lower-voltage battery. The higher-voltage battery is the main
battery which supplies power to the traction motor, whereas the lower-voltage battery supplies
power to supplementary loads of the EV. This article presents improved dynamic behaviour of an
induction-motor-driven EV fed from a dual-source inverter using modified closed-loop field-oriented
control with space vector modulation. The improvement includes reduced control complexity due to
space vector modulation and achieving the option of EV operation in an emergent situation using the
same converter and control system. The simulated performance of the presented system is obtained
in MATLAB/Simulink. A step-down experimental prototype is used for verification of effective
control of the induction motor as the EV is under constant torque variable speed operation with
real-time parameters such as power, power factor, current harmonics, and voltage/current stresses
across the switch using two batteries individually.

Keywords: battery; electric vehicle; field-oriented control-space vector modulation; dual-source
inverter; multi-energy storage system

1. Introduction

Vehicles with an internal combustion (IC) engine significantly contribute to greenhouse
gas emissions; thus, the earth’s surface temperature has increased tremendously in the last
few decades [1]. To tackle this issue, electric vehicles (EVs) are suitable replacements for IC
engine vehicles [2]. The primary classification of EVs is hybrid (HEV) and battery-operated
(BEV). EVs have rechargeable energy sources such as lead–acid and lithium-ion batteries [3].
Other energy sources, such as hydrogen fuel cells and ultra-capacitors, offer additional
merits and take up minimum space compared to the battery packs [4,5] but the high cost of
hydrogen fuel cells and ultra-capacitors is still a hurdle for the practical implementation of
these sources commercially.

The battery pack supplies power to the traction motor of the EV through power
electronics converters. There are multiple converters connecting a battery and the traction
motor. In hybrid EVs, the combination of an IC engine and electric motor reduces the
need for converters, but the overall complexity of the converter also increases. On the
other hand, a traction motor consisting of electrical machines supplied through a power
electronics converter delivers higher efficiency and reduced fuel consumption compared
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to IC engine vehicles [6–8]. The critical aspects of battery-operated EVs are higher power
density, improved efficiency, and cost-effectiveness.

The continuous increase in the power requirement of an EV has resulted in the appli-
cation of higher-voltage batteries, increasing the driving range of a single charging [9–12].
Three-level neutral point clamped converters are used as inverters to supply power to the
traction motor [13–18]; still, voltage balancing is of significant concern and, therefore, gives
rise to complex algorithms [13–18]. For example, if a two-level converter operates at high
voltage, it shall increase switch voltage stress and have higher power loss. In addition,
there is an increase in each switch’s blocking voltage, which contributes to additional
switching losses; furthermore, a higher load at these converters causes a constant high
current through the switches and needs a parallel connection of the switches, but such a
configuration increases the conduction losses, and the converter’s power density reduces
drastically. On the other hand, the three-level NPC converters handle high voltages easily,
with reduction of the total harmonic distortion (THD) and power losses, but the complex
control, and the requirements of a split capacitor and voltage balancing create significant
hurdles to using three-level converters. A three-level NPC inverter uses split capacitor and
neutral point connection of the upper and lower switches, which introduces problems of
voltage balancing between the split capacitors and distorts the output voltage.

This paper uses a modified topology [19] of the three-level NPC converter for EV
application. The major modifications are absent, of a split capacitor and neutral point
connection. This eliminates the voltage-balancing problem and reduces the distortion of
the output voltage. The critical advantage that motivated this modified topology in EV
is using two different dc sources; so, the combination of these dc voltages can provide
variable power to the traction motor instead of a single constant dc link. The benefits of
using two batteries through a multi-source inverter have been studied recently [20–22].
This single-stage converter interconnects two independent energy-storage systems to the
motor’s stator and supplementary EV loads as per the load demands. The higher-voltage
source is the primary source, while the lower-voltage source acts as a supplementary
source. The series–parallel connection of these sources is preferred, or each source is used
individually [21,22].

Due to the use of a high-voltage battery directly supplying power to the traction motor,
there is no requirement for an additional dc/dc boost converter. Reducing conversion
stages, thereby improving efficiency, is a vital advantage of multi-source converter topology.
The dc/dc converters essentially require magnetic storing of passive elements and high-
frequency switches whose rating matches the battery pack; otherwise, it causes the derating
of the battery [21,22]. The multi-source inverter eliminates bulky inductors and use of
very high frequency for switches, thereby reducing switching losses. Only two sources are
employed in this paper—hence the term dual-source inverter (DSI) is being used.

EV manufacturers prefer various electrical machines such as traction motors, switched
reluctance motors, permanent magnet synchronous motors, induction motors, etc. Avail-
ability at the variable rating, low cost, and simple and magnet-less construction lead to
the induction motor being one of the most suitable options for traction application [23–27];
however, fine control of the induction motor and loss of control at very low speed of the
induction motor still form a significant problem; but field-oriented control (FOC) makes it
possible to have decoupled control of torque and flux such as that in a separately excited dc
motor. Space vector modulation (SVM) is an advanced control technique which controls the
inverter in digital form. The SVM technique usually controls dual-source inverters [28–34],
but the implementation is still complex due to the series–parallel connections of these dc
sources. Though the combination of two sources provides a variable dc link, the system
becomes so complicated that the response time increases drastically; furthermore, the
behaviour of the drive is complex due to the drive’s lower inertia, which results in the
mechanical time constant becoming almost equal to the electrical time constant [35].

A coordinated control technique for the induction motor solves the issues related to
dual-source inverters. This paper uses the main battery to provide power to the traction
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motor only and an extra battery to give power to only supplementary loads of the EV.
Supplementary loads include power windows, wipers, speakers, etc. Suppose a case
arises in running conditions where the main battery is deeply discharged; in that case, the
supplementary battery comes into play, and this extra battery supplies full power to the
motor, so that the vehicle avoids halting in the middle of the road. There is coordination
between two voltage sources regarding which source to use in normal conditions and
which to use in emergencies [36].

A study on dual-source inverters with the independent application of two dc voltages
is presented in the literature [36–40] but the dynamic performance and analysis are missing
in [36]. The dynamic behaviour has been reported in [37,38], but with variable dc-link; the
detailed analysis of variable speed on harmonics and switch stress is not available. The
variable speed–torque operation of the induction motor using a dual-source inverter with
switch voltage and current stress has been presented in [39,40]; still, a detailed experimental
analysis of the control technique in real-time conditions is absent. To address these issues,
a collaborative control design is discussed and simulated under the MATLAB/Simulink
environment, along with an analysis of dynamic performance. The traction motor is
supplied power from both the batteries individually to evaluate the performance of the
EV. The motor performance is analyzed at the constant load and variable speed conditions,
replicating various driving conditions. The performance simulation obtained is verified on
a scaled-down laboratory experimental prototype for the proof of concept. The practical
results show speed variation’s effect on power, power factor, current harmonics, and
voltage/current stresses across the switch.

The organization of this article after introduction is as follows. The second section
briefly discusses dual-source inverter topology, and the third section shows the control
scheme for dual-source inverters applying FOC with space vector modulation technique.
The fourth section shows the performance simulation of the proposed system, and the fifth
section shows experimental results. Finally, the conclusion is drawn in the sixth section,
followed by the references.

The main contribution of the article is as follows:

a. Modelling and simulation of the dual-source inverter at constant load and variable
speed indicating dynamic behaviour of an EV using two battery sources individually;

b. Experimental verification using laboratory prototype of a dual-source inverter to
demonstrate the smooth dynamic behaviour for the presented control of an induction
motor under normal and emergency operating conditions;

c. Experimental result analysis of the dynamic behaviour indicating parameters such
as power, power factor, current harmonics, and voltage/current stresses across the
switch using both the dc sources individually.

2. Dual-Source Inverter

The topology of a dual-source inverter (DSI) with two battery systems used in this
work is shown in Figure 1. A single conversion stage is used, which connects two dc sources
to a single ac source; so, power density increases due to using two batteries in the same EV
compared to the system with a single battery. Low-frequency switches select the energy-
storage combination, either individually or in a series–parallel combination. Insulated gate
bipolar transistors (IGBTs) are used in the dual-source inverter architecture [20,21]. The
architecture of the DSI and NPC topology of the three-level inverter shows some similarities
in design, but the dc sides of both these topologies are different. DSI topology eliminates
the requirement of the neutral point.; thus, the capacitors across each dc source are also
independent. DSI gives the output as a three-level line voltage irrespective of the switch
configuration used.
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Figure 1. Topology of dual-source inverter [19].

The two simple modes of operation, namely, normal and emergency modes, reduce
the control complexity. In the normal mode, power supplied to the traction motor is
through the main battery (Batt1), and the auxiliary battery (Batt2) feeds supplementary
loads of the EV. In case of emergency, when Batt1 goes into deep discharge during driving,
then Batt2 supplies the available power to the traction motor, which is called emergency
mode. In emergency mode, the EV motor runs through Batt2, along with only essential
supplementary loads such as power windows, headlamps, wipers, etc; however, using
Batt2 for a longer duration in emergency mode has disadvantages, as discussed in the
next section.

The topology of DSI may use hydrogen fuel cell or ultra-capacitor cells as dc energy
sources for EVs; in addition, there may be the use of a combination of ultracapacitor and
battery. The ultracapacitor has a faster response time than the battery pack, which means
that the battery is used during the running of an EV and the ultracapacitor is used to
absorb power during regenerative breaking [6], but different types of energy sources in the
single EV complicate the control of the EV, having a massive difference in electrical time
constant and mechanical time constant, reducing the system’s response time; so, this article
recommends the use of two battery systems which are also cost-effective.

3. Control of Dual-Source Inverter

Figure 2 shows the generalized controller which uses the calculation of field angle
using rotor position θr as an indirect field-oriented control technique. The controller
generates phase voltages compared with the carrier signal, which produces signals for
switching the dual-source inverter. The current controller has a current loop inside the
speed loop. Rotor speed is fed back and compared with the reference speed to give an error
signal. The error signal is processed through the PI controller to generate an electromagnetic
torque reference signal T∗e . The same rotor speed creates a flux reference signal ψ∗r . Below
the base speed, the flux maintains a constant value ψ; above the base speed, the flux
command signal changes as per equations given in [41], as shown in Figure 2.
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The rotor position θr is the integration of rotor speed which is nothing but the addition
of speed at every sample in discrete time. Slip position θsl is the discrete-time addition
of ω∗sl . Synchronous angle θsyn is a simple arithmetic addition of slip angle and rotor
angle, which calculates the reference currents Id and Iq, as shown in Equations (1) and
(2). The comparison between the actual and reference currents in the dq-reference frame
produces an error, and the error is processed through the PI controller to generate a voltage
signal in the dq-reference frame. The command voltages modify the reference three-phase
voltages. These reference voltages are compared with the carrier to produce 12 switching
signals for the dual-source inverter. All the command signals are always in a synchronous
reference frame, which makes signal-processing circuits independent of the requirement of
bandwidth [41,42]

The three voltages from the indirect vector control are further processed to control the
switching signals of the DSI more precisely by converting voltage signals into reference
voltage vector Vre f and modulating it, which is the space vector modulation technique. Vre f
is the estimation of three-phase reference voltages in the αβ plane having the magnitude
of

∣∣∣Vre f

∣∣∣ and rotating in an anticlockwise direction, as shown in Figure 3, for both the
modes. The magnitude and angle of this voltage vector give two active vectors and one
zero vector, and the control scheme is shown in Figure 4. As compared to the neutral point
clamped (NPC) topology of the multi-level inverter, only 21 vectors are required for the
SVM technique instead of 27 [21,22]. In conventional three-level converters, three switching
states (Vdc/2, 0, and −Vdc/2) are reflected in each leg’s three-phase voltage level, whereas
the DSI output voltage synthesis is by three-levels (Vdc1 or Vdc2, 0, and −Vdc1 or −Vdc2) of
the three switching states in each leg; so, the control becomes simple by controlling speed
by a modulation index change with almost similar output.
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Moreover, this technique has smooth modulation index control according to the load
requirement, which was difficult in the indirect field-oriented control technique. The
modulation index depends on the dc link voltage and the magnitude of the reference
voltage space vector, as indicated in Equations (4) and (5). After selecting the voltage vector
magnitude, angle, and the sector in which the voltage vector lies, the time duration T1, T2,
and Tz determine the duty ratio of each switch, where T1 and T2 are the time duration of
the nearest two active vectors, and Tz is the time duration of the zero vector.

In both cases, under-modulation and over-modulation control the converter’s output
voltage. The control is always under modulation when the main battery, Vdc1, supplies
power. In under-modulation, the control is more precise and accurate. In an emergency
case, battery 2 comes into the picture, so as to obtain more magnitude of actual voltage,
and the control is around modulation index one (m = 1), but the control of output voltage
is poor; so, battery 2 (Vdc2) is used to run the traction motor only in an emergency case
when the voltage level of battery 1 is depleted below the cut-off level. The speed torque
characteristics of the motor decrease in mode 2; therefore, at the same motor loading, the
maximum speed in mode 2 also decreases.
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1

L∗m
(λ∗r +

L∗r
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d
dt

λ∗r ) (1)
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4

3P
L∗r
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2
3 Vdc1

(4)

Mode 2→

∣∣∣Vre f
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2
3 Vdc1

< m ≤ 1. (5)

4. Performance Simulation

FOC with SVM technique is applied to control dual-source inverter and modelled
in MATLAB/Simulink environment. Two battery sources, 420 V and 200 V, are used,
respectively. The rating of the induction motor is 400 V, 33 hp, which directly connects to
a 420 V battery. Table 1 gives the detailed specification of the present system. FOC-SVM
controls the modulation index, providing smooth induction motor control. The modulation
index is directly proportional to the voltage reference vector magnitude and dc voltage as
indicated by Equations (4) and (5).
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Table 1. Simulation specification.

Parameter Value

Batt1 420 V Lithium Ion
Batt2 200 V Lead Acid

Power (IM.) 33 HP
Voltage (IM.) 400 V

Rs 0.435 Ω
Ls 4 mH
Rr 0.816 Ω
Lr 2 mH

Inertia 0.09 kg·m2

Rated Rotor Speed 2000 rpm

Voltage and current from Batt1 to the induction motor at the 0.9 modulation index
are shown in Figure 5. The system’s dynamic performance is studied when the motor
speed increases and decreases. Figures 6 and 7 show the dynamic behaviours indicating
current and voltages. Results show a smooth variation of the speed, currents within limits,
and a high response time at complete load conditions when Batt1 supplies power to the
traction motor. For the concept verification of running the traction motor using an extra
battery, the induction motor is supplied directly through the Batt2. Figures 8 and 9 show
the voltage and current waveforms, and the currents are within limits with smooth control,
but the total power is absorbed by the motor decreases. Due to the low value of the dc
voltage, Batt2 has a small modulation index range. An inverse relationship exists between
the modulation index and the dc link voltage, as shown in Equations (4) and (5); hence, a
decrease in dc voltage increases the modulation index. As a result, the induction motor
runs with the best speed–torque characteristics at a modulation index close to 1, and the
speed control range decreases; therefore, it is recommended to use Batt2 for emergency
conditions only and not for the prolonged running of EVs.

Energies 2023, 16, x FOR PEER REVIEW 7 of 18 
 

 

and a high response time at complete load conditions when Batt1 supplies power to the 
traction motor. For the concept verification of running the traction motor using an extra 
battery, the induction motor is supplied directly through the Batt2. Figures 8 and 9 show 
the voltage and current waveforms, and the currents are within limits with smooth con-
trol, but the total power is absorbed by the motor decreases. Due to the low value of the 
dc voltage, Batt2 has a small modulation index range. An inverse relationship exists be-
tween the modulation index and the dc link voltage, as shown in Equations (4) and (5); 
hence, a decrease in dc voltage increases the modulation index. As a result, the induction 
motor runs with the best speed–torque characteristics at a modulation index close to 1, 
and the speed control range decreases; therefore, it is recommended to use Batt2 for emer-
gency conditions only and not for the prolonged running of EVs. 

 
Figure 5. Simulation results of voltage and current at 0.9 modulation index. 

 
Figure 6. Effect of speed variation (decrement/increment) on voltage and current using the main 
battery. 

 
Figure 7. Effect of speed variation (increment/decrement) on voltage and current using the main 
battery. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-500

0

500
m=0.9

Li
ne

 V
ol
ta
ge

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40

-20

0

20

40

C
ur
re
nt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

0

1000 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200 

0

200  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10 

1000

2000

Sp
ee

d 
C

ur
re

nt
s 

 

Li
ne

 V
ol

ta
ge

s 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

0

1000
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200 

0

200 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10 

1000

2000

Sp
ee

d 
C

ur
re

nt
s

 

Li
ne

 V
ol

ta
ge

 

 

Figure 5. Simulation results of voltage and current at 0.9 modulation index.
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Figure 6. Effect of speed variation (decrement/increment) on voltage and current using the
main battery.
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Figure 7. Effect of speed variation (increment/decrement) on voltage and current using the
main battery.
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Figure 8. Effect of speed variation (decrement/increment) on voltage and current using the supple-
mentary battery.
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Figure 9. Effect of speed variation (increment/decrement) on voltage and current using the supple-
mentary battery.

5. Experimental Validation

The proposed concept is verified experimentally on a scaled-down laboratory setup
which uses a rectifier circuit to create the dc voltage sources at the dc link of the dual-source
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inverter. The main dc link voltage is maintained at 450 V, and the supplementary dc link
voltage is 300 V. The 450 V dc link voltage provides power to the 415 V, 1 hp induction
motor. The induction motor, coupled with a separately excited dc shunt generator of the
same rating, acts as a load. The lamp (resistive) load is at the armature terminal of the dc
motor running as dc generator, for which the flux is maintained constant in the separately
excited winding through the single-phase diode bridge rectifier. A dc tachogenerator is
mounted on the motor shaft as speed sensor. The dc signals from the tachogenerator are
converted within 5 V dc using a voltage divider circuit, which is fed back to the analog
input of the DSP controller. The analog feedback of measured currents through the hall
affect sensors in each phase and are given to the DSP controller within limit of 5 V. The
induction motor is operated at full load conditions to cause the motor to act the same as an
EV traction motor. The modulation index is varied using field-oriented control followed
by space vector modulation. The dSPACE 1104 DSP-based controller provides switching
signals to the converter’s IGBT switches.

The modulation index changes by varying the reference speed signal ω∗r through the
ControlDesk of dSPACE, thus controlling the voltage applied to the motor as per the speed
demand. The controller gives the switching frequency of 1 kHz for the IGBT switches.
There is no requirement for a very high switching frequency as a dc/dc converter is not
required at any conversion stage. Table 2 shows the experimental setup specification.

Table 2. Experimental prototype specification.

Parameter Value

Device for switching 1200 V, 25 A, IGBT IRG4PH50KD
Main source 450 V dc using a bridge rectifier

Supplementary source 300 V dc using a bridge rectifier
controller dSPACE1104

Sampling time (Ts) 150 µs
Switching frequency 1 kHz
Operating frequency 50 Hz

load Induction Motor-dc Generator set
Induction motor specification Vrms = 415 V, IL = 1.75 A, 1410 rpm, star-connected

Figure 10 shows the experimental results for the steady-state voltage and current for
the modulation index of 0.9 at constant speed. Figures 11 and 12 show the real-time voltage,
current drawn by the battery, and the dc current supplied when the primary source of
450 V and supplementary source of 300 V supply the power. When the dc voltage is across
the diode leg of the DSI and the negative terminal, the current drawn by the motor is not
purely symmetrical. The reason behind non-sinusoidal currents is that the turn-on time of
the diode and IGBTs is small, but the turn-off time of the diode is larger than that of the
IGBT; as a result, the reverse recovery of the diode is slow compared to the reverse recovery
of IGBT. Such a condition does not occur when the dc voltage is between the positive and
negative terminals of the DSI. Figure 13 shows the traction motor’s acceleration, cruising,
and deceleration when the primary and supplementary sources supply power. During all
three conditions, the current and voltage follow the command given by the controller, and
values are well within the limits.
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Figure 13. Experimental voltage, ac current, dc current, and speed showing dynamic behavior of the
induction motor using the main and the supplementary sources.

To validate the robustness of the controller for real-time conditions, the DSI operates
under variable speed conditions. Speed dynamics are verified on an oscilloscope using
digital speed through the encoder. It is scaled down in the range of 0 to 10 V, where nearly
8.2 V indicates the rated speed of the motor (nearly 1410 rpm). Due to the limit of the
sampling period of the DSP controller (150 µs), some torque ripples are at a lower speed,
which can be improved if fast DSP is used. The PI controller inside the control scheme
gives a fast response and the modulation index changes as per the speed command outside
the current loop. Figure 14a,d show the voltage and current behaviour for a given speed
variation when the main battery supplies the power to the induction motor. The variation
of speed is achieved through the rotor speed command kept within the range of zero to
rated speed in Figure 14a–d. Figure 14d includes the actual rotor speed and rotor reference
speed command showing 800 rpm, 1000 rpm, 1300 rpm, and 1400 rpm, approximately,
corresponding to the signal at channel 4 of DSO for the tacho-generator output voltage in
the range of 5 V, 6 V, 7.5 V, and 8 V, respectively. The voltage output of the tacho-generator
is regulated in the range of 0–10 V for depicting the speed of motor as the input to the DSP
controller. In contrast, Figure 14e shows the results when the auxiliary battery supplies
the power. The current and voltage are within limits from zero to full speed and behave
as per command; therefore, a very smooth variation of the induction motor’s speed from
zero to rated speed is obtained, having constant torque applied during the entire operation.
Figure 15 shows a zoomed version of the voltage and current magnitude variation and
frequency during speed variation.
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Figure 14. Experimental dynamic behaviors of induction motor supplied through DSI indicating
various driving conditions: (a–d) dc voltage fed from the main source, and (e) dc voltage fed from
the supplementary source.
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Figure 15. Zoomed waveforms during the variation of speed.

During the steady-state operation of the induction motor from the primary dc source,
the current drawn is 1.8 A at the full load conditions for the 1.75 A-rated induction motor.
The Fluke 43B PQ Analyzer records current harmonics, as shown in Figure 16. The current
harmonics are within the prescribed IEEE 519 standard limits of 5%; however, the harmonics
vary for the variable speed conditions. These harmonics are recorded at maximum speed
and a fully loaded induction motor. Harmonics may increase for the operation of an
induction motor at a very low speed; however, the control of the motor is very smooth
during very low speed. The reduced harmonics and improved power factor shall finally
improve the EV motor’s operating efficiency, thereby increasing the EV range.
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Figure 16. Real-time harmonics of the current waveform.

The controller’s real-time robustness is validated, and the effect of speed variation
is recorded using a data logger that records power, power factor, voltage, and currents at
steady-state conditions. Figure 17 shows the real-time steady state power, power factor,
current, and voltage at the complete loaded requirements for the induction motor of 750 W,
1.75 A rating. The current drawn is above the rated value since the motor is operated at
lower voltages than the actual voltage rating to provide the power demanded by the load.
The data logger also records power, power factor, current, and voltages for nearly 7 min.
The real-time graph shows the effect of rapid variation of the speed on this specification.
The speed increases from zero, and controllers execute the command to control the speed.
Figure 18 shows all the specifications with the range, and a power factor of approximately
0.72 is maintained at almost a constant level since the motor efficiency is 77% at full load
on the induction motor; also, the voltage and current are changed proportionally to the
power drawn by the motor. These specifications exhibit the same behaviour when the
supplementary dc source supplies power, as evidenced in Figure 19. Figure 20 shows the
specifications on the nameplate of the induction motor.
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Instrument records are presented in terms of voltage and current stress during the
running of the induction motor. The data logger records the voltage across the switch
and the current through the switch using differential voltage probes and current clamps.
It is observed in Figure 21 that the voltage and current do not exceed the switch rating
at any given speed. The zoomed voltage and current are shown in Figure 22, indicating
steady-state operation.
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6. Conclusions

In this paper, dynamic control of a traction motor using a two-battery single-stage
converter called a dual-source inverter has been modelled, simulated, and verified exper-
imentally, indicating dynamic behaviour for electric vehicle applications. Field-oriented
control with a space vector modulation scheme has been applied through the controller
for the induction motor, which acts as a traction motor for EV application consisting of
two batteries. A MATLAB/Simulink environment has been used to perform an entirely
closed-loop system performance simulation. A scaled-down prototype of 415 V, 1 hp
induction motor–dc shunt generator set is employed to validate operating the dc sources
individually. A dSPACE 1104 controller generates the switching signals given to the dual-
source inverter. The simulation, as well as experimental results, nearly match the dynamic
operating conditions. Based on the experimental results, we conclude that improved control
and power factor, reduced current harmonics, and voltage/current stresses lead to overall
improvement of efficiency for EV operation so that the range of the EV is enhanced for
a single charge; also, the smooth speed variation is obtained from zero to base speed at
various driving conditions using the dc sources individually. It is expected that this work
shall make a way for deployment of induction motors in EVs with improved controllers to
enhance the range of EVs per charge.
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