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Abstract: Sleep disturbances are strongly associated with mild traumatic brain injury (mTBI) and
post-traumatic stress disorder (PTSD). PTSD and mTBI have been linked to alterations in white matter
(WM) microstructure, but whether poor sleep quality has a compounding effect on WM remains
largely unknown. We evaluated sleep and diffusion magnetic resonance imaging (dMRI) data from
180 male post-9/11 veterans diagnosed with (1) PTSD (n = 38), (2) mTBI (n = 25), (3) comorbid
PTSD+mTBI (n = 94), and (4) a control group with neither PTSD nor mTBI (n = 23). We compared
sleep quality (Pittsburgh Sleep Quality Index, PSQI) between groups using ANCOVAs and calculated
regression and mediation models to assess associations between PTSD, mTBI, sleep quality, and WM.
Veterans with PTSD and comorbid PTSD+mTBI reported poorer sleep quality than those with mTBI
or no history of PTSD or mTBI (p = 0.012 to <0.001). Poor sleep quality was associated with abnormal
WM microstructure in veterans with comorbid PTSD+mTBI (p < 0.001). Most importantly, poor sleep
quality fully mediated the association between greater PTSD symptom severity and impaired WM
microstructure (p < 0.001). Our findings highlight the significant impact of sleep disturbances on
brain health in veterans with PTSD+mTBI, calling for sleep-targeted interventions.
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1. Introduction

Approximately 23% of military service members returning from deployment to Iraq
and Afghanistan are subsequently diagnosed with post-traumatic stress disorder (PTSD) [1],
making it one of the most common psychiatric diagnoses in veterans [2]. Additionally,
12–35% of service members sustain a mild traumatic brain injury (mTBI) [3,4], which
increases the risk of developing or exacerbating PTSD symptom severity [5–7]. While
poor sleep quality is highly prevalent in veterans in general [8], it is particularly important
in the context of PTSD and mTBI. In fact, poor sleep quality is a hallmark symptom of
PTSD [9,10], highly prevalent after mTBI [11–13], and has been associated with increased
symptom severity [14] and slower recovery from both PTSD and mTBI [13]. Alarmingly,
sleep quality disturbances may remain present for years after a traumatic experience [15],
adversely impact quality of life [14,16], and respond poorly to treatment-as-usual [17,18].
However, the pathomechanisms underlying the compounding effects of poor sleep quality
in those with PTSD and mTBI are not fully understood, impeding the development of
proper diagnostic and treatment protocols.

Evidence suggests that sleep is directly linked to brain homeostasis and is essential
to preserve the environment the brain requires to function optimally [19]. Interestingly,
sleep seems particularly relevant for white matter health, with animal studies showing that
the number of myelin-forming proliferating oligodendrocytes doubles during sleep [20].
Furthermore, sleep impairments have been related to brain volume loss [21,22], reduced
neurogenesis, and reduced cortical activation [23,24].

Magnetic resonance imaging (MRI) allows for the in vivo, three-dimensional investiga-
tion of brain structure, and thus, provides a vital avenue to study the pathomechanisms un-
derlying poor sleep quality, PTSD, and mTBI in military veterans [25]. Diffusion-weighted
MRI (dMRI) studies revealed white matter (WM) microstructure alterations associated with
PTSD [26–43], mTBI [44–50], and comorbid PTSD+mTBI [51–54]. Moreover, various studies
showed widespread alterations of white matter microstructure in association with poor
sleep quality in otherwise healthy individuals. Most studies utilized fractional anisotropy
(FA) as a marker of white matter microstructural integrity and tissue organization and
found lower FA related to poorer sleep quality in frontal, temporal, parietal, and occipital
regions [55–65]. A few studies have also linked white matter alterations to impaired sleep
quality in individuals with PTSD [66] and mTBI [67,68], revealing associations between
poor sleep quality and decreased FA in several main white matter fiber tracts. However,
the link between sleep quality and WM microstructure in the context of PTSD and mTBI
remains largely unknown.

The current study addresses the understudied impact of sleep quality disturbances
on brain structure in the context of PTSD and mTBI. We assess the relationship between
sleep quality, PTSD, mTBI, and WM microstructure, leveraging a large sample of veterans
returning from deployment to Iraq and Afghanistan (N = 180). As highlighted above,
earlier studies have consistently demonstrated the impact of PTSD, mTBI, or comorbid
PTSD+mTBI on brain structure and function. Therefore, we followed a previous publica-
tion [69] and examined sleep quality in groups of veterans with PTSD, mTBI, comorbid
PTSD+mTBI, or no history of PTSD or mTBI. Next, we assessed the associations between
PTSD, mTBI, sleep quality, and WM microstructure in the combined sample and the
four groups. Our central hypotheses were that veterans with PTSD, mTBI, or comorbid
PTSD+mTBI would experience poorer sleep quality than veterans without a history of
PTSD or mTBI. We further hypothesized that PTSD, mTBI, and poorer sleep quality were
related to WM microstructure. We subsequently conducted post-hoc mediation analyses
based on our primary analyses to examine the interactions between PTSD, mTBI, sleep
quality, and WM microstructure.
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2. Materials and Methods
2.1. Participants

The Translational Research Center for TBI and Stress Disorders (TRACTS) study is a
longitudinal prospective cohort study of Operation Enduring Freedom (OEF)/Operation
Iraqi Freedom (OIF) military service members [70].

Out of the first 384 consecutively recruited service members at the VA Boston Health-
care System Jamaica Plain Campus, 278 participants underwent an MRI assessment and
consented to share their data with investigators outside of TRACTS. Twenty-five cases did
not pass the visual neuroimaging data quality control due to excessive motion or scanner
artifacts. Additional reasons for the exclusion of participants can be found in Figure S1. The
final sample for the current project consisted of 180 participants, which were classified into
four groups based on lifetime diagnoses of PTSD and mTBI: PTSD only (n = 38), mTBI only
(n = 25), comorbid PTSD+mTBI (n = 94), and no history of PTSD or mTBI (n = 23). We opted
for this grouping approach based on previous studies in veteran populations [52,71]. We
used cumulative lifetime diagnoses, as previous studies demonstrate a stronger influence
on GM and WM structure when considering lifetime diagnoses [51,72], suggesting that
disorder-related neurobiological effects persist or even increase over time.

2.2. Diagnostic and Clinical Assessment
2.2.1. Assessment of PTSD

Lifetime PTSD diagnosis and current symptom severity were assessed according to
the 30-item Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) [73]. To assess
PTSD symptom severity separate from sleep quality, we removed two items (i.e., difficulty
sleeping and recurrent distressing dreams) from the scale and calculated a sleep-corrected
PTSD total score, in line with prior work [74].

2.2.2. Assessment of mTBI

The Boston Assessment of TBI-Lifetime (BAT-L) [75] was administered to diagnose
mTBI and to rate the cumulative lifetime mTBI burden. The BAT-L distinguishes mild,
moderate, and severe TBIs, where a mild TBI is classified as loss of consciousness not
exceeding 30 min and where posttraumatic amnesia or an altered mental status must
not exceed 24 h. The BAT-L classifies mild TBI into stages 1–3, where a higher stage
refers to greater mTBI severity. Using this assessment tool, a total mTBI burden score was
computed from the number and severity of all mTBIs pre-, during, and post-deployment.
Pre-deployment mTBIs included mTBIs before enlistment. MTBIs during deployment
referred to all deployments if deployed multiple times.

2.2.3. Assessment of Sleep Quality

Current sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) [76],
an 18-item self-report questionnaire measuring subjective sleep quality, sleep latency, sleep
duration, habitual sleep efficiency, sleep disturbances, use of sleep medication, and daytime
dysfunction on seven subscales. Here, we follow a previously reported and validated
approach suggesting that the seven subscales of the PSQI are best represented by three
factors: sleep efficiency, perceived sleep quality, and daily disturbances [77] (Figure S2).

2.2.4. Assessment of Comorbid Psychiatric Disorders

The non-patient research version of the Structured Clinical Interview for DSM-IV Axis I
Disorders (SCID-I/NP) [78] was used to diagnose comorbid lifetime psychiatric disorders.

2.2.5. Assessment of Warzone-Related Stress

Warzone-related stress was assessed using the Deployment Risk & Resilience
Inventory-2 (DRRI-2) [79].
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2.3. Magnetic Resonance Imaging
2.3.1. Image Acquisition

DMRI data were acquired on a 3-Tesla Siemens TIM Trio scanner (Siemens Healthi-
neers, Erlangen, Germany) at the VA Medical Center in Boston using a single-shot echo-
planar sequence with a twice-refocused spin-echo pulse. The following sequence param-
eters were applied: 64 axial slices with no inter-slice gap, 60 gradient directions with a
b-value of 700 s/mm2, and 10 additional scans with b = 0 gradients, TR = 10,000 ms,
TE = 103 ms, voxel size = 2 × 2 × 2 mm3, and FOV = 256 mm2.

2.3.2. Image Pre-Processing

The dMRI data were processed in several steps using an in-house image process-
ing pipeline (https://github.com/pnlbwh/pnlutil/blob/master/pipeline/README.md,
accessed on 1 October 2018). First, the images were axis-aligned, centered, motion-,
and eddy current-corrected utilizing the FMRIB Software Library (version 5.1, https:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/, accessed on 1 October 2018) [80,81]. Image quality was
checked for artifacts using 3D Slicer (version 4.5, http://www.slicer.org, accessed on
1 October 2018) [82], leading to the exclusion of 25 participants (due to severe motion ar-
tifact or signal dropout). DMRI brain masks were created using SlicerDMRI [83,84] and
corrected manually where necessary.

2.3.3. WM Fiber Clustering

We conducted WM fiber clustering utilizing an open-source pipeline, whitematteranaly-
sis software (https://github.com/SlicerDMRI/whitematteranalysis, accessed on 1 May 2019),
to perform fiber tract parcellation and extraction automatically. The white matter fiber
clustering method extracts fiber tracts from the entire brain by grouping tracts based on
their anatomical shape and spatial location. This method is significantly improved com-
pared to previous automated fiber tracking methods, which can only extract the main
fiber tracts, failing to cover the entire brain’s white matter (i.e., including the cerebel-
lum and superficial tracts). In addition, it was successfully applied in several recent
studies [85–94], demonstrating high test-retest reproducibility [95] and robustness to
anatomical variability [96].

First, a two-tensor whole-brain unscented Kalman Filter (UKF) tractography was
computed (https://github.com/pnlbwh/ukftractography, accessed on 1 May 2019) [97,98].
A two-tensor model was chosen to account for crossing fibers [99,100]. The first tensor
is associated with the main direction of a fiber tract, while the second tensor represents
crossing fibers. We performed qualitative and quantitative quality checks of the generated
tractography data for all subjects using the whitematteranalysis software quality control tool
(https://github.com/SlicerDMRI/whitematteranalysis, accessed on 1 May 2019). Previous
studies demonstrated that the UKF method is highly consistent [101] and more sensitive
than single-tensor tractography [102–104].

Next, we identified white matter fiber tracts for each subject using the White Matter
Analysis (WMA) package for tract parcellation. WMA is based on a neuroanatomist-curated
white matter atlas (http://dmri.slicer.org/atlases/, accessed on 1 May 2019) [101] and ap-
plies machine learning to identify fiber tracts in an individual [101,105,106]. This approach
enabled us to substantially reduce the known tractography issue of false-positive tracking,
increasing the repeatability of white matter parcellation [107]. False positive fibers in the
atlas have been annotated and marked as to be excluded based on expert neuroanatomical
judgment [101]. For each subject, atlas-based white matter parcellation [96,101,106] was
performed, registering the tractography to the atlas space. The similarity between the fibers
in the atlas and the fibers of an individual was quantified, used to classify the fibers into a
cluster, and finally assigned to the corresponding tract in the atlas.

As highlighted in the introduction, we expected a widespread effect of sleep on
WM microstructure [55–58,63]. For our primary analyses, we, therefore, opted to merge
the entire brain’s fiber tracts into one whole-brain WM variable by appending all WM

https://github.com/pnlbwh/pnlutil/blob/master/pipeline/README.md
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.slicer.org
https://github.com/SlicerDMRI/whitematteranalysis
https://github.com/pnlbwh/ukftractography
https://github.com/SlicerDMRI/whitematteranalysis
http://dmri.slicer.org/atlases/
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tracts into one large tract. For supplementary analyses, the main white matter fiber tracts
(left/right arcuate fasciculus, cingulum bundle, inferior longitudinal fasciculus, inferior
occipito-frontal fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and corpus
callosum) were extracted. To ensure there were no individual participants with outlier
values, we performed a quantitative quality assessment of the number of fiber stream-
lines. Moreover, each participant’s whole-brain white matter tracts were visually evalu-
ated, following standardized guidelines [85,89,108–111]. All data successfully passed the
quality check.

2.3.4. Diffusion Parameter Extraction

We used free-water (FW) imaging to obtain a voxel-wise whole-brain free-water
corrected fractional anisotropy (FAT) value for each individual. By separating the MRI
signal into two compartments [112], FW imaging is able to eliminate partial volume with
extracellular FW (e.g., caused by CSF contamination, edema, or atrophy) in each voxel.
Given the correction for FW, FAT serves as a more accurate marker for cellular WM structure
than the conventional FA measure [113].

2.4. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics 27. We created figures
using R 4.0.3, GraphPad Prism 9, Python 3.10.2, and PowerPoint. We applied a hierarchical
statistical approach, conducting all analyses in the total sample and if significant in the
four groups (PTSD, mTBI, comorbid PTSD+mTBI, no history of PTSD or mTBI; Figure 1).
All analyses included age as a covariate and were corrected for multiple comparisons, as
detailed in Figure 1.
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Figure 1. Hierarchical statistical approach. Note. PTSD, post-traumatic stress disorder; mTBI, mild
traumatic brain injury; PSQI, Pittsburgh Sleep Quality Index; FAT, fractional anisotropy tissue. This
figure illustrates the hierarchical statistical approach.

2.4.1. Group Differences in Sleep Quality

First, we wanted to examine if sleep quality differed according to veterans‘ histories
of PTSD and mTBI. We conducted one ANCOVA, including group (PTSD, mTBI, comorbid
PTSD+mTBI, no history of PTSD or mTBI) as the independent variable and global sleep
quality as the dependent variable. If the overall ANCOVA was significant (p < 0.05), we
performed post-hoc comparisons for the four groups. If the group comparisons for global
sleep quality were significant (p < 0.05/4), we post-hoc compared sleep efficiency, perceived
sleep quality, and daily disturbances between the four groups.
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2.4.2. PTSD, mTBI, and Sleep Quality

Next, we calculated one regression analysis in the total sample, including PTSD
symptom severity and mTBI burden as the independent variables and global sleep quality
as the dependent variable. In the case of significant associations between PTSD symptom
severity, mTBI burden, and global sleep quality (p < 0.05), we repeated the regression
analyses within the four groups separately. If the regression model was found significant in
one of the groups (p < 0.05/4), we performed three additional regression analyses, including
PTSD symptom severity/mTBI burden as the independent variable and sleep efficiency,
perceived sleep quality, and daily disturbances as dependent variables respectively.

2.4.3. Sleep Quality and WM Microstructure

Next, we conducted a regression analysis in the total sample, including global sleep
quality as the independent variable and whole-brain FAT as the dependent variable. In
the case of a significant association (p < 0.05), we repeated the regression analysis within
each group. If found significant in one of the groups (p < 0.05/4), we performed three
additional regression analyses, including sleep efficiency, perceived sleep quality, and daily
disturbances as the independent variables and whole-brain FAT as the dependent variable.

In addition, we computed supplementary analyses with the FAT of the main WM fiber
tracts as the dependent variables (Table S3).

2.4.4. Sleep Quality as a Mediator between PTSD Symptom Severity and
WM Microstructure

Given the significant associations between PTSD symptom severity and perceived
sleep quality and between perceived sleep quality and whole-brain FAT, we performed
a post-hoc mediation analysis. Here, we assessed whether perceived sleep quality (medi-
ator) mediated the association between PTSD symptom severity (independent variable)
and whole-brain FAT (dependent variable). The model was calculated using the Hayes
PROCESS macro [114] for SPSS (model 4), which follows a nonparametric bootstrapping
procedure based on n = 5000 samples and a 95% CI.

We repeated the mediation analysis controlling for variables that have repeatedly been
associated with alterations in brain structure. These included lifetime psychiatric diagnoses
(mood [115–119], anxiety [120–122], and substance use disorder [123,124], Figure S3), warzone-
related stress [125–128], body mass index (BMI) [129–134], current psychiatric medication
use [135–140], race (white, non-white) [141], and completed years of education [142,143].

3. Results

For demographic information, please see Tables 1 and S1. The four groups did
not significantly differ in age, the number of deployments, and the total duration of
the deployment. Veterans with comorbid PTSD+mTBI were the most severely clinically
burdened group, as indicated by the high number of comorbid psychiatric diagnoses,
medication use, and the highest rates of military mTBI (mTBIs sustained during deployment
or military service) in this group.

3.1. Group Differences in Sleep Quality

We first examined the influence of a diagnosis of PTSD and mTBI on sleep quality
using ANCOVAs. Table 2 and Figure S4 display the differences in sleep quality between
the groups. The PTSD and comorbid PTSD+mTBI groups demonstrated more significant
impairments on the PSQI global sleep quality, sleep efficiency, perceived sleep quality, and
daily disturbances scales than those with mTBI or no history of PTSD or mTBI. There were
no significant differences in sleep quality between the PTSD and comorbid PTSD+mTBI
groups. Moreover, there was no significant difference in sleep quality between veterans
with mTBI and veterans without a history of PTSD and mTBI.
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Table 1. Sample characteristics.

Total Sample
(N = 180)

PTSD
(n = 38)

mTBI
(n = 25)

Comorbid PTSD+mTBI
(n = 94)

No History of PTSD or
mTBI (n = 23)

Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range
Age (years) 31.49 ± 7.60 20–55 31.18 ± 6.79 22–48 32.60 ± 9.82 21–55 31.22 ± 7.18 20–53 31.87 ± 8.24 23–53

Education (years) 13.89 ± 1.96 12–20 13.34 ± 1.60 12–17 14.36 ± 1.78 12–18 13.84 ± 2.03 12–20 14.48 ± 2.19 12–19
Number of OEF/OIF deployments 1.40 ± 0.69 1–5 1.39 ± 0.79 1–4 1.40 ± 0.65 1–3 1.41 ± 0.71 1–5 1.35 ± 4.87 1–2

Number of other stressful deployments 0.39 ± 0.77 0–5 0.37 ± 0.63 0–3 0.24 ± 0.44 0–3 0.49 ± 0.89 0–5 0.22 ± 0.52 0–2
Total duration of OEF/OIF deployments (months) 13.64 ± 8.37 3–53 13.84 ± 9.75 5–53 14.72 ± 7.89 3–31 13.49 ± 8.36 3–52 13.87 ± 6.81 4–28

Total duration of other deployments (months) 2.84 ± 6.21 0–49 3.03 ± 5.22 0–17 1.36 ± 3.87 0–16 3.41 ± 7.24 0–49 1.83 ± 4.93 0–18
Number of lifetime mTBIs 1.39 ± 2.18 0–18 0.00 ± 0.00 0–0 1.56 ± 0.96 1–5 2.24 ± 2.62 1–18 0.00 ± 0.00 0–0

Lifetime mTBI burden 2.22 ± 3.42 0–31 0.00 ± 0.00 0–0 2.40 ± 1.47 1–6 3.61 ± 4.10 1–31 0.00 ± 0.00 0–0
Total CAPS 45.84 ± 27.14 0–104 39.79 ± 21.15 6–88 15.84 ± 13.73 0–41 51.80 ± 18.65 2–92 12.65 ± 10.60 0–39

n % * n % * n % * n % * n % *
Ethnicity American Indian or Alaska Native 1 0.56 0 0.00 0 0.00 1 1.06 0 0.00

Asian 2 1.11 1 2.63 0 0.00 1 1.06 0 0.00
Black 13 7.22 4 10.53 3 12.00 6 6.38 0 0.00

Hispanic or Latino 26 14.44 6 15.79 5 20.00 13 13.83 2 8.70
Native Hawaiian or Pacific Islander 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

White 138 76.67 26 68.42 17 68.00 74 78.72 21 91.30
Unknown 1 0.56 1 2.63 0 0.00 0 0.00 0 0.00

Service branch Army 33 18.33 4 10.53 6 24.00 21 22.34 2 8.70
Army National Guard 62 34.44 15 39.47 10 40.00 26 27.66 11 47.83

Air Force 9 5.00 1 2.63 2 8.00 5 5.32 1 4.35
Air Force National Guard 7 3.89 2 5.26 1 4.00 3 3.19 1 4.35

Coast Guard 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Navy 7 3.89 1 2.63 1 4.00 5 5.32 0 0.00

Marines 38 21.11 5 13.16 4 16.00 27 28.72 2 8.70
Reserves 25 13.89 10 26.32 2 8.00 9 9.57 4 17.39

National Guard, branch unknown 6 3.33 1 2.63 0 0.00 3 3.19 2 8.70
Psychiatric diagnoses Lifetime PTSD 132 73.33 38 100.00 0 0.00 94 100.00 0 0.00

Lifetime substance use disorder 118 65.56 23 60.53 13 52.00 72 76.60 10 43.48
Lifetime mood disorder 63 35.00 14 36.84 4 16.00 42 44.68 3 13.04

Lifetime anxiety disorder 30 16.67 9 23.68 3 12.00 15 15.96 3 13.04
Psychiatric medication Antidepressants 37 20.55 8 21.05 1 4.00 28 29.79 0 0.00

Antiseizure medication 12 6.67 2 5.26 0 0.00 10 10.64 0 0.00
Sedatives 13 7.22 5 13.16 1 4.00 7 7.45 0 0.00

Pain medication 61 33.89 10 26.32 10 40.00 38 40.43 3 13.04
Prazosin 5 2.78 0 0.00 0 0.00 5 5.32 0 0.00

mTBI Military mTBI 64 35.56 0 0.00 7 28.00 57 60.64 0 0.00
Lifetime mTBI 119 66.11 0 0.00 25 100.00 94 100.00 0 0.00

Note. SD, Standard deviation; PTSD, post-traumatic stress disorder; mTBI, mild traumatic brain injury; OEF, Operation Enduring Freedom; OIF, Operation Iraqi Freedom;
CAPS, Clinician Administered PTSD Scale [73]; PSQI, Pittsburgh Sleep Quality Index [76]; PSQI 3-factor structure, PSQI subscales sleep efficiency, perceived sleep quality & daily
disturbances [77]. % * Percentage of total cases per group.
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Table 2. Sleep quality group comparisons.

Total Sample PTSD mTBI Comorbid PTSD+mTBI No History of PTSD or mTBI
N Mean ± SD Range n Range Mean ± SD n Range Mean ± SD n Range Mean ± SD n Range Mean ± SD

PSQI Global 178 8.97 ± 4.46 0–20 38 8.71 ± 4.43 0–20 25 6.68 ± 3.61 1–18 92 10.49 ± 4.23 2–18 23 5.78 ± 3.48 0–14
PSQI 3-factor

structure Sleep efficiency 179 1.23 ± 0.99 0–3 38 1.13 ± 0.98 0–3 25 0.86 ± 0.99 0–3 93 1.46 ± 0.94 0–3 23 0.89 ± 1.07 0–3

Perceived sleep
quality 180 1.31 ± 0.80 0–3 38 1.30 ± 0.73 0–3 25 0.99 ± 0.64 0–2.67 94 1.54 ± 0.82 0–3 23 0.72 ± 0.52 0–2

Daily disturbances 179 1.32 ± 0.62 0–3 38 1.28 ± 0.59 0–2.5 25 1.00 ± 0.48 0–2 93 1.53 ± 0.61 0–3 23 0.91 ± 0.47 0–2

PTSD vs. mTBI vs.
Comorbid PTSD+mTBI vs.

No history of PTSD or mTBI

Post-hoc
PTSD vs.

mTBI

Post-hoc
PTSD vs.

Comorbid
PTSD+mTBI

Post-hoc
mTBI vs. Comorbid

PTSD+mTBI

Post-hoc
PTSD vs.

No history of PTSD
or mTBI

Post-hoc
mTBI vs.

No history of
PTSD or mTBI

Post-hoc
Comorbid PTSD+mTBI vs.

No history of PTSD or mTBI

ANCOVA
F(df), p η2 p *

PSQI Global 11.430(3, 173) <0.001 0.17 0.055 0.026 <0.001 0.008 0.457 <0.001
PSQI 3-factor

structure Sleep efficiency 4.16(3, 174) 0.007 0.07 0.259 0.078 0.006 0.339 0.894 0.012

Perceived sleep
quality 9.20(3, 175) <0.001 0.14 0.112 0.091 0.001 0.004 0.224 <0.001

Daily disturbances 10.66(3, 174) <0.001 0.16 0.057 0.025 <0.001 0.017 0.618 <0.001

Note. SD, Standard deviation; PTSD, post-traumatic stress disorder; mTBI, mild traumatic brain injury; PSQI, Pittsburgh Sleep Quality Index [76]; PSQI 3-factor structure, PSQI subscales
sleep efficiency, perceived sleep quality & daily disturbances [77]. All ANCOVA’s were corrected for age. p * corrected for multiple comparisons as outlined in Figure 1.
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3.2. PTSD, mTBI, and Sleep Quality

The regression analyses revealed a significant association between PTSD symptom
severity and poorer global sleep quality in the total sample (β = 0.58, t = 9.15, p < 0.001),
whereas there was no significant association between mTBI burden and global sleep quality
(β = 0.07, t = 1.07, p = 0.288). Post-hoc analyses demonstrated that in the PTSD, mTBI,
and comorbid PTSD+mTBI groups, more severe PTSD symptoms were associated with
poorer global sleep quality. Moreover, in the PTSD and comorbid PTSD+mTBI groups,
more severe PTSD symptoms were associated with poorer perceived sleep quality and
more daily disturbances. In the mTBI group, more severe PTSD symptoms were associated
with lower sleep efficiency (Table S2).

3.3. Sleep Quality and WM Microstructure

The regression analyses investigating the association between sleep quality and WM
microstructure showed a significant negative association between the PSQI global score
and whole-brain FAT in the total sample (β = −0.24, t = −3.35, p = 0.001). Post-hoc analyses
revealed a significant association between global sleep quality and whole-brain FAT in the
comorbid PTSD+mTBI group (β = −0.39, t = −4.04, f 2 = 0.18, p < 0.001). Supplementary
analyses of the main WM fiber tracts similarly showed significant associations between
global sleep quality and WM FAT in the comorbid PTSD+mTBI group (Table S3). No
region-specific pattern was observed, supporting our hypothesis that poor sleep quality
may lead to widespread WM alterations. We subsequently assessed the association between
the three PSQI sub-scales (sleep efficiency, perceived sleep quality, and daily disturbances)
and whole-brain FAT in the comorbid PTSD+mTBI group. Only perceived sleep quality
was significantly associated with whole-brain FAT (β = −0.43, t = −3.86, f 2 = 0.21, p < 0.001,
Table S4, Figure 2).
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Figure 2. Association between sleep quality and whole-brain FAT. Note. PSQI, Pittsburgh Sleep
Quality Index [76]; PTSD, post-traumatic stress disorder; mTBI, mild traumatic brain injury; FAT,
fractional anisotropy tissue. This figure illustrates the significant negative association between global
sleep quality and whole-brain FAT (p < 0.001) and between perceived sleep quality and whole-brain
FAT (p < 0.001). Lower scores on the PSQI scales represent better sleep quality.

3.4. Sleep Quality Mediates the Association between PTSD Symptom Severity and
WM Microstructure

Given the significant association between PTSD symptom severity and perceived
sleep quality and between perceived sleep quality and WM microstructure in the comor-
bid PTSD+mTBI group, we performed additional mediation analyses to assess whether
perceived sleep quality mediates the association between PTSD symptom severity and
whole-brain FAT. When not including sleep in our model we observed an effect of PTSD
symptom severity on whole-brain FAT (b = −0.00, SE = 0.00, t(91) = −2.88, p = 0.005,
Figure 3 path c). When including perceived sleep quality as a mediator, the relation-
ships between PTSD symptom severity and perceived sleep quality (b = 0.02, SE = 0.00,
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t(91) = 5.55, p < 0.001, Figure 3 path a), perceived sleep quality and whole-brain FAT
(b = −0.00, SE = 0.00, t(90) = −3.26, p = 0.002, Figure 3 path b), and the model’s total effect
(F(3, 90) = 6.81, R2 = 0.19, p < 0.001) were significant. However, the direct effect of PTSD
symptom severity on whole-brain FAT was not statistically significant (b = −0.00, SE = 0.00,
t(90) = −0.97, p = 0.331, Figure 3 path c’). The findings indicate that the association between
PTSD symptom severity and whole-brain FAT is statistically mediated by perceived sleep
quality. When the mediation model included psychiatric comorbidities (anxiety, depression,
and substance use disorder), warzone-related stress, BMI, psychiatric medication use, race,
and education as additional covariates, results did not change significantly.
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4. Discussion

The current study investigated relationships between PTSD, mTBI, sleep quality, and
WM microstructure in veterans. We observed impaired sleep quality in veterans with PTSD
and comorbid PTSD+mTBI compared to those with mTBI only or those without a history of
PTSD or mTBI. Additionally, global and perceived sleep quality measures were associated
with characteristics of WM microstructure in veterans with comorbid PTSD+mTBI. Most
importantly, our findings suggest that perceived sleep quality may explain the association
between PTSD symptom severity and WM microstructure in veterans with comorbid
PTSD+mTBI. Thus, our findings indicate that sleep plays a central role in how psychological
trauma affects brain health.

4.1. Group Differences in Sleep Quality

In line with previous investigations [69,144], we found that individuals with PTSD or
comorbid PTSD+mTBI experience poorer global sleep quality, sleep efficiency, perceived
sleep quality, and more daily disturbances than individuals with mTBI only or no history
of PTSD or mTBI. Contrary to earlier studies [11,145], we did not see a difference in sleep
quality between veterans with mTBI and those without a history of PTSD or mTBI. Given
that some of the participating veterans may have sustained their head trauma years ago,
an explanation for this finding could be that sleep quality disturbances related to mTBI
improved over time. Indeed, only a minority of individuals who sustain mTBI experience
ongoing post-concussive symptoms (including sleep quality disturbances) [146–148]. On
the contrary, recurrent sleep quality disturbances are still prevalent in individuals with
remitted PTSD [17,18]. Therefore, PTSD appears to be an index of poor sleep quality, even
without comorbid mTBI.
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4.2. PTSD, mTBI, and Sleep Quality

We observed a significant association between greater PTSD symptom severity and
worse global sleep quality, sleep efficiency, perceived sleep quality, and daily disturbances
in veterans with PTSD, mTBI, and comorbid PTSD+mTBI. Interestingly, there was no
significant association between mTBI burden and sleep quality, suggesting that the psy-
chological consequences after a traumatic experience (rather than the physical trauma) are
most predictive of sleep quality disturbances. These results highlight an integral role of
poor sleep quality in PTSD severity [9,10], underscoring that traumatic experiences might
be the driving force behind sleep quality disturbances in veterans [144,149].

4.3. Sleep Quality and WM Microstructure

As hypothesized [55–58,63], we showed a significant relationship between impaired
sleep quality and characteristics of the WM microstructure. We speculate that the observed
WM microstructure alterations might be due to impaired myelin repair processes. Pre-
vious research demonstrates that sleep initiates myelin deposition and repair [20] and is
necessary for maintaining WM health. Myelin genesis and repair depend on the sufficient
clearance of brain waste products [150]. The brain’s waste clearance system relies on the
glymphatic system which consists of perivascular spaces vital for flushing out accumulated
neurotoxins, such as beta-amyloid and tau [151,152]. Critically, the glymphatic system is
most active during sleep [150]. Thus, we hypothesize that poor sleep quality, as observed
in this study, may be related to impaired clearance of neurotoxins, which, in turn, may
lead to neurodegenerative processes, including impaired myelination. This hypothesis is
supported by the fact that amyloid and tau deposition have previously been linked to WM
damage in veterans with comorbid PTSD+mTBI [153,154].

Notably, the association between impaired sleep quality and abnormal WM microstruc-
ture pertained solely to veterans with comorbid PTSD+mTBI. This finding may be ascribed
to a statistical power effect as veterans with comorbid PTSD+mTBI made up the largest
group. However, even though sleep quality disturbances were not statistically different be-
tween the comorbid PTSD+mTBI and PTSD groups, veterans with comorbid PTSD+mTBI
presented as the most severely clinically burdened group, as indicated by the high number
of comorbid psychiatric diagnoses, medication use, and the highest rates of military mTBI.
Previous studies suggest that psychiatric disorders, medication use, and mTBI may increase
brain vulnerability [51,71,155,156], potentially creating a neural environment that leaves
the brain unprotected from the harmful effects of impaired sleep quality. Similarly, poor
sleep quality negatively impacts brain structure and function, thus fueling the onset or
progression of neuropsychiatric disorders and related brain abnormalities [13].

When assessing different aspects of sleep quality (sleep efficiency, perceived sleep
quality, and daily disturbances), lower perceived sleep quality was the only significant
indicator of alterations in WM microstructure. This finding aligns well with a previous
study, reporting an association between overall sleep quality and cortical GM volume that
was driven by perceived sleep quality [22]. Additionally, perceived sleep quality has been
shown to be essential for functional outcomes and mental well-being in individuals with
PTSD [16]. Of particular interest is that perceived sleep quality may not correlate with
objectively measured sleep quality. Indeed, the phenomenon of paradoxical insomnia—the
discrepancy between subjective and objective assessments of sleep [157]—is a common
observation among veterans with sleep disorders [158] and PTSD [159]. Paradoxical
insomnia is associated with general distress, ongoing hyperarousal states, and a negative
cognitive bias that affects sleep perception [158,160–164]. Importantly, however, perceived
sleep quality (rather than the objective assessment of sleep) appears to be reflective of
overall mental well-being [164–167].
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4.4. Sleep Quality Mediates the Association between PTSD Symptom Severity and
WM Microstructure

We observed a relationship between more severe PTSD symptoms and greater WM
abnormalities in the comorbid PTSD+mTBI group, which aligns well with several previous
studies [36,53]. Strikingly, when including PTSD symptom severity, perceived sleep quality,
and WM in the same statistical model, we found that perceived sleep quality accounted for
the relationship between PTSD symptom severity and WM microstructure in veterans with
comorbid PTSD+mTBI. This result suggests that poor sleep might be the most impactful
symptom in the context of brain structure in individuals with comorbid PTSD+mTBI.

Future research is needed to elucidate the bidirectional interplay between sleep impair-
ments and PTSD symptom severity. It is noteworthy that current first-line treatments for
PTSD commonly fail to resolve sleep issues completely, even when other PTSD symptoms
remit [18]. Persistent sleep quality disturbances are, in turn, a risk factor for PTSD [168],
resulting in adverse bi-directionally reinforcing conditions [18]. Thus, interventions that
reduce disturbed sleep quality may simultaneously improve overall PTSD symptom
severity [18], given that restorative sleep is needed for fear extinction [169,170] and fa-
cilitates the emotional processing of traumatic events [171]. Targeting sleep disturbances is
often a necessary first step when beginning trauma therapy to support emotional coping
mechanisms and cognitive resources needed for a successful outcome [172]. Sleep-targeted
interventions may yield higher acceptance and compliance, as they are less stigmatized
than mental health therapies and may encourage more veterans to seek help if needed.
Finally, specific training targeted at establishing and maintaining a healthy sleep routine
even before deployment may be beneficial in fostering resiliency in veterans.

4.5. Limitations and Future Directions

We acknowledge several study limitations. First, our findings are limited to a male
sample of veterans. They may, thus, not be generalizable to the general population of veter-
ans, including women, given that sleep and WM structure may be affected by sex [173,174].
Second, the unequal sample sizes across groups may have affected statistical power and
type I error rates, warranting replications utilizing balanced designs and larger samples.
As highlighted above, the comorbid PTSD+mTBI group is the largest group, which might
partially drive our findings. However, it is also critical to note that individuals with
PTSD+mTBI were the most severely affected by psychiatric symptoms and that our re-
sults align with previous studies, suggesting that this group is specifically vulnerable.
Third, mTBI diagnosis was based on retrospective self-recall of head injuries without
available medical records for verification, potentially distorting reports of mTBI occur-
rence and severity. Similarly, sleep quality was assessed through self-report only and may
not accurately reflect objective sleep quality. Future studies may benefit from employing
trained clinicians to diagnose sleep disorders and include objective sleep measures, such
as polysomnography, to record sleep quality complaints. Nevertheless, and as discussed
above, subjective sleep quality serves as a valuable diagnostic tool indicative of mental
and brain health. Furthermore, while we controlled for many potentially confounding
variables, such as age, psychiatric comorbidities (anxiety, depression, and substance use
disorder), warzone-related stress, BMI, psychiatric medication use, race, and education,
we were unable to include other potentially relevant variables, such as caffeine or other
stimulant use, exercise, cumulative sleep deficit, previous shift work, or socioeconomic
status. Last, while the mediation analysis allowed for an advanced statistical assessment
of complex interactions between the studied variables, the cross-sectional design restricts
the interpretability of causal relationships. It is probable that some veterans experienced
sleep quality disturbances even before deployment and were, thus, more likely to develop
neuropsychiatric symptoms and exhibit structural brain alterations [168,175–178]. In sum-
mary, future longitudinal studies are needed to elucidate the underlying pathomechanism
of perceived sleep quality and investigate its relationship with objective sleep quality and
brain structure in veterans with PTSD and mTBI.
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5. Conclusions

Findings from this study suggest that perceived sleep quality plays a vital role in
mental and brain health in veterans. Importantly, our findings suggest that disturbed
sleep quality may account for the relationship between PTSD symptom severity and WM
microstructure alterations, which we speculate to result from impaired myelin repair pro-
cesses, given that healthy sleep is required for lipid production and the proliferation of
oligodendrocyte precursors, which are essential for myelin genesis and deposition. Fur-
thermore, poor sleep has been linked to inadequate brain waste clearance through the
perivascular glymphatic system, and accumulated neurotoxins may trigger neurodegenera-
tive processes, including demyelination. Notably, our study reports a link between white
matter alterations and perceived sleep quality. While self-reported sleep quality is a strong
indicator of mental well-being, it may not necessarily mirror objectively assessed sleep
quality. Future research may benefit from employing both self-reports and device-assessed
sleep ratings to gain further insights into sleep disturbances in relation to PTSD and mTBI.
Moreover, future research is needed to investigate whether sleep-targeted interventions
may benefit overall brain health in the veteran population.
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