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Abstract: Low-fidelity methods such as the Blade Element Momentum Theory frequently provide
rotor aerodynamic performances. However, these methods must be coupled to databases or cor-
relations to compute heat transfer. The literature lacks correlations to compute the average heat
transfer around airfoil. The present study develops correlations for an average heat transfer over
smooth and rough airfoil. The correlation coefficients were obtained from a CFD database using
RANS equations and the Spalart–Allmaras turbulent model. This work studies the NACA 0009,
NACA 0012, and NACA 0015 with and without the leading roughness representative of a small ice
accretion. The numerical results are validated against lift and drag coefficients from the literature.
The heat transfer at the stagnation point compares well with the experimental results. The database
indicates a negligible dependency on airfoil thickness. The work presents two correlations from
the database analysis: one for the smooth airfoils and one for the rough airfoils. For the zero lift
coefficient, the average Nusselt number is maximum. This increases with Re0.636 for the smooth
surface and with Re0.85 for the rough surface. As the lift increases, the average Nusselt is reduced by
values proportional to the square of the lift coefficient for the smooth surface, while it is reduced by
values proportional to Re and the square of the lift coefficient for the rough surface.

Keywords: heat transfer; roughness; symmetric airfoil; Nusselt number; RANS equations; Spalart–
Allmaras turbulence model

1. Introduction

Aircraft and helicopters need ice protection systems (IPSs), such as anti-icing or de-
icing systems, to safely fly through supercooled water droplets in clouds [1]. Thermal
melting is the most common method of preventing ice buildup on critical surfaces. The main
goal for IPSs is to use the lowest power while ensuring safe ice removal for various
atmospheric conditions [2]. The IPS should remove ice accretion to avoid aerodynamic
performance degradation without exceeding the critical temperature of the materials,
even if the IPS operates outside in-flight icing conditions. Experimental methods [3,4] or
computational fluid dynamics (CFD) methods [5–7], coupled with reduced-order modeling
and optimization methods provide insightful information for the detailed design. However,
these high-fidelity tools are expensive to use in the early development phases when several
aircraft or helicopter configurations are evaluated. A medium fidelity method such as the
vortex lattice method, (VLM) coupled with a 2D viscous database, is computationally less
expensive and enables aircraft icing studies [8].

Researchers have coupled low-fidelity methods, such as Blade Element Momentum
Theory (BEMT), or medium fidelity methods, such as the VLM, and airfoil lookup
tables or correlations to estimate aerodynamic forces, performance degradation or heat
transfer. VLM and a drag correlation based on airfoil experimental data enable the
computationally efficient calculation of the vibration of helicopter rotors [9]. The non-
linear unsteady VLM coupled to 2D RANS or empirical databases adequately predicts
helicopter rotor aerodynamics in hover [10]. Nonlinear VLM coupled to 2.5D RANS
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sectional data allows the prediction of the maximum lift coefficient for a 3D swept
wing [11]. The results agree reasonably well with 3D RANS solution, and the proposed
approach is well suited for preliminary design. A model for predicting the torque for a
rotor under icing conditions is proposed based on the BEMT [12,13] and a correlation
for airfoil performance degradation in an icing environment [14]. Samad et al. [15]
coupled the VLM with a 2D RANS database to compute lift and drag. The effective
angle of attack and the Reynolds number are determined at each radial position of the
blade. Then, the average heat transfer coefficients are computed using a correlation
based on a RANS database for an airfoil under fully turbulent conditions [16].

The correlations for the aerodynamic forces on 2D airfoil often related the lift coeffi-
cient, cl , to the angle of attack α, and the drag coefficient cd to cl . For a typical airfoil at
high Reynolds numbers, cl linearly evolves with α until the flow separates from the surface,
close to the stall angle [17]. The maximum lift coefficient and the aerodynamic forces after
the stall angle depend on many parameters, the Reynolds number and the airfoil shape
included among them [18]. Researchers used experimental and RANS databases to build
correlation for both cl and cd at the post-stall angle [19]. Before the stall angle, Hoerner [20]
suggests that cd is a function of the square of the lift coefficient. Usually, cd has a minimum
value cd,min for −2◦ < α < 2◦ [21]. At this minimum drag value, the lift coefficient is cl,mind,
such that

cd = cd,min + A(cl − cl,mind)
2

Recent research has suggested a novel estimation method for cd,min over smooth
airfoil based on an extensive RANS database, including 40 airfoil shapes [22]. Gotten et al.
decomposed cd,min in the friction drag and the pressure drag, both functions of the airfoil
shape parameters. This estimation method extends the Reynolds range of the validity of
the previous correlations.

Most correlations relate the heat transfer to the Reynolds number, Re, and the Prandtl
number, Pr. For well-studied geometries such as a flat plate, the Nusselt number Nu
is related to Re and Pr [23]. Separate correlations model the laminar or turbulent flows,
but Lienhard [24] suggested approximations that also include the transitional flows. For a
cylinder in cross flow, the Nu [25] or the Frossling number Fr = Nu/

√
Re [26] correlate

with Re and Pr. For ice-roughened surfaces, limited data are available, but some researchers
use Fr instead of Nu [27].

The literature suggests heat transfer correlations for heat exchanger analysis. In particu-
lar, recent studies used vortex generators, geometries that share some analogy with wings,
to enhance the heat transfer in tubes. The Dittus–Boelter equation, Nu = 0.023Re0.8Pr0.4, is
modified to consider the geometry, the angle of attack, and the spacing of the vortex gen-
erators. The correlation coefficients are obtained using the least-square regression method
with experimental data [28,29]. Heat transfer enhancement by vortex generators was also
numerically studied using CFD [30] data. Instead of correlations, artificial neural network
models have been used for the performance prediction and optimization of complex heat
exchanger geometries [31].

Compared to flat plates and cylinders, heat transfer correlations for airfoil have
a minimum of two additional parameters: the airfoil shape and the angle of attack,
α. Fewer experimental data and correlations are publicly available for the convective
heat transfer around airfoil. Most notably, the works of [32,33] studied the heat transfer
coefficient in the leading edge area of an NACA0012 with smooth and rough surfaces,
for −6◦ < α < 8◦. The local Fr over the smooth surface was independent of Re close
to the stagnation point. The rough surfaces consisted of 2 mm diameter hemispheres
arranged in four patterns. Dukhan et al. experimentally measured the Fr in the first
10% of an NACA 00012 with mildly rough glaze and rough glaze ice with horns [34].
At α = 0◦, the Fr at stagnation point is a quadratic function of Re. Downstream from the
stagnation point, the local Fr is a polynomial function of the distance along the airfoil.
The polynomial constant values vary with Re. When ice accretes on an airfoil, the local
Fr increases in time as the ice roughness grows [35]. Average heat transfer correlations
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for NACA0010 [36] and the NACA 63-421 [37] are proposed based on experimental
results. Both correlations relate the average Nusselt Nu to Re. Further works expand the
correlation for NACA 63-421 to include the effects of α on Nu based on the experimental
measurements between 0◦ < α < 25◦ [38].

Instead of experiments, Samad et al. [15] used CFD to build a correlation for the Fr
number as a function of Re and α for the NACA 0012 under fully turbulent flow conditions.
They further improved the correlation to predict the post stall heat transfer using a cubic
variation with α [16]. Using experimental results on a rotor, Ref. [39] proposed correlations
to include the effects of water spray and the presence of an ice layer for α = 6◦.

The design of IPS requires the heat loss by the airfoil to the cold airflow. The BEMT and
the unsteady VLM enable the quick prediction of the aerodynamic forces and the average
heat transfer if they are coupled with correlations to include viscous effects. However,
correlations for average heat transfer are only available for three airfoils with smooth
surfaces at Re < 3× 106. The present study partially addresses this gap by studying the
effects of the airfoil thickness, the lift coefficient and the roughness on symmetric airfoil
for Re < 6 × 106. The study develops correlations for the average heat transfer over
smooth and rough airfoil. A RANS database for aerodynamic flows over symmetric airfoils
helps build the correlations. The study focuses on heat transfer before the stall for fully
turbulent flow in the range 0.625× 106 ≤ Re ≤ 6.0× 106. Three airfoil thicknesses to
cord ratios, t/c = 0.09, 0.12, and 0.15, assess the result sensitivity to the thickness. The
addition of leading edge roughness models the ice accretion effects. First, the paper presents
the RANS model used together with the meshes and the proposed average heat transfer
function. Second, the lift, drag, and heat transfer from the literature validate the RANS
model predictions. Then, the database is verified and used to suggest two heat transfer
correlations: one for the smooth airfoils, and one for the rough airfoils.

2. Materials and Methods

In the context of rotor aerodynamics, the work assumes that each blade section acts as
a quasi-2D airfoil to produce aerodynamic forces and heat transfer, and thus 3D effects such
as wing tip vortices are not included. The flow of air is compressible and fully turbulent,
and no laminar boundary layer region exists on airfoil. The heat transfer by radiation is
neglected. The conduction and the thermal inertia in the airfoil skin are negligible as the
temperature is constant in both time and space.

The heat transfer coefficients over three airfoils were obtained using CFD. The airfoils
were selected to study the results’ sensitivity to the thickness-to-cord ratio. The symmetric
NACA 0009, NACA 0012, and NACA 0015 have a maximum thickness-to-cord ratio, t/c,
of 0.09, 0.12 and 0.15, respectively, located at x/c = 0.3, as shown in Figure 1. The surface is
either smooth or rough to model the effects of small ice accretion. The roughness covers the
leading edge region, in the first 8% of the cord. The ice accretion depends on atmospheric
conditions and can sometimes extend up to 15% of the cord. The present choice of the first
8% follows from previous experimental works [40]. For this study, α goes from 0◦ up to the
stall angle.

The compressible RANS equations model the airflow around the airfoil [41]. The air is
considered to be a perfect gas, with a specific gas constant R = 287.058 J/kgK and specific
heat ratio coefficients at a constant pressure and volume γ = cp/cv = 1.4. The Sutherland
formula gives the dynamic viscosity µ for air as a function of temperature T

µ =
1.45× 10−5T3/2

T + 110
. (1)

The thermal conductivity k is obtained from Pr

k =
cpµ

Pr
. (2)



Fluids 2023, 8, 66 4 of 18

Figure 1. Comparison of the three airfoil geometries for a cord c = 1 m. Maximum thickness ratios
t/c range from 0.09 to 0.15.

The Prandtl number has a constant value of 0.72. The effects of relative humidity on
the air properties are neglected [42].

The flow is fully turbulent, for both smooth and rough airfoils. The Spalart–Allmaras
turbulent model (SA) is used for the smooth surface [43]. The SA model is commonly
used in aeronautics to model attached flow as it gives satisfactory predictions for lift and
drag [41]. The Boeing method corrects the SA model (SA-rough) to predict the flow over
rough walls [44]. This model accounts for roughness effects on the wall shear stress with
the equivalent sand grain roughness, hs, but an additional correction is needed for the
heat transfer prediction. The two parameters of the Prandtl correction model [45] add
the function ∆Prt to the otherwise constant turbulent Prandtl number, Prt = 0.9. Briefly,
the correction ∆Prt depends on hs and the physical roughness height h. For a roughness
Reynolds number Res above 70, the correction is

∆Prt = 0.136
Re0.45

s Pr0.8

1.92
, (3)

Res =
ρuτhs

µ
, (4)

uτ =
√

τw/ρ. (5)

At the wall, the SA-rough model predicts a non-zero eddy viscosity µt, and therefore
the heat flux at the wall, qw, is

qw = −(k + kt)

(
∂T
∂y

)
w

, (6)

kt =
cpµt

Prt + ∆Prt
. (7)

where
(

∂T
∂y

)
w

is the temperature gradient at the wall. Over smooth surfaces, the SA model
imposes µt = 0 and ∆Prt = 0.

The local Nusselt number is defined based on the airfoil cord c = 1 m and the recovery
temperature at freestream Tt

Nu =
qwc

(Tw − Tt)
, (8)

Tt = T∞(1 + Pr1/30.5(γ− 1)Ma2). (9)

where Ma and T∞ are the farfield Mach number and temperature. An average Nusselt
number Nu over the airfoil wet surface s can also be defined, such that
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Q =

∫
qwds
s

, (10)

Nu =
Qc

(Tw − Tt)
, (11)

for a constant wall temperature Tw = 300 K.
The 2D computational domain consists of a circle of radius 100c with the airfoil leading

edge located at the center, as illustrated in Figure 2. Riemann boundary conditions are
imposed at the farfield boundary. The Mach number is Ma = 0.2 and the temperature
is T∞ = 268.15 K. The static pressure at farfield P∞ set the density ρ = P∞/RT∞ and the
Reynolds numbers, Re = ρV∞c/µ. The turbulence model variable ν̃ is set to three times the
kinematic viscosity at farfield. At the airfoil wall, a no-slip boundary condition is imposed
together with a constant temperature. For the rough leading edge, the standard leading-
edge roughness consists of carborundum grains applied to the surface of the model [40].
In [40], 0.279 mm carborundum grains are applied to a c = 0.6096 m airfoil. The equiv-
alent sand grain roughness is hs/c = 0.001 and the roughness height is h/c = 0.00458,
corresponding to the small ice accretions between deicing cycles.

farfield

airfoil

c

100c

Figure 2. Computational domain around airfoil, but the airfoil is out of scale. The farfield boundary
is a circle of the radius of 100c centered around the airfoil leading edge.

Mixed meshes discretize the computational domain. The mesh generator Gmsh [46]
builds rectangular elements with a growth ratio of 1.15 for a normal surface distance
lower than 0.02c and triangular elements farther away. For each airfoil, three meshes
are constructed to enable a grid convergence study. Figure 3 shows a close-up view of
the airfoil leading edge for the NACA 0012 medium mesh. For the coarse, medium and
fine meshes, the first node above the surface is located at 3.5× 10−6 m, 2.5× 10−6 m and
1.8× 10−6 m. At Re = 6× 106, this corresponds to maximum dimensionless wall distances
y+ = 0.48, 0.35, and 0.25 above the smooth surface, respectively. For the rough surface and
the medium mesh, y+ = 0.7. The number of nodes on the airfoil surface is approximately
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400, 560, and 780 with a smaller node spacing close to the leading edge and the trailing edge.
For the medium mesh in Figure 3, at Re = 6× 106, x+ ≈ 70 is close to the leading edge.

Figure 3. Medium mesh close to the leading area for the NACA 0012. When activated, the rough
surface covers the first 0.08c.

The steady RANS equations are solved with a modified version of the finite volume
code SU2 version 6.2 [47]. The modifications implement the SA-rough model and the
turbulent Prandtl number correction for flow over the rough surface, as validated in [45].
The RANS and SA equations are discretized over the mesh using a cell-vertex scheme
with median dual control volumes. The space numerical integration uses the Roe scheme
for the RANS inviscid terms [48]. To reach second-order accuracy, the MUSCL scheme
is used with a Venkatakrishnan–Wang slope-limiting method [49]. For the viscous
terms, the gradients are computed using the Green–Gauss theorem [41]. The steady-
state solution is iteratively reached using an implicit time stepping scheme. An Euler
implicit time integration method is used for the flow equations with an adaptive Courant–
Friedrichs–Lewy (CFL) number, with 0.5 < CFL < 10. The flexible generalized minimal
residual method, FGMRES, solves the resulting linear system of equations using a LU-
SGS preconditioning [47]. The iterations stop when the residual of the density equation
is below 10−11.

The grid convergence method (GCI) is applied [50] to study the effects of the grid
refinement on Nu. The maximum GCI for the three smooth airfoils at α = 0◦, 10◦, and 15◦

is 0.18%. For the three rough airfoils, at α = 0◦, 5◦, and 8◦, the maximum GCI is 2%. This is
higher than for the smooth airfoil, but still acceptable to build a database for correlations.
The GCi is a measure of the grid-induced errors. At 2%, it is lower than the error induced
by the turbulence model choice between ≈ 3% and 5% according to [16].

This work assumes that Nu is a function of Re, cl , and Pr

Nu = (AReB + C c2
l )Pr1/3 (12)

for the attached and mildly separated flow. The Pr dependency is assumed for compatibility
with previous correlations.

The database contains 360 CFD simulations. The simulations are run at five Reynolds
numbers Re = 0.625× 106, 1.25× 106, 2.5× 106, 4.0× 106, 5.0× 106, and 6.0× 106. The α
range is limited by the stall angle, reached at lower values for the rough airfoils. For the
smooth airfoils, α = 0◦, 2◦, 4◦, 6◦, 8◦, 10◦, 12◦, 13◦, 14◦, and 15◦. For the rough airfoils,
α = 0◦, 2◦, 4◦, 6◦, 8◦, 9◦, 10◦, 11◦, 12◦, and 13◦. The correlation coefficients A, B, and C are
not sensitive to the three thickness ratios t/c selected.
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3. Results

The coefficients A, B, and C are determined by fitting the nonlinear regression model
Equation (12) to the CFD dataset [51]. The CFD results are first validated against experi-
mental lift and drag coefficients for the three airfoils. The Nusselt number predictions are
validated against experimental data for the NACA 0012. Then, the heat transfer results are
verified at α = 0◦ over the Reynolds range and at Re = 6× 106 over the α range. Finally,
Nu is correlated to Re and cl for smooth and rough surfaces.

3.1. Validation

With a maximum GCI around 2%, the medium mesh precision is sufficient to build
average heat transfer correlations. The CFD results for the NACA 0009 and NACA
0012 on the medium mesh are validated against experimental lift and drag coefficients
from [40,52]. Although the compressible RANS equations are solved, the compressible
effects are essentially negligible. The CFD Mach number is 0.2 and the Reynolds number
is Re = 6× 106. Figure 4 shows the cl evolution with α. For the NACA 0012, two sets of
experimental data are plotted. The cl linearly increases with α for both the NACA 0009
and NACA 0012 until around α = 12◦. At α = 13◦, the experimental results for the NACA
0009 show a decrease in cl , whereas the cl predicted by the SA model keeps increasing,
but not linearly. For the NACA 0012 experimental results, the maximum lift coefficient
is reached around α ≈ 16◦, above the maximum α = 15◦ for the CFD simulation.

Figure 4 also compares the cd as a function of cl . For NACA 0012, cd from [52]
experiments, obtained by tripping the boundary layer at the airfoil leading, is closer to the
CFD results than the untripped Abott results for cl < 1. The fully turbulent CFD results for
both airfoils are close until cl ≈ 1.2. Then, the predicted cd increases faster for the NACA
0009, most probably because the stall occurs at α = 13◦. Note that Abbott results do not
include cd values above the stall angle.

For the NACA 0015 geometry, the SA results are compared to the experimental
results [53] and numerical results [54] in Figure 5. The Reynolds number is Re = 1.6× 106.
For the SA model, the Mach number is kept at 0.2. The SA model results agree well with
the SST turbulence model results. Both numerical results fail to predict the stall angle and
maximum lift coefficient, but closely follow the experiments for α < 12◦. Although the
experimental results are for untripped flow, the predicted drag coefficients cd in Figure 5
are only slightly above the measurements before the stall angle, α < 15◦. The SST and SA
results provide similar drag predictions.
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(b) Drag coefficients
Figure 4. Comparison between CFD results and experiments for NACA 0009 and NACA 0012 at
Re = 6× 106. Legend applies to (a,b). Ladson results are obtained by tripping the boundary layer at
the airfoil leading edge. Abbot results are not tripped.
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Exp. Bertagnolio
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Figure 5. Lift and drag coefficients comparison between CFD results and experiments for the NACA
0015 at Re = 1.6× 106. Legend applies to (a,b).

For the rough results, the equivalent sand grain roughness is hs/c = 0.001 and the
roughness height is h/c = 0.00458, approximately corresponding to the experimental
grit 60 size roughness used on the NACA 0012 airfoil of c = 0.6096 m [40]. Figure 6a,b
compare the predicted cl and cd with the experimental results of [40] for the NACA 0012
with roughness at Re = 6× 106. The results for the smooth NACA 0012 are also plotted
to ease the comparison. The reduction in the maximum lift coefficient is well predicted
by the SA-rough model. The increase in the drag coefficient is similar to that observed
experimentally, with a maximum discrepancy of approximately 3%.
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(b) Drag coefficients
Figure 6. Lift and drag coefficients comparison between CFD results and experiments for the NACA
0012 with a leading edge roughness at Re = 6× 106.

Almost no data are available for the validation of the CFD average heat transfer
prediction over an airfoil. The SA-rough model coupled with the thermal Prandtl correction
was previously validated against flat plate results [45], or flow with curvature [55]. No
experimental data for average heat transfer over the airfoils at high Reynolds number and
fully turbulent flow are available. However, the heat transfer at the NACA 0012 stagnation
point is compared with the experiments. Figure 7 shows the predicted heat transfer for both
the SA and SA-rough model at the leading edge as a function of Re. The angle of attack is
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α = 0. In [56], a correlation based on the heat transfer measurement at the airfoil leading
edge in the IRT wind tunnel is given, as Nu = 6.818Re0.472. The correlation is valid for
smooth surfaces, and for the Reynolds range of the experiment, 1.2× 106 < Re < 4.5× 106.
The SA model prediction closely follows the experimental results. The SA-rough results are
also plotted to show that Nu increases with surface roughness at a lower Reynolds number,
approximately 8% of increases at Re = 2.5× 106. For Re ≥ 4× 106, the heat transfer at the
leading edge is unaffected by the roughness.

3000

4000

5000

6000

7000

8000

9000

10,000

11,000

 0  1x106  2x106  3x106  4x106  5x106  6x106

N
u

Re

SA
SA-rough
Exp. IRT

Figure 7. Nu at the leading edge: comparison between CFD results and experimental correlation
Nu = 6.818Re0.472 for the NACA 0012 at α = 0.

3.2. Database Verification

Previous experiments with airfoils at a lower Re [36,37] and correlations for heat trans-
fer in the turbulent boundary layer [23] predict that Nu should increase with Re. Figure 8
shows that Nu has a function of Re for the three airfoils. Although the roughness height hs
is constant, the roughness Reynolds number, Res increases from ≈ 50 at Re = 0.625× 106,
to ≈ 500 at Re = 6× 106. According to [57], the roughness regime is transitionally rough
for Re = 0.625× 106 and fully rough for all the others Re.

At α = 0◦, the results for rough airfoils increase faster than the results for smooth
airfoils. The effects of airfoil thickness t/c = 9%, 12%, and 15% on Nu are small once
the total heat flux is divided by the respective wet surface s = 2.02c, 2.04c, and 2.06c.
For comparisons, the correlation for the turbulent heat transfer over a flat plate of length c

Nu = (0.037Re0.8 − 871)Pr0.333

is also plotted [23]. The curve for the flat plate gets closer to the smooth airfoil results as
Re increases. The discrepancy between the rough and smooth results increases with Re,
reaching a maximum value of ≈ 9% for Re = 6× 106. This indicates that the Reynolds
exponent in Equation (12) must be different for rough and smooth surfaces.

The heat transfer locally increases above the roughness and reduces to smooth values
downstream of the first 0.08c. The fraction of the surface with roughness, sr, changes with
increasing airfoil thickness, such that sr = 0.089s, 0.094s, and 0.099s. Nu blurs the effects of
roughness. To emphasize the roughness effects, Figure 9 shows that the Nusselt number
averaged over the first 0.08c
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Qr =

∫
qwds
sr

, (13)

Nur =
Qrc

(Tw − Tt)
. (14)

Nur is significantly higher in the leading edge area than for the complete airfoil, with a
maximum value for the rough surface of 2.0× 105 compared to 0.9× 105. The results are
more sensitive to the roughness than to the airfoil thickness. As in Figure 8, the discrepancy
between the smooth and rough results increase with Re. At Re = 0.625 × 106, Nur is
≈ 13% higher for the rough surface. At Re = 6× 106, Nur is ≈ 80% higher for the rough
surface. This confirms the need for a different correlation for the flow over the rough
surface. The heat transfer decreases as the airfoil thickness increases. However, the effect of
the airfoil thickness at α = 0◦ is negligible, being at least an order of magnitude smaller
than the effects of Re and roughness.
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Figure 8. Nu function of Re: comparison between CFD results for the NACA 0009, the NACA 0012,
and the NACA 0015 at α = 0. Smooth, rough airfoil, and smooth flat plate results.

For symmetric airfoil, Nu should be maximum when α = 0◦. As cl increases, the stag-
nation point moves towards the pressure side and the curvilinear distance from the stagna-
tion point to the trailing edge increases on the suction side. The thermal boundary layer
becomes thicker on the suction side; thus, the heat transfer is reduced. This is observed on
Figure 10a for the three airfoils at Re = 6× 106 for both the smooth and rough surface. Nu
for the NACA 0009 decreases faster with the lift coefficient than Nu for the thicker airfoils.
Figure 10b shows that the predicted maximum cl for the rough airfoil is approximately 0.95
for the NACA 0009, which is below the maximum cl ≈ 1.1 for the thicker airfoils. For these
airfoils, the flow separation eventually starts at the trailing edge before the maximum lift
coefficient is reached. In the separation area, the heat transfer is further reduced. As a
consequence, Nu for the rough airfoils are lower than for the smooth airfoils, for cl > 0.9 or
cl > 1.0 depending on the airfoil thickness. Nu shows a stronger dependency on cl and
roughness than on the airfoil thickness.
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Figure 9. Nur in the leading edge area as a function of Re: comparison between the CFD results for
the NACA 0009, the NACA 0012, and the NACA 0015 at α = 0. Smooth and rough airfoil.
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Figure 10. Comparison between CFD results for the NACA 0009, NACA 0012, and NACA 0015 at
Re = 6× 106, smooth and rough leading edge.

3.3. Correlations

The average Nusselt numbers for the three smooth airfoils are gathered together to
obtain the correlation coefficients. The coefficients are estimated using the Levenberg–
Marquardt nonlinear least squares algorithm [51] such that the sum of the squares of the
deviations is minimized. The coefficients do not significantly change if the airfoil thick-
nesses are considered separately. The following correlation fits the data with a coefficient
of determination R2 = 0.998

Nu = (0.0289Re0.81 − 257c2
l )Pr1/3. (15)

The correlation predictions are compared to the CFD data for the smooth NACA 0012
airfoil on Figure 11. The Nu values are plotted at three Reynolds numbers, Re = 0.625× 106,
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2.5× 106, and 6× 106 as a function of cl . The maximum error on Nu is ±250, and it occurs
for the lowest Re number and cl > 1.1.

Similarly, the average Nusselt numbers for the rough airfoils are gathered together.
Unlike the smooth correlation Equation (15), coefficient C in front of c2

l must increases
linearly with Re to obtain a coefficient of determination R2 = 0.998

Nu = (0.0162Re0.85 − (2.23× 10−4Re)c2
l )Pr1/3. (16)

For the rough airfoils, Nu decreases faster with the lift coefficient at a higher Re, as
shown in Figure 12. At Re = 1.25× 106, the rate of decrease with c2

l is C = 279, close to
the C = 257 value in the Equation (15). For Re > 1.25× 106, Nu is more sensitive to the lift
coefficient for the rough airfoils than for the smooth airfoils.
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Figure 11. Nu as a function of cl : comparison between CFD results and correlation for the smooth
NACA 0012 airfoil.
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Figure 12. Nu as a function of cl : comparison between CFD results and correlation results for the
rough NACA 0012 airfoil.
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4. Discussion

This work proposes two correlations to predict the average heat transfer over an airfoil.
The correlations are the results of a nonlinear curve fit of a CFD database. The RANS
equations and the SA turbulence model poorly predict large flow separations. Hence,
the database focuses on fully turbulent flow around the airfoil before the stall angle.
The database assumes that the average heat transfer depends on four parameters, Nu
(Re, α, hs, t/c). The most important parameter is Re. The analysis shows that the correlation
coefficients are mostly insensitive to t/c in the studied range, 0.09 ≤ t/c ≤ 0.15. To the
best of our knowledge, this is the first time the sensitivity of the heat transfer to t/c has
been investigated. The average discrepancy between the Nu values determined from
CFD simulations and the values calculated with the correlation is 3%, with discrepancies
reaching ≈ 20% close to the maximum cl for the lowest Re.

The originality of the proposed correlations comes from the fact that they cover
Reynolds numbers up to 6× 106, relate the average heat transfer coefficient to the lift
coefficient, and take into account the surface roughness. Literature correlations for airfoil
in free stream flow are summarized in Table 1. They are mostly for laminar or transitional
flow [36] or low Reynolds number turbulent flows, Re < 3× 106 [15,38]. Some correlations
in the related literature correct the heat transfer by a factor proportional to the angle of
attack [15,38], but not the lift coefficients. Furthermore, the present study is the first to
suggest that the NACA 0009, NACA 0012, and NACA 0015 could use the same correlation
if the average is based on the wet surface.

The correlation results from Table 1 are compared against Equation (15) results for a
smooth NACA 0012 at α = 0◦ in Figure 13. The Equation (15) results agree with [15,36]
but extend the range of validity to Re = 6× 106. The results of [38] for a NACA 63-421
are noticeably lower, around Nu = 500 at Re = 1× 106 instead of Nu ≈ 2000. This is in
line with their measured value at the stagnation point. At the stagnation point, the local
Nu ≈ 900 for Re = 1.037× 106, and α = 0◦ (and cl > 0), approximately five times less than
that measured for an NACA 0012. As Re increases, the flat plate correlation results get
closer to Equation (15).
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Figure 13. Nu as a function of Re: comparison between the Equation (15) results for the NACA 0012
airfoil at cl = 0 and the correlation results at α = 0◦ for the NACA 0012 [15], the NACA 0010 [36],
the NACA 63-421 [38], and the flat plate Nu = ((0.037Re0.8 − 871)Pr1/3 [23].
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Table 1. Correlations from the literature.

Airfoil Nu Re α

NACA 0010 [36] 0.0000422Re1.3065Pr1/3 5× 105 ≤ Re < 8.1× 105 α = 0◦

NACA 0010 [36] 0.0206Re0.8356Pr1/3 Re < 5× 105 α = 0◦

NACA 63-421 [38] 0.0943(0.75 + 0.017α)Re0.636Pr1/3 5× 105 ≤ Re < 1.1× 106 0◦ < α < 25◦

NACA 63-421 [38] 2.482(0.75 + 0.013α)Re0.389Pr1/3 Re < 5× 105 0◦ < α < 25◦

NACA 0012 [15] 0.023(1− 0.389α− 0.678α2)Re0.830Pr1/3 2× 105 ≤ Re < 3.0× 106 0◦ < α < 30◦

The maximum Nu occurs for α = 0◦. For the smooth airfoils at Re > 2.5 × 106,
the average heat transfer is only slightly above the one predicted by a correlation for
a turbulent flow over a flat plate. As α increases, the lift coefficient increases and Nu
decreases. For example, a 10% decrease is observed between α = 0◦ and 15◦ for the smooth
NACA 0012 at Re = 2.5× 106. Ref. [38] has experimentally observed this diminution of
Nu for an NACA 63-421 airfoil up to α = 15◦. Ref. [15] numerically observed a similar
diminution for an NACA 0012 up to α = 30◦. Their correlations reduce Nu by multiplying
Re by a coefficient function of α, for example

Nu = A(1 + C1α + D1α2)ReBPr1/3.

The correlation from [15] set C1 = −0.389, D1 = −0.678, and predicted a 15% reduc-
tion in the average heat transfer. In the present work, the suggested correlations use cl
instead of α, similarly to most drag coefficient correlations [20].

The authors in [15] suggested a correlation for the average heat transfer over a smooth
NACA 0012 based on a CFD database and fully turbulent flows for 0.2× 106 < Re <
3.0× 106. The Re exponent is slightly higher, B = 0.830, just outside of the confidence
interval for the exponent of Equation (16), B = 0.81± 0.01. Experimental heat transfer
correlations for different airfoils, the NACA 0010 [36] and the NACA 63-421 [38], also
predicted different exponent values. The NACA 0010 results were obtained for laminar
and transitional flows, 1.0× 105 ≤ Re ≤ 8.0× 105, an angle of attack of 0◦, and constant
heat flux. For Re ≥ 5× 105,

Nu = 0.0000422Re1.3065Pr1/3.

At Re = 0.625× 106, the correlation predicts Nu = 1390 for the NACA 0010, whereas
Equation (16) predicts Nu = 1290, only a 7% discrepancy. The NACA 63-421 results were
also obtained for transitional flow, with 0.5× 106 < Re < 1.35× 106. The Re exponent
is B = 0.636. The lower exponent is probably due to the laminar part of the boundary
layer flow over the airfoil, since B = 0.5 for the average heat transfer over a laminar flat
plate [24].

As expected, the leading edge roughness increases the heat transfer [58]. Nu in-
creases faster with Re than for the smooth surface, reaching a maximum discrepancy of
approximately 10% at Re = 6× 106. Consequently, Re in Equation (16) has a higher ex-
ponent, B = 0.85, compared to B = 0.81 for the smooth Equation (15). If the average
only includes the leading area, the average heat transfer almost double at Re = 6× 106.
The leading edge roughness also reduces the stall angle and the maximum lift coefficient,
as expected. Therefore, the correlation range of validity reduces to 0◦ < α < 9◦ for NACA
0009. The Nu reduction due to the lift coefficient depends on Re, in opposition to the
smooth airfoil correlation.

No correlation for average heat transfer over a rough airfoil is available in the literature.
However, Ref. [59] correlates the Re exponent values with the average roughness height for
flow over a flat plate and a maximum correlation constant B = 0.88. The determination of
the exponent evolution in the case of the leading edge roughness requires CFD calculations
with many roughness heights. The results show that the heat transfer is more sensitive to
the roughness than to the cl for α < 8◦.
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These correlations will be useful to extend the use of low-fidelity methods, such as
BEMT, or medium fidelity method, such as VLM, to predict the heat required for IPS.
Wind turbines, unmanned aerial vehicles [39], or helicopter blades’ conceptual design or
preliminary design studies frequently use low-to-medium fidelity tools. Often, rotating
blades require an ice protection system over the entire airfoil and Nu correlations offer a
quick estimate of the electrical power needed.

5. Conclusions

Two correlations are proposed to predict the average heat transfer for attached flows
over an airfoil kept at a constant temperature. The novel form for the correlations relates
the average heat transfer to the Reynolds number and the lift coefficient, for fully turbulent
flow Reynolds numbers up to 6× 106 over smooth and rough surfaces. Equation (15)
is valid for a smooth symmetrical airfoil, with 0.09 < t/c < 0.15, and fully turbulent
flow in the range 0.625× 106 < Re < 6× 106. Equation (16) is valid for symmetrical
airfoil, with 0.09 < t/c < 0.15, leading roughness, and fully turbulent flow in the range
0.625× 106 < Re < 6× 106. The leading edge roughness cover the first 0.08c, the equivalent
sand grain roughness is hs = 0.001c and the roughness height is h = 0.00458c. Future
works should consider the effects of roughness size and extend around the leading edge.
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