
Citation: Bashir, M.; Zonzini, N.;

Botez, R.M.; Ceruti, A.; Wong, T.

Flow Control around the UAS-S45

Pitching Airfoil Using a Dynamically

Morphing Leading Edge (DMLE): A

Numerical Study. Biomimetics 2023, 8,

51. https://doi.org/10.3390/

biomimetics8010051

Academic Editors: Antonio Concilio,

Salvatore Ameduri, Ignazio Dimino

and Rosario Pecora

Received: 11 December 2022

Revised: 20 January 2023

Accepted: 24 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Flow Control around the UAS-S45 Pitching Airfoil Using a
Dynamically Morphing Leading Edge (DMLE): A
Numerical Study
Musavir Bashir 1, Nicola Zonzini 2 , Ruxandra Mihaela Botez 1,* , Alessandro Ceruti 2 and Tony Wong 1

1 Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE), Department of
Systems Engineering, École de Technolgie Supérieure, 1100 Notre-Dame West,
Montreal, QC H3C 1K3, Canada

2 Department of Industrial Engineering, University of Bologna, Via Zamboni, 33, 40126 Bologna, Italy
* Correspondence: ruxandra.botez@etsmtl.ca

Abstract: This paper investigates the effect of the Dynamically Morphing Leading Edge (DMLE)
on the flow structure and the behavior of dynamic stall vortices around a pitching UAS-S45 airfoil
with the objective of controlling the dynamic stall. An unsteady parametrization framework was
developed to model the time-varying motion of the leading edge. This scheme was then integrated
within the Ansys-Fluent numerical solver by developing a User-Defined-Function (UDF), with the
aim to dynamically deflect the airfoil boundaries, and to control the dynamic mesh used to morph and
to further adapt it. The dynamic and sliding mesh techniques were used to simulate the unsteady flow
around the sinusoidally pitching UAS-S45 airfoil. While the γ− Reθ turbulence model adequately
captured the flow structures of dynamic airfoils associated with leading-edge vortex formations for a
wide range of Reynolds numbers, two broader studies are here considered. Firstly, (i) an oscillating
airfoil with the DMLE is investigated; the pitching-oscillation motion of an airfoil and its parameters
are defined, such as the droop nose amplitude (AD) and the pitch angle at which the leading-edge
morphing starts (MST). The effects of the AD and the MST on the aerodynamic performance was
studied, and three different amplitude cases are considered. Secondly, (ii) the DMLE of an airfoil
motion at stall angles of attack was investigated. In this case, the airfoil was set at stall angles of attack
rather than oscillating it. This study will provide the transient lift and drag at different deflection
frequencies of 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz. The results showed that the lift coefficient for
the airfoil increased by 20.15%, while a 16.58% delay in the dynamic stall angle was obtained for an
oscillating airfoil with DMLE with AD = 0.01 and MST = 14.75◦, as compared to the reference airfoil.
Similarly, the lift coefficients for two other cases, where AD = 0.05 and AD = 0.0075, increased by
10.67% and 11.46%, respectively, compared to the reference airfoil. Furthermore, it was shown that
the downward deflection of the leading edge increased the stall angle of attack and the nose-down
pitching moment. Finally, it was concluded that the new radius of curvature of the DMLE airfoil
minimized the streamwise adverse pressure gradient and prevented significant flow separation by
delaying the Dynamic Stall Vortex (DSV) occurrence.

Keywords: morphing; unsteady parameterization; Dynamically Morphing Leading Edge (DMLE);
dynamic stall; flow control

1. Introduction

Modern Unmanned Aerial Vehicles (UAVs) have various advantages, including low
operating costs, the ability to fly in risky conditions, and long flight endurance. UAVs
are used for fire detection, search and rescue, wildlife monitoring, and security surveil-
lance [1,2]. The fixed-wing UAV plays an essential role in such missions due to its long
endurance and high payload capacity. However, UAVs are designed for particular missions,
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indicating that they can perform well for these flight conditions; however, their perfor-
mance is suboptimal for their multi-point flight envelope. In addition, during various flight
conditions, UAVs might experience a sudden variation of pitch attitude due to the necessity
of performing extraordinary maneuvers or to unexpected external disturbances, such as
vertical wind gusts. Consequently, an abrupt and sudden change in the angle of attack may
develop non-linear unsteady aerodynamic effects such as dynamic stall on the aircraft.

Furthermore, UAVs are currently holding most of the market share [3], and expect
to contribute up to 20% of the global aviation market by 2037. Therefore, designers are
encouraged to develop breakthrough technology to meet the Green Aviation standards,
and reducing fuel consumption has become very important for the environment and air
transportation. The challenges of meeting the demands for lower emissions and higher
levels of air transport have increased the demand for new research ideas to produce more
efficient and ecologically friendly aircraft.

Researchers have attempted to mimic bird flight to improve the aerodynamic per-
formance of a broader flight envelope. However, such an attempt requires a high level
of technology readiness, which allows it to be installed on UAVs because of safety and
weight concerns [4,5]. This possibility of meeting the desired aerodynamic efficiency by
mimicking the bird flight is the new generation morphing wing technology. The early
years of aeronautical research focused on biomimetic techniques based on flexible and
highly deformable structures to mimic the ability of birds to adjust their shape to different
flight cases. The Research Laboratory in Active Controls, Avionics, and AeroServoElasticity
(LARCASE) team is studying several approaches for reducing fuel consumption [6–16],
including the use of morphing wing technologies, such as the morphing leading edge
prototype demonstrates the possibility of modifying the stall angle of the wing. It was
shown that the stall angle of the wing was delayed using a downward deformation of
the leading edge [17,18]. An experimental and numerical analysis was carried out for a
UAS-S45 wing geometry with the aim to improve the laminar flow on the upper surface
of the wing, between 10% and 70% of the chord [19–21]. The morphing optimization
considered different flight conditions, such as take-off, cruise, landing, stall, etc. It was
shown that for all investigated cases, a significant transition improvement was obtained.

Traditional hinged lifting mechanisms and trailing edge surfaces control airflow aero-
dynamically, but they also increase drag [22]. These hinged surfaces have drawbacks in
both deployed and retracted states [23]. When hinged surfaces are deployed, the gaps
between the high-lifting surface and the wing can create noise, turbulence, and early transi-
tion. Retracted trailing edge hinges provide a turbulent boundary layer. Various techniques
have been implemented recently to enhance aerodynamic efficiency. One such solution is
the morphing wing technology, a promising state-of-the-art innovation [24–26]. Several
research programs have achieved significant results in the field of aircraft morphing [27–29].

The use of morphing wing technology as a flow control technology has resulted in effi-
cient aerodynamic designs [30–33]. Dynamic stall control is especially significant because
it occurs in all aerospace applications, such as on UAVs [34,35], helicopter rotors [36,37],
wind turbines [38,39], military aircraft [40,41], and others. Researchers have focused on
tackling the dynamic stall phenomenon experienced by pitching oscillating airfoils for
several years [42–46]. Dynamic stall is caused by a rapidly pitched airfoil, wing, or tur-
bine blade. The Leading-Edge Vortex (LEV), or Dynamic Stall Vortex (DSV), is a critical
component of dynamic stall, as it increases the lift coefficient. However, this excess lift is
lost when the vortex sheds into the wake, thus increasing drag and shifting the pitching
moment. Since the discovery of dynamic stall, researchers have tried to understand its
mechanics and to modify the LEV formation. Altering the LEV formation may increase an
aircraft’s operational envelope.

Numerous flow control devices have been developed to avoid flow separation and to
mitigate dynamic stall effects. They can be classed into active and passive, based on their
operational principles. Vortex generators, micro-tabs, and serrated trailing edges are all
examples of passive control mechanisms, while active control mechanisms include trailing-
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edge flaps. synthetic jets, plasma actuators, etc. The use of leading-edge slats [47,48],
trailing-edge flaps [49,50], synthetic jet/periodic excitations [51–53], plasma actuators [54],
vortex generators [55], and dynamically deformed leading edges [56] to accomplish the
flow control has been studied.

Several studies have been carried out to investigate the aerodynamics of morphing
wings and their stall properties. The Reynolds-Averaged Navier-Stokes (RANS) equations
were used to analyze adaptive morphing trailing-edge wings, thus producing a drag
reduction on-design of 1%, and 5% off-design [57]. The lift-drag ratio increased by 6.5% for
the morphing wing [58]. The numerical simulations of a NACA0012 airfoil with a flexible
trailing edge showed that the morphing surface could postpone the beginning of flow
separation with the aim to achieve optimal aerodynamic performance [59,60].

An active dynamic stall control technique with deployable LEV generators was de-
veloped in [61]. For a dynamic stall flight, the active flow control would only be triggered
on the retreating side of the blade to avoid increasing blade drag. The vortex generators
performed very well in the wind tunnel, as they delayed the static stall and reduced the
dynamic stall penalties. The static stall angle increased by three degrees, and the negative
pitching moment peak was lowered by 60% for the dynamic stall.

The impact of synthetic jet control on the unstable dynamic stall over a rotor airfoil
using numerical simulations was explored in [62]. The numerical findings indicated
that the dual jet could significantly increase the control efficiency of the rotor airfoil’s
dynamic stall compared to the single jet. A high-frequency control method for dynamic
stall mitigation that takes advantage of the natural instabilities of the laminar separation
bubble (LSB) to delay the occurrence of Dynamic Stall Vortex (DSV) was proposed in [63,64]
and merits further investigation. The effect of the trailing edge flap (TEF) on mitigating
DSV-induced substantial negative pitching moments and negative aerodynamic damping
was investigated in [65]. The authors hypothesized that the substantial negative pitching
moments and related negative aerodynamic damping were caused by the TEV. The effect of
the oscillating TEF on the dynamic loads generated by an airfoil was evaluated [66,67]. The
TEF motion did not affect the creation or separation of the DSV, but the TEF’s deflection
increased the airfoil’s maximum lift.

A study investigating the effect of a TEF on the dynamic stall at high speeds for wind
turbines was presented in [68]. The TEF pitching impacts the load fluctuation loops. The
trailing edge flap reduced cyclic variability by 26% in terms of root bending moment. These
findings help in better understanding how TEFs reduce wind turbine blade load changes.
Unsteady aerodynamic loads were applied on an airfoil by a TEF deflecting at various
frequencies [69]. Phase delay between an airfoil angle of attack and the initial flap deflection
was investigated. When the airfoil’s angle of attack and TEF deflection both increased, the
TEF oscillations increased the maximum lift coefficient.

A hybrid RANS-LES technique was used to investigate the airfoil morphing aero-
dynamic performance with a deflecting TEF [70,71]. Morphing enhanced the lift-to-drag
ratio by 6%. Similar type results were obtained for the aerodynamic and aero-acoustic
responses of an airfoil fitted with a harmonically morphing TEF [72]. Larger morphing
TEF amplitudes increased Sound Pressure Levels (SPLs), and all morphing cases studied
shifted the main tonal peak to a higher frequency that led to a 1.5 dB reduction in the
predicted SPL.

A two-dimensional multi-element dynamic stall solver was investigated to demon-
strate the leading edge slat’s effectiveness in controlling dynamic stall [73]. The major
drawback of these slats was their high drag penalties associated with their use under
off-design conditions. A retraction mechanism similar to that found on aircraft would be
practically heavy and expensive.

Since the local shape of the airfoil leading-edge influences DSV production, changing
the leading-edge shape is an efficient technique to reduce dynamic stall effects [74]. Active
flow control based on a Variable Droop Leading-Edge (VDLE) device reduced local Mach
number and improved pressure distribution near the leading edge, therefore postponing or
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eliminating dynamic stall without significant lift changes [75]. The concept of a dynamically
deforming leading edge was proposed, where the airfoil shape was gradually changed, and
the leading-edge radius increased as the airfoil pitched upwards [76]. Airfoils with large
leading-edge radii tend to have mild adverse pressure gradients, as the local velocities are
lower than those of a conventional airfoil. As the airfoil pitches downwards in the absence
of a stall the airfoil returns to its original shape. In another study, the leading-edge droop
was integrated on the Gurney flap to improve rotor airfoil dynamic stall and post stall [77].
The deflection of a 20◦ leading-edge droop with that of a 0.5% chord Gurney flap effectively
delayed dynamic stall. The maximum lift coefficient increased, while the negative pitching
moment decreased, and the lift-to-drag ratio increased with respect to reference designs.

The potential benefits of controlling and further delaying this nonlinear aerodynamic
stall effect could be achieved by employing a Dynamically Morphing Leading Edge (DMLE).
An in-depth understanding of the unsteady flow physics characterizing this class of mor-
phing wings would be helpful. The DMLE concept as a comprehensive investigation of
different parameters, such as the deflection frequency, the extent of deflection, and the
morphing starting time, is barely found in the literature. This study aims to track the
occurrence and development of an LEV and reduce the flow separation, thereby, avoiding
the dynamic stall. The dynamic stall control with the DMLE on an oscillating UAS-S45
airfoil is evaluated using unsteady RANS equations. Two different studies and analyses
are proposed and investigated.

2. Methodology

This study investigates the effect of a Dynamically Morphing Leading Edge (DMLE) on
the dynamic stall of the UAS-S45 airfoil. The influence of the upward and downward airfoil
deflections on the development process of the Dynamic Stall Vortex (DSV) is presented
for the oscillating airfoil. To simulate the dynamic stall phenomenon, the pitching of the
airfoil is governed by a time-dependent sinusoidal equation that guarantees a bounded
time variation of the angle of attack. The pitching motion results in the generation of
a periodic hysteresis cycle of the aerodynamic coefficients, including the lift, drag, and
moment coefficients. The following sinusoidal mode Equation (1) governs the airfoil
pitching motion about its 1

4 chord position:

α(t) = αm + αa sin(ωt) (1)

where αm = 11◦ is the mean incidence angle, αa = 20◦ is the amplitude, ω is the angular
velocity and t is the time.

The reduced frequency (k) is defined in Equation (2):

k =
ωc

2U∞
(2)

where U∞ is the freestream velocity and c is the airfoil chord length. A reduced frequency
of k = 0.08 was chosen for the airfoil pitching motion and the Reynolds number based on
the unit chord length and free-stream velocity of 35.5 m/s was set to 2.4 × 106.

2.1. Leading Edge Parametrization

The morphing leading edge geometry and its unsteady deformation must be defined
in order to obtain the DMLE airfoil. These definitions require a parametrization technique
that can accurately characterize the airfoil boundary/geometry. By using specific control
parameters from the 4-digit NACA airfoil, it was possible to dynamically adjust the camber
line of the targeted morphing region of the chord and to design a new airfoil shape that
included the time variable in the parametrized equations of the trailing edge geometry [78].
However, due to the UAS-S45 airfoil asymmetry, it was impossible to directly adopt and
converse the mathematical model of symmetric airfoil [78]. Therefore, a different concept
was developed here for the asymmetric airfoils. The camber of an asymmetric airfoil
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determines its curvature and its type. Figure 1 shows the parameters considered in the
leading-edge morphing model. The beginning of the morphing region is given by the
parameter xi, and the maximum displacement of the outermost leading-edge coordinate is
given by Wle.
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The essential requirement for designing a DMLE framework is the development of
the parametric equations for the camber line and the airfoil thickness distribution. These
equations are developed for the asymmetric UAS-S45 airfoil model and are therefore used
in the present study. The airfoil thickness distribution is given by Equation (3):
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Depending on the airfoil part being considered (Leading-edge or Trailing edge) and on
the chosen starting point of its morphing, it is possible to use Equation (4) or Equation (5):
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where M is the maximum value of the percentage chord line, and P is the chordwise position
of the maximum camber in 10′s of the chord. For the definition of the camber line, since M
and P for an asymmetric airfoil are not zero, the value of P serves to divide the camber line
approximation into two separate equations in which both M and P appear.

After the definitions of the airfoil mean camber line in Equation (4) or Equation (5), a
second-order polynomial function is introduced to define the new camber line equation of
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the morphing airfoil portion. In order to obtain control of the maximum deflection of the
leading edge, Equation (6) is parametrized and defined as follows:

y f

c
=

{ y f
c −Wle

(xi−x)2

x2
i

, 0 ≤ x ≤ xi

0, xi ≥ x

}
(6)

where y f is the final y-coordinate of the new morphing airfoil camber line, Wle is the value
of the maximum deflection of the leading edge, and x is the x-coordinate of the selected
control point. The maximum limit of leading-edge deflection was set to 0.05c and the airfoil
was initially (xi) set at baseline position.

To achieve a continuous deflection of the leading edge during transient flow simula-
tions, the time variable must be introduced in the governing equations of the parameter-
ization model. The parametrization equation was extended to include the time variable,
while the parametrized camber line equation was modified with the aim to express the
camber line as a function of time. The unsteady dynamic motion of the upper and lower
surface airfoil coordinates is obtained by adding the thickness distribution to the time-
dependent camber line equation. Moreover, the airfoil deflecting motion was designed to
start from the baseline configuration, then reach a maximum downward target position.
It will then return to its initial baseline configuration, and a sinusoidal function has been
chosen and further used. The parametrized time-dependent camber line is defined by the
following equation:

y f

c
=

{ y f
c −WLE sin(2πt f ) (xi−x)2

x2
i

, 0 ≤ x ≤ xi

0, xi ≥ x

}
(7)

where t is the time variable, and f is the airfoil deflection frequency (cycles per second).
Five main parameters were determined to be of crucial importance for the airfoil

morphing control: M, P, y f , Wle and xi. Figure 2 depicts some of these parameters.
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2.2. Computational Domain and Grid Definitions

The size and shape of the computational domain affect the quality of results, which
is also based on the geometry’s aerodynamics. For the present aerodynamics scenario,
the 2D computational domain is represented by a C-shaped grid with 20 times the chord
length (20c) upstream and 30 times the chord length (30c) downstream. Such lengths were
found to be large enough to ensure that the outer domain boundary conditions do not
influence the airfoil flow and that they are small enough to keep the computing power in
a reasonable range. In this study, both unstructured and structured hybrid meshes were
considered, as illustrated in Figure 3, with a structured quadrilateral layer mesh near the
airfoil and with an unstructured triangle mesh elsewhere. With a blunt trailing edge, it is
possible to obtain O-shaped block layers surrounding the airfoil and thereby minimize any
instabilities caused by sharp trailing-edge corners.
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Figure 3. Computational domain with (a) hybrid mesh, (b) structured mesh around the airfoil, and
(c) DMLE UAS-S45 airfoil mesh.

Wall condition parameter y+ defines a dimensionless height of the first grid point
measured from a wall, that is utilized to evaluate the ‘near-wall’ mesh requirements. To
appropriately represent the near-wall mesh, a grid that meets a turbulence model’s wall
y+ requirements are obtained. In the current investigation, the γ− Reθ turbulence model
required that the first airfoil cells should be situated in the viscous sublayer; thus, a y+ less
than one was targeted.

2.3. Validation of Results

The time history variation of the lift coefficient illustrated in Figure 4a displays a
sudden stall after the maximum value of the lift coefficient (peak). Immediately afterward,
a downstroke phase is characterized by the unsteady behavior of the flow. This trend quali-
tatively agrees with dynamic stall lift coefficient behavior. To better assess the simulation
convergence, the lift coefficient and drag coefficients for nine pitching cycles are shown
in Figure 4 and it shows that a very negligible difference is observed and the standard
deviation between two successive pitching cycles was evaluated.
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Figure 4. Time history of the (a) lift coefficient and (b) the drag coefficient.

The outcome of this evaluation highlighted a little difference between the lift and
drag coefficients between the successive pitching cycles. The difference between the
force coefficients of the second cycle versus those of the rest of the cycles was negligible,
approximately 0.01%. In addition, a maximum y+ factor of 0.96 was found along the airfoil
surface on the second pitching cycle, thus securing a correct first layer’s height.

Table 1 presents the properties of three different grid sizes used for grid independency
investigations. Figure 5 shows the lift coefficient variations with the angle of attack for
these three grid sizes. There is a good correlation between these results. The lift coefficients
obtained for grid size 1 and grid size 2 are slightly different in the downstroke phase,
while their stall values (the peak of the lift curve) have a slight variation from each other.
Additionally, the fluctuations in the lift coefficient for all three grid sizes are similar in
shape and magnitude. Only very small lift coefficient discrepancies are visible between
grid size 3 and the other two grid sizes during the upstroke, while a small difference can
be seen between the lift coefficients in the downstroke. The flow reattachment location for
all three grid sizes is the same. Therefore, grid size 2 was selected as the computational
domain due to its acceptable (medium-sized) cell number and overall good results.

Table 1. Grid properties of the three grid sizes for the grid-sensitivity analysis.

Grid Size Number of Cells Min Length Max Length Bias Factor

1 62 626 0.001 0.06 1.12

2 103 212 0.001 0.035 1.08

3 206 038 0.001 0.02 1.05

Figure 6 compares the NACA 0012 airfoil model’s computed lift and drag coefficients
to their experimental values [79] and numerical results from the previous literature [80] for
the Reynolds number 2.5 × 106, the reduced frequency k = 0.10, and angles of attack of 5◦

to 25◦, with a mean incidence of 15◦ were validated while the second simulation used the
numerical data from [80] for the same settings.
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The γ− Reθ turbulence model can forecast the results’ trend. The lift coefficient corre-
sponds to its experimental value in the upstroke phase, but it predicts the stall differently
than its experimental value. As the unsteady analysis is often dissipative, it reduces the
flow intensity and thus the kinetic energy. The numerical result is good, as it captures the
load variation trend before the stall region. The range of differences in the peaks of the lift
coefficient is small. The downstroke variations are due to the extensive post-stall process,
and they result in a discrepancy in the initial LEV prediction.
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Figure 6b illustrates the drag coefficient variation with the angle of attack, revealing
the notable difference when α > 12, as the deep stall causes the drag to increase. In
numerical simulations [80], the drag coefficient with the angle of attack is lower than
the drag coefficient obtained in other simulations. However, our numerical results of an
airfoil’s maximum drag coefficient are lower than the experimental results due to large
vortices on the airfoil surface and to the flow’s three-dimensionality. These vortices occur
because of the persistent flow separations at high angles of attack, which makes it difficult
to effectively describe the viscous effects near the airfoil surface. The CFD simulations in
our study also indicate a secondary LEV that contributes to the recovery of the lift and drag
coefficients around the maximum angle of attack.

3. Discussion of Results

This study examines the unsteady aerodynamic characteristics obtained by the same
oscillating baseline airfoil equipped with a variable morphing leading edge. Since an
oscillating function controls the temporal deformation of the leading edge, a frequency
parameter must be considered. The pitching-oscillation motion is invariably controlled
by Equation (1) where αmean = 11◦, αamp = 20◦ and a reduced frequency of k = 0.08. The
operating Reynolds number used was 2.4× 106 with a freestream velocity of U∞ = 35.5 m/s
and a turbulence intensity of Tu = 0.1%.

Two broader studies are considered (i) The Dynamically Morphing Leading-Edge
(DMLE) of an oscillating airfoil is investigated first. In this study, the pitching-oscillation
motion of an airfoil is defined, and the parameters such as the droop nose amplitude (AD),
and the morphing starting time (MST) in terms of pitching angles are carefully chosen. The
effects of the variation of AD and of MST on the aerodynamic performance of the airfoil are
studied, and three different amplitude cases considered are AD = 0.01, 0.005, and 0.0075.
Furthermore, the combinations of AD and MST are evaluated with the aim to find optimal
results; (ii) The Dynamically Morphing Leading-Edge (DMLE) of an airfoil settled at stall
angles of attack is investigated. In this case, the airfoil does not oscillate, but only the
DMLE motion is studied at stall angles of attack. This analysis is performed to provide
further insights into the transient lift and drag forces for the deflection frequencies of 1 Hz,
2 Hz, 5 Hz, and 10 Hz.

3.1. Results for an Oscillating Airfoil with Dynamically Morphing Leading Edge (DMLE)

Numbered The parameter AD determines the deformation extent along the airfoil
chord. The different airfoil deformations for different values of AD are shown in Figure 7.
These deformations indicate that the values of AD vary with the angle of attack.

Figure 8 compares the aerodynamic coefficients of the dynamically morphing leading-
edge airfoils to those of a reference airfoil with respect to the angle of attack over one
complete hysteresis cycle. Figure 8a shows that only the case with MST = 14.75◦ has
successfully increased CL,max with respect to the reference airfoil. It is also clear that in
this case, while the morphing leading edge has increased CL,max, it also has a delayed stall
angle of attack. The main objective of this study is to delay or increase the stall angle since
its delay helps to maintain favorable lift coefficient values even in the downstroke phase of
the cycle. However, this result indicates that a strong vortex has been formed in the leading
edge of the airfoil, which later results in the dynamic stall. Instead, for MST = 24.50◦, both
upstroke and downstroke motions exhibit a similar trend to the baseline oscillating airfoil.
This behavior clearly shows the importance of choosing an adequate MST for the airfoil
morphing deformation. In fact, by assuming an MST very close to the end of the upstroke
would not allow the leading edge to deform sufficiently, thereby no major flow variation
over an airfoil is observed.
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(AoA) smaller than 30°, and the 𝐶஽,௠௔௫ increases substantially at the peak angle with re-
spect to the reference airfoil only at 𝑀ௌ் = 14.75°, as seen in Figure 8b. Therefore, the drag 
coefficient of the DMLE airfoil remains low for a large range of angles of attack. After its 
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Figure 7. The reference airfoil in comparison with the DMLE airfoils; (a) both the dynamically
morphing airfoils are overlapping each other at pitch angle of 20.26◦, (b) the airfoil with AD = 0.01
deflects more even the morphing starts after AD = 0.005 at pitch angle of 21.79◦, (c) the deflection of
AD = 0.005 airfoil is increasing and (d) the deflection of AD = 0.005 airfoil is large as compared to
AD = 0.01 because it continues to morph till higher pitch angles. These figures show that the droop
nose amplitude and morphing starting time have significant effect on the airfoil leading edge shape.
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For the MST = 14.75◦, the lift coefficient increases almost linearly until 28◦, after which
an increase in the CL is observed. As shown in the lift coefficient curves in Figure 8a, the
flow reattachment occurs early in the case of the reference (no deformation) airfoil, and for
the airfoil with MST = 24.50◦. In fact, at the angle of 28◦, these two airfoils exhibit very low
lift coefficient values due to the already separated leading edge vortex. Beneficial behavior,
in terms of CL,max increase and a delay of αstall delay is obtained if the deformation starts
early by allowing the LEV to keep increasing on the suction side of the airfoil.

Similarly, the drag coefficients are lower for both DMLE airfoils at an angle of attack
(AoA) smaller than 30◦, and the CD,max increases substantially at the peak angle with
respect to the reference airfoil only at MST = 14.75◦, as seen in Figure 8b. Therefore, the
drag coefficient of the DMLE airfoil remains low for a large range of angles of attack. After
its comparison with the reference airfoil that has no deformation, the airfoil at MST = 24.50◦

show similar behaviour. However, at MST = 14.75◦, the DMLE is not very efficient in
reducing the drag values at stall angles of attack.

When AoA = 21.79◦, the reference airfoil develops a strong LEV, seen as a “bump”
in the surface pressure distribution in Figure 9a. When the angle of attack reaches an
AoA = 26.95◦, the LEV has increased in size and spread over a large part of the airfoil upper
surface. There is a rapid reduction in the leading-edge suction peak due to the separation of
the vortex. This shedding is accompanied by a large, abrupt decrease in the lift coefficient,
as indicated in Figure 9a.
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Figure 9. Pressure coefficients of the (a) reference airfoil at an AoA = 21.79◦, (b) reference airfoil at an
AoA = 26.95◦, (c) the DMLE airfoil at an AoA = 21.79◦, and (d) the DMLE airfoil at an AoA = 26.95◦.

For an airfoil with AD = 0.01 and MST = 14.75◦, no strong LEV is visible. In Figure 8a,
at an upstroke with an AoA = 20.3◦, the flow evolves slowly and remains attached to the
airfoil with a small LSB starting to form. When AoA = 25.5◦, the LEV develops along
the leading edge and continues to grow slowly. The increase of the angle of attack to an
AoA = 27.3◦ increases the LEV size.

Figure 10 compares the aerodynamic coefficients of two different MST cases of DMLE
airfoils to those of a reference airfoil with respect to the angle of attack over one complete
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cycle. Low value of AD (AD = 0.005) and MST were chosen for these cases. Figure 10a
shows that the DMLE airfoils both increased their CL,max values by 22.48% from 2.49 to 3.04
(case MST = 9.25◦), and from 2.49 to 2.62 (case MST = 1.86◦) with 5.22%. It is also clear that
the DMLE increased the CL,max with the increase in the stall angle of attack; that was one
of the significant goals of this study, because of the fact that the stall angle of attack delay
helps to maintain the airfoil lift coefficient value, even in the downstroke cycle. However,
this result indicates that there is a strong flow separation once the downstroke starts.
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Figure 10. Hysteresis cycles for (a) the lift coefficients of DMLE airfoils and (b) the drag coefficients
of DMLE airfoils, presented in comparison to the reference (unmorphed) airfoil.

As seen in Figure 10a, where AD = 0.005, compared to the previous cases where
AD = 0.01, the lift coefficient of the new DMLE airfoils increases slightly for high angles of
attack. In both these cases, the lift coefficients are higher as the angle of attack increases,
and therefore stall is delayed. As seen from the lift coefficients variation curves, the flow
reattachment occurs earlier for the reference airfoil and the DNLE airfoil with MST = 1.86◦,
which is the opposite behavior than that observed in the previous analysis for AD = 0.01.
In this case (MST = 1.86◦), initiating the deformation early in the upstroke phase influences
the flow field and thus results in a premature LEV separation.
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Similarly, the drag coefficients are low for the DMLE with the MST = 1.86◦ for angles
of attack smaller than 30◦ than the drag coefficients of the reference airfoil. However,
the CD,max for the other case (MST = 9.25◦) increases substantially for the same angles of
attack with respect to the CD,max of the reference airfoil, as seen in Figure 10b. The sudden
CD,max increase of this latter case can be attributed to the corresponding increase in lift,
developed as a consequence of the ongoing LEV. On the other hand, when compared with
the reference airfoil, the MST = 1.86◦ case shows a smaller CD trend. In this case, the DMLE
is able to drastically reduce the drag over the entire pitching cycle.

Similarly, it can be seen from Figure 11a that the maximum lift coefficient (CL,max)
of the DMLE airfoils increases slightly for high angles of attack. In addition, the flow
reattachment for DMLE airfoils occurs earlier as the transition point moves from the
trailing towards the leading edge. It thus appears that the DMLE airfoil performance
increases during the downstroke. At an angle of attack of 10 degrees, the flow field attaches
to both airfoils. The values of drag coefficients of DMLE airfoils at high angles of attack are
lower than those of the reference airfoil, as shown in Figure 11b.
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Figure 12a compares the aerodynamic coefficients for three different amplitudes (AD)
to those of a reference airfoil. It is clear that the different amplitudes result in higher CL
values for all the DMLE airfoils during the upstroke. At lower values of AD (AD = 0.01) and
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MST = 14.75◦, the CL,max reaches 3.04, while the reference airfoil’s CL,max is 2.53, showing a
20.15% increase in CL,max. However, the flow reattachment for this case of the DMLE airfoil
is delayed compared to that of the reference airfoil during the downstroke. During the
pitching oscillation of the reference airfoil, the flow separation and stall occur at an angle of
attack of 25◦. However, with the droop deformation of the leading edge, the stall occurs at
an angle of attack of 30◦, thereby delaying the stall by 5◦.
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In the case when AD = 0.005, slightly higher lift coefficients are found, as CL,max
increased from 2.53 to 2.8, with a 10.67% increase in comparison to the reference airfoil
(Figure 12a). As the value of AD varies with the morphing time (MST), the main part of the
droop deformation is closer to the leading-edge point. In case of AD = 0.05, the stall angle
is delayed 12% in comparison to the reference airfoil. In addition, the flow reattachment
occurs earlier in this DMLE case.

With AD = 0.0075, the lift coefficient of the DMLE airfoil increased by 11.46% as
compared to the reference airfoil, and the flow was also reattached earlier for the DMLE
airfoil as compared to that of the reference airfoil. This DMLE airfoil also results in reduced
drag coefficients as compared to the reference airfoil during both the upstroke and the
downstroke cycles.
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Similarly, Figure 12b shows the drag coefficients variations with the angle of attack
of three DMLE airfoil cases (AD = 0.01, 0.005 and 0.0075) in comparison to those of the
reference airfoil. It is seen that the CD,max value is higher for the DMLE airfoil than the
CD,max of the reference airfoil. In the downstroke, the CD values are lower than those of
the reference airfoil. This fact indicates that by controlling the DMLE airfoil deflection
and the morphing starting time, the maximum aerodynamic coefficients can be improved
accordingly. The LEVs are formed much earlier in the reference airfoil than in the DMLE
airfoil, thus suggesting that the stall angle of attack delay helps to increase the airfoil lift
coefficient, even in the downstroke cycle.

Therefore, it can be concluded that among the three droop amplitudes (AD), AD = 0.005
provides the best performance considering the overall aerodynamic efficiency. It is worth
noting that the variation of the MST significantly affects the aerodynamic coefficient values.
According to the definition of droop deformation, the droop rate varies with the time
steps and therefore, the leading-edge shape also changes accordingly. This conclusion also
reveals that the MST should be studied along with AD to further investigate and improve
the overall DMLE performance gains.

The reference airfoil’s flow streamlines and velocity contours, and those of airfoils
with AD values of 0.01 and 0.005, are all shown in Figure 13a–c, respectively. Figure 13a
shows the flow development for the reference airfoil at various upstroke angles of attack.
At 20.26◦, the tiny LEV of the reference airfoil is seen. The vortex size increases as the angle
of attack increases to 21.79◦. Along with the primary LEV, secondary, and tertiary LEVs are
also formed. A Dynamic Stall Vortex (DSV) occurs as the angle of attack increases between
26.95◦ and 30.90◦; thereby the flow increases through the boundary layer as secondary and
tertiary vortices occur.
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Figure 13. Velocity contours with flow streamlines for the (a) reference airfoil, (b) DMLE airfoil with
AD = 0.01 and (c) DMLE airfoil with AD = 0.005.

In the case of DMLE airfoils, as seen in Figure 13b, the flow separation phenomenon is
not seen at low angles of attack, such as 20.26◦ and 21.79◦, as the flow remains attached
to the airfoil. At an angle of attack of 26.95◦, the leading-edge suction increases, the LEV
moves towards the trailing edge, and the TEV has formed accordingly. Then, the flow fully
separates at an angle of attack of 30.90◦. Figure 13c shows the flow phenomena for the
DMLE airfoil with AD =0.005 at different angles of attack. It shows similar behaviour as
observed in the case with AD = 0.01.

Therefore, it can be concluded that the DMLE airfoil cases with different deflection am-
plitudes improve aerodynamic efficiency (CL,max, CD,max) and delay the dynamic stall angle.
The flow remained largely attached to the DMLE airfoils and the separation phenomena
associated with a dynamic stall were reduced.
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3.2. Results for Dynamically Morphing Leading Edge (DMLE) of a Fixed Airfoil

Figures 14–17 show the transient lift and drag coefficient for the DMLE airfoils at five
different frequencies at an angle of attack of 22◦ degrees. This angle of attack was chosen
because the flow is fully separated, and major vortices are formed at 22◦. For all these
simulation cases, the DMLE begins drooping at t = 1.5 s. The transient lift coefficient peaks
increase as the leading edge keeps morphing dynamically. At low frequencies, such as
0.5 Hz, 1 Hz, and 2 Hz, the lift slope decreases when the DMLE airfoil begins its morphing
until it reaches its maximum deflection. When the DMLE airfoil returns to its reference
shape, the lift slope starts to increase again. As the DNLE deflects upwards, the flow
separation region increases. Lift coefficient peaks for 1 Hz and 2 Hz frequencies are mostly
higher than one and their peak values are between 2.5 and 2.8. For 0.5 Hz, the lift coefficient
values are below 1. Similarly, more lift coefficient peaks above the value of 2 are found at
2 Hz than at 1 Hz. As the frequencies increase to 5 and 10 Hz, the DMLE deflection results
in a higher number of lift coefficients peaks above 1.5. The higher frequencies conduct
more transient flow than the lower frequencies, and therefore, to large flow vortices on
the airfoil.
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In this study, the upward and downward deflection motions of the DMLE airfoil have
shown that the downward deflection of the leading edge increased the stall angle of attack
and the nose-down pitching moment. Furthermore, the larger the downward deflection
angle, the better the lift-to-drag ratio of the DMLE airfoil will be at a small angle of attack.
For the upward deflection, these results were reversed.

The formation of unstable flow over an airfoil is greatly influenced by the development
and shedding of vortices, which also have an impact on its aerodynamic characteristics.
Analysis of the shedding vortices flow field properties variation in the time-domain, how-
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ever, is challenging. The discrete Fast Fourier Transform (FFT) algorithm is used to convert
the aerodynamic coefficient from the time domain to the frequency domain. Based on
the transient lift coefficient for the DMLE airfoil, the amplitude spectrum was estimated
using the FFT algorithm; its frequency peak was caused by vortex shedding on the airfoil.
Figure 16 shows that the frequency spectrum for a high angle of attack of 18◦ exhibits a
denser and greater-amplitude frequency spectrum for different deflection frequencies. It is
well known that the frequency decreases with increasing angle of attack, thus indicating
that the shedding period of vortices is increased.

For the DMLE airfoil, the oscillation curve is not periodic, and the lift coefficient curves
are disordered, as seen in Figures 14 and 15. The lift coefficient spectrum contains multiple
deflection frequencies with different amplitudes, which demonstrates that the angle of
attack shedding vortex has an aperiodic structure and that there are numerous vortices
with various frequencies and comparable strengths. Similarly, the intensity of vortices uses
too much flow field energy in the disturbance that does not contribute too much to the lift
coefficient, thus preventing it from increasing further.

The transient drag response in Figures 17 and 18 shows nearly the same trend as the
transient lift coefficient (Figures 14 and 15). Initially, an overshoot is observed in the drag
coefficient as the leading edge starts to morph at t = 1.5 s, and the amplitude of the drag
is also proportional to the deflection frequency: high deflection frequencies cause large
changes in the drag values. The reason for these large overshoots may be due to the sudden
pressure changes over the leading edge of the airfoil. The downward deflection of the
DMLE results in better aerodynamic efficiency.

Biomimetics 2023, 8, 51 21 of 30 
 

 

Figure 17. Drag coefficient transient responses for DMLE airfoil at 0.5 Hz, 1 Hz, and 2 Hz. 

 
Figure 18. Drag coefficient transient responses for DMLE airfoil at 5 Hz and 10 Hz. 

The pressure coefficients of the DMLE airfoil at different frequencies are shown in 
Figures 19–21. Figure 19 shows that at an angle of attack of 22° for the deflection frequency 
of 2 Hz and at the time, t = 1.41 s, the airfoil is already in a pre-stall condition, and has 
large LEVs over the airfoil; however, the flow remains attached to the DMLE airfoil. The 
flow is characterized by the presence of a large vortex near the trailing edge of an airfoil. 
The leading-edge morphing starts at t = 1.5 s and continues to deflect downwards until it 
reaches the maximum deflection at t = 1.71 s. It can be seen that at t = 1.625 s and t = 1.71 
s, the flow remains largely attached to the airfoil, and does not have any significant LEVs 
over the surface. The leading edge starts to move upwards back to its original position 
while the pressure drops significantly, and a large trailing edge vortex separation can be 
seen at t = 2 s. The flow becomes stable again at t = 2.12 s and separates at t = 2.27 s. This 
process reveals that the downward deflection of the leading edge increases the flow sta-
bility and increases the stall angle of attack by delaying the formation of a Dynamic Stall 
Vortex (DSV). 

Figure 18. Drag coefficient transient responses for DMLE airfoil at 5 Hz and 10 Hz.

The pressure coefficients of the DMLE airfoil at different frequencies are shown in
Figures 19–21. Figure 19 shows that at an angle of attack of 22◦ for the deflection frequency
of 2 Hz and at the time, t = 1.41 s, the airfoil is already in a pre-stall condition, and has
large LEVs over the airfoil; however, the flow remains attached to the DMLE airfoil. The
flow is characterized by the presence of a large vortex near the trailing edge of an airfoil.
The leading-edge morphing starts at t = 1.5 s and continues to deflect downwards until it
reaches the maximum deflection at t = 1.71 s. It can be seen that at t = 1.625 s and t = 1.71 s,
the flow remains largely attached to the airfoil, and does not have any significant LEVs over
the surface. The leading edge starts to move upwards back to its original position while the
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pressure drops significantly, and a large trailing edge vortex separation can be seen at t = 2 s.
The flow becomes stable again at t = 2.12 s and separates at t = 2.27 s. This process reveals
that the downward deflection of the leading edge increases the flow stability and increases
the stall angle of attack by delaying the formation of a Dynamic Stall Vortex (DSV).
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Figure 19. Pressure coefficient variations along the chord comparison of the reference airfoil with the
DMLE airfoil at the angle of attack of 22◦ at the deflection frequency of 2 Hz for (a) time step of 1.41 s,
(b) time step of 1.625 s, (c) time step of 1.71 s, (d) time step of 2 s, (e) 2.12 s and (f) time step of 2.27 s.
These figures reveal the pressure coefficients at different morphing leading edge deflections and how
the flow stability increases by minimizing the flow separation over an airfoil.
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To depict the vortices for the DMLE at the deflection frequency of 1 Hz and an angle 
of attack of 22° at different time steps, Figure 22a shows that before the starting of 

Figure 20. Pressure coefficient variations along the chord comparison of the reference airfoil with
the DMLE airfoil at the angle of attack of 22◦ at the deflection frequency of 5 Hz for (a) time step of
1.41 s, (b) time step of 1.55 s, (c) time step of 1.6 s, (d) time step of 1.645 s. These figures reveal the
pressure coefficients at different morphing leading edge deflections and also the deflection is faster at
higher frequencies.
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Figure 21. Pressure coefficients variations along the chord comparison of the reference airfoil with
the DMLE airfoil at the angle of attack of 22 at the deflection frequency of 10 Hz for (a) time step of
1.41 s, (b) time step of 1.53 s, (c) time step of 1.55 s, (d) time step of 1.57 s. These figures reveal the
pressure coefficients at different morphing leading edge deflections and also the deflection is faster at
higher frequencies.

At the deflection frequency of 5 Hz, the DMLE droops at a faster rate compared to its
behavior at low frequencies such as 0.01 Hz and 0.005 Hz. Figure 20a shows the chordwise
pressure distribution at t = 1.41 s; LEVs can be observed over the airfoil. At t = 1.55 s,
the leading-edge droops to the maximum value, and a large TEV can be seen over the
airfoil (Figure 20b). When the leading edge starts to return to its original position, the
flow stabilizes and reattaches with the airfoil, as seen at t = 1.6 s (Figure 20c). The flow
takes more time to reattach to the airfoil at high frequencies as compared to low-frequency
deflections. The leading edge continues to deflect upwards, and the large LEV and flow
separation can be seen at t = 1.645 s (Figure 20d). Similar type outcomes are obtained for
the deflection frequency of 10 Hz, as shown in Figure 21a–d.

To depict the vortices for the DMLE at the deflection frequency of 1 Hz and an angle of
attack of 22◦ at different time steps, Figure 22a shows that before the starting of morphing
at t = 1.41 s, a series of vortices are observed over the airfoil, which may be expressed
as their respective pressure distribution in Figure 22d. As the DMLE morphing starts at
t = 1.5 s, the DMLE starts to droop, therefore the leading edge of the airfoil changes. Finally,
at t = 1.625 s, the pressure distribution graph reveals that a reverse flow region arises and
moves towards the trailing edge, as shown in Figure 22b,e. Keeping track of the vortices’
formation, growth, and destruction and analyzing their magnitude is one of the important
methods to evaluate the dynamic stall process. However, even with the best visual aids,
flow circulation values can occasionally vary noticeably, independently of vortices sizes.
Therefore, further data analysis, such as looking at pressure distributions at the wall and in
the area around it, must be conducted.
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Figure 22. The downward deflection of the DMLE airfoil shows the (a) velocity streamline contours
at time step of 1.41 s, (b) velocity streamline contours at time step of 1.625 s, (c) velocity streamline
contours at time step of 1.71 s, (d) pressure coefficient at time step of 1.41 s, (e) pressure coefficient at
time step 1.625 s and (f) pressure coefficient at time step of 1.71 s. These figures reveal the velocity
stream lines with their respective pressure coefficients at different morphing leading edge deflections
and how the flow stability increases by minimizing the flow separation over an airfoil.

The droop nose reaches its maximum deflection at t = 1.71 s, as shown in Figure 22c,
and it remains attached to the airfoil (Figure 22f). Then, the airfoil returns to its original
shape by deflecting the DMLE upwards. At t = 2 s, the vortices and a predominant flow-
recirculating zone appear in the vicinity of the trailing edge region (Figure 23a,c). As the
airfoil deflects upwards, stronger LEVs are formed, as seen in Figure 23b,e. By observing
the Spatio-temporal evolution of both LEVs, at t = 2.27 s (Figure 23c,f), it is possible to
understand how the fast-rolling up the mechanism of the trailing edge shear layer and the
LEV keep growing due to the kinetic energy; this energy is supplied by the LEV gradient
as a small counter-rotating vortex starts to form between the leading-edge and the LEV. In
this full cycle process, it is evident that the flow remains attached to the airfoil when the
DMLE is deflected downwards, and therefore, the DSV control can also be conducted by
the droop nose morphing process.
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4. Conclusions

This paper investigated the effect of the DMLE on the flow structure and behavior of
vortices around a pitching UAS-S45 airfoil during the dynamic stall. The study focused
on: (1) developing a framework to dynamically morph the leading edge of the S45 airfoil
through a camber line deformation, and then (2) analyzing the aerodynamic performance
in terms of controlling the dynamic stall phenomenon. The framework was developed
using an unsteady parametrization method from the UAS-S45 airfoil parametric equations,
specifically adapted to obtain the morphing motion of the leading edge over time. This
scheme was then integrated within the ANSYS Fluent solver by developing a User-Defined-
Function (UDF) code to dynamically deflect the airfoil boundaries and control the dynamic
mesh used for its deformation and adaption. The dynamic and sliding mesh techniques
were used to simulate the unsteady flow across the sinusoidally pitching UAS-S45 airfoil.
The γ− Reθ turbulence model is used due to its ability to capture the flow structures of
dynamic airfoils.

Two main studies were considered: (i) firstly, an investigation of the Dynamically
Morphing Leading-Edge (DMLE) of an oscillating airfoil. In this study, the pitching-
oscillation motion of an airfoil was defined, and its parameters, such as its droop nose
amplitude and morphing starting time, were evaluated. The effects of both parameter
variations of DMLE on the aerodynamic performance were studied, and three different
amplitudes were considered; (ii) secondly, the DMLE of an airfoil at the stall angles of
attack was investigated. The DMLE performance was analyzed to provide further insights
into the dynamic lift and drag force variations at pre-defined deflection frequencies of 1 Hz,
2 Hz, 5 Hz, and 10 Hz. Some significant conclusions are outlined below:

• The unsteady aerodynamic parametrization method coupled with Laplace Diffusion
dynamic mesh techniques gave good results. The mesh quality metrics were very
well respected during the entire deformation process; hence, an accurate simulation
process was confirmed by the validation of the results and mesh deformation schemes.

• For the DMLE of an oscillating airfoil, when AD = 0.01 and MST = 14.75◦, the lift
coefficient increased by 20.15%, while a 16.58% delay in the dynamic stall angle was
obtained compared to the reference airfoil. Similarly, the lift coefficients obtained for
the two other cases, when AD = 0.05 and AD = 0.0075, increased by 10.67% and 11.46%,
respectively, compared to the reference airfoil.

• The presence of a LEV was depicted in the case of the reference airfoil at the angle of
attack of 21.97◦, also seen as a “bump” in the surface pressure distribution. By the
time the angle of attack reaches 26.95◦, the LEV increased and spread over the large
part of the airfoil. However, in the case of the DMLE airfoils with AD = 0.01, 0.005,
and 0075, no strong leading-edge vortex was observed for the same angles of attack of
the reference airfoil.

• The numerical results have shown that the new radius of curvature of the DMLE
airfoil can minimize the streamwise adverse pressure gradient, and further prevent
significant flow separation by delaying the Dynamic Stall Vortex (DSV) occurrence.
Furthermore, it was shown that the DMLE airfoil delayed the stall angle of attack with
respect to the reference airfoil by 16.58%.

• In the case of the DMLE of an airfoil at a given angle of attack, the lift slope decreases
as the leading-edge morphing begins until it reaches the maximum deflection at
low deflection frequencies. When the DMLE returns to its original position, the lift
slope increases again. The leading edge deflects upwards, resulting in increased flow
separation and high lift slopes. The DMLE repeats the cycle, and the same trend is
followed by the lift and drag coefficients of the DMLE airfoil.

• The DMLE deflects rapidly at higher frequencies, such as 5 Hz and 10 Hz, resulting in
increased lift coefficients. The higher frequencies lead to more transient flow; therefore,
the flow remains separated from the airfoil. In this study, the upward and downward
deflection motions of DMLE airfoils have shown that the downward deflection of
the DMLE increases the stall angle of attack and the nose-down pitching moment.
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Furthermore, the larger the downward deflection angle, the higher the lift-to-drag of
the morphing wing.

Regarding future works, the LARCASE’s Price-Padoussis subsonic wind tunnel will
be used for future wind tunnel studies of the DMLE airfoils. The findings are expected to
clarify the flow physics, and hence validate the findings of the unsteady flow behaviour of
the DMLE airfoil.
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Nomenclature

α Angle of attack
αm Mean incidence angle
αa Amplitude incidence angle
AD Droop nose deflection
CL Lift coefficient
CL,max Maximum lift coefficient
CD Drag coefficient
CD,max Maximum drag coefficient
c Chord
CP Pressure coefficient
k Reduced frequency
M Maximum value of the percentage chord line
MST Morphing starting time
P Chordwise position of the maximum camber
t Time
U∞ Freestream velocity
Wle Value of the maximum deflection of the leading edge
y f Final y-coordinate of the new morphing airfoil camber line
LEV Leading edge vortex
TEV Trailing edge vortex
DSV Dynamic stall vortex
DMLE Dynamically morphing leading edge
UDF User-defined function
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