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Abstract: A pharmaceutical supply chain (PSC) is a system of processes, operations, and organisa-
tions for drug delivery. This paper provides a new PSC mathematical cost model, which includes
Blockchain technology (BT), that can improve the safety, performance, and transparency of medical
information sharing in a healthcare system. We aim to estimate the costs of the BT-based PSC model,
select algorithms with minimum prediction errors, and determine the cost components of the model.
After the data generation, we applied four Supervised Learning algorithms (k-nearest neighbour, de-
cision tree, support vector machine, and naive Bayes) combined with two Evolutionary Computation
algorithms (ant colony optimization and the firefly algorithm). We also used the Feature Weighting
approach to assign appropriate weights to all cost model components, revealing their importance.
Four performance metrics were used to evaluate the cost model, and the total ranking score (TRS)
was used to determine the most reliable predictive algorithms. Our findings show that the ACO-NB
and FA-NB algorithms perform better than the other six algorithms in estimating the costs of the
model with lower errors, whereas ACO-DT and FA-DT show the worst performance. The findings
also indicate that the shortage cost, holding cost, and expired medication cost more strongly influence
the cost model than other cost components.

Keywords: Blockchain-based pharmaceutical supply chain; Supervised Learning algorithms; Evolutionary
Computation algorithms; Blockchain technology

MSC: 90B06

1. Introduction

The supply chain system (SCS) is an accepted approach to increase profit margins,
protect the pharmaceutical industry against introduced pressures, and overcome obstacles
for obtaining high efficiency while taking the limited available resources into account [1].
Conversely, the pharmaceutical supply chain (PSC) is a system of processes, operations, and
organisations involved in drug discovery, development, and production. PSC processes
are crucial for ensuring medication quality and favourable final patient outcomes [2]. As
a system of processes, operations, and organisations, the PSC plays a significant role in
delivering the right medication to the right customers (patients) at the right time and in
the right conditions. In the current SCS, pharmacies and manufacturers cannot track their
products and have no clear system visibility. Recalls are costly and complicated in the
SCS, making follow-up with patients difficult for companies. Therefore, the current SCS in
the pharmaceutical industry appears to be outdated and may not provide visibility and
control for manufacturers and regulatory authority over drug distribution [3]. In particular,
it cannot withstand 21st century cybersecurity threats [3]. The use of a Blockchain-based
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pharmaceutical supply chain (BT-based PSC) appears to be necessary for any pharmacy
system. A BT-based PSC helps the system improve the safety, performance, and trans-
parency of medical information sharing and the data transformation cost/time as well as
the manufacturing process, the distribution of the materials/drugs, and the tracking of the
materials/drugs sourced for manufacturing. BT in a PSC system can develop patient data
cards for other medical practitioners’ centres, especially in hospitals, leading to saved time
and improved healthcare service. In this system, patients and healthcare centres can have
different accessibility choices with the PSC data. In addition, any block in BT contains the
medical information with a hash connecting it to another block.

In contrast to several previous studies that have reported on the advantages and
disadvantages of using BT in a PSC, the present study seeks to address the cost problem of
a BT-based PSC. Other studies do not provide a cost mathematical model or related cost
components for a PSC system based on the BT approach. This paper differs from others by
introducing a cost mathematical model for the BT-based PSC system and providing the cost
components of the system. The cost factor is important to managers because the knowledge
of costs helps them to control all the financial resources employed in the performance of
the system, control the cash flow, identify the rate of return and profitability, and correctly
decide whether the new system benefits their organisation. Moreover, the knowledge of
costs helps to monitor the business financial health, optimize the institution’s financial
planning, reduce expenses, stay within the budget, and analyse the information to identify
unnecessary costs and better business opportunities. Another important contribution of
this study is to provide a PSC system with BT. BT can improve the safety, performance,
and transparency of medical information sharing in a healthcare system, minimise the data
transformation cost and time, and maintain the financial statements in hospitals.

The purpose of this study is to estimate the costs of the BT-based PSC model in a
hospital, select algorithms with the minimum prediction errors, and determine the cost
components of the BT-based PSC model in a hospital. To understand the importance of
the BT-based PSC cost model, determining the cost components of the model is essential.
Thus, this paper also aims to measure the importance of each cost component (feature) of
the model, which is the degree of relevance of each feature to the model. To achieve these
objectives, this research attempts to respond to the following research questions: (i) What
are the cost components of the BT-based PSC cost model in a hospital, and what is the
mathematical cost model? (ii) Which algorithms show better performance in minimising
the prediction errors of the BT-based PSC cost model? (iii) What are the important cost
components of the model? The research questions were answered using the following
directions. First, we designed a mathematical BT-based PSC cost model after determining
the cost components. Then, following the data generation, we applied four Supervised
Learning (SL) algorithms (k-nearest neighbors (KNN), decision tree (DT), support vector
machine (SVM), and naive Bayes (NB)) combined with two Evolutionary Computation (EC)
algorithms (ant colony optimization (ACO) and the firefly algorithm (FA)) for a total of eight
algorithms. These algorithms were selected because they are well-known algorithms that
have been successfully applied to solve many engineering problems, which can facilitate
the discussion of their behaviours in our new cost model. Finally, four performance
metrics were used to evaluate the cost model, and the total ranking score (TRS), which is a
score-based ranking system, was used to determine the most reliable predictive algorithms.

The rest of the paper is organised as follows. First, we provide an overview of BT in
a PSC, EC, and SL in Section 2. Next, we discuss the methodology and data generation
used to optimize the estimation of the BT-based PSC cost model in Section 3. Then, the
design of the mathematical cost model for the BT-based PSC is outlined in Section 4. All
experiments and results are described in Section 5. Then, the results, limitations, and future
research are discussed in Section 6, which is called Discussion. Finally, we briefly present
the conclusions in Section 7.
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2. Literature Review

This background explains the related literature regarding the PSC and its components
for a hospital, how BT drives PSC, Evolutionary Computation, and Supervised Learning
(ACO and FA; KNN, DT, NB, and SVM).

2.1. PSC and Its Components for a Hospital

The SCS is required for any industry that moves materials and goods in any way;
on the other hand, the PSC is important for tracking the materials and goods sourced
for manufacturing and for the distribution of the products [4]. PSC processes affect the
quality of medication and patient outcomes [2]. As an accepted approach, the SCS protects
the pharmaceutical industry against the introduced pressures, increases profit margins,
and overcomes efficiency issues [1]. PSCs seek to ensure that the right people receive the
right medication at the right time and in the right conditions [5]. These responsibilities of
PSCs are complex and increase their vulnerability and the probability of distribution [5].
A PSC can be defined as “the integration of all activities associated with the flow and
transformation of drugs from raw materials through to the end user, as well as the associated
information flows, through improved SC relationships to achieve a sustainable competitive
advantage” [6]. The pharmaceutical industry is a system of processes, operations, and
organisations involved in drug detection, development, and production [7]. In [7], the
PSC is described as an approach with a suitable quality that distributes drugs at the
right time and place to reach the customers. The healthcare sector includes publicly
traded companies supporting all facets of the healthcare sector [3]. The authors of [3]
state that the healthcare sector consists of clinical, preventive, treatment, and therapeutic
services and providers, including doctors, nurses, hospitals, drugs, medical equipment
suppliers, and health insurance companies in addition to other private, government, and
voluntary institutions such as residential, educational, dental, domestic health, medical,
surgical, and ambulatory institutions, and medical and diagnostic laboratories. The PSC
includes three significant players: producers, purchasers, and pharmaceutical providers [6].
The authors of [6] describe the producers as the pharmaceutical companies, medical–
surgical product companies, device manufacturers, capital equipment manufacturers, and
information systems manufacturers. According to Uthayakumar and Priyan [6], purchasers
comprise the grouped purchasing organisations, the pharmaceutical wholesalers, the
medical–surgical distributors, independently contracted distributors, and the product
representatives. The authors of [6] also explain that providers include hospitals and their
systems, integrated delivery networks, and alternative site facilities. The BT-enabled PSC
cost model in this article contains eight elements: (a) regular purchases cost, (b) emergency
purchases cost, (c) shipping cost, (d) expired medication cost, (f) holding cost, (g) shortage
cost, (h) Blockchain transaction cost, (i) Blockchain installation cost.

2.2. BT Drives PSC

The current PCS of the pharmaceutical industry appears to be outdated, does not provide
visibility and control for manufacturers and drug distributions, and cannot withstand current
cybersecurity threats [3]. BT is a cutting-edge technology that has been used in different
applications such as cryptocurrency, financial services, risk management, and public and
social services [8]. BT can be public, private, hybrid, or part of a consortium. Each BT type
has various advantages and disadvantages that influence its optimal applications. According
to Haq and Esuka [3], the defects of the SCS are as follows: information is not shared between
systems, manufacturers cannot track their products, the drug regulatory authority has no
visibility of the system, recalls are complicated and costly, and the healthcare system cannot
follow up with patients. Haq and Esuka [3] also mention that the products in a PSC are
verifiable without any information about the manufacturer’s private techniques.

Conversely, Haq and Esuka [3] believe that it is possible to share the patient’s medical
record with various participants on the network without disclosing the patient’s private
data. Several players move a product throughout the PSC: (i) primary manufacturers,
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(ii) secondary manufacturers, (iii) distribution centers/wholesalers, and (iv) retailers (i.e.,
pharmacies/hospitals) [9]. BT improves safety, displays information, achieves transparency,
and is used for health record keeping, clinical trials, and patient monitoring [10]. According
to Zahiri et al. [9], BT maintains financial statements in the hospitals and minimises the
time and cost of data transformation. Haleem et al. [10] highlight that BT preserves
and exchanges patient data via hospitals, diagnostic laboratories, pharmacy firms, and
physicians in a healthcare system. BT in the PSC can detect fake medicines by facilitating
the proper control over the supply and demand of the drugs and can enable pharmaceutical
companies to control fake and unregistered medicines [11]. Kumar Badhotiya et al. [11]
assert that fake and unregistered medicines with no medical recovery pose a significant
threat to human life, causing many side effects leading to severe damage to health or even
death. Therefore, BT’s advantages improve the performance, security, and transparency of
medical data sharing in the healthcare system [10]. Haleem et al. [10] also state that BT gains
insight and enhances the analysis of medical records in medical institutions. BT applied
within a PSC enables data integration, secure transactions, serialisation, and traceability [8].
Importantly, Haq and Esuka [3] note that visibility and privacy are largely contradictory,
and to obtain one, the other is often lost. They [3] clarify that BT can guarantee the
verification of the origin of data that are made available publicly while keeping the private
data of an entity secret without compromising privacy. According to these authors [3],
the decentralized nature of BT allows patients, doctors, and healthcare providers to share
data quickly and securely. Hosseini Bamakan et al. [8] also show that traceability plays a
significant role in securing drugs and is the basis for the reliance by the consumer on the
PSC and its products. They [8] continue that the traceability of BT enables the PSC to verify
the background of a product and tracks the path of all the locations and the participants
that handle it. They also state that [8] BT can also provide transparency to the PSC and
considers the needs of the suppliers, producers, logistics, distributors, and customers in
the PSC. They [8] assert that all pharmaceutical institutions adhere to patient protection
maintenance, and intelligent contracts can facilitate this process if a system applies BT.
Among all the factors of a BT-enabled PSC, the cost factor is significant for an organisation.
Supervised Learning (SL) algorithms can predict the costs of the system and Evolutionary
Computation is applied to optimize the hyperparameters of SL to build a model, allowing
the exploration of the possible combinations of parameters.

2.3. Evolutionary Computation and Supervised Learning

The Evolutionary Computation (EC) algorithm is the main object of interest in evolu-
tionary computation [12]. The scientific community has demonstrated that metaheuristics
are a viable and often superior alternative to the more traditional (exact) methods of mixed-
integer optimization such as branch and bound algorithms and dynamic programming [13].
Metaheuristics often offer a better trade-off between solution quality and computing time,
particularly for complicated problems or large problem instances [13]. Using metaheuristic
techniques, reasonably good solutions are obtained without exploring the whole solution
space [14]. Rather than searching for the global optimum solution, these techniques aim to
find sufficiently “good” solutions to efficiently exploit the characteristics of the problem
and provide an attractive alternative for large-scale applications [15]. SL tries to predict the
output feature’s value based on the input features’ values [16]. The authors of [16] point
out that SL learns the relationship between the target feature and the input features from
the training data for which the target feature value is already known.

2.3.1. ACO and FA

Metaheuristics are powerful techniques for solving complex real-world problems in
many application domains [17]. The behaviour and performance of EC algorithms depend
strongly on their ability to efficiently explore and exploit the search space [17]. The authors
of [17] state that ACO is a well-known EC that was inspired by the collective performance
of real-life ant colonies and has been used to solve many engineering problems. The
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ACO algorithm employs a colony of simple cooperating agents and solves combinatorial
optimization problems [18]. The FA is mainly inspired by the light connection between
fireflies [7]. Goodarzian et al. [7] explain that in swarm intelligence the cooperation (and
possibly the competition) of more straightforward and less intelligent members creates a
higher degree of intelligence that certainly cannot be achievable by any of the components
alone. Thus, according to Goodarzian et al. [7], the FA is inspired by the natural species
behaviour to optimize nonlinear functions that simultaneously use low-cost algorithms.
Each member of the fireflies’ group in the FA moves to a point where their most efficient
outcome has occurred [19].

2.3.2. KNN, DT, NB, and SVM

SL is defined as the use of labeled datasets to train algorithms that classify datasets
or predict outcomes accurately [12]. Zhang et al. [12] mention that SL adjusts the weights
until the model is fitted appropriately after inputting the data into the model. According to
Zhang et al. [12], the cross-validation process ensures that the model can avoid overfitting
and under-fitting. They [12] present SL using several methods, including neural networks,
naïve Bayes (NB), linear regression, logistic regression, random forest, and support vector
machine (SVM).

K-nearest neighbors (KNN) is an SL algorithm used in classification and regression
problems [20]. The authors of [20] highlight that KNN is applied in a variety of applications
such as text categorisation, agriculture, medicine, finance, facial recognition, economic
forecasting, and heart disease diagnosis. They [20] express that KNN calculates the distance
between each unlabelled data point and all other points in the dataset to classify the
unlabelled data. Then, KNN, according to these authors [20], assigns each unlabelled data
point to the class of the most identically labelled data by finding patterns in the dataset.

A DT is an SL algorithm primarily used to analyse data and perform regression and
classification problems [21]. The authors of [21] explain that DT contains decision nodes
(to test the value of an attribute), edges (to determine the outcome of a test and connect
with the next node), and a leaf node (to predict the result), all of which are combined and
comprise a complete structure of the DT. In the DT, according to these authors [21], each
dataset attribute is treated as a node, and a special and unique node is a root node. The
process starts with a unique node and proceeds down the tree to satisfy the parameters
and decision [21]. The authors of [21] believe this procedure is carried out until a terminal
node is encountered.

An NB classifier is a simple probabilistic classifier that has been widely used due to its
high efficiency, solid theoretical foundation, and good generalisation ability [22]. According
to Ren, et al. [22], NB assumes that the attribute variables are conditionally independent
when class variables are given. To classify the given item, they [22] state that NB determines
the probability of each category appearing under the condition of the occurrence of this
item and classifies the item that belongs to the category with the highest probability [22].

An SVM is a binary classification model that has been widely used due to its global
optimization capability and good robustness in fields such as environment, medicine, and
finance [23]. The authors of [23] explain that the basic principle of SVM requires that, when
solving a classification problem, the distance from the nearest sample point to the decision
surface is the largest; that is, the minimum distance maximises the two classes of the sample
points to separate the edges. A straight line in a two-dimensional space makes it the most
suitable segmentation line in the middle of the two data classes, and SVM finds an optimal
decision plane as the classification benchmark in the high-dimensional dataset [23]. The
next section explains the methodology of the study and the procedure to generate data.

3. Methodology and Data Generation

In this section, we introduce the procedure of data generation as well as the methodol-
ogy for the optimization of the estimation of the BT-based PSC cost model in a hospital. We
first used Python software to generate raw data for the nonlinear BT-based PSC cost model,



Mathematics 2023, 11, 2021 6 of 19

including the cost components of a hospital. The widely known tool for the generation of
random data in Python is its random module, and we applied randint() as an inbuilt func-
tion of the random module. This module returns a random integer value from the inclusive
range between the two lower and higher limits (including both limits) provided as two pa-
rameters. In the data generation step, the following features, which are the components of
the model, were generated using a Python program: Cp,Regular_Purchases; Cp,Emergency_Purchases;
Cp,Shipping; Cp,Expired_Medication; Cp,Holding; Cp,Shortage; Cp,BT_Transaction; Cp,BT_Installation. A total of
5000 series of the generated raw data for all 8 components of the BT-based PSC cost model
and the total cost were uploaded to https://data.mendeley.com/datasets/jxv5jrydnc (ac-
cessed on 1 November 2022) [24]. The research method selected in this paper is to combine
two approaches (EC and SL) for the evaluation of the BT-based PSC cost model: for EC, the
ACO and FA are used, and for SL, the KNN, DT, SVM, and NB algorithms are used. These
algorithms are well-known and can be successfully applied to solve many engineering prob-
lems, which can facilitate the discussion of their behaviours in our new cost model. Here,
ACO and the FA are used to improve the parameters of the KNN, DT, SVM, and NB algo-
rithms, as well as to minimise the model prediction errors. The parameters of SL algorithms
are usually set empirically, and it takes much time to test and find the best predictive per-
formance of the model. Therefore, the EC algorithms explore the possible combinations of
parameters, optimize the hyperparameters of the SL algorithms, and reduce the prediction
errors of the SL algorithms. Therefore, the EC algorithms play a significant role in enhancing
the performance of the selected SL algorithms. Thus, EC, combined with four algorithms
(KNN, DT, SVM, and NB) is used to reduce prediction errors. The generated dataset has
eight features (including Cp,Regular_Purchases; Cp,Emergency_Purchases; Cp,Shipping; Cp,Expired_Medication;
Cp,Holding; Cp,Shortage; Cp,BT_Transaction; and Cp,BT_Installation), and has the total cost (CTotal) as
the label in the regression process (see https://data.mendeley.com/datasets/jxv5jrydnc
(accessed on 1 November 2022) [24]). Although the dataset was generated using Python, the
implementation of the algorithm, as illustrated in the flowchart presented in Figure 1, was
carried out in MATLAB. Figure 1 illustrates the flowchart of the methodology for the four
SL algorithms and two EC algorithms. The flowchart starts with creating the population
and initialising the parameters. In the next step, the Feature Weighting (FW) approach,
which is one of the most efficient approaches, is applied to evaluate the importance of
features, assign an appropriate weight to each feature, and estimate the degree of relevance
of each feature to the model. The FW process is executed by multiplying the value of every
instance of all the features and orders them by their values [25]. FW is considered to be
more efficacious than the Feature Selection process in several problems and cases because
the features are very sensitive, so removing these kinds of features may negatively affect
the classification performance [25]. Traditionally, all of the selected features are equally im-
portant when estimating the output, but if some features have a higher weight than others,
the results can be strongly influenced by them, affecting the performance and the accuracy
of the overall algorithm. The dataset was then participated with 70% of the dataset used
for training, while the remaining 30% was used for testing. Four different SL algorithms
were used to find the optimal method to estimate the cost of the BT-based PSC cost model,
including KNN, DT, SVM, and NB. In the next step, we applied two EC algorithms, ACO
and the FA, to improve the performance of the SL algorithms and optimize their hyperpa-
rameters, reducing the prediction errors. Four metrics were used to evaluate the cost model,
including the mean square error (MSE), root mean square error (RMSE), mean absolute
error (MAE), and correlation coefficient (R2). Therefore, this approach produced results
for the following metrics: eight FWs (one weight for each feature), MSE, RMES, MAE, and
R2. Eventually, a score-based ranking system called total ranking score (TRS) was used to
determine the most reliable predictive algorithms. In TRS, each method received a score
based on the calculated MSE, RMES, MAE, and R2 values. Finally, the ranking position
of each model was assigned based on the sum of all obtained score states. The following
section models the casts of the BT-based PSC system based on the literature review and
the methodology.

https://data.mendeley.com/datasets/jxv5jrydnc
https://data.mendeley.com/datasets/jxv5jrydnc
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4. Mathematical Cost Model for BT-Based PSC

This section proposes the nonlinear BT-based PSC cost model for a hospital. The
model focuses on the costs of a pharmaceutical supply chain that used a public Blockchain
as a modern, trustworthy, and traceable database. Inspired by recent articles by Weraikat,
Kazemi Zanjani, and Lehoux [26], Franco and Alfonso-Lizarazo [27], and Havaeji, Dao,
and Wong [28], we determine that the cost components of the BT-based PSC model are
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regular purchases cost, emergency purchases cost, shipping cost, expired medication cost,
holding cost, Shortage cost, Blockchain transaction cost, and Blockchain installation cost.
Based on these references and our knowledge, this research proposes a mathematical
model and assumptions to estimate the costs of a PSC based on Blockchain technology in a
hospital. Equations (1) and (2) show the cost components of the mathematical model. The
assumptions of the mathematical model in the approach are as follows:

A 1. The planning horizon is one year.
A 2. The drug expiration date is constant, and the producer ships drugs with a long

life cycle to the hospital to reduce the likelihood of expiration.
A 3. The hospital orders medicines in bulk packs (and not units).
A 4. At the beginning of the planning horizon, the age and the number of medications

available in the hospital (including the initial stock) are zero.
A 5. Demand should be satisfied at all levels in a hospital. Emergency purchases are

made if the hospital’s pharmacy has a drug shortage. The price of emergency medicine is
equal to or higher than its regular purchase price.

A 6. Medicines in the form of both regular and emergency purchases are available.
A 7. The producer ships only fresh medications to the hospital to minimise the

likelihood of expiration.
A 8. The cost of medicines is determined at the cycle time when a decision to purchase

is made. This is because drug prices can change every period.
A 9. The medicines are used to satisfy the demand and/or are kept in the inventory

after arrival.
Hospitals are highly recommended to have a high level of technology and infrastruc-

ture that would facilitate the future implementation of a technological system supporting
BT. As the main customers of medications, hospitals adopt conservative inventory control
policies by keeping large quantities of drugs in stock [26]. The demand of the hospital
should be fulfilled by the producer over the planning horizon because of the importance
of the medications [26]. In addition, the producer communicates with the hospital to
decide on a minimum amount of each medication that must be available in the hospital
stock at all times in the safety stock level [26]. Medications move from the producer, via
a transportation provider, to the hospital site to satisfy its demand in each period of the
planning horizon [26]. Leaving expired medications at customer zones and disposing them
improperly can both generate a significant negative environmental footprint [26]. Once the
medicine arrives, it can be used to satisfy the demand and/or be kept in inventory by using
the age-based inventory constraints and the age of medicines to model the perishability [27].
After a number of cycles, some medicines expire during the time that passes; therefore, if
there is not enough medicine on inventory to satisfy the demand, which is also a random
element, an emergency purchase can be made to satisfy the demand, but the purchase will
be made at a higher price [27]. Any medication that reaches the end of its shelf life is quar-
antined and then shipped to government safe disposal sites, while unexpired medications
remain at the hospital to be used in a next period [27]. The parameters, variables, and
constraints used in the model are listed in Table 1.

Table 1. Parameters, variables, and constraints of the BT-based PSC cost model.

Parameters Explanation Constraints

M Number of medication types in the PSC variables (p = 1, 2, 3, . . . , M) 45
U The number of Blockchain users 4
Cs Cost of storage per year (USD/TB) for public outbound bandwidth service [29] USD 20 × 12 = 2400 USD/yr
Gu The amount of ether gasUsed per day USD 1.31 ≤ Gu × g ≤ USD 3.94
g Number of gWei to be paid for gasUsed per day
ip Inventory level of medication type p 25 ≤ ip ≤ 140 (integer)
qp Order quantity for the pth medicine product per year 10 ≤ qp ≤ 100 (integer)
s The storage size to store the data 2 TB/yr ≤ s ≤ 5 TB/yr
eqp Number of lots of medicine types p purchased in case of emergency 1 ≤ eqp ≤ 40 (integer)
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Table 1. Cont.

Parameters Explanation Constraints

exqp Quantity of expired medication type p sent to the government disposal site 1 ≤ exqp ≤ 25 (integer)
sp Shortage quantity of medication type p that is needed to be outsourced 1 ≤ sp ≤ 40 (integer)

rp Regular cost of medicine type p (USD) 15 ≤ rp ≤ 250
rp ≤ ep

ep Emergency cost of medicine type p (USD) 20 ≤ ep ≤ 300
t
p Shipping cost of medication type p shipped to the hospital (USD) 5 ≤ t

p ≤ 35

exp
Costs obligated by governments for each unit of medication type p disposed at
their sites (USD) 5 ≤ exp ≤ 10

texp
Shipping cost of expired medication type p sent to the government disposal
site (USD) 1 ≤ texp ≤ 15

hp Holding cost of medication type p at the hospital site (USD) 20 ≤ hp ≤ 30

πp
Penalty that the producer pays to the hospital for each unit of shortage in the
supply of medication type p (USD) 10 ≤ πp ≤ 20

op Cost of outsourced medication type p that the producer could not satisfy (USD) 12 ≤ op ≤ 18
cfixed The initial fixed cost per year 580 ≤ cfixed ≤ 680
conboarding The onboarding cost USD 20 ≤ conboarding ≤ USD 28
cmc The unit maintenance cost; cmc + cmo is 15–25% of the project value USD 15 ≤ cmc + cmo ≤ USD 25
cmo The unit monitoring cost; cmc + cmo is 15–25% of the project value

Equations (1) and (2) describe the components of the model mathematically.

Min TC = Min
(
∑M

p=1[Cp,Regular_Purchases + Cp,Emergency_Purchases + Cp,Shipping + Cp,Expired_Medication + Cp,Holding
+ Cp,Shortage + Cp,BT_Transaction + Cp,BT_Installation]

) (1)

Min TC = Min∑M
p=1[rp × qp+ ep × eqp + (eqp + qp +sp) × tp + (exp + texp) × exqp + hp × ip+

(πp + op)× sp] + Gu × g × 365 + s × Cs + Cfixed + (Conboarding × U + Cmc + Cmo) × (eqp + qp + Sp)
(2)

Equation (2) specifies the objective function that seeks to minimise the producer costs
that involve the following elements:

Cp,Regular_Purchases: The regular purchases cost is the cost of buying different types of
medicines (rp × qp).

(1) Cp,Emergency_Purchases: The emergency purchases cost, at a higher price than the regular
cost, can be made to satisfy the demand if there is not a sufficient amount of drugs in
the inventory or if some medicines are expired (ep × eqp).

(2) Cp,Shipping: The shipping cost of medications from the producer site to the hospital site
is ((eqp + qp + sp) × tp). During shipping, it is necessary to keep some medications
in certain conditions (such as temperature, light, or humidity). Therefore, the trans-
portation cost varies with each medication type, although the distance between the
producer and the hospital is constant.

(3) Cp,Expired_Medication: The expired medication cost involves the safe disposal fees for
different types of expired medication at government sites and the cost of shipping
from the hospital to the safe government disposal sites ((exp+texp) × exqp). Expired
medications incur governmental penalties and environmental forfeits due to their
negative impact on the environment.

(4) Cp,Holding: The holding cost is the inventory cost of the different types of medications
at the hospital site (hp × ip).

(5) Cp,Shortage: The Shortage cost is the cost that producers pay to the hospital due to the
shortage in the supply of different types of medications (unsatisfied demand) and
due to the outsourced medication cost satisfied by another pharmaceutical producer
((πp+op) × sp).
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(6) Cp,BT_transaction: The BT transaction cost consists of gasCost (gasUsed × gasPrice) and
Storage cost (Gu × g × 365 + s × Cs) [24,30–32]. Gu × g is the BT transaction cost per
day, and s × Cs is the storage cost per year. A secured cloud-based warehouse stores
the actual data off-chain. An IBM Cloud website was used to calculate the storage
cost [29].

(7) Cp,BT_Installation: The BT installation cost includes the Fixed cost (cfixed), Onboarding
cost (conboarding), Maintenance cost (cmc), and Monitoring cost (cmo) (cfixed + (conboarding
× U + cmc + cmo) × (eqp + qp + sp)) [24,33].

The most widely used consensus protocol in the public Blockchain is Proof-of-Work
(PoW) (used in, e.g., Bitcoin and Ethereum) [34]. The cost of the Blockchain transaction
consists of gasLimit and gasPrice. The gasLimit is the maximum amount of gas used to
execute the transaction and is purchased from the sender’s account balance. At the end of
the transaction, any unused gas is refunded to the sender’s account [24,32]. According to
Wood [32], gasPrice (a scalar value) is the number of Wei to be paid for each unit of gas and
consists of all computation costs incurred as a result of the execution of this transaction. The
ETH Gas Station is a suitable place to calculate Gu × g and incentivise computation within
the network [31,35]. The gWei includes the cost of a transaction on the Ethereum Blockchain
as well as the cost of the transaction validators and the network. To convert gWei to USD,
we can use the ETH Gas Station website based on the current price of Ethereum [35]. In
Table 1, to calculate the Gu × g cost and convert the gWei cost to USD via the ETH Gas
Station website, the gasUsed (as the total gas used in transactions) is 21,000 (a scalar value),
and the range of the gasPrice is between 20 and 60 gWei. The range of Gu × g is between
USD 1.31 and USD 3.94. This transaction cost was calculated using the ETH Gas Station
website [35].

The cost of Blockchain installation consists of the Fixed cost, Onboarding cost, Mainte-
nance cost, and Monitoring cost [24,33]. The Onboarding cost is the cost of training clients
and suppliers to become active users of a service or product (training cost) and is the cost
related to integrating new employees into a company to learn and train in BT. The cmc and
cmo costs are 15–25% of the project value per year [33,36]. After designing the mathematical
model, it is necessary to evaluate it statistically, which is discussed in the next section.

5. Results

This section comprehensively presents all experiments and the obtained results and
shows the performance metrics of eight algorithms on the generated dataset in addition to
the weights of the cost features of the BT-based PSC cost model. The numerical examples
examined in this research validate the proposed methodology and the cost model and
demonstrate the performance of the proposed approach. We designed and executed the
proposed method using MATLAB software to validate the BT-based PSC cost model. We
used the FA and ACO (EC algorithms) to improve the results of the KNN, DT, SVM, and
NB SL algorithms. To reduce prediction errors and improve the SL results, this combination
provides eight algorithms, namely, FA-KNN, FA-DT, FA-SVM, FA-NB, ACO-KNN, ACO-
DT, ACO-SVM, and ACO-NB. The MSE, RMSE, MAE, and R2 performance metrics were
used to evaluate the efficiency of the proposed algorithms. We also used the FW approach
to estimate the influencing features for the generated dataset in the cost model. FW has
an important role in analysis without changing the initial data content. The authors ran
each algorithm (FA-KNN, FA-DT, FA-SVM, FA-NB, ACO-KNN, ACO-DT, ACO-SVM, and
ACO-NB) for 10 runs (80 runs in total) with 1000 iterations. These algorithms helped us
validate our results. This experiment assessed the “average” of the performance metrics
and the “average” of the weight of the cost features to improve the reliability of all methods
in eighty (4 × 10 + 4 × 10) runs. These averages are used because the runs can have
various outcomes, and they can help us achieve stability and reliability in behavioural data.
Each run was performed for, at most, 1000 iterations. Therefore, instead of comparing the
predictions of the BT-based PSC cost model in each run, we compared the average of every
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10 runs. This research finally used TRS to determine the most reliable predictive algorithms
for the BT-based PSC cost model. Tables 2–9 present the related results.

5.1. FA Combined with Four SL

In this step, the FA was combined with four SL algorithms (FA-KNN, FA-DT, FA-SVM,
and FA-NB) and was run 40 times) each algorithm was executed 10 times) in 1000 iterations.
Four performance metrics and the weights of eight cost features were evaluated for the
BT-based PSC cost model in the 40 runs. Table 2 presents the 8 weights of the cost features
and the 4 performance metrics for the 4 algorithms in 40 runs. The average values for
each performance metric and each cost feature are presented in Table 2. Tables 3 and 4 are
derived from Table 2.

Table 2. Feature weighting and performance evaluation for FA combined with four SL algorithms in
10 runs for each.

FA_
KNN

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.42761 0.70372 0.4019 0.77805 0.66441 0.54303 0.3898 0.75549 6,410,531.181 2531.9027 1911.4867 0.93669
2 0.38097 0.40696 0.67108 0.07136 0.57776 0.96633 0.25649 0.71504 6,543,559.636 2558.0382 1844.5367 0.95009
3 0.39918 0.22744 0.88195 1 0.45745 0.60981 0.28345 0.49667 7,109,497.639 2666.3641 1895.78 0.94165
4 0.48472 0.70427 0.11742 0.56176 0.60325 0.55416 0.72756 0.70165 4,820,413.661 2195.544 1861.4267 0.94784
5 0.44293 0.36279 1 1 0.27841 1 0.53327 0.66643 8,836,400.862 2972.6084 2380.51 0.95397
6 0.57136 0.43084 0.086856 0.80261 0.38824 0.61953 0.7207 0.56945 3,341,730.069 1828.04 1563.43 0.96499
7 0.29971 0.25515 0.25957 0.56899 0.69676 0.89902 0.37948 0.58159 7,298,087.42 2701.4973 2191.1033 0.93169
8 0.51998 0.39227 0.11292 0.50207 0.30936 0.73901 0.25718 0.71075 4,636,038.367 2153.1462 1730.3067 0.95829
9 0.38097 0.40696 0.67108 0.07136 0.57776 0.96633 0.25649 0.71504 6,543,559.636 2558.0382 1844.5367 0.95009
10 0.39918 0.22744 0.88195 1 0.45745 0.60981 0.28345 0.49667 7,109,497.639 2666.3641 1895.78 0.94165

Average 0.430661 0.411784 0.5084726 0.63562 0.501085 0.750703 0.408787 0.640878 6,264,931.611 2483.15432 1911.88968 0.947695

FA_
DT

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.47321 1 0 0.55029 0.077932 0.98129 0 0.76499 20,931,129.39 4575.0551 3459.9621 0.78428
2 0.68103 0 0.22354 0 0.86119 0.38003 0.88603 0.64452 35,006,777.18 5916.6525 4540.5366 0.71695
3 0.15466 0.5686 0.54932 0.7612 0.58896 0.79381 0 0.2224 15,666,495.59 3958.0924 3054.3802 0.69542
4 0.69663 0.44451 0.60297 0.45421 0.66456 0.24065 0.2454 0 19,723,753.67 4441.1433 3129.7053 0.82664
5 0.019254 0.20955 0.56631 0.74343 0.6613 0 0.05882 0.92978 30,911,374.48 5559.7999 4279.7594 0.70113
6 0.88511 0.14417 0.80373 0 0.8651 0.45487 0.46228 0.6855 16,236,754.9 4029.4857 3445.5285 0.8264
7 0.47321 1 0 0.55029 0.077932 0.98129 0 0.76499 20,931,129.39 4575.0551 3459.9621 0.78428
8 0.68103 0 0.22354 0 0.86119 0.38003 0.88603 0.64452 35,006,777.18 5916.6525 4540.5366 0.71695
9 0.15466 0.5686 0.54932 0.7612 0.58896 0.79381 0 0.22248 15,666,495.59 3958.0924 3054.3802 0.69542
10 0.69663 0.44451 0.60297 0.45421 0.66456 0.24065 0.2454 0 19,723,753.67 4441.1433 3129.7053 0.82664

Average 0.4915424 0.437994 0.41217 0.427483 0.5911684 0.524643 0.278396 0.487918 22,980,444.11 4737.11722 3609.44563 0.757411

FA_
SVM

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.23175 0.2259 0.53019 0.00011658 0.98963 0.99971 0.37348 0.32717 173,343.7829 416.3457 333.2585 0.99958
2 0.49827 0.1213 0.044341 0.37469 0.078956 0.076338 0.84056 0.025916 123,519.554 351.4535 295.5338 0.99944
3 0.23175 0.2259 0.53019 0.00011658 0.98963 0.99971 0.37348 0.32717 173,343.7829 416.3457 333.2585 0.99958
4 0.49827 0.1213 0.044341 0.37469 0.078956 0.076338 0.84056 0.025916 123,519.554 351.4535 295.5338 0.99944
5 0.11145 0.18245 0.80071 0.91571 0.3337 0.27808 0.999 0.1206 187,904.5992 433.4796 345.0264 0.99973
6 0.062505 0.13831 0.17654 0.83871 0.55852 0.43634 0.21079 0.072986 133,984.4159 366.0388 304.2886 1
7 0.12535 0.10758 0.88876 0.99971 0.28039 0.38197 0.99797 0.11452 217,426.4673 466.2901 349.1649 0.99967
8 0.069619 0.11732 0.22129 0.89167 0.5806 0.5368 0.59439 0.075245 170,350.8234 412.7358 348.6053 0.9999
9 0.070616 0.15011 0.19064 0.95425 0.4204 0.92513 0.22981 0.082785 119,067.7801 345.062 276.8873 0.99995
10 0.038819 0.37321 0.098169 0.3057 0.17506 0.19189 0.30862 0.044591 167,675.474 409.482 356.8005 0.99984

Average 0.1938399 0.176338 0.3525171 0.565536316 0.4485842 0.4902306 0.576866 0.1216899 159,013.6234 396.86867 323.83576 0.999713
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Table 2. Cont.

FA_
NB

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.032531 0.041745 0.08032 0.9808 0.10975 0.18195 1 0.031338 0.02788 0.16697 0.1257 1
2 0.010457 0.015939 0.033751 0.99143 0.056218 0.05816 0.96678 0.011013 0.016316 0.12773 0.10697 1
3 0.060931 0.084856 0.18278 0.91442 0.59413 0.3198 0.30078 0.063357 0.01369 0.117 0.096242 1
4 0.060931 0.084856 0.18278 0.91442 0.59413 0.3198 0.30078 0.063357 0.01369 0.117 0.096242 1
5 0.029986 0.052286 0.086725 0.99994 0.14185 0.24168 0.31756 0.033475 0.019494 0.13962 0.11491 1
6 0.015173 0.017665 0.038483 0.99992 0.72279 0.077546 0.22372 0.014434 0.035156 0.1875 0.13605 1
7 0.032531 0.041745 0.08032 0.9808 0.10975 0.18195 1 0.031338 0.02788 0.16697 0.1257 1
8 0.010457 0.015939 0.033751 0.99143 0.056218 0.05816 0.96678 0.011013 0.016316 0.12773 0.10697 1
9 0.060931 0.084856 0.18278 0.91442 0.59413 0.3198 0.30078 0.063357 0.01369 0.117 0.096242 1
10 0.032531 0.041745 0.08032 0.9808 0.10975 0.18195 1 0.031338 0.02788 0.16697 0.1257 1

Average 0.0346459 0.0481632 0.098201 0.966838 0.3088716 0.1940796 0.637718 0.035402 0.0211992 0.143449 0.1130726 1

Table 3 compares the average of four performance evaluation metrics for each method.
In Table 3, FA-DT has the weakest result in terms of all performance metrics
(Ave-MSE = 22,980,444.11, Ave-RMSE = 5916.65, Ave-MAE = 3609.44), and R2 = 0.75,
while FA-NB demonstrates robust behaviour with the best average R2 of 1 and a minimum
Ave-MSE = 0.021, Ave-RMSE = 0.143, Ave-MAE = 0.113 among the four methods. Although
the averages R2 values for all methods are acceptable (ranging from 0.757 to 1), the average
MSE, RMSE, and MAE values for FA-KNN, FA-DT, and FA-SVM are the worst (ranging
from 323.83 to 22,980,444.11). Therefore, the abovementioned metrics indicate that the
FA-NB algorithm has better performance for the BT-based PSC cost model than the other
proposed algorithms.

Table 3. Performance metrics evaluation for FA combined with four SL algorithms.

Performance Metrics

Methods Ave_MSE Ave_RMSE Ave_MAE Ave_R2

FA_KNN 6,264,931.611 2483.15432 1911.88968 0.930856
FA_DT 22,980,444.11 5916.6525 3609.44563 0.757411
FA_SVM 159,013.6234 396.86867 323.83576 0.999713
FA_NB 0.0211992 0.143449 0.1130726 1

We also focused on the average of the weights of each cost feature via the FW approach
for the FA-KNN, FA-DT, FA-SVM, and FA-NB algorithms, as shown in Table 4. Among
these four methods, FA-NB provides the highest average weight for the expired medication
cost feature (0.966) and the lowest average weight for the regular purchases cost feature
(0.034). The second highest average weight is allocated to the BT installation cost feature by
the FA-KNN algorithm (0.849) followed by the holding cost feature by the FA-DT algorithm
(0.591). The BT installation cost feature also has the second lowest average weight with
FA-SVM (0.121). In addition, the BT transaction cost fluctuates because it has the average
weight of 0.576 and 0.278 for FA-SVM and FA-DT, respectively.

Table 4. FW criteria for FA combined with four SL algorithms.

Feature Weighting

Methods Max_Ave_Weighting Min_ Ave_Weighting

FA_KNN W_(BT_Installation) = 0.84988 W_(Expired_Medication) = 0.34659
FA_DT W_(Holding) = 0.5911684 W_(BT_Transaction) = 0.278396
FA_SVM W_(BT_Transaction) = 0.576866 W_(BT_Installation) = 0.1216899
FA_NB W_(Expired_Medication) = 0.966838 W_(Regular_Purchases) = 0.0346459
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5.2. ACO Combined with Four SL Algorithms

In the second step, ACO combined with 4 SL algorithms (ACO -KNN, ACO -DT,
ACO -SVM, and ACO -NB) was executed 40 times (each algorithm ran 10 times). Then,
the 4 performance metrics and the weights of the 8 cost features were evaluated for the
BT-based PSC cost model in the 40 runs. Table 5 illustrates 8 weightings of cost features
and performance metrics for 4 algorithms in 10 runs for each algorithm. Table 5 presents
the average values of the performance metrics and the average values of the weights of the
cost features. Tables 6 and 7 are also derived from the data presented in Table 5.

Table 5. FW and performance evaluation for ACO combined with four SL algorithms in 10 runs
for each.

ACO_
KNN

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.35695 0.92549 0.89039 1 0.009856 0.18912 0.47227 0.99903 5,543,172.364 2354.3943 1949.4633 0.92596
2 1 0.76434 0.43676 0 0.88697 1 0.34671 1 4,695,227.88 2166.8475 1864.3933 0.95763
3 0.92009 0.62512 0.8734 1 0.76675 0 0.86776 0.84005 4,692,998.943 2166.3331 1818.2033 0.93246
4 0.70324 0.64935 0.47864 0.021711 0.59772 0.26598 0.36632 0.45778 6,719,708.626 2592.2401 2065.3833 0.89936
5 1 0.66795 0 0.15666 0.72265 1 0.55566 0.50375 6,928,149.833 2632.1379 2027.5067 0.94752
6 0.48851 0.97333 0.65892 0 0.30371 1 0.41044 1 6,221,307.472 2494.2549 2142.3833 0.92888
7 0.45446 0.51932 0.49337 0.38196 0.93485 1 0.34229 0.98086 4,565,317.918 2136.6605 1844.1267 0.94594
8 0.36326 0.34374 1 0.47294 0.91225 0.4744 0.20598 0.99651 4,394,372.317 2096.2758 1794.3933 0.92742
9 0.52039 0.70382 0.077738 0 0.69597 0 0.92397 1 10,706,939.15 3272.146 2655.27 0.90856
10 0.40842 0.36388 0.21883 0.43267 0.95833 1 0.61236 0.72077 5,833,434.956 2415.2505 2088.6967 0.93483

Average 0.621532 0.653634 0.5128048 0.3465941 0.6789056 0.59295 0.510376 0.849875 6,030,062.946 2432.65406 2024.98199 0.930856

ACO_
DT

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.36831 0.65313 0 0 0 1 0.48975 0 27,725,280.24 5265.4801 3918.345 0.8088
2 0.78548 1 0 0.35183 0 0 0.96679 0.78077 17,268,337.62 4155.5189 3358.6605 0.73903
3 0.39139 0.30496 0 1 0 0 0 0.078329 20,862,939.19 4567.5967 3543.8508 0.78735
4 1 0.70817 0 1 0.61945 0.15374 0.36463 0.38276 14,114,845.23 3756.9729 3134.379 0.79848
5 0.78077 0 0 0.39765 0 0 0 1 22,127,369.33 4703.9738 3421.1334 0.77706
6 0.11978 0.46586 1 0.43738 0 1 0.86613 0 15,853,729.5 3981.6742 2765.302 0.83271
7 0.41597 1 0 0 0 1 0 1 13,566,853.1 3683.3209 2900.3703 0.82056
8 0.72963 0.5107 0 0 0.44327 0 0.58999 1 18,853,360.55 4342.0457 3218.8045 0.80982
9 0.35453 0 0.50304 0.26006 0.29699 0 0 0.10223 19,129,278.4 4373.7031 3173.7969 0.83869
10 0.35628 0.37771 0 0.89254 0 0.44445 0 0.27212 23,472,850.57 4844.8788 3620.1248 0.8251

Average 0.530214 0.502053 0.150304 0.433946 0.135971 0.359819 0.327729 0.4616209 19297484.37 4367.51651 3305.47672 0.80376

Run

Feature Weighting Performance Metrics

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

ACO_
SVM

1 0.13205 0.17919 0.47213 0.99797 0.41098 0.53424 0.94092 0.16085 214,988.4336 463.6685 372.7033 0.99976
2 0.98237 0.26347 0.97017 0.0054287 0.65009 0.99563 0.69419 0.52966 118,716.9279 344.5532 291.8931 0.99858
3 0.36341 0.07529 0.44152 0.94205 1 0.13531 0.35334 0.84212 85,394.6138 292.2236 239.0761 0.99908
4 0.31839 0.21878 0.80193 0 0.88418 0.86379 0.34368 0.59425 178,499.0214 422.4914 337.9536 0.99957
5 0.22478 0.99994 0.90923 0.99996 0.68076 0.62322 0.28197 0.23503 79,662.2247 282.245 220.6187 0.99944
6 0.1891 0.181 0.81952 1 1 0.62985 0.99913 0.17333 282,360.1537 531.3757 415.7638 0.99926
7 0.15083 0.32986 0.40481 0.99984 0.96917 0.93384 0.98662 0.21624 170,985.299 413.5037 343.692 0.9999
8 0.97605 0.20016 0.47514 0.9965 0.98931 0.85258 0.99817 0.18793 168,623.3192 410.6377 350.2368 0.99905
9 0.31839 0.21878 0.80193 0 0.88418 0.86379 0.34368 0.59425 178,499.0214 422.4914 337.9536 0.99957
10 0.22478 0.99994 0.90923 0.99996 0.68076 0.62322 0.28197 0.23503 79,662.2247 282.245 220.6187 0.99944

Average 0.388015 0.366641 0.700561 0.69417087 0.814943 0.705547 0.622367 0.376869 155,739.1239 386.54352 313.05097 0.999365



Mathematics 2023, 11, 2021 14 of 19

Table 5. Cont.

Run
Feature Weighting Performance Metrics

ACO_
NB

W_
(Regular_
Purchases)

W_(Emer
gency_Pur
chases)

W_
(Shipping)

W_
(Expired_
Medication)

W_
(Holding)

W_
(Shortage)

W_(BT_
Transaction)

W_(BT_
Installation) MSE RMSE MAE R2

1 0.066266 0.083497 0.16188 1 0.22171 0.36769 0.99974 0.064689 0.028975 0.17022 0.12833 1
2 0.051676 0.076568 0.15739 1 0.39803 0.25806 1 0.055018 0.016852 0.12981 0.10561 1
3 0.036712 0.055901 0.083755 0.99983 1 0.18925 0.19181 0.041779 0.01459 0.12079 0.092924 1
4 0.052031 0.0655 0.11217 0.99977 0.32118 0.20282 0.99953 0.047636 0.020784 0.14417 0.12146 1
5 0.066266 0.083497 0.16188 1 0.22171 0.36769 0.99974 0.064689 0.028975 0.17022 0.12833 1
6 0.051676 0.076568 0.15739 1 0.39803 0.25806 1 0.055018 0.016852 0.12981 0.10561 1
7 0.036712 0.055901 0.083755 0.99983 1 0.18925 0.19181 0.041779 0.01459 0.12079 0.092924 1
8 0.052031 0.0655 0.11217 0.99977 0.32118 0.20282 0.99953 0.047636 0.020784 0.14417 0.12146 1
9 0.05725 0.07226 0.1489 1 1 0.44111 0.52877 0.058602 0.032984 0.18161 0.1356 1
10 0.045911 0.080262 0.13201 0.99984 0.23087 0.33649 1 0.053764 0.012642 0.11244 0.098423 1

Average 0.0516531 0.0715454 0.13113 0.999904 0.511271 0.281324 0.791093 0.053061 0.0208028 0.142403 0.1130671 1

Table 6 presents the average values of the performance metrics considered in the
evaluation of the proposed ACO combined with four SL algorithms. In Table 6, ACO-
DT has the weakest result in terms of all performance metrics (Ave-MSE = 19,297,484.37,
Ave-RMSE = 4367.51, Ave-MAE = 3305.47, and R2 = 0.80), while ACO-NB performs better
with an average R2 of 1 and minimums of Ave-MSE = 0.020, Ave-RMSE = 0.142, and
Ave-MAE = 0.113 among the four methods. Although the average R2 values are acceptable
for all methods (ranging from 0.803 to 1), the average MSE, RMSE, and MAE values for
ACO-KNN, ACO-DT, and ACO-SVM are the worst (ranging from 313.05 to 19,297,484.37).
Therefore, we consider the ACO-NB results to be more reliable than the results obtained by
the other proposed methods, all of which are shown in the following table.

Table 6. Performance metrics evaluation for ACO combined with four SL algorithms.

Feature Weighting

Methods Ave_MSE Ave_RMSE Ave_ MAE Ave_R2

ACO_KNN 6,030,062.946 2432.65406 2024.98199 0.930856
ACO_DT 19,297,484.37 4367.51651 3305.47672 0.80376
ACO_SVM 155,739.1239 386.54352 313.05097 0.999365
ACO_NB 0.0208028 0.142403 0.1130671 1

We also investigated the average weights of each cost feature via the FW approach in the
ACO-KNN, ACO-DT, ACO-SVM, and ACO-NB algorithms (see Table 7). For the ACO-NB
algorithm, the maximum average weight of 0.999 is allocated to the expired medication cost
feature, and the minimum average weight of 0.051 is obtained for the regular purchases cost
feature. For the ACO-KNN algorithm, the second maximum average weight is obtained for
the BT installation cost feature (0.849) followed by the holding cost feature (0.814) obtained
by ACO-SVM (see Table 7). Accordingly, the ACO-SVM algorithm gives the second lowest
average weight of 0.135 for the holding cost feature. In addition, a variation in the average
weight of the expired medication cost feature is observed, which is obtained as 0.346 and
0.999 by ACO-KNN and ACO-NB, respectively. Similarly, the holding cost feature weight
varies as 0.135 and 0.814 obtained by ACO-DT and ACO-SVM, respectively.

Table 7. FW criteria for ACO combined with four SL algorithms.

Feature Weighting

Methods Max_Ave_Weighting Min_Ave_Weighting

ACO_KNN W_(BT_Installation) = 0.849875 W_(Expired_Medication) = 0.3465941
ACO_DT W_(Regular_Purchases) = 0.530214 W_(Holding) = 0.135971
ACO_SVM W_(Holding) = 0.814943 W_(Emergency_Purchases) = 0.366641
ACO_NB W_(Expired_Medication) = 0.999904 W_(Regular_Purchases) = 0.0516531
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5.3. Determining Reliable Algorithms for BT-Based PSC Cost Model

Table 8 summarises the TRS of eight algorithms based on the obtained Ave-MSE,
Ave-RMSE, Ave-MAE, and Ave-R2 values. In TRS, the lowest Ave-MSE, Ave-RMSE, and
Ave-MAE receive the highest scores, and the highest Ave-R2 obtains the highest score (and
vice versa). Overall, the ACO-NB algorithm outperforms the other compared algorithms
and achieves the first position among all the algorithms (a TRS of 32), followed by FA-NB
with a TRS of 29, ACO-SVM with a TRS of 24, and FA-SVM with a TRS of 22. FA-DT and
ACO-DT achieve the worst scores of 6 (rank 8th) and 10 (rank 7th), respectively.

Table 8. Ranking of eight selected algorithms based on TRS scores using performance metrics.

Performance Metrics

Methods Ave_MSE Ave_RMSE Ave_MAE Ave_R2 TRS Rank

FA_KNN
FA_DT
FA_SVM
FA_NB
ACO_KNN
ACO_DT
ACO_SVM
ACO_NB

6,264,931.611 2483.15432 1911.88968 0.930856
22,980,444.11 5916.6525 3609.44563 0.757411
159,013.6234 396.86867 323.83576 0.999713
0.0211992 0.143449 0.1130726 1
6,030,062.946 2432.65406 2024.98199 0.930856
19,297,484.37 4367.51651 3305.47672 0.80376
155,739.1239 386.54352 313.05097 0.999365
0.0208028 0.142403 0.1130671 1

Ranking
Score

FA_KNN 3 3 4 5 15 6
FA_DT 1 1 1 3 6 8
FA_SVM 5 5 5 7 22 4
FA_NB 7 7 7 8 29 2
ACO_KNN 4 4 3 5 16 5
ACO_DT 2 2 2 4 10 7
ACO_SVM 6 6 6 6 24 3
ACO_NB 8 8 8 8 32 1

Table 9 shows the ranking of the average weights of eight costs features, namely,
regular purchases, emergency purchases, shipping, expired medication, holding, shortage,
BT transaction, and BT installation for the FA-KNN, FA-DT, FA-SVM, FA-NB, ACO-KNN,
ACO-DT, ACO-SVM, and ACO-NB algorithms. This table assigns an appropriate weight to
each cost feature to show their importance. The average weight with higher TRS receives
a higher priority in the TRS process (and vice versa). Overall, the Shortage cost obtains
the best TRS of 46 for the average weight followed by the holding cost with a TRS of 45
and the expired medication cost with a TRS of 43. The minimum TRS for the average
weight is allocated to the emergency purchases cost (TRS = 28) followed by both the regular
purchases cost and the shipping cost, which have the same rank of 5th with TRS = 30.

Table 9. FW ranking based on TRS scores for eight selected algorithms.

Methods

Ave_FW FA_
KNN FA_DT FA_

SVM FA_NB ACO_
KNN

ACO_
DT

ACO_
SVM

ACO_
NB TRS Rank

W_(Regular_Purchases) 0.430661 0.4915424 0.1938399 0.0346459 0.621532 0.530214 0.388015 0.0516531
W_(Emergency_Purchases) 0.411784 0.437994 0.176338 0.0481632 0.653634 0.502053 0.366641 0.0715454
W_(Shipping) 0.5084726 0.41217 0.3525171 0.098201 0.5128048 0.150304 0.700561 0.13113
W_(Expired_Medication) 0.63562 0.427483 0.56553631 0.966838 0.3465941 0.433946 0.69417087 0.999904
W_(Holding) 0.501085 0.5911684 0.4485842 0.3088716 0.6789056 0.135971 0.814943 0.511271
W_(Shortage) 0.750703 0.524643 0.4902306 0.1940796 0.59295 0.359819 0.705547 0.281324
W_(BT_Transaction) 0.408787 0.278396 0.576866 0.637718 0.510376 0.327729 0.622367 0.791093
W_(BT_Installation) 0.640878 0.487918 0.1216899 0.035402 0.849875 0.4616209 0.376869 0.053061
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Table 9. Cont.

Methods

Ave_FW FA_
KNN FA_DT FA_

SVM FA_NB ACO_
KNN

ACO_
DT

ACO_
SVM

ACO_
NB TRS Rank

Ranking
Score

W_(Regular_
Purchases) 3 6 3 1 5 8 3 1 30 5

W_(Emergency_
Purchases) 2 4 2 3 6 7 1 3 28 6

W_(Shipping) 5 2 4 4 3 2 6 4 30 5
W_(Expired_
Medication) 6 3 7 8 1 5 5 8 43 3

W_(Holding) 4 8 5 6 7 1 8 6 45 2
W_(Shortage) 8 7 6 5 4 4 7 5 46 1
W_(BT_Transaction) 1 1 8 7 2 3 4 7 33 4
W_(BT_Installation) 7 5 1 2 8 6 2 2 33 4

6. Discussion

This section discusses the results for the proposed eight algorithms that minimise
the prediction errors of the BT-based PSC cost model. The proposed algorithms aim to
answer the three research questions mentioned in the Introduction. As stated in Section 3,
there are eight components in the BT-based PSC cost model: the regular purchases cost, the
emergency purchases cost, the shipping cost, the expired medication cost, the holding cost,
the shortage cost, the BT transaction cost, and the BT installation cost. This provides the
answer to our first research question. Regarding the second research question, among the
eight examined algorithms, we select some algorithms that demonstrate better performance
in minimising the prediction errors of the BT-based PSC cost model. Figure 2 is derived
from the data presented in Table 8 and shows the TRSs for all eight studied algorithms
(FA-KNN, FA-DT, FA-SVM, FA-NB, ACO-KNN, ACO-DT, ACO-SVM, and ACO-NB). Four
performance metrics (MSE, RMSE, MAE, and R2) evaluate the algorithm efficiency. The
overall results of this study show that both ACO-NB (first position) and FA-NB (second
position) algorithms outperform the other algorithms. This means that NB combined with
either the FA or ACO is considered to be the most effective in performing the regression. The
EC algorithms (FA and ACO) also play a significant role in optimizing the hyperparameters
of the selected SL algorithms. Moreover, the SVM algorithm, combined with the FA and
ACO, shows the second position with respect to TRS. The DT algorithm, combined with
the FA and ACO, cannot predict the costs of the BT-based PSC model well. Thus, we have
determined the most reliable predictive algorithms for our cost model using TRS and the
four performance metrics.
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Figure 2. TRS of all algorithms.

The third research question is to determine the significant cost components of the
model. The FW approach measures the importance of the features and assigns an appro-
priate weight to each feature. Figure 3 is derived from Table 9 and shows the TRS for
the weights of all cost components (features) of the BT-based PSC model. These weights
estimate the degree of relevance that each feature has for extracting the cost prediction.
The shortage cost, the holding cost, and the expired medication cost strongly influence the
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cost model. The remaining five cost features have relatively the same position based on the
weights (regular purchases cost, emergency purchases cost, shipping cost, BT transaction
cost, and BT installation cost).
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Compared to previous work that modelled the costs of PSC, this study developed a
new mathematical cost model called the BT-based PSC that includes BT transaction cost
and BT installation cost. Researchers in other fields can also use BT cost formulation (BT
transaction cost and BT installation cost) in their mathematical models to estimate the SC
costs integrated with BT. The practical significance of the study lies in providing the most
reliable predictive algorithms for the BT-based PSC cost model, the cost components of the
model, the degree of relevance of each component to the cost model, and the components
of BT in the SC model.

However, similarly to the other studies, this research is subject to two limitations. The
first significant limitation is the inaccessibility of real data because the use of BT in the PSC
is a new area of research. Therefore, the eight algorithms studied in this work applied the
generated data to validate the proposed BT-based PSC cost model. The use of generated
data, rather than real data, may influence the outcomes and conclusions of the research.
The second limitation is related to the model design. To design the cost model, we first
selected some parts of the mathematical model inspired by other papers and then added
BT costs. This means that the study may not cover some cost components of a real case,
hindering the comparison of the results of this research with the results of other studies.

Finally, future research may extend the BT-based PSC cost model to a multi-objective
model, which, for example, includes the uncertainty demand in PSCs. Another promising
direction is to use other EC algorithms to enhance the performance of the SL algorithms or
to test different SL algorithms to predict costs. The use of Feature Selection (instead of FW)
is another direction that should be investigated to compare the optimization process of this
model. The last potential future research direction is to determine the cost components of the
private BT and formulate the private BT instead of the public BT used in the current study.

7. Conclusions

The BT-based PSC enables traceability and transparency of the drugs’ movement and
of the stakeholders in the supply chain and can affect medication quality and final patient
outcomes. This paper presents a mathematical cost model for a BT-based PSC system to
estimate the costs of the model. This study is important because it provides a PSC system with
BT (BT transaction cost and BT installation cost) that can improve the safety, performance,
and transparency of medical information sharing in a healthcare system. One of the main
contributions of this research is to formulate this cost problem and apply a combination of
EC (ACO and FA) and SL (KNN, DT, SVM, and NB) algorithms and use four performance
metrics (MSE, RMSE, MAE, and R2) to evaluate the efficiency of the proposed algorithms.
This combination of EC and SL algorithms provides eight algorithms (as the regression
producer), reducing prediction errors and improving the SL results. Overall, the ACO-
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NB and FA-NB algorithms outperform the other six algorithms in estimating the costs of
the model with lower errors. ACO-DT and FA-DT show the worst performance for this
comparison, showing that the DT algorithm is not an appropriate predictive approach for
the current cost model. The findings also show that the shortage cost, the holding cost,
and the expired medication cost strongly influence the cost model more than the other
cost components that have almost the same effect on the model (regular purchases cost,
emergency purchases cost, shipping cost, BT tansaction cost, and BT installation cost). This
selection of components is derived from the allocation of an appropriate weight to each cost
feature to show their importance using the FW approach. Therefore, the statistical outcomes
on the generated dataset show that some of the proposed algorithms can obtain satisfactory
results and assign appropriate feature weights. In the real world, managers in the field of
healthcare services can use this model practically to control financial resources, stay within
the budget, analyse information, and identify unnecessary costs, particularly if they decide to
use BT in the system. The important contribution of this research is to provide a PSC system
with BT. Selected SL algorithms can also help managers estimate costs with the minimum
prediction errors and correctly decide whether the new system benefits their organisation.
As the cost factor is important to managers, this study also determines and measures the
importance of each cost component of the BT-based PSC model.
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