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Abstract—Uncertainty estimations through approximate
Bayesian inference provide interesting insights to deep
neural networks’ behavior. In unsupervised learning tasks,
where expert labels are unavailable, it becomes ever more
important to critique the model through uncertainties. This
paper presents a proof-of-concept for generalizing the
aleatoric and epistemic uncertainties in unsupervised MR-
CT synthesis of scoliotic spines. A novel adaptation of
the cycle-consistency constraint in CycleGAN is proposed
such that the model predicts the aleatoric uncertainty maps
in addition to the standard volume-to-volume translation
between Magnetic Resonance (MR) and Computed Tomog-
raphy (CT) data. Ablation experiments were performed to
understand uncertainty estimation as an implicit regular-
izer and a measure of the model’s confidence. The aleatoric
uncertainty helps in distinguishing between the bone and
soft-tissue regions in CT and MR data during translation,
while the epistemic uncertainty provides interpretable in-
formation to the user for downstream tasks.

Index Terms—Bayesian Uncertainty, Generative Adver-
sarial Networks, Scoliosis, Interpretability, Unsupervised
Learning.

Impact Statement— A novel method for quantifying
aleatoric and epistemic uncertainties in the unsupervised
and unpaired MR-CT synthesis of scoliotic spines, thus
improving model performance and providing interpretable
outputs through confidence maps.
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I. INTRODUCTION

S COLIOSIS is a complex 3D deformity of the trunk in-
volving lateral deviation in the spine and axial rotation of

the vertebrae. Surgical treatment is necessary in severe cases.
Magnetic resonance imaging (MRI) is a reliable and radiation
free pre-operative imaging modality that can provide a 3D model
of the spine, to which intra-operative images can be registered,
provided that accurate segmentation of the vertebrae can be
achieved. However, segmenting bones directly from MRI is
difficult as it provides poor contrast for bone structures. On the
other hand, bones are easily segmented in computed tomography
(CT) images, but these are rarely acquired in the context of
scoliosis due to the excessive radiation exposure. In preliminary
work [1], we demonstrated the feasibility and accuracy of unsu-
pervised scoliotic spine segmentation in MRI via intermediate
pseudo-CT images generated through MR-CT synthesis using a
deterministic CycleGAN model [2] trained on unpaired MR and
CT spine data. This paper presents a novel Bayesian extension to
this CycleGAN model that aims at increasing its interpretability
by providing uncertainty estimates.

The interpretability of deep learning (DL) models is an im-
portant focus in recent literature [3], [4], [5], [6], [7]. However,
these recent advances have not been translated to the healthcare
domain. Inductive biases such as the presence of noise in the
data and the implicit assumptions made by humans during data
acquisition and manual annotation tend to go unnoticed. As a
result, it is difficult to understand whether a model’s performance
is a true indication of the confidence in its predictions. Uncer-
tainty quantification in DL models is one method of gaining
nuanced insights into the models’ behavior. The outputs of
uncertainty-equipped models could be subsequently deployed in
clinical settings for better diagnosis, follow-up and treatment [8].

Existing work focuses on uncertainty estimation in super-
vised learning problems (with labelled datasets), typically using
Bayesian approximation and ensemble learning techniques [9].
There are two types of uncertainty that one can measure: (i)
epistemic, which captures the uncertainty of the model over its
parameters, and (ii) aleatoric, which captures the noise inherent
in the data, such as the noise in the labels due to the inter-rater
variability. Nair et al. [10] proposed voxel-based uncertainty
measures using Monte Carlo Dropout [11] for 3D segmentation
of multiple sclerosis lesions. Wang et al. [12] proposed a math-
ematical framework for estimating aleatoric uncertainty based
on various data augmentation methods applied to brain MRI to
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Fig. 1. Workflow of our method. The proposed Bayesian adaptation
of CycleGAN synthesizes both MR and CT volumes along with generat-
ing their aleatoric and epistemic uncertainty maps for improving model
interpretability.

understand the effect of these transformations of the input data
on the segmentation outputs at test-time.

Recent advances in generative adversarial network (GAN)-
based medical image synthesis [13], [14], [15], [16], [17] have
shown great results in generating artificial images in different
modalities that can be used as an nearly-identical proxies for
subsequent downstream tasks (such as segmentation). Hemsley
et al. [18] combined the estimation of aleatoric and epistemic
uncertainties in supervised MR-CT synthesis of the brain using
conditional GANs. Though a supervised method, theirs is the
only work that addresses the importance of uncertainty quantifi-
cation in medical image synthesis.

Our contributions in this paper are as follows:
1) We introduce a Bayesian adaptation of CycleGAN to esti-

mate the aleatoric and epistemic uncertainties in addition
to the volume-to-volume translation between MR and
CT data of scoliotic spines. The novelty here lies in the
generalization of these uncertainties to an unsupervised
image synthesis task.

2) We demonstrate that estimating the aleatoric uncertainty
by making the model predict the voxel-wise standard de-
viations in the loss function, acts as an implicit regularizer,
thus helping the model improve its performance by learn-
ing to differentiate between the regions surrounding the
spine. Furthermore, estimating the epistemic uncertainty
provides additional interpretable information in terms of
confidence maps (Fig. 1, right).

3) To improve translation across vertebral bone boundaries
between the two modalities, we impose gradient correla-
tion between the original and the synthesized volumes as
an additional constraint (see II-C).

In summary, the proposed uncertainty estimation helps in
offsetting the lack of external supervision by helping the model
become self-sufficient and interpretable. The code is available
at this link.1 Fig. 1 shows a flowchart of our method. The rest
of the paper is structured as follows: Section II describes our
dataset and methodology. Section III presents ablation experi-
ments demonstrating the contribution of uncertainty estimates
and other model components towards the performance and in-
terpretability of volume translation. Section IV discusses the
implications of these results and Section V concludes our work.

1https://github.com/naga-karthik/3D-CycleGAN-with-Uncertainty

II. METHODS AND MATERIALS

A. Cycle-Consistent GANs

CycleGAN [2] is an image-to-image translation method that
aims to tie two unpaired data domains X and Y together
through adversarial training by synthesizing realistic images
across these domains. Given two sets of unpaired training ex-
amples {xi}Ni=1 ∈ X and {yj}Mj=1 ∈ Y , the model learns two
function mappings simultaneously using two generators GX→Y

and GY→X . Since voxel-wise comparison after synthesis is
infeasible due to the unavailability of paired data, the cycle-
consistency loss is introduced, which is defined as:

LCycle = Ex∼preal(x)[||GY→X(GX→Y(x))− x||1]
+ Ey∼preal(y)[||GX→Y(GY→X(y))− y||1], (1)

where || · ||1 denotes the L1-norm between the real and recov-
ered samples for each domain and preal(x) and preal(y) denote the
true data distributions from which inputsx and y are sampled [2].

B. Bayesian Uncertainty Estimation in CycleGAN

This section describes our theoretical contribution: estimation
of the aleatoric and epistemic uncertainties in the unsupervised
CycleGAN model. Hereafter, the domains X and Y are de-
noted as MR and CT, respectively. Likewise, the generators
GX→Y , GY→X and the discriminators DX , DY are denoted as
GMR→CT , GCT→MR and DMR, DCT , respectively. The real
MR and synthesized CT volumes are denoted by IMR and
ÎSynCT , and the real CT and synthesized MR volumes are
denoted by ICT and ÎSynMR.

1) Unsupervised Aleatoric Uncertainty: We propose a
novel adaptation to the cycle-consistency loss that also extracts
the heteroscedastic aleatoric uncertainty while being unsuper-
vised. Recall from (1) that the cycle-consistency loss computes
theL1-norm between the recovered sample and the original input
(real) sample. Therefore, the real sample acts as a pseudo-ground
truth for the recovered sample so that its major characteristics,
as approximated by the recovered sample, remain intact dur-
ing consecutive forward and backward translations. Hence, we
propose to compute the aleatoric uncertainty in CycleGAN as:

LAleaCycle

=

(
Ex∼IMR

[ ||GCT→MR(GMR→CT(x))− x||1
exp (log(σ̂x))

]
+

1

2
log(σ̂x)

)

+

(
Ey∼ICT

[ ||GMR→CT(GCT→MR(y))− y||1
exp (log(σ̂y))

]
+

1

2
log(σ̂y)

)
,

(2)

where σ̂x and σ̂y are the predicted voxel-wise standard devia-
tions of the MR and CT volumes respectively.

Thus, our proposal is to make the model predict the logarithm
of the standard deviation of the real input sample, in addition
to the recovered sample that is already being computed for
the original cycle-consistency loss. We call this the aleatoric
cycle-consistency loss (LAleaCycle). It must also be noted that
predicting aleatoric uncertainty attenuates the loss function,
in that the exp (log(σ̂)) term in the denominator tempers the

https://github.com/naga-karthik/3D-CycleGAN-with-Uncertainty
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residual L1 loss in the numerator. For inputs resulting in high
uncertainty, this term reduces its direct effect on the loss. Using
log(σ̂) rather than σ̂ ensures that the model does not predict high
uncertainty for all inputs (thus ignoring the data), in which case
it is penalized as the contribution from the log(σ̂) term increases.

2) Epistemic Uncertainty: Epistemic uncertainty can be
obtained by placing distributions over the weights of the neural
network (NN) [19]. We used Monte-Carlo (MC) Dropout [11],
a popular variational inference-based method. In practice, the
network is trained with dropout applied before every weight
layer. During inference, T stochastic forward passes are per-
formed through the network with dropout enabled, where T is
the number of MC samples. The mean and variance of these MC
samples are then computed, resulting in the predictive mean and
model uncertainty (predictive variance), respectively.

3) Unifying Epistemic and Aleatoric Uncertainties: Let
ÎSynMR and ÎSynCT be the synthesized MR and CT volumes,
and log(σ̂SynMR) and log(σ̂SynCT ) be the predicted log stan-
dard deviations after translation. Instead of using (1), the updated
aleatoric cycle-consistency (2) is used, where, in addition to the
recovered MR and CT volumes, their log standard deviations are
also learned implicitly. During inference, the model weights are
sampled from the approximate posterior ŵ ∼ q∗θ(W ) to obtain
the synthesized volumes along with the aleatoric uncertainties
as follows:[

ÎSynCT , log(σ̂SynCT )
]
= Gŵ

MR→CT (IMR) (3)

where GMR→CT is parameterized by the weights ŵ. Therefore,
the output of a single generator provides both the synthetic
volume and a measure of aleatoric uncertainty.

At test-time, each stochastic forward pass with weights
{ŵ}Tt=1 results in an unbiased estimate of the synthetic
CT volume {Î ŵt

SynCT }Tt=1 and the aleatoric uncertainty map

{log(σ̂ ŵt

SynCT )}Tt=1. Then, the mean and variance of these T
stochastic forward passes are computed, which are the predictive
mean (left) and model uncertainty (right), respectively. They are
given by:

E

[
Î ŵt

SynCT

]
=

1

T

T∑
t=1

Î ŵt

SynCT and Var
(
Î ŵt

SynCT

)
. (4)

Likewise, the final aleatoric uncertainty is:

E

[
log

(
σ̂ ŵt

SynCT

)]
=

1

T

T∑
t=1

log
(
σ̂ ŵt

SynCT

)
. (5)

C. Gradient Consistency Loss

We also emphasize on the accurate translation of the bone
boundaries during the artificial synthesis of the CT volumes.
This is in order to facilitate a potential downstream task such
as the segmentation of the vertebrae. Therefore, gradient cor-
relation, defined as the normalized cross correlation between
the gradients of two images, is introduced as an additional
constraint [1], [14]. Given two volumes A,B, it is defined as:

GradCorr(A,B) =
1

3
(NCC(∇XA,∇XB)

+NCC(∇Y A,∇Y B) +NCC(∇ZA,∇ZB)),
(6)

where NCC(∇A,∇B)

=

⎛
⎝

∑
i,j(∇A− μ∇A)(∇B − μ∇B)√∑

i,j(∇A− μ∇A)2
√∑

i,j(∇B − μ∇B)2

⎞
⎠ ,

(7)

with ∇ representing the gradients of the input volume in X,Y
and Z directions. μ∇J is the mean of the gradient of volume J .
Therefore, gradient consistency (GC) loss is defined as:

LGC =
1

2
[Ex∼IMR(1− GradCorr(x,GMR→CT(x)))

+ Ey∼ICT(1− GradCorr(y,GCT→MR(y)))]. (8)

From a Bayesian perspective, the GC constraint between the
gradients of the MR and synthesized CT volumes can also be
interpreted as a prior that is encoded into the model during
training.

Lastly, as with all GANs, an adversarial loss is also defined to
map the source data distribution to the target data distribution.
For the mapping defined by GMR→CT : IMR → ICT and its
discriminator DCT , the objective is:

LCT = Ey∼ICT [logDCT(y)]

+ Ex∼IMR [log(1−DCT(GMR→CT(x)))]. (9)

Similarly, the objective for the reverse path is:

LMR = Ex∼IMR [logDMR(x)]

+ Ey∼ICT [log(1−DMR(GCT→MR(y)))], (10)

where x and y are the volumes from the MR and CT domains.
The full objective function to be optimized is thus:

(G∗
CT→MR, G

∗
MR→CT)

= arg min
GMR→CT
GCT→MR

max
DMR
DCT

(LCT + LMR + λLAleaCycle + γLGC),

(11)

where λ and γ are the hyperparameters for weighting cycle- and
GC losses. We set λ = 10.0 and γ = 0.5 for the best results.
Fig. 2 illustrates CycleGAN with our proposed uncertainty
framework.

D. Datasets

The MR and CT datasets were acquired from 3 different
sources (2 for MR and 1 for CT). For MR, we used the dataset
from the 2018 MICCAI Challenge on Automatic Intervertebral
Disc Localization and Segmentation from 3D Multi-modality
MR (M3) Images2 consisting of 16 volumes of the lumbar spine,
comprised of 4 mutually aligned MR modalities for studying
the effect of prolonged bed rest on lumbar intervertebral discs.
Our second source is a subset of the dataset described by

2https://ivdm3seg.weebly.com/

https://ivdm3seg.weebly.com/
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Fig. 2. CycleGAN with 2 generators (orange) and 2 discriminators
(red). Each cylinder represents an imaging modality with green boxes
showing the real volumes and blue boxes showing the synthetic volumes
of that domain. Forward Cycle: (solid arrows) Starting from green box
(left, top), going through GMR→CT to blue box (right, top), then going
through GCT→MR to recover blue box (left, top). Backward Cycle:
(dashed arrows) Starting from green box (right, bottom), going through
GCT→MR to blue box (left, bottom), then going through GMR→CT to
recover blue box (right, bottom). The aleatoric cycle-consistency loss
(LAleaCycle) is calculated between the real and recovered volumes (top
left and bottom right). The gradient-consistency loss (LGC ) is calculated
between the real and synthesized volumes (top left, top right and bottom
left, bottom right). Figure adapted from [14].

Fig. 3. Generator and discriminator architectures used. Numbers in-
side each block represent the feature maps at that resolution.

Chevrefils et al. [20] consisting of MRI 3D multi-echo data
volumes from 11 adolescent idiopathic scoliosis patients with
deformities ranging from mild to severe, acquired from CHU
Sainte-Justine in Montréal, Québec. This dataset focused on the
thoracic region (T1-T12) of the spine. For CT, we used 2 sample
volumes provided by 3D Slicer. The supplementary material
describes the preprocessing, data augmentation methods and for
a few sample images from the dataset.

E. Training Details

A 3D UNet [21] was used as the generator network and
PatchGAN [2] was used as the discriminator network. Fig. 3
illustrates the model architecture. Adam optimizer [22] was
used with batch size 2 and learning rate of 0.0002. The model
was trained for 200 epochs with linearly decaying the learning
rate after the first 100 epochs. Training time was 93 hours on

4 NVIDIA Tesla V100 GPUs with 32 GB memory. However,
the inference time was less than 5 seconds on a single NVIDIA
1080Ti 12 GB GPU. Full description of the model architecture
can be found in the supplementary material.

III. EXPERIMENTS AND RESULTS

Five scoliotic patients were used in the test set, hereafter
referred to as Patient1 (P1), Patient3 (P3), Patient4 (P4),
Patient11 (P11), and Patient12 (P12). Their spinal deformities
range from mild (Cobb 12◦ − 24◦) to severe (Cobb 43◦ − 60◦).
The accuracy of vertebral bone segmentation using the CT im-
age translations resulting from the proposed method, including
uncertainty estimation, was found to be similar to the Cycle-
GAN model without uncertainty discussed in our preliminary
work [1]. These quantitative results are available in the supple-
mentary material. The remainder of this section instead focuses
on the experiments conducted to gain a qualitative understanding
of the effects and interactions between the novel uncertainty
estimations and gradient consistency (GC) loss towards the
quality and interpretability of the translated CT volumes. The
quality of the translations can be evaluated by observing the
similarity between the shapes of the bone structures depicted in
both MR and the synthesized CT volumes. As soft tissues are not
clearly represented in CT as they are in MR, one would expect
high aleatoric uncertainty in such regions of the synthesized CT
volumes. Likewise, epistemic uncertainty is also expected to be
relatively higher at the bone boundaries, especially due to the
difficulty in translating the partial volume effects in MRIs.

Since the GC loss and uncertainty estimations are the two
main additions to the CycleGAN architecture, we conducted an
ablation study where all four combinations concerning those
two modifications were considered. The purpose of these exper-
iments are two-fold: (1) to understand the benefits of using un-
certainty estimates thereby leading to informed interpretations
of the model’s predictions, and (2) to visualize the effects of the
gradient consistency constraint specific to MR-CT synthesis.
Hereafter, we refer to “soft” prediction as the mean of T MC
samples (here, T = 20) and “hard” prediction as the output
resulting from only one set of (best) weights.

A. Effect of the GC Loss Without Uncertainty

This subsection compares the results of: (i) the model trained
without GC loss and without uncertainty computations (i.e.
the default CycleGAN) (“withoutGC_withoutUnc”), and (ii)
the model trained with GC loss but without the uncertainties
(“withGC_withoutUnc”), described in our preliminary work [1].
Fig. 4 shows the (hard) translations obtained for Patient1 and
Patient12.

Considering the red and green arrows in Fig. 4, it is clear
that optimizing for gradient consistency during training helps
the model learn the vertebral shapes and localize the bone
structures from the training volumes. However, the lack of
uncertainty gives no estimate of the model’s confidence, which
can be useful for the downstream post-processing tasks such as
segmentation.
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Fig. 4. Hard Synthesized CT predictions for P1 and P12. Left-to-right:
Original MR slice, synthesized CTs without uncertainty for models with-
out and with GC, respectively. Red and green arrows show the difference
in translation without and with GC. Unc.= Uncertainty.

B. Effect of the GC Loss With Uncertainty

This subsection compares the results of: (i) the model
trained with both the GC loss and uncertainty enabled
(“withGC_withUnc”), and (ii) the model trained without the GC
loss but with uncertainty estimations (“withoutGC_withUnc”).
Fig. 5 shows the translations and the uncertainty estimates for
Patient1 and Patient3.

The bottom-half of Fig. 5 shows that the spinal curvature of
Patient1 has been slightly better captured by the model that was
trained with the GC loss (shown by green and red arrows). For
Patient3 (top-half of Fig. 5), the bottom thoracic vertebrae have
been better translated with GC (row 1) compared to the model
trained without the GC loss (row 2).

Regarding the uncertainty maps, recall from (2) that the
aleatoric uncertainty maps are learned by comparing the
recovered MR volumes with the original ones. To satisfy
cycle-consistency, the recovered MR volumes are solely based
on the quality of the synthetic CT volumes from the forward cy-
cle where the soft-tissue information is lost and bone structures
are emphasized. Therefore, the high uncertainty corresponds to
the soft tissue regions lost during the forward cycle translation
going from MR to CT. Notice that the soft tissue regions in
rows 1 and 3 (withGC) are fully red (highly uncertain), whereas
the bones are in yellow and blue (relatively less uncertain). On
the other hand, since the epistemic uncertainty depends only
on the model parameters, it specifically shows that the model’s
confidence is low in translating the spinous processes.

In the case without GC (rows 2 and 4), the model was unable
to distinguish between the bones and the soft tissues, hence
predicting similar aleatoric uncertainty (yellow/green regions)
across the entire image.

It must also be noted that by the virtue of estimating the
aleatoric uncertainty, the model learns to distinguish between

Fig. 5. The soft translations along with aleatoric and epistemic un-
certainties. Left-to-right: original sagittal MR slices for Patient1 and Pa-
tient3, “soft” CT predictions, aleatoric maps learned by the models, and
epistemic uncertainties. Top-to-bottom: 1st and 3rd rows show results
with GC, 2nd and 4th rows show results without GC. Green arrow
points to the spinal curvature better translated with GC and red arrow
shows the same region translated without GC. Blue and red regions in
the uncertainty maps refer to low and high uncertainties respectively.
“Unc.”= Uncertainty.

the bone and soft tissue regions by itself without any external
conditioning.

C. Effect of Modelling Uncertainty With GC Loss

This subsection compares the results of: (i) the model
trained with the GC loss but without the uncertainties
(withGC_withoutUnc), and (ii) the model trained with both
the GC loss and uncertainty estimations (withGC_withUnc).
Fig. 6 shows the hard and soft translations along with uncertainty
estimations for Patient4 and Patient12.

Considering the green boxes across all slices in Patient4 and
Patient12, the translation from the MR slice has accurately
translated the spinous processes. The hard and soft predic-
tions are similar to each other. However, the model trained
with both GC and uncertainty conveys that it is not confident
about its translation of the spinous processes. This appears
in the form of high epistemic uncertainty within the green
boxes. Therefore, this region requires supervision from the
user during post-processing or the downstream segmentation
task.



426 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 6. The hard and soft CT translations along with aleatoric and
epistemic uncertainties for the latter. Left-to-right: Original MR slices,
hard CT results for the model without uncertainty, columns 2, 3, and 4 -
mean prediction with aleatoric and epistemic maps, respectively. Green
boxes show the specific regions compared across translations. Blue and
red regions in the uncertainty maps refer to low and high uncertainties
respectively. “Unc” - Uncertainty.

Fig. 7. The hard and soft CT translations along with aleatoric and
epistemic uncertainties for the latter. Left-to-right: Original MR slices,
results for the model without uncertainty, columns 2, 3, and 4 - mean
prediction with aleatoric and epistemic maps, respectively. Blue and
red regions in the uncertainty maps refer to low and high uncertainties
respectively. Unc. - Uncertainty.

D. Effect of Modelling Uncertainty Without GC Loss

This subsection compares the results of: (i) the model
trained without the GC loss and without uncertainty estimations
(“withoutGC_withoutUnc”) and, (ii) the model trained with-
out the GC loss but providing uncertainty estimations (“with-
outGC_withUnc”). Fig. 7 shows the corresponding results for
Patient3 and Patient4.

The hard CT translations appear similar between patients for
the model trained without GC and without uncertainty. However,
due to the absence of uncertainty information, it is difficult to
understand where the model might have translated incorrectly.
While the soft translations themselves are not perfect, they are
able to better capture the shapes of the spinous processes. In
addition, depriving the model of GC and uncertainty constraints
has affected its ability to learn the vertebral structure specific

to the patient and output generic translations unlike its soft
CT counterpart. Therefore, by modelling aleatoric uncertainty
during training, the model tends to offset the lack of GC.

IV. DISCUSSION

Our experiments show how the GC loss and uncertainty
estimations play a key role during and after training in the
quality of the synthesized CT volumes. In Fig. 5 (experiments
“withGC_withUnc” and “withoutGC_withUnc”), by the virtue
of optimizing for GC, the model could automatically distinguish
between the bones and the soft tissue regions (as shown with
yellow and red regions of aleatoric uncertainty respectively).
The corresponding epistemic uncertainty results specifically
show high uncertainty in the spinous processes, thereby making
them a target requiring increased supervision for downstream
tasks. This leads to two more observations: (i) despite minor
differences in the translations, it is better to optimize for the GC
loss, in addition to modeling the uncertainty estimates, as long
the training remains stable and memory constraints allow, and
(ii) out of the two uncertainty maps, providing the user only
with epistemic uncertainty is more useful for post-processing
tasks, while the aleatoric uncertainty helps the model identify
and distinguish different regions in the training data, leading to
improved performance. These observations reinforce the idea
that uncertainty estimations help extract more information from
the unsupervised CycleGAN model. Lastly, the proposed un-
certainty estimates, in turn, also benefit from the prior imposed
by the GC constraint. It assumes that the underlying physical
properties of the spine are sufficiently similar across the MR
and CT data, which is a reasonable assumption as they belong
to the same patient.

There are a few limitations to our work. First, out of the
two uncertainties, only the epistemic uncertainty can be mean-
ingfully interpreted by the end user as these are generated
during test-time (we show in the supplementary material that
the regions of high epistemic uncertainty helped in guiding
the semi-automatic segmentation of the vertebral bodies). This
is because the aleatoric uncertainty is typically obtained by
comparing the model prediction with the actual ground truth,
which is unavailable. To circumvent the lack of ground truth
CT data, our method compared the MR volume recovered
from the synthetized CT volume with the original MR volume.
The aleatoric uncertainty map tends to capture the loss of soft
tissue information that occurs during the forward MR-to-CT
translation by acting as an implicit regularizer during training,
which is not easily interpreted by the user. Second, due to the
unavailability of expert-annotated vertebral labels in scoliotic
CT data, it is difficult to quantitatively measure the benefit of
uncertainty estimations.

V. CONCLUSION

Our experimental results suggest that modelling uncertainties
helps improve the unpaired translations while also providing in-
terpretable confidence maps towards understanding the model’s
predictions. This constitutes a novel proof-of-concept towards
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the generalization of uncertainty estimation to unsupervised
image synthesis problems.
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The qualitative and quantitative results from the segmentation
and reconstruction of the scoliotic spines along with details on
data augmentation and training strategy can be found in the
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