

Abstract—A deep neural network architecture for the automatic
sizing of analog circuit components is proposed, with a focus on
radio frequency (RF) applications in the 2 to 5 GHz region. It
addresses the challenges of the typically small number of examples
for network training and the existence of multiple solutions, of
which impractical values for integrated circuit implementation.
We address these issues by restricting the learning to one
component size at a time, thanks to a cascade of dedicated shallow
neural networks (SNN), where each network constrains the
prediction of the next ones. Moreover, the SNNs are individually
tuned by a genetic algorithm for the prediction order and
accuracy. This reduction of the solution space at each step allows
the use of small training sets, and the introduced constraints
between SNNs handle component interdependencies. The method
is successfully validated on three different types of RF
microcircuits: a low-noise amplifier (LNA), a voltage-controlled
oscillator (VCO), and a mixer, using 180 nm and 130 nm CMOS
implementations. All the predictions were within 5 % of the true
values, both at the component and performance levels, and all the
responses were obtained in less than 5 s, after 4 to 47 min. training
on a regular PC station. The obtained results show that the
proposed method is fast and applicable to arbitrary analog circuit
topologies, with no need to retrain the developed neural network
for each new set of desired circuit performances.

Index Terms— Design automation, circuit sizing,
microelectronics, analog circuits, radiofrequency, RF, deep
learning, neural networks, genetic algorithms.

I. INTRODUCTION

urrently, the typical design flow of analog circuits still
requires substantial human intervention [1], since designer
experience must compensate for properties and

implementation factors not accounted for by the existing design
tools, including non-linear components, bias requirements, and
real-world effects like stray impedances, physical circuit layout,
and component coupling. This usually results in a time-
consuming iterative design process that must be repeated for
each new design, and the situation is likely to worsen with the
increasing complexity of electronic circuits and systems, and
the shortening of their useful life spans.
 Many works have proposed circuit design workflows for
electronic design automation (EDA), particularly for digital
integrated circuits and systems. However, the design and
synthesis/sizing of analog circuits, particularly for
radiofrequency (RF) applications, are still challenging due to
the aforementioned limitations.

Circuit design is usually more complicated than analysis. In
the former, the tools uniquely determine a circuit’s behavior
from its topology and component values, but circuit design
addresses the reverse problem: find a feasible circuit topology
and component values to match given performances. Formally,
two problems are reversible with respect to each other if the
formulation of one involves all or part of the solution of the
other [2]. Then, the better-understood problem is said to be

direct, while the other one is said to be inverse. For, analog
circuits, analyzing circuit behavior given a topology and
component values is a direct problem, while synthesizing the
circuit (i.e. finding the topology and component values) for a
given behavior is an inverse problem, and it usually affords
multiple solutions, not all feasible in practice. This includes
outsized geometries or component values.

Automating the solution of inverse problems has been a
focus of research in many fields since they arise whenever a
physical system is to be inferred from property measurements
[3], and their well-posedness must be established for a
straightforward solution to exist. Formally, a problem must
meet three criteria to be well posed [4]: 1) it can be solved; 2)
the solution is unique; 3) the solution is continuous with respect
to data and parameter changes. A problem that does not respect
those criteria is ill-posed, and this is often the case for inverse
problems as they usually afford multiple solutions, and they
may also violate the third criterion, as small data or parameter
changes in them may lead to wide variations in the output
values or solution accuracy.

The inverse problem of circuit design can be simplified if the
circuit topology is given, since the design scope then reduces to
estimating the component sizes. However, it is difficult to
model RF circuits by regular linear equations with lumped
parameters at GHz frequencies, since electric and magnetic
fields must be accounted for, along with dissipative losses [5],
leading to complex wave equations, and secondary effects such
as those of stray capacitances and layout effects arise. In this
context, the typical approach follows a lengthy iterative process
of simulation and analysis, followed by sizing adjustments, and
an efficient automatic sizing solver can be of great assistance.
There also exist commercial products such as Neolinear [6],
Solido [7], and MunEDA [8] that have been developed to help,
but their lack of genericness across circuits and technologies,
and the need to reconfigure them for each new design have been
obstacles to a wide adoption. In practice, the choice of topology
and the sizing of components are application-specific, making
it harder for one algorithm to perform well in all situations. In
addition, the set-up and configuration costs are important since
the designers must use different tools and design environments.
Finally, because of the high number of circuit topologies,
technologies, and performance metrics, there are no specific
benchmarks to evaluate and compare the available EDA
algorithms [9].

Analog RF circuit design is typically a mix of methods and
experience where, after selecting a circuit topology, a
component sizing process takes place, followed by drawing the
circuit layout and extracting the parasitic components and
secondary effects to fine-tune it. In this paper, a neural
network-based methodology is proposed to speed up the initial
sizing step by learning from a relatively small set of solved
examples. Then, given an RF circuit and a set of desired
performances, it automatically sizes the circuit components

Analog RF Circuit Sizing by a Cascade of

Shallow Neural Networks
Philippe-Olivier Beaulieu, Étienne Dumesnil, Frederic Nabki, and Mounir Boukadoum

ÉTS, Montreal, Canada; UQAM, Montreal, Canada

C

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

before the tuning step, to within 5% of both the required values
as determined by the usual simulations and the desired
performances. The approach is fast and generic for any circuit
topology or performance specifications, and our validation
results show that it predicts the sought component values within
the set accuracy and performance thresholds, without being
affected by the implementation geometry.

The proposed approach consists in a cascade of progressively
built shallow neural networks (C-SNN), where each SNN is
individually specified by a genetic algorithm (GA) to predict
one component size. Moreover, each SNN output constrains the
subsequent SNNs for mutual compatibility. This one-by-one
approach simplifies the search space to allow for smaller
training sets while forcing the generated component sizes to be
compatible.

We define a shallow neural network as one that includes two
hidden layers at most. Here, it consists of a multilayer
perceptron (MLP) whose hyperparameters are tuned by a GA.
Then, each trained MLP adds its output to the desired
performances to constrain the learning of the next MLPs in the
cascade while compensating for potential coupling with the
already predicted values. The prediction order is also
determined by the GA.

Three specific analog RF circuits are used for validation,
with one of them implemented in 180 nm CMOS technology
and the other two in 130 nm CMOS technology, but the
proposed methodology is circuit and technology-agnostic, and
other choices could have been made by simply using the
appropriate set of completed designed as training examples.
The three circuits were selected mainly to represent basic
building block functionalities in RF circuits. As the proposed
tool only accomplishes the initial sizing step of the design cycle
as implemented, the used training data do not account for the
effects of parasitic components or electromagnetic (EM)
interference. This will be discussed further in Section VI.

The balance of this paper is as follows. Section II reviews the
related work on component sizing; Section III presents the
C-SNN architecture, along with the GA used to optimize its
hyperparameters; Section IV describes the RF microcircuits
used for validating the proposed method, with Section V
providing the obtained results; finally, Section VI offers a
discussion and concluding remarks.

II. RELATED WORK

Initially, two major approaches could be identified in relation
to analog design automation, knowledge-based and
metaheuristic-based. Today, artificial neural networks (ANNs)
constitute a promising third alternative. Below is a brief survey
of previous work devoted to the analog circuit sizing problem,
with a justification of the present work at the end.

A. Knowledge-Based Methods

These techniques are among the oldest and strive to imitate
the behavior of expert designers [10], like plans to set the values
of the design parameters in steps [11]. The approach is effective
at low frequencies and for relatively small circuits such as
operational amplifiers [12]. However, larger circuits rapidly
increase in complexity, with non-linear relations and couplings
to account for between the components and the circuit behavior,
making it difficult to build an efficient design plan [13][11].
FEATS [14] is a method that uses abstract building blocks to
create and evaluate topologies based on known circuits. This

methodology is flexible in terms of circuit classes, technology
nodes, and performance measurements, but generates many
meaningless interim structures. A similar open-source design
methodology based on the functional block is FUBOCO [15].
A library for different functional stages (bias, load, differential
pair, etc.) is used in conjunction with composition rules to
create and evaluate the topologies. The methodology is more
complicated than FEATS but reduces the search space for the
desired circuit topology. In all cases, a good knowledge of the
design rules is required to use the previous methodologies.
Moreover, as knowledge-based methods are essentially expert
systems, they suffer from the fundamental difficulty to extract
human expert knowledge (i.e. rendering explicit an essentially
implicit procedural knowledge) [16]. This has led many
researchers to look for methods that can autonomously learn to
find solutions.

Case-based reasoning (CBR) [17][18] attempts to
circumvent the problem by shifting the focus on the expert
thinking’s outcome instead of the thinking itself. CBR can be
summarized as the search and retrieval of a “close” solved
design and its revision for adaptation to the current case. If the
retrieved circuit behavior is the same as the required one, its
component values are just reused; if not, knowledge-based
methods are used to revise the component parameters [19].
However, this requires many stored designs to be efficient [12],
which makes its usefulness limited for circuit design, synthesis,
or sizing, as only a few examples are usually available.

B. Metaheuristics

Metaheuristic-based methods view the sizing problem as
multi-objective constrained optimization [20][13][21], and they
typically find the solution by using a search algorithm.

1) Simulated Annealing

Simulated annealing [22] explores the solution space with
increasingly finer granularity until a final solution is reached
(e.g. see [23][24]). The approach has two important limitations
in the context of circuit sizing. First, the circuit of interest must
be simulated each time for error evaluation, making the
algorithm time-consuming for complex problems. Second and
more importantly, the final sizing solution is specific to the
analyzed circuit. Indeed, the method does not learn “how to”
size, but only finds the idiosyncratic solution for a single set of
required circuit behavior. Thus, the optimization algorithm
must be restarted for each new desired behavior. This can be a
serious limitation in terms of sizing time. For example, the
simulated annealing method proposed in [19] needed between
one and three hours on a 2.3 GHz CPU to complete the sizing
of each low-noise amplifier (LNA) performance criteria it was
given. The one proposed in [23] required approximately 25
seconds to size a new operational amplifier and one hour to size
a new voltage-controlled oscillator (VCO) on a 2.4 GHz CPU.

2) Genetic Algorithm

GA search is similar to simulated annealing, in that a
competitive process is used to find a solution (e.g. see [25][26]).
However, instead of two competing neighbors at each iteration,
a whole population of potential solutions is involved, each one
using a “chromosome” metaphor. In the context of circuit
sizing, the chromosomes typically define the circuit component
values and their population goes through a series of selection-
reproduction-mutation cycles until convergence towards a
solution [27]. Like simulated annealing, the returned
component values apply to a specific set of performance

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

criteria, and the process can be time-consuming due to
repetitive circuit simulation. For example, the GA implemented
in [28] took approximately 54 seconds on a 2.8 GHz CPU to
complete the sizing of an operational amplifier, while one
implemented in [25] took consistently more than 30 minutes to
size a LNA. In both cases, the process had to be repeated for
any new set of performance criteria presented. Generic
algorithms are also used to optimize other approaches [29].

 A variant of GA, differential evolution, uses real-valued

vectors as genotypes and the difference between vectors in

breeding new generations. In [30], it is combined with surrogate

models of electromagnetic simulations (EM) for an end-to-end

design. However, the approach must be restarted for each

circuit instance and its time consumption for the three provided

examples varied between 42 and 106 hours on an average

desktop station.

3) Genetic Programming

Genetic programming (GP) attempts to solve the synthesis
and sizing problems using a dynamically bred program
[31][32]. It has been shown to perform well not only to find an
adequate set of values for components but also to find an
adequate topology, including selecting the actual components
and interconnections of the circuit. As proposed in [33], a tree
is used to represent the analog microelectronic circuit. First, an
embryonic circuit is generated, from which the final circuit is
evolved. The evolution of the circuit reflects the evolution of
the functions that constitute the branches of the circuit-
constructing program tree (see also [34] for a different coding
scheme). The main advantage of GP over GA and simulated
annealing is its efficiency at synthesizing the whole circuit
instead of being limited to circuit sizing. Many variations of the
genetic programming algorithm have also been proposed for
circuit sizing (e.g. [34]), reaching efficient sizing optimizations.
However, in the context of the present work, they also have the
limitations of the preceding metaheuristics.

In all the previous approaches, a design-in-the-loop approach
is used, in which the circuit of interest is built or simulated for
testing during the algorithm iteration process. The approach can
result in very long convergence times [30][35], even with
approximation techniques such as surrogate circuits are used for
simulation, and final tuning is done by an expert [36].

The preceding subsections are just examples of the various
techniques used to tackle the optimization problem with
metaheuristics, and many other approaches have been reported
in the literature. For example, [37] used Bayesian optimization
for the design of RF power amplifiers, and [38] used Bayesian
Model Fusion to reuse early-stage data when fitting a late-stage
performance model of two circuits mixed signal circuits.

C. Artificial neural networks

Neural networks differ from knowledge-based techniques and

metaheuristics by viewing the sizing problem as one of

classification/regression. Using a set of successful circuit

design examples, they use their generalization ability to specify

the component values of similar new circuits. This capability

makes them more generic than the previous methods which

must be started over for each new design, even when the same

circuit topology is used. As the name implies, the approach

relies on artificial neural networks (ANN), especially those with

many layers, known as deep neural networks or DNNs [39].
ANNs have been used with relative success in modeling and

designing microwave passive circuits [40], checking the
designed circuit’s conformity [41], and designing simple
circuits [42]. Using more layers, DNNs have also been
successfully used to solve inverse problems (e.g. see [43]), and
contextual problems such as language translation [44].

In the context of circuit sizing, DNNs present the potential to
overcome the main limits of the methods described in the
previous subsections. First, they do not have the explicit
knowledge acquisition problem of knowledge-based
approaches, as they learn autonomously from the example data.
Next, the training data come from already sized circuits that are
used as examples, and the optimized solution corresponds to a
generic mapping of performance criteria to circuit sizing,
instead of being idiosyncratic. Hence, once trained, they do not
need to restart for each new set of performance criteria.
Therefore, the time invested in sizing a set of circuits for
training a DNN is largely repaid by reuse in the long run.

However, the number of already sized circuits to train a DNN
for efficient prediction is a problem. Because the number of
parameters (i.e. connection weights at the input of each neuron)
increases as a power law with the number of neural layers, a
huge number of examples is usually required for DNN training.
Unfortunately, multiple reasons make this difficult, if not
impossible, to achieve for analog circuit sizing. First, it takes
time to synthesize each training example and there are no
publicly available datasets; second, the technology for analog
circuit design and implementation is not static, making it
necessary to adapt the training sets to each new technological
advance.

The lack of availability of large datasets of successfully sized
microelectronic analog circuits and the search for a component
sizing methodology that is generic in scope are the main
motivations for the work presented here. Indeed, when looking
at the literature, even in the few cases where researchers
gathered tens of thousands of examples to train their DNNs,
their models address low to mid-frequency analog circuits,
operate within fixed design parameters or use data
augmentation techniques with lower performance
specifications to train the networks (e.g. [45]-[47]). An
exception is the work in [48] whose two-model approach is
somewhat like ours in that it tries to shrink the solution space
before the final classification. But the work is mainly a proof of
concept as presented and our approach is simpler. As will be
presented next, our proposed method uses simple means to
greatly reduce the required number of example data to train a
neural network for circuit sizing, and it applies to arbitrary
performances given a circuit topology.

III. METHODOLOGY

As argued above, DNNs are an attractive method for circuit
sizing, but the relatively small size of the available training sets
prevents their efficient training due to the large number of
parameters to set. The proposed approach circumvents the
problem by successively predicting the outputs one at a time:
instead of a static DNN architecture to predict all the component
sizes at once, the architecture is generated in steps, using a DNN
made of a cascade of shallows neural networks (C-SNN). Two
variants are presented: a fixed cascade with one SNN per size
to predict (FC-SNN), and a dynamic cascade where more than
one SNN contributes (DC-SNN). They are described next,
along with the GA to optimize the hyperparameters of each
SNN, and the validation method used in this work.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

A. Fixed cascade of shallow neural networks (FC-SNN)

This is the base version of C-SNN, with each component size
predicted without concern for the next sizes to predict or their
couplings. Therefore, FC-SNN comprises as many SNNs as
there are component sizes to predict as shown in Fig. 1.

Each SNN in the figure has one or two hidden layers, with
each input layer neuron holding one input value, and each
hidden layer neuron j producing an output given by:

 𝑦𝑗 = 𝑓𝜃(𝑠𝑗) = 𝑓𝜃(∑ 𝜔𝑗𝑖𝑥𝑖
𝑁
𝑖=1) (1)

where 𝑠𝑗 is the weighted sum of the N inputs from the previous

layer, xi is the output of the ith neuron in that layer, ωji is a weight
to be determined and fθ is the neural output function. In this
work, that function was either the hyperbolic tangent sigmoid:

 𝑓𝑡𝑎𝑛ℎ(𝑠) =
2

1+𝑒−2𝑠 − 1 (2)

or the rectified linear unit (ReLU):

 𝑓𝑅𝑒𝐿𝑢(𝑠) = {
𝑠, 𝑠 > 0
0, 𝑠 ≤ 0

 (3)

The type of output function and number of hidden neurons
are set by the GA, and the same output function applies to all
the hidden neurons in a given MLP.

In the output layer, the neural output is the weighted sum of
its inputs, given by:

 𝑧 = ∑ 𝜔𝑘𝑗𝑦𝑗
𝑁
𝑗=1 (4)

where yj the output of the jth hidden layer neuron from the
previous layer and ωkj another weight to be determined by the
learning process.

The neural weights are optimized using the error
backpropagation with gradient descent algorithm, which
minimizes the network’s output error by propagating it back
through the hidden layers and adjusting the different connection
weights for minimal contribution to the error [50]. The gradient
descent algorithm used the Adam optimizer [51] with
regularization for weight setting, and the relevant neural
hyperpaprameters set by the aforementioned GA. After tuning
and subsequent training, each MLP in Fig. 1 adds its output to
the specified performances to constrain the learning of the next
MLP to find a new component size while compensating for
potential coupling with the already predicted values.

The FC-SNN can be seen as a hybrid architecture that
combines a GA and an error backpropagation with a gradient
descent algorithm, working together to optimize the
specification of each MLP stage. At the top level, the GA
searches the space of MLP hyperparameters for the optimal
values of the number of layers, the number of neurons per layer,
the neural output functions, and the training algorithm’s
parameters. At the bottom level, the backpropagation algorithm
with gradient descent searches the space of MLP weights to
optimize the prediction of the selected target component size.

FC-SNN operates as follows: MLP1 takes as inputs the
performances of the desired circuit and the GA tunes it to
predict a first component size. Then, the process repeats to
optimize MLP2 for the second component size to predict. MLP2
takes both the performance criteria and the output of MLP1 as
inputs. In the next step, the performance criteria and the outputs
of MLP1 and MLP2 form the input of MLP3 in the FC-SNN
sequence, and the process continues with each remaining MLP
until all the component sizes have been correctly predicted.

One important issue is the component size prediction order.
This is accomplished as follows: initially, several chromosome
populations are randomly generated, one for each component
size to predict. Then the GA starts with the first population to
tune MLP1 to predict each component size in turn. The GA is
iterated until the 5% prediction accuracy threshold is reached
and the best predicted component size is selected as the first one
to predict. Then, the process repeats for the remaining
component sizes using the second chromosome population and
MLP2, and the winner is selected as the second component size
to predict. The same procedure is repeated for each of the
remaining MLPs until no component size to predict is left,
leading to an ordered prediction sequence. Subsection C.4
summarizes the algorithm using pseudo-code.

B. Dynamic cascade of shallow neural networks (DC-SNN)

Because of its sequential prediction, the FC-SNN method
may lead to a deadlock when two component sizes are
interdependent since each one must be known to determine the
other. To overcome that problem, a new version of C-SNN is
proposed, called the dynamic cascade of shallow neural
networks (DC-SNN). It applies when one or more SNN in FC-
SNN has a prediction error higher than the set threshold (5%
component and performance tolerances in this work).

In DC-SNN, more than one SNN may contribute to sizing the
same component, with the added SNNs accounting for potential
component cross-couplings. The rationale behind this is that,
while the SNN that predicts the first component size can only
rely on the specified performance criteria for the target circuit
as inputs, the same SNN moved l positions forward in the
cascade can count on both the performance criteria and the l-1
size predictions obtained up to that point, hence potentially
producing a lower prediction error.

The DC-SNN method starts by generating a cascade of M
MLPs like FC-SNN, with MLPi predicting the ith component
size di. Then, a new MLP, MLPi+M, tries to learn di again using
all the performance criteria and predicted values as inputs. If
MLPi+M predicts di better than MLPi, it is added to the cascade
as the predictor of di; otherwise, it is ignored. The DC-SNN
approach is illustrated in Figure 2 for M=3.

C. Genetic Algorithm for MLP Configuration

As mentioned, a genetic algorithm is used to optimize the
hyperparameters of each MLP in the cascade. Each GA starts
by generating a population of chromosomes that encode the

M-1

2

1

MLP
1

MLP
2

MLP
3

MLP
M

Component

size 2

Component

size 3

Component
size M

Input
performance

vector

…

Component

size1

…

Figure 1. Block diagram of the C-SNN [49], where MLP means multilayer

perceptron ANN and M is the number of component sizes to predict.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

MLP hyperparameters as a binary vector where the successive
bit fields represent different hyperparameters (see Table I). In
this work, a population size of 64 randomly initialized
chromosomes of 19-bit size is used. Then, the GA’s three-step
process of selection, reproduction and mutation is repeated until
reaching a stopping criterion.

1) Selection Phase

This phase selects the chromosome pairs for reproduction.
The deterministic tournament method is used as it has been
shown to be more efficient and less time-consuming than other
selection methods such as ranking and roulette [52], and it has
been suggested that its deterministic ranking has the potential
to outperform probabilistic selection [53]. Moreover,
deterministic tournament lends itself more easily to hardware
implementation in a field-programmable gate array (FPGA),
which is a future objective of this work.

In the deterministic tournament, the future parent
chromosomes are selected through a series of pairwise
matchups, using the mean-squared error between the target and
predicted outputs of the associated MLP as a fitness function.
For each matchup, the chromosome with the best fitness value
proceeds to the next stage [54]. The chromosome population is
arbitrarily ranked for fitness at the beginning.

2) Reproduction Phase

At the end of the selection phase, 32 of the 64 chromosomes
have been deleted and the remaining 32 are re-ranked. Then, to
replenish the population, 32 new chromosomes are generated
from the remaining ones used as parents, with each pair
breeding two children. Each child is created by using two
randomly selected crossover points as is commonly done. The
chromosome corresponding to the first child is identical to the
chromosome of its first parent before the first crossover point
and after the second crossover point and is identical to the
chromosome of its second parent in between. The inverse is true
for the second child of the same pair of parents.

3) Mutation Phase

The mutation phase inverts each chromosome bit of the
population with probability 1/nb, where nb is the size of the
chromosome in bits. This probability was suggested in [53],
and it was tested here with various other values in pilot
experiments; none consistently provided better results.

4) Final DC-SNN architecture

The pseudo-algorithm of DC-SNN generation is as follows:

IV. VALIDATION

The performances of FC-SNN and DC-SNN were tested with
three different analog RF microcircuits: a low-noise amplifier
(LNA), a voltage-controlled oscillator (VCO) and a mixer. For
each circuit, 200 designs were completed with Cadence
Cadence Virtuoso Spectre RF to serve as training examples,
using randomly chosen, wide-ranging performance
specifications. Moreover, to get a perspective on the obtained
results, they were compared to those produced by a set of
independent MLPs (I-MLP), each one only predicting one

Fig. 2. Example of MLP selection in a DC-SNN model with 3 component

sizes to predict, where p is a performance criterion and d a component size

to predict. a) case where MLP4 makes a better prediction of d1 than MLP1,
leading to adding MLP4 to the MLP sequence; b) case where MLP4’s

prediction is worse, leading to not adding MLP4 to the MLP sequence.

p1

pM

d1

d2

d3

p1

pM

p1

pM

p1

pMp1

pM

d1

d2

p1

pM

d1

d2

d3

p1

pM

p1

pMp1

pM

d2

MLP1

MLP2

MLP3

MLP4

MLP5

MLP1

MLP2

MLP3

MLP5

Table I. Description of chromosome bits for the genetic algorithm

Bit # Role in MLP Range of values

1 – 3 Nb. of hidden layer neurons 10, 15, …, 45

4 Nb. of hidden layers 1, 2

5 Hidden layer output function Tanh, ReLU

6 – 8 Size of minibatch 1 - 8

9 L1 regularization yes/no

10 L2 regularization yes/no

11 – 13 1 of Adam optimizer 0.9 - 0.99999

14 – 16 2 of Adam optimizer 0.9 - 0.99999

17 – 19  of Adam optimizer 10-10 - 10-6

Algorithm 1. Genetic algorithm applied to the DC-SNN.

1 Import dataset;

2 Normalize dataset (min-max normalization);

3 Shuffle dataset order;

4 Split dataset into a training set, a validation set and a test set;

5 Generate N populations of M chromosomes, where N = number

of design sizes to predict and M=64;

6 while max(best validation_error for each size to predict)

 > 0.05 do

for i = 0, i < N do

7

8 for j = 0, j < M do

9 Fix the hyperparameters of new_MLPji for chromosome j

in population i;

10

11

while validation_error improves do

 Load training and validation set using MLP sequence

 Shuffle training set order.

 Train new_MLPji;

 Validate new_MLPji;

 if validation_ error of new_MLPji < validation_ error

 of old_MLPji do

append MLPji to MLP sequence

Selection phase on each population;

Reproduction phase on each population;

Mutation phase on each population;

Test MLP sequence

12

13

14

15

16

17

18

19

20

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

component size from the performance specifications. This
makes it possible to evaluate the impact of increasing the
communication between MLPs on the sizing performance,
starting with an architecture with no communication (I-MLP),
to one with only successful MLPs communicating (FC-SNN),
to one with all MLPs communicating (DC-SNN). The
hyperparameters of the different models were all optimized by
GA as described in Methodology.

1) Low-Noise Amplifier

The circuit topology of the LNA is shown in Fig. 3. It is the
same as in [55] and consists of a cascode common-source stage
with source degeneration and inductive load. The cascode
configuration was selected for its design simplicity (easier
matching, stability, etc.) and widespread use. All the
inductances, including the matching networks’, were assumed
to be non-ideal with Q-factors of 10, which is consistent with
current CMOS fabrication processes. To further simplify the
design effort and reduce the number of parameters, only the
L-shaped matching network shown in Fig. 3b is considered for
50 Ω source and load impedance matching. The source
inductance (LS) was also fixed at 0.578nH for all designs.

Two hundred LNA microcircuits were designed using
180 nm CMOS technology. Table II shows the performance (P)
and design (D) variables of the different designs, with the
considered ranges of values.

2) Voltage-Controlled Oscillator

The second circuit topology is the symmetrical cross-coupled
VCO illustrated in Fig. 4. It is a common VCO configuration
that allows almost rail-to-rail output swing, with the cross-
coupled PMOS-NMOS pair helping to reduce 1/f noise [56].

Two hundred VCO microcircuits were designed in CMOS
130 nm technology. Table III shows the performance and
design variables of the different designs, and the considered
ranges of values. The current source and inductance were fixed
before each design and given as input to the sizing process, and
Vtune was varied within each design to get the tuning range.

3) Mixer

The circuit topology considered for the mixer is the double-
balanced Gilbert cell presented in Fig. 5. It was selected because
of its common use, since it provides good conversion gain and
rejection at the input ports [56]. Moreover, the version used
here includes a resonator that allows, through its parallel
inductance L and capacitance C, to adjust the mixer for
maximum response at the required frequency [57].

Here also, 200 mixer microcircuits were designed using
CMOS 130 nm technology, with the lengths of all transistors
fixed to 130 nm. Table IV shows the performance and design
variables of the different designs, including the considered

Fig. 3. LNA topology (a), input matching network (b) and output

matching network (c) [55].

Table II. Considered ranges of performance parameters and design

variables for the LNA

 Name Min. value Max. value

P
erfo

rm
an

ce

Bandwidth (MHz) 387.0 882.3

1-dB compression Point (dB) -21.04 -13.03

Center Frequency (GHz) 2.07 4.76

IIP3 (dB) -11.58 2.64

Noise Figure (dB) 1.386 3.33

S21 (dB) 9.11 15.29

D
esig

n

Input capacitance (fF) 238.2 1528.2

Input Inductance (nH) 1.811 10.610

Output capacitance (fF) 260.0 2902.6

Output Inductance (nH) 4.913 14.123

Transistor Q1 length (nm) 160 510

Transistor Q1 width (µm) 60 560

Transistor Q2 length (nm) 200 610

Transistor Q2 width (µm) 90 500

Drain Inductance – LD (nH) 1.707 8.671

Bias voltage - VB (mV) 300 600

Fig. 4. VCO topology [56].

Table III. Considered ranges of performance parameters and design
variables for the VCO

Name Min. value Max. value

P
erfo

rm
an

ce

Oscillation frequency (GHz) 2.022 9.924

Tuning range (MHz) 52.4490 723.40

Phase noise (dB/Hz) -102.7 -88.2

Power consumption (mW) 1.386 3.33

D
esig

n

Transistor Q1 length (µm) 0.5 4.1

Transistor Q1 width (µm) 2.5 55

Transistor Q2 length (µm) 0.5 4.4

Transistor Q2 width (µm) 3 55

Transistor Q3 length (µm) 0.8 4.2

Transistor Q3 width (µm) 15 98

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

ranges of values. Resistance R was fixed before the mixer
sizing, and the size and gate voltage of transistor Q3, which was
part of a current mirror, were given as inputs in the sizing
process.

4) Procedure

The prediction performances of the proposed FC-SNN and
DC-SNN architectures, along with those of the I-MLP set of
independent MLPs, were compared based on the designed
LNA, VCO and mixer microcircuits. For each set of 200
designs previously described, 180 were used for training, 10 for
validation and 10 for testing, with 2-fold cross-validation. The
models were coded in Python using the Theano [58] and
Lasagne [59] libraries. The simulations were run on a laptop
computer with an Intel i7-7700HQ CPU clocked at 2.8 GHz,
with 8 GB RAM and no dedicated graphics card. The genetic
algorithms were set to run for a maximum of 10 generations.

The sizing performance of each trained model for the LNA,
VCO and mixer was first assessed with three metrics: 1) the
number of correctly predicted component sizes (i.e. with an
error below 5 % of the normalized target sizes during the test
phase), 2) The mean prediction error during the testing phase,

which measures the generalization ability of the solutions
within the performance ranges in tables II, III and IV, 3) the
number of GA generations to reach the testing phase (i.e. get a
size prediction error below 5 % for all components during the
validation phase). However, as 5% component size tolerance
does not necessarily lead to 5% performance tolerance in non-
linear circuits, the predicted component sizes by DC-SNN were
simulated in Cadence in additional experiments, and the
obtained microcircuit performances were compared to the
reference ones.

V. RESULTS

Table V summarizes the obtained results, showing the
DC-SNN success in predicting all the component sizes of the
three different microcircuits with a mean error at test time
smaller than 5 %. The worst prediction performance what that
of I-MLP, showing the superiority of the FC-SNN and DC-
SNN over predicting the component sizes independently from
each other.

The learning time of DC-SNN was 4 minutes and 37 seconds
for the LNA, 36 minutes and 21 seconds for the VCO and 47
minutes and 56 seconds for the mixer. Once trained, the tool
took less than 5 seconds to size each of the ten test circuits for
each of the three types. Hence, the response time was very fast
to find the component sizes given a set of performance criteria.

To further confirm the robustness of the DC-SNN algorithm,
it was run 20 times for the LNA circuit, leading to a mean
prediction error of 3.39% with 0.6% standard deviation, and all
20 runs predicted the sizes of the components with less than a
5% error threshold.

Table VI to Table VIII present examples of the mean

absolute error (MAE) of the predicted component sizes and
resulting performance of the LNA, VCO, and mixer
microcircuits. As expected, the errors on the component sizes
do not generate the same magnitude errors on the circuit
performances, but the MAE remained under 5 % for both the
component sizes and circuit performances of the three circuit
topologies.

Table IX shows the average MAEs of both the predicted
parameters and the simulated performances for the 10 predicted
designs by the algorithm. These results show that the non-linear
dependencies between the component sizes and the circuit
performances are not important enough for the predicted sizes
to degrade the desired performance beyond the 5% threshold.
Then, using the predicted sizes, sweep analysis can be used for
fine-tuning, or hindsight about the circuit behavior to change

Fig. 5. Cross-coupled Gilbert cell mixer topology [57]

 Cross-coupled Gilbert cell mixer topology [59]. Table IV. Considered ranges of performance parameters and design
variables for the mixer

Name

Min. value Max. value

P
er

fo
rm

an
ce

RF frequency (GHz) 1.5 2.5

IF frequency (MHz) 50 500

Bandwidth (MHz) 48.68 409.1

1 db compression point (dBm) -18.69 -8.613

IIP3 (dB) -9.185 2.626

Voltage gain (dB) 4.894 15.97

SSB noise figure (dB) 4.464 5.637

LO to IF isolation (dB) -424.2 -169.3

LO to RF isolation (dB) -377.4 -278.4

RF to IF isolation (dB -235.8 -137

Power consumption (mW) 8.560 47.712

D
es

ig
n

Capacitance (pF) 0.965 129.899

Inductance (nH) 210 990

Transistor Q1 width (µm) 200 430

Transistor Q2 width (µm) 200 430

Voltage at the gate of Q1 (V) 0.7 1.1

Voltage at the gate of Q2 (V) 0.65 0.9

Table V. Simulation results summary

Circuit
Neural

network

GA generations

for minimum
prediction error

Predicted sizes

within 5% error
threshold

Mean

error on
test set

LNA

DC-SNN 1 10/10 0.0391

FC-SNN 1 10/10 0.0402

I-MLP 10 8/10 0.0690

VCO

DC-SNN 2 6/6 0.0429

FC-SNN 10 4/6 0.0731

I-MLP 10 3/6 0.0924

Mixer

DC-SNN 3 6/6 0.0487

FC-SNN 10 4/6 0.0708

I-MLP 10 3/6 0.0861

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

specific component parameters for the desired performances.
A single deep MLP was also tested to predict all the

component sizes of a circuit at once. This network was allowed
between 20 and 50 hidden layers by the genetic algorithm and
the vanishing gradient problem that often occurs in deep neural
networks was attenuated by using residual connections [60].
However, its prediction accuracy was very poor and not worth
reporting. This failure may be due to the small training set (200
circuit examples) in comparison to the large number of
parameters to learn for such a network. Still, an earlier
experiment with a shallow MLP was tested for the LNA with
similarly poor results [54], hence emphasizing the importance
of an architecture such as a C-SNN in the context of small
training sets.

VI. DISCUSSION AND CONCLUSION

Our results show that the proposed deep neural network
made of a cascade of separately trained shallow MLPs can
successfully perform an initial sizing of the components of an
analog RF circuit design, as it successfully did so for three
different types of RF microcircuits within the set error margin
for values and performances. More precisely, the FC-SNN
variant predicted all the components sizes of an LNA within
five percent error tolerance, and all components’ sizes of a VCO
and a mixer within eight percent error tolerance, and DC-SNN
variant predicted the components sizes of all three circuit types
within five percent error tolerance.

The developed architecture offers an effective way to

Table VI. Example of prediction errors and resulting performances for the LNA

Component size Target value Predicted

value

AE (%) Performance Target value Value from

predicted sizes

AE (%)

LD (nH) 4.706 4.486 4.67 Bandwidth (MHz) 510 480 5.88
Q1 width (µm) 280 292.46 4.45 Noise Figure (dB) 2.308 2.287 0.91

Q1 length (nm) 380 363.78 4.27 S21 (dB) 14.419 15.033 4.26

Q2 width (µm) 400 413.57 3.39 IIP3 (dB) -2.034 -2.147 5.55
Q2 length (nm) 500 481.18 3.76 1-dB comp. point (dBm) -17.284 -18.272 5.71

CIN (pF) 1328.2 1367.34 2.95

LIN (nH) 4.734 4.821 1.84
COUT (pF) 1430 1403.13 1.88

LOUT (nH) 9.278 9.728 4.85

 MAE: 3.56 MAE: 4.46

Table VII. Example of prediction errors and resulting performances for the VCO

Component size Target value Predicted
value

AE (%) Performance Target value Value from
predicted sizes

AE (%)

Q2 length (µm) 1.5 1.575 5.00 Frequency of oscillation (GHz) 4.658 4.497 3.46

Q2 width (µm) 26 27.014 3.90 Minimum frequency (GHz) 3.951 3.823 3.24

Q1 length (µm) 2 1.9173 4.14 Maximum frequency (GHz) 5.467 5.302 3.02
Q1 width (µm) 38 39.7405 4.58 Tuning range (GHz/GHz) 0.325 0.329 1.23

Q3 length (µm) 2 2.08374 4.19 Phase noise (dBc/Hz @ 1MHz) -108.6 -106.2 2.21

Q3 width (µm) 80 83.644 4.56

 MAE: 4.39 MAE: 2.63

 Table VIII. Example of prediction errors and resulting performances for the Mixer

Component size Target value Predicted

value

AE (%) Performance Target value Value from

predicted sizes

AE (%)

C (pF) 90 85.77 4.70 Bandwidth (MHz) 45.52 46.26 1.63
L (nH) 28.14 29.07 3.30 1-dB comp. point (dBm) -15.91 -15.38 3.33

R (Ω) 400 411.5 2.88 IIP3 (dBm) -4.989 -6.02 20.7

Q1 width (µm) 400 388.58 2.86 Voltage gain (dB) 13.13 13.62 3.73
Q2 width (µm) 430 450.76 4.83 SSB noise figure (dB) 4.411 4.403 0.18

Q3 width (µm) 370 361.99 2.16 LO to IF isolation (dB) -119.937 -122.56 2.19

VBIAS (V) 0.58 0.605 4.31 LO to RF isolation (dB) -256.5 -256.5 0.00
VRF (V) 0.76 0.735 3.29 RF to IF isolation (dB) -120.36 -124.77 3.66

VLO (V) 1.04 1.015 2.40

 MAE: 3.41 MAE: 4.42

Table IX. Test set MAE of the sizing predictions and resulting performances for the LNA, VCO and mixer circuits

Design Number LNA VCO Mixer

 MAE of

parameters

(%)

MAE of

performances

(%)

MAE of

parameters

(%)

MAE of

performances

(%)

MAE of

parameters

(%)

MAE of

performances

(%)

1 3.56 4.46 4.39 2.63 3.41 4.42

2 4.64 4.07 3.14 4.41 4.56 3.21

3 3.19 4.67 2.22 4.49 3.17 3.34
4 4.7 4.54 2.88 3.21 3.14 4.51

5 2.88 3.25 4.76 3.45 2.25 3.87

6 4.41 3.27 3.23 4.31 3.66 3.57
7 2.99 3.41 2.37 3.19 4.37 3.19

8 3.73 3.86 4.45 4.55 2.58 4.18

9 4.64 3.95 4.49 3.9 3.73 3.36
10 4.42 4.58 4.34 3.22 3.56 2.76

Average MAE (%) 3.92 4.01 3.63 3.74 3.44 3.64

Standard Deviation 0.73 0.55 0.96 0.68 0.71 0.58

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

circumscribe the neighborhoods of the sought component
values in solution space, and the presented work is an efficient
first step in a two-step solution to the sizing problem, where the
second step fine-tunes the predicted values to account for layout
and EM issues. As mentioned in Introduction, this second step
is still a challenge as no automatic procedure exists for arbitrary
circuit topologies and performances. Ongoing research to
automate the whole process includes techniques based on
surrogate models [30], Bayesian fusion [38], layout migration
and reuse [61], layout self-organization [62], reinforcement
learning [63], and training our deep neural network using a
database of successfully fabricated circuits. However, the
current cost of IC fabrication prevented us from creating such a
database, given the number of end-to-end designs that must
have been completed.

The proposed neural network-based methodology
distinguishes itself by the relatively small training set required
for training, thus circumventing the difficulty to gather the large
number of microelectronic circuit designs normally required to
train a deep neural network, a problem that does not exist in
other domains that use deep learning such as image
classification or language translation. Here, only two hundred
exemplars were included in each dataset to learn the final MLP
sequences. This was made possible by predicting the
component sizes one by one and using MLPs with only one or
two hidden layers, hence reducing the network complexity and
quantity of parameters to learn at each step. That allowed a
progressive process of constrained predictions to take place,
with a relatively small training set used to solve the circuit
sizing problem.

Another distinction of the proposed method from the related
work is to go beyond finding idiosyncratic component values,
as it creates a general mapping from the desired performance
criteria to the component sizes without being specific to any set
of performance values. Indeed, although the exemplars used for
testing the model were not seen by the algorithm during the
training or validation phases, there was no need to retrain the
network for each one of them.

In this respect, the proposed approach is useful to generate a
C-SNN that provides the initial sizing conditions to a more
precise idiosyncratic optimization method. This would reduce
the convergence time of those methods while preserving their
accuracy.

The final component values obtained during the test phase
were not fabricated and thus, the corresponding specifications
were not tested post-fabrication. At the present stage, the goal
of the proposed method is mainly to help designers decrease the
time needed to reach the final values of their analog RF circuit
components for IC implementation, by saving lengthy
simulation time for the initial sizing before layout. Moreover,
as different designers have different styles, the component sizes
yielded by the algorithm reflect the design experience and bias
of the designers of the microelectronic circuits used for training
the algorithm. In the future, standardized databases might be
useful to minimize this potential bias. The tool could also be
trained with a more complete database including the extracted
parasitic components and it could be constrained to specific
inductances that were designed with EM simulations, however,
such a training database is difficult to build as already
discussed.

Finally, the obtained results show that the proposed method
can be applied to many different types of circuits and
technologies with appropriate training. Thus, it generalizes

well. Here, it was successful in correctly predicting the
component sizes of an LNA, a VCO, and a mixer, where the
first was designed using CMOS 180 nm technology, and the
other two using CMOS 130 nm technology, but different
circuits, topologies, and CMOS technologies could have been
used as well and for arbitrary performances, by using the
appropriate completed designs as training examples.

REFERENCES

[1] J. Scheible, and J. Lienig, “Automation of analog IC layout: challenges
and solutions”. Int. Symp. Physical Design (ISPD '15). pp. 33-40, 2015.

[2] J. B. Keller, “Inverse Problems,” The American Mathematical Monthly,

vol. 83, no. 2, pp. 107–118, 1976.
[3] A. Tarantola, Inverse Problem Theory and Methods for Model

Parameter Estimation. Society for Industrial and Applied Mathematics,

2005.
[4] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential

equations. New Haven Yale University Press, 1923.B. J. Sheu, J. C. Lee,

and A. H. Fung, “Flexible architecture approach to knowledge-based

analogue IC design”, IEE Proceedings G - Circuits, Devices and

Systems, vol. 137, no. 4, pp. 266–274, Aug. 1990.

[5] I. J. Bahl, Lumped elements for RF and microwave circuits. Boston:
Artech House, 2003.

[6] "Cadence to Acquire Neolinear."

https://www.cadence.com/en_US/home/company/newsroom/press-
releases/pr-ir/2004/cadencetoacquireneolinear.html (accessed Aug. 15,

2022).

[7] "Solido Variation Designer," Siemens Digital Industries Software.
https://eda.sw.siemens.com/en-US/ic/solido/variation-designer/

(accessed Aug. 15, 2022).

[8] "Home," MunEDA - EDA Tools for process migration, sizing and
verification of Custom IC. https://www.muneda.com/ (accessed Aug. 15,

2022).

[9] CASS Talks 2022 - Helmut Graeb, Technical University of Munich,
Germany - July 8, 2022, (2022). Accessed: Aug. 30, 2022. [Online

Video] At: https://www.youtube.com/watch?v=MZN730AXCkY]

[10] G. Shi, “Toward automated reasoning for analog IC design by symbolic

computation – a survey,” Integration, the VLSI journal, vol. 60, pp. 117–

131, Jan. 2018.

[11] B. J. Sheu, J. C. Lee, and A. H. Fung, “Flexible architecture approach to
knowledge-based analogue IC design,” IEEE Proceedings G - Circuits,

Devices and Systems, vol. 137, no. 4, pp. 266–274, Aug. 1990.

[12] R. Harjani, “OASYS: a framework for analog circuit synthesis,” in
Proceedings., Second Annual IEEE ASIC Seminar and Exhibit, 1989, pp.

1247-1266.
[13] A. Sasikumar, and R. Muthaiah, “Towards analog design automation

using evolutionary algorithm: a review,” Indian Journal of Science and

Technology, vol. 9, no. 39, pp. 1–12, Oct. 2016.
[14] M. Meissner and L. Hedrich, "FEATS: Framework for Explorative

Analog Topology Synthesis," in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 34, no. 2, pp. 213-226,
Feb. 2015, doi: 10.1109/TCAD.2014.2376987.

[15] Inga Abel and Helmut Graeb. 2022. FUBOCO: Structure Synthesis of

Basic Op-Amps by FUnctional BlOck COmposition. ACM Trans. Des.
Autom. Electron. Syst. 27, 6, Article 63 (November 2022), 27 pages.

[16] A. L. Kidd, Ed., Knowledge Acquisition for Expert Systems: A Practical

Handbook. New York, NY, USA: Plenum Press, 1987.
[17] A. Aamodt, and E. Plaza, “Case-based reasoning: foundational issues,

methodological variations, and system approaches," Artificial

Intelligence Communications, vol. 7, no. 1, pp. 39-59, Mar. 1994.
[18] J. L. Kolodner, “An introduction to case-based reasoning,” Artificial

Intelligence Review, vol. 6, no. 1, pp. 3–34, Mar. 1992.

[19] A. Al-Kashef, M. M. Zaky, M. I. Dessouky, and H. El-Ghitani, “A Case-
Based Reasoning Approach for the Automatic Generation of VHDL-

AMS Models,” in BMAS 2008 - Proceedings of the 2008 IEEE

International Behavioral Modeling and Simulation Workshop, 2008, pp.
100–105.

[20] M. Fakhfakh, E. Tlelo, and P. Siarry, “Computational Intelligence in

Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit
Design,” Springer, 2015.

[21] H. M. Venkataswamy and B. P. Harish, “AMSDAT: Integrated Analog

and Mixed-Signal Design Optimization Framework for SoC

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Applications,” in 2021 IEEE 18th India Council International
Conference (INDICON), Dec. 2021, pp. 1–6.

[22] E. Aarts, J. Korst, and W. Michiels, “Simulated Annealing,” in Search

Methodologies, Springer, Boston, MA, 2005, pp. 187–210.
[23] Y. Yang et al., “Smart-MSP: A Self-Adaptive Multiple Starting Point

Optimization Approach for Analog Circuit Synthesis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 3, pp. 531–544, Mar. 2018.

[24] T. O. Weber, S. Chaparro, and W. A. M. V. Noije, “Synthesis of a

narrow-band Low Noise Amplifier in a 180 nm CMOS technology using
Simulated Annealing with crossover operator,” in 2013 26th Symposium

on Integrated Circuits and Systems Design (SBCCI), 2013, pp. 1–5.

[25] A. A. Kalentyev, L. I. Babak, and D. V. Garays, “Genetic-algorithm-
based sythesis of low-noise amplifiers with automatic selection of active

elements and dc biases,” in 2014 9th European Microwave Integrated

Circuit Conference, 2014, pp. 520–523.
[26] G. I. Tombak et al., “Simulated annealing assisted NSGA-III-based

multi-objective analog IC sizing tool,” Integration, vol. 85, pp. 48–56,

2022.
[27] D. Whitley and A. M. Sutton, “Genetic Algorithms — A Survey of

Models and Methods,” in Handbook of Natural Computing, Springer,

Berlin, Heidelberg, 2012, pp. 637–671.
[28] M. Barros, J. Guilherme, and N. Horta, “Analog Circuits Optimization

Based on Evolutionary Computation Techniques,” Integr. VLSI J., vol.

43, no. 1, pp. 136–155, Jan. 2010.
[29] R. Zhou, P. Poechmueller, and Y. Wang, “An Analog Circuit Design and

Optimization System with Rule-Guided Genetic Algorithm,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2022.

[30] B. Liu, et al. "GASPAD: A general and efficient mm-wave integrated
circuit synthesis method based on surrogate model assisted evolutionary

algorithm." IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33.2 (2014): 169-182.
[31] J. R. Koza et al., “Synthesis of topology and sizing of analog electrical

circuits by means of genetic programming,” Comp. Methods in Applied

Mechanics and Engineering, vol. 186, no. 2–4, pp. 459-482, June 2000.
[32] T. Liao, and L. Zhang, “Parasitic-aware GP-based many-objective sizing

methodology for analog and RF integrated circuits,” presented at the

22nd Asia and South Pacific Design Automation Conference (ASP-

DAC), Chiba, Japan, 2017, pp. 475-480.

[33] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap,

“Automated synthesis of analog electrical circuits by means of genetic
programming,” IEEE Transactions on Evolutionary Computation, vol.

1, no. 2, pp. 109–128, Jul. 1997.

[34] J. D. Lohn and S. P. Colombano, “Automated analog circuit synthesis
using a linear representation,” in Evolvable Systems: From Biology to

Hardware, 1998, pp. 125–133.S. Kirkpatrick, C. D. Gelatt, and M. P.

Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, no.
4598, p. 671, May 1983.

[35] B. Liu, M. Zhongkun, G. A. E. Vandenbosch, G. Gielen , and P. Excell,

“An efficient method for antenna design optimization based on
evolutionary computation and machine learning,” IEEE Trans. Antennas

& Propagation, vol. 62, no. 1, pp. 7-18, Sept. 2014.

[36] B. Liu, Q. Zhang, and G. Gielen, "A gaussian process surrogate model
assisted evolutionary algorithm for medium scale expensive

optimization problems,” IEEE Trans. Evolutionary Computation, vol.

18, no. 2, pp. 180-192, April 2014.

[37] P. Chen, et al., "Bayesian optimization for broadband high-efficiency

power amplifier designs." IEEE Transactions on Microwave Theory and

Techniques 63.12 (2015): 4263-4272.
[38] F. Wang, W. Zhang, S. Sun, X. Li, and C. Gu, “Bayesian model fusion:

large-scale performance modeling of analog and mixed-signal circuits by

reusing early-stage data,” in Proceedings of the 50th Annual Design
Automation Conference, Austin Texas: ACM, May 2013, pp. 1–6. doi:

10.1145/2463209.2488812.

[39] J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep
learning,” Genet Program Evolvable Mach, pp. 1–3, Oct. 2017.

[40] H. Kabir, L. Zhang, M. Yu, P. H. Aaen, J. Wood, and Q.-J. Zhan. “Smart

modeling of microwave devices,” IEEE Microwave Magazine, vol. 11,
no. 3, pp. 105-118, May 2010.

[41] R. M. Hasani, D. Haerle, and R. Grosu, “Efficient modeling of complex

analog integrated circuits using neural networks,” presented at the 12th
PRIME, Lisbon, Portugal, 2016, pp. 1-4.

[42] A. Jafari, S. Sadri and M. Zekri, “Design optimization of analog
integrated circuits by using artificial neural networks,” presented at the

2nd SoCPaR, Paris, France, 2010, pp. 385-388.

[43] J. Zhang, R. Su, Q. Fu, W. Ren, F. Heide, and Y. Nie, “A survey on
computational spectral reconstruction methods from RGB to

hyperspectral imaging,” Scientific Reports, vol. 12, no. 1, 2022.

[44] Z. Ben Houidi and D. Rossi, “Neural language models for network
configuration: Opportunities and reality check,” Computer

Communications, vol. 193, pp. 118–125, 2022.

[45] N. Kahraman and T. Yildirim, "Technology independent circuit sizing
for fundamental analog circuits using artificial neural networks," 2008

Ph.D. Research in Microelectronics and Electronics, Istanbul, 2008, pp.

1-4.
[46] N. Takai and M. Fukuda, "Prediction of element values of OPAmp for

required specifications utilizing deep learning," 2017 International

Symposium on Electronics and Smart Devices (ISESD), Yogyakarta,
2017, pp. 300-303.

[47] N. Lourenço et al., "On the Exploration of Promising Analog IC Designs

via Artificial Neural Networks," 2018 15th International Conference[10
on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), Prague, 2018, pp. 133-136.

[48] N. Lourenço et al., "Using Polynomial Regression and Artificial Neural
Networks for Reusable Analog IC Sizing," 2019 16th Int. Conf. on

Synthesis, Modeling, Analysis and Simulation Methods and Applications

to Circuit Design (SMACD), 2019, pp. 13-16.
[49] E. Dumesnil, F. Nabki, and M. Boukadoum, “RF-LNA circuit synthesis

using an array of artificial neural networks with constrained inputs,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS),

2015, pp. 573–576.

[50] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code
Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, Dec.

1989.

[51] D. P. Kingma, and J. Ba, “Adam: a method for stochastic optimization,”
in Proceedings of the 3rd International Conference on Learning

Representations (ICLR), 2015.

[52] L. J. Eshelman, “Genetic algorithms,” in Basic Algorithms and
Operators (1st ed.). Thomas Back, David B. Fogel, and Zbigniew

Michalewicz (Eds.). IOP Publ. Ltd., Bristol, UK: 1999, pp. 64-80.

[53] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using
Evolutionary Algorithms. New York, NY, USA: John Wiley & Sons,

Inc., 2001.

[54] E. Dumesnil, F. Nabki and M. Boukadoum, "RF-LNA circuit synthesis
by genetic algorithm-specified artificial neural network," 2014 21st

IEEE International Conference on Electronics, Circuits and Systems

(ICECS), Marseille, 2014, pp. 758-761.
[55] M. Boukadoum, F. Nabki, and W. Ajib, “Towards neural network-based

design of radiofrequency low-noise amplifiers,” in 2012 IEEE

International Symposium on Circuits and Systems, 2012, pp. 2741–2744.
[56] B. Razavi, RF Microelectronics (2Nd Edition) (Prentice Hall

Communications Engineering and Emerging Technologies Series), 2nd

ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2011.
[57] X. Hu, “RF CMOS Tunable Gilbert Mixer with Wide Tuning Frequency

and Controllable Bandwidth: Design Sythesis and Verification,” Browse

all Theses and Dissertations, Jan. 2017.
[58] Theano Development Team.: Theano: A Python framework for fast

computation of mathematical expressions. (2016).

[59] S. Dieleman, J. Schlüter, C. Raffel, E. Olson. et al., “Lasagne: First

release,” DOI: http://dx.doi.org/10.5281/zenodo.27878, 2015.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770-778.

[61] M. P. -H. Lin, Y. -W. Chang and C. -M. Hung, "Recent research

development and new challenges in analog layout synthesis," 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC),

Macao, China, 2016, pp. 617-622, doi: 10.1109/ASPDAC.2016.7428080.

[62] D. Marolt, J. Scheible, G. Jerke and V. Marolt, "SWARM: A self-
organization approach for layout automation in analog IC design",

International Journal of Electronics and Electrical Engineering, vol. 4,

no. 5, 2016.
[63] K. Settaluri, Z. Liu, R. Khurana, A. Mirhaj, R. Jain, and B. Nikolic,

“Automated Design of Analog Circuits Using Reinforcement Learning,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 9, pp. 2794–2807, Sep. 2022, doi:

10.1109/TCAD.2021.3120547.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3282570

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

