
 

 

 

Abstract—A deep neural network architecture for the automatic 
sizing of analog circuit components is proposed, with a focus on 
radio frequency (RF) applications in the 2 to 5 GHz region. It 
addresses the challenges of the typically small number of examples 
for network training and the existence of multiple solutions, of 
which impractical values for integrated circuit implementation. 
We address these issues by restricting the learning to one 
component size at a time, thanks to a cascade of dedicated shallow 
neural networks (SNN), where each network constrains the 
prediction of the next ones. Moreover, the SNNs are individually 
tuned by a genetic algorithm for the prediction order and 
accuracy. This reduction of the solution space at each step allows 
the use of small training sets, and the introduced constraints 
between SNNs handle component interdependencies.  The method 
is successfully validated on three different types of RF 
microcircuits: a low-noise amplifier (LNA), a voltage-controlled 
oscillator (VCO), and a mixer, using 180 nm and 130 nm CMOS 
implementations. All the predictions were within 5 % of the true 
values, both at the component and performance levels, and all the 
responses were obtained in less than 5 s, after 4 to 47 min. training 
on a regular PC station. The obtained results show that the 
proposed method is fast and applicable to arbitrary analog circuit 
topologies, with no need to retrain the developed neural network 
for each new set of desired circuit performances.  

Index Terms— Design automation, circuit sizing, 
microelectronics, analog circuits, radiofrequency, RF, deep 
learning, neural networks, genetic algorithms. 

I. INTRODUCTION 

urrently, the typical design flow of analog circuits still 
requires substantial human intervention [1], since designer 
experience must compensate for properties and 

implementation factors not accounted for by the existing design 
tools, including non-linear components, bias requirements, and 
real-world effects like stray impedances, physical circuit layout, 
and component coupling. This usually results in a time-
consuming iterative design process that must be repeated for 
each new design, and the situation is likely to worsen with the 
increasing complexity of electronic circuits and systems, and 
the shortening of their useful life spans. 
   Many works have proposed circuit design workflows for 
electronic design automation (EDA), particularly for digital 
integrated circuits and systems. However, the design and 
synthesis/sizing of analog circuits, particularly for 
radiofrequency (RF) applications, are still challenging due to 
the aforementioned limitations.  

Circuit design is usually more complicated than analysis. In 
the former, the tools uniquely determine a circuit’s behavior 
from its topology and component values, but circuit design 
addresses the reverse problem: find a feasible circuit topology 
and component values to match given performances. Formally, 
two problems are reversible with respect to each other if the 
formulation of one involves all or part of the solution of the 
other [2]. Then, the better-understood problem is said to be 

direct, while the other one is said to be inverse. For, analog 
circuits, analyzing circuit behavior given a topology and 
component values is a direct problem, while synthesizing the 
circuit (i.e. finding the topology and component values) for a 
given behavior is an inverse problem, and it usually affords 
multiple solutions, not all feasible in practice. This includes 
outsized geometries or component values. 

Automating the solution of inverse problems has been a 
focus of research in many fields since they arise whenever a 
physical system is to be inferred from property measurements 
[3], and their well-posedness must be established for a 
straightforward solution to exist. Formally, a problem must 
meet three criteria to be well posed [4]: 1) it can be solved; 2) 
the solution is unique; 3) the solution is continuous with respect 
to data and parameter changes. A problem that does not respect 
those criteria is ill-posed, and this is often the case for inverse 
problems as they usually afford multiple solutions, and they 
may also violate the third criterion, as small data or parameter 
changes in them may lead to wide variations in the output 
values or solution accuracy.  

The inverse problem of circuit design can be simplified if the 
circuit topology is given, since the design scope then reduces to 
estimating the component sizes. However, it is difficult to 
model RF circuits by regular linear equations with lumped 
parameters at GHz frequencies, since electric and magnetic 
fields must be accounted for, along with dissipative losses [5], 
leading to complex wave equations, and secondary effects such 
as those of stray capacitances and layout effects arise. In this 
context, the typical approach follows a lengthy iterative process 
of simulation and analysis, followed by sizing adjustments, and 
an efficient automatic sizing solver can be of great assistance. 
There also exist commercial products such as Neolinear [6], 
Solido [7], and MunEDA [8] that have been developed to help, 
but their lack of genericness across circuits and technologies, 
and the need to reconfigure them for each new design have been 
obstacles to a wide adoption. In practice, the choice of topology 
and the sizing of components are application-specific, making 
it harder for one algorithm to perform well in all situations. In 
addition, the set-up and configuration costs are important since 
the designers must use different tools and design environments. 
Finally, because of the high number of circuit topologies, 
technologies, and performance metrics, there are no specific 
benchmarks to evaluate and compare the available EDA 
algorithms [9]. 

Analog RF circuit design is typically a mix of methods and 
experience where, after selecting a circuit topology, a 
component sizing process takes place, followed by drawing the 
circuit layout and extracting the parasitic components and 
secondary effects to fine-tune it.  In this paper, a neural 
network-based methodology is proposed to speed up the initial 
sizing step by learning from a relatively small set of solved 
examples. Then, given an RF circuit and a set of desired 
performances, it automatically sizes the circuit components 
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before the tuning step, to within 5% of both the required values 
as determined by the usual simulations and the desired 
performances. The approach is fast and generic for any circuit 
topology or performance specifications, and our validation 
results show that it predicts the sought component values within 
the set accuracy and performance thresholds, without being 
affected by the implementation geometry.  

The proposed approach consists in a cascade of progressively 
built shallow neural networks (C-SNN), where each SNN is 
individually specified by a genetic algorithm (GA) to predict 
one component size. Moreover, each SNN output constrains the 
subsequent SNNs for mutual compatibility. This one-by-one 
approach simplifies the search space to allow for smaller 
training sets while forcing the generated component sizes to be 
compatible.  

We define a shallow neural network as one that includes two 
hidden layers at most. Here, it consists of a multilayer 
perceptron (MLP) whose hyperparameters are tuned by a GA. 
Then, each trained MLP adds its output to the desired 
performances to constrain the learning of the next MLPs in the 
cascade while compensating for potential coupling with the 
already predicted values. The prediction order is also 
determined by the GA.  

Three specific analog RF circuits are used for validation, 
with one of them implemented in 180 nm CMOS technology 
and the other two in 130 nm CMOS technology, but the 
proposed methodology is circuit and technology-agnostic, and 
other choices could have been made by simply using the 
appropriate set of completed designed as training examples. 
The three circuits were selected mainly to represent basic 
building block functionalities in RF circuits. As the proposed 
tool only accomplishes the initial sizing step of the design cycle 
as implemented, the used training data do not account for the 
effects of parasitic components or electromagnetic (EM) 
interference. This will be discussed further in Section VI.  

The balance of this paper is as follows. Section II reviews the 
related work on component sizing; Section III presents the        
C-SNN architecture, along with the GA used to optimize its 
hyperparameters; Section IV describes the RF microcircuits 
used for validating the proposed method, with Section V 
providing the obtained results; finally, Section VI offers a 
discussion and concluding remarks. 

II. RELATED WORK 

Initially, two major approaches could be identified in relation 
to analog design automation, knowledge-based and 
metaheuristic-based. Today, artificial neural networks (ANNs) 
constitute a promising third alternative. Below is a brief survey 
of previous work devoted to the analog circuit sizing problem, 
with a justification of the present work at the end. 

A. Knowledge-Based Methods 

These techniques are among the oldest and strive to imitate 
the behavior of expert designers [10], like plans to set the values 
of the design parameters in steps [11]. The approach is effective 
at low frequencies and for relatively small circuits such as 
operational amplifiers [12]. However, larger circuits rapidly 
increase in complexity, with non-linear relations and couplings 
to account for between the components and the circuit behavior, 
making it difficult to build an efficient design plan [13][11]. 
FEATS [14] is a method that uses abstract building blocks to 
create and evaluate topologies based on known circuits. This 

methodology is flexible in terms of circuit classes, technology 
nodes, and performance measurements, but generates many 
meaningless interim structures. A similar open-source design 
methodology based on the functional block is FUBOCO [15]. 
A library for different functional stages (bias, load, differential 
pair, etc.) is used in conjunction with composition rules to 
create and evaluate the topologies. The methodology is more 
complicated than FEATS but reduces the search space for the 
desired circuit topology.  In all cases, a good knowledge of the 
design rules is required to use the previous methodologies. 
Moreover, as knowledge-based methods are essentially expert 
systems, they suffer from the fundamental difficulty to extract 
human expert knowledge (i.e. rendering explicit an essentially 
implicit procedural knowledge) [16]. This has led many 
researchers to look for methods that can autonomously learn to 
find solutions. 

Case-based reasoning (CBR) [17][18] attempts to 
circumvent the problem by shifting the focus on the expert 
thinking’s outcome instead of the thinking itself. CBR can be 
summarized as the search and retrieval of a “close” solved 
design and its revision for adaptation to the current case. If the 
retrieved circuit behavior is the same as the required one, its 
component values are just reused; if not, knowledge-based 
methods are used to revise the component parameters [19]. 
However, this requires many stored designs to be efficient [12], 
which makes its usefulness limited for circuit design, synthesis, 
or sizing, as only a few examples are usually available.   

B. Metaheuristics 

Metaheuristic-based methods view the sizing problem as 
multi-objective constrained optimization [20][13][21], and they 
typically find the solution by using a search algorithm.  

1) Simulated Annealing 

Simulated annealing [22] explores the solution space with 
increasingly finer granularity until a final solution is reached 
(e.g. see [23][24]). The approach has two important limitations 
in the context of circuit sizing. First, the circuit of interest must 
be simulated each time for error evaluation, making the 
algorithm time-consuming for complex problems. Second and 
more importantly, the final sizing solution is specific to the 
analyzed circuit. Indeed, the method does not learn “how to” 
size, but only finds the idiosyncratic solution for a single set of 
required circuit behavior. Thus, the optimization algorithm 
must be restarted for each new desired behavior. This can be a 
serious limitation in terms of sizing time. For example, the 
simulated annealing method proposed in [19] needed between 
one and three hours on a 2.3 GHz CPU to complete the sizing 
of each low-noise amplifier (LNA) performance criteria it was 
given. The one proposed in [23] required approximately 25 
seconds to size a new operational amplifier and one hour to size 
a new voltage-controlled oscillator (VCO) on a 2.4 GHz CPU. 

2) Genetic Algorithm 

GA search is similar to simulated annealing, in that a 
competitive process is used to find a solution (e.g. see [25][26]). 
However, instead of two competing neighbors at each iteration, 
a whole population of potential solutions is involved, each one 
using a “chromosome” metaphor. In the context of circuit 
sizing, the chromosomes typically define the circuit component 
values and their population goes through a series of selection-
reproduction-mutation cycles until convergence towards a 
solution [27]. Like simulated annealing, the returned 
component values apply to a specific set of performance 
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criteria, and the process can be time-consuming due to 
repetitive circuit simulation. For example, the GA implemented 
in [28] took approximately 54 seconds on a 2.8 GHz CPU to 
complete the sizing of an operational amplifier, while one 
implemented in [25] took consistently more than 30 minutes to 
size a LNA. In both cases, the process had to be repeated for 
any new set of performance criteria presented. Generic 
algorithms are also used to optimize other approaches [29]. 

    A variant of GA, differential evolution, uses real-valued 

vectors as genotypes and the difference between vectors in 

breeding new generations. In [30], it is combined with surrogate 

models of electromagnetic simulations (EM) for an end-to-end 

design. However, the approach must be restarted for each 

circuit instance and its time consumption for the three provided 

examples varied between 42 and 106 hours on an average 

desktop station.  

3) Genetic Programming 

Genetic programming (GP) attempts to solve the synthesis 
and sizing problems using a dynamically bred program 
[31][32]. It has been shown to perform well not only to find an 
adequate set of values for components but also to find an 
adequate topology, including selecting the actual components 
and interconnections of the circuit. As proposed in [33], a tree 
is used to represent the analog microelectronic circuit. First, an 
embryonic circuit is generated, from which the final circuit is 
evolved. The evolution of the circuit reflects the evolution of 
the functions that constitute the branches of the circuit-
constructing program tree (see also [34] for a different coding 
scheme). The main advantage of GP over GA and simulated 
annealing is its efficiency at synthesizing the whole circuit 
instead of being limited to circuit sizing. Many variations of the 
genetic programming algorithm have also been proposed for 
circuit sizing (e.g. [34]), reaching efficient sizing optimizations. 
However, in the context of the present work, they also have the 
limitations of the preceding metaheuristics.  

In all the previous approaches, a design-in-the-loop approach 
is used, in which the circuit of interest is built or simulated for 
testing during the algorithm iteration process. The approach can 
result in very long convergence times [30][35], even with 
approximation techniques such as surrogate circuits are used for 
simulation, and final tuning is done by an expert [36]. 

The preceding subsections are just examples of the various 
techniques used to tackle the optimization problem with 
metaheuristics, and many other approaches have been reported 
in the literature. For example, [37] used Bayesian optimization 
for the design of RF power amplifiers, and [38] used Bayesian 
Model Fusion to reuse early-stage data when fitting a late-stage 
performance model of two circuits mixed signal circuits.  

C. Artificial neural networks 

Neural networks differ from knowledge-based techniques and 

metaheuristics by viewing the sizing problem as one of 

classification/regression. Using a set of successful circuit 

design examples, they use their generalization ability to specify 

the component values of similar new circuits. This capability 

makes them more generic than the previous methods which 

must be started over for each new design, even when the same 

circuit topology is used. As the name implies, the approach 

relies on artificial neural networks (ANN), especially those with 

many layers, known as deep neural networks or DNNs [39]. 
ANNs have been used with relative success in modeling and 

designing microwave passive circuits [40], checking the 
designed circuit’s conformity [41], and designing simple 
circuits [42]. Using more layers, DNNs have also been 
successfully used to solve inverse problems (e.g. see [43]), and 
contextual problems such as language translation [44].  

In the context of circuit sizing, DNNs present the potential to 
overcome the main limits of the methods described in the 
previous subsections. First, they do not have the explicit 
knowledge acquisition problem of knowledge-based 
approaches, as they learn autonomously from the example data. 
Next, the training data come from already sized circuits that are 
used as examples, and the optimized solution corresponds to a 
generic mapping of performance criteria to circuit sizing, 
instead of being idiosyncratic. Hence, once trained, they do not 
need to restart for each new set of performance criteria. 
Therefore, the time invested in sizing a set of circuits for 
training a DNN is largely repaid by reuse in the long run. 

However, the number of already sized circuits to train a DNN 
for efficient prediction is a problem. Because the number of 
parameters (i.e. connection weights at the input of each neuron) 
increases as a power law with the number of neural layers, a 
huge number of examples is usually required for DNN training. 
Unfortunately, multiple reasons make this difficult, if not 
impossible, to achieve for analog circuit sizing. First, it takes 
time to synthesize each training example and there are no 
publicly available datasets; second, the technology for analog 
circuit design and implementation is not static, making it 
necessary to adapt the training sets to each new technological 
advance. 

The lack of availability of large datasets of successfully sized 
microelectronic analog circuits and the search for a component 
sizing methodology that is generic in scope are the main 
motivations for the work presented here. Indeed, when looking 
at the literature, even in the few cases where researchers 
gathered tens of thousands of examples to train their DNNs, 
their models address low to mid-frequency analog circuits,  
operate within fixed design parameters or use data 
augmentation techniques with lower performance 
specifications to train the networks (e.g. [45]-[47]). An 
exception is the work in [48] whose two-model approach is 
somewhat like ours in that it tries to shrink the solution space 
before the final classification. But the work is mainly a proof of 
concept as presented and our approach is simpler. As will be 
presented next, our proposed method uses simple means to 
greatly reduce the required number of example data to train a 
neural network for circuit sizing, and it applies to arbitrary 
performances given a circuit topology. 

III. METHODOLOGY 

As argued above, DNNs are an attractive method for circuit 
sizing, but the relatively small size of the available training sets 
prevents their efficient training due to the large number of 
parameters to set.  The proposed approach circumvents the 
problem by successively predicting the outputs one at a time: 
instead of a static DNN architecture to predict all the component 
sizes at once, the architecture is generated in steps, using a DNN 
made of a cascade of shallows neural networks (C-SNN). Two 
variants are presented: a fixed cascade with one SNN per size 
to predict (FC-SNN), and a dynamic cascade where more than 
one SNN contributes (DC-SNN). They are described next, 
along with the GA to optimize the hyperparameters of each 
SNN, and the validation method used in this work. 
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A. Fixed cascade of shallow neural networks (FC-SNN) 

This is the base version of C-SNN, with each component size 
predicted without concern for the next sizes to predict or their 
couplings. Therefore, FC-SNN comprises as many SNNs as 
there are component sizes to predict as shown in Fig. 1.  

Each SNN in the figure has one or two hidden layers, with 
each input layer neuron holding one input value, and each 
hidden layer neuron j producing an output given by: 

 𝑦𝑗 = 𝑓𝜃(𝑠𝑗) = 𝑓𝜃(∑ 𝜔𝑗𝑖𝑥𝑖
𝑁
𝑖=1 )                            (1) 

where 𝑠𝑗 is the weighted sum of the N inputs from the previous 

layer, xi is the output of the ith neuron in that layer, ωji is a weight 
to be determined and fθ is the neural output function. In this 
work, that function was either the hyperbolic tangent sigmoid: 

 𝑓𝑡𝑎𝑛ℎ(𝑠) =
2

1+𝑒−2𝑠 − 1                             (2) 

or the rectified linear unit (ReLU): 

 𝑓𝑅𝑒𝐿𝑢(𝑠) = {
𝑠,   𝑠 > 0
0,   𝑠 ≤ 0

                            (3) 

The type of output function and number of hidden neurons 
are set by the GA, and the same output function applies to all 
the hidden neurons in a given MLP. 

In the output layer, the neural output is the weighted sum of 
its inputs, given by: 

 𝑧 = ∑ 𝜔𝑘𝑗𝑦𝑗
𝑁
𝑗=1                                  (4) 

where yj the output of the jth hidden layer neuron from the 
previous layer and ωkj another weight to be determined by the 
learning process.  

The neural weights are optimized using the error 
backpropagation with gradient descent algorithm, which 
minimizes the network’s output error by propagating it back 
through the hidden layers and adjusting the different connection 
weights for minimal contribution to the error [50]. The gradient 
descent algorithm used the Adam optimizer [51] with 
regularization for weight setting, and the relevant neural 
hyperpaprameters set by the aforementioned GA. After tuning 
and subsequent training, each MLP in Fig. 1 adds its output to 
the specified performances to constrain the learning of the next 
MLP to find a new component size while compensating for 
potential coupling with the already predicted values. 

The FC-SNN can be seen as a hybrid architecture that 
combines a GA and an error backpropagation with a gradient 
descent algorithm, working together to optimize the 
specification of each MLP stage. At the top level, the GA 
searches the space of MLP hyperparameters for the optimal 
values of the number of layers, the number of neurons per layer, 
the neural output functions, and the training algorithm’s 
parameters. At the bottom level, the backpropagation algorithm 
with gradient descent searches the space of MLP weights to 
optimize the prediction of the selected target component size. 

FC-SNN operates as follows: MLP1 takes as inputs the 
performances of the desired circuit and the GA tunes it to 
predict a first component size. Then, the process repeats to 
optimize MLP2 for the second component size to predict. MLP2 
takes both the performance criteria and the output of MLP1 as 
inputs. In the next step, the performance criteria and the outputs 
of MLP1 and MLP2 form the input of MLP3 in the FC-SNN 
sequence, and the process continues with each remaining MLP 
until all the component sizes have been correctly predicted.  

One important issue is the component size prediction order. 
This is accomplished as follows: initially, several chromosome 
populations are randomly generated, one for each component 
size to predict. Then the GA starts with the first population to 
tune MLP1 to predict each component size in turn. The GA is 
iterated until the 5% prediction accuracy threshold is reached 
and the best predicted component size is selected as the first one 
to predict. Then, the process repeats for the remaining 
component sizes using the second chromosome population and 
MLP2, and the winner is selected as the second component size 
to predict. The same procedure is repeated for each of the 
remaining MLPs until no component size to predict is left, 
leading to an ordered prediction sequence. Subsection C.4 
summarizes the algorithm using pseudo-code.  

B. Dynamic cascade of shallow neural networks (DC-SNN) 

Because of its sequential prediction, the FC-SNN method 
may lead to a deadlock when two component sizes are 
interdependent since each one must be known to determine the 
other. To overcome that problem, a new version of C-SNN is 
proposed, called the dynamic cascade of shallow neural 
networks (DC-SNN). It applies when one or more SNN in FC-
SNN has a prediction error higher than the set threshold (5% 
component and performance tolerances in this work).  

In DC-SNN, more than one SNN may contribute to sizing the 
same component, with the added SNNs accounting for potential 
component cross-couplings. The rationale behind this is that, 
while the SNN that predicts the first component size can only 
rely on the specified performance criteria for the target circuit 
as inputs, the same SNN moved l positions forward in the 
cascade can count on both the performance criteria and the l-1 
size predictions obtained up to that point, hence potentially 
producing a lower prediction error. 

The DC-SNN method starts by generating a cascade of M 
MLPs like FC-SNN, with MLPi predicting the ith component 
size di. Then, a new MLP, MLPi+M, tries to learn di again using 
all the performance criteria and predicted values as inputs. If 
MLPi+M predicts di better than MLPi, it is added to the cascade 
as the predictor of di; otherwise, it is ignored. The DC-SNN 
approach is illustrated in Figure 2 for M=3. 

C. Genetic Algorithm for MLP Configuration 

As mentioned, a genetic algorithm is used to optimize the 
hyperparameters of each MLP in the cascade. Each GA starts 
by generating  a  population of chromosomes that  encode  the 

M-1 

2 

1 

MLP
1
 

MLP
2
 

MLP
3
 

MLP
M

 

Component 

size 2  

Component 

size 3 

Component 
size M 

Input 
performance 

vector  

… 

Component 

size1 

… 

Figure 1. Block diagram of the C-SNN [49], where MLP means multilayer 

perceptron ANN and M is the number of component sizes to predict. 
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MLP hyperparameters as a binary vector where the successive 
bit fields represent different hyperparameters (see Table I). In 
this work, a population size of 64 randomly initialized 
chromosomes of 19-bit size is used. Then, the GA’s three-step 
process of selection, reproduction and mutation is repeated until 
reaching a stopping criterion. 

 

1) Selection Phase 

This phase selects the chromosome pairs for reproduction. 
The deterministic tournament method is used as it has been 
shown to be more efficient and less time-consuming than other 
selection methods such as ranking and roulette [52], and it has 
been suggested that its deterministic ranking has the potential 
to outperform probabilistic selection [53]. Moreover, 
deterministic tournament lends itself more easily to hardware 
implementation in a field-programmable gate array (FPGA), 
which is a future objective of this work. 

In the deterministic tournament, the future parent 
chromosomes are selected through a series of pairwise 
matchups, using the mean-squared error between the target and 
predicted outputs of the associated MLP as a fitness function. 
For each matchup, the chromosome with the best fitness value 
proceeds to the next stage [54]. The chromosome population is 
arbitrarily ranked for fitness at the beginning. 

2) Reproduction Phase 

At the end of the selection phase, 32 of the 64 chromosomes 
have been deleted and the remaining 32 are re-ranked. Then, to 
replenish the population, 32 new chromosomes are generated 
from the remaining ones used as parents, with each pair 
breeding two children. Each child is created by using two 
randomly selected crossover points as is commonly done. The 
chromosome corresponding to the first child is identical to the 
chromosome of its first parent before the first crossover point 
and after the second crossover point and is identical to the 
chromosome of its second parent in between. The inverse is true 
for the second child of the same pair of parents. 

3) Mutation Phase 

The mutation phase inverts each chromosome bit of the 
population with probability 1/nb, where nb is the size of the 
chromosome in bits.  This probability was suggested in [53], 
and it was tested here with various other values in pilot 
experiments; none consistently provided better results. 

4) Final DC-SNN architecture 

The  pseudo-algorithm of DC-SNN generation is as follows: 

 

IV. VALIDATION 

The performances of FC-SNN and DC-SNN were tested with 
three different analog RF microcircuits: a low-noise amplifier 
(LNA), a voltage-controlled oscillator (VCO) and a mixer. For 
each circuit, 200 designs were completed with Cadence 
Cadence Virtuoso Spectre RF to serve as training examples, 
using randomly chosen, wide-ranging performance 
specifications. Moreover, to get a perspective on the obtained 
results, they were compared to those produced by a set of 
independent MLPs (I-MLP), each one only predicting one 

Fig. 2. Example of MLP selection in a DC-SNN model with 3 component 

sizes to predict, where p is a performance criterion and d a component size 

to predict. a) case where MLP4 makes a better prediction of d1 than MLP1, 
leading to adding MLP4 to the MLP sequence; b) case where MLP4’s 

prediction is worse, leading to not adding MLP4 to the MLP sequence.  
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Table I. Description of chromosome bits for the genetic algorithm 

Bit # Role in MLP Range of values 

1 – 3 Nb. of hidden layer neurons 10, 15, …, 45 

4 Nb. of hidden layers 1, 2 

5 Hidden layer output function  Tanh, ReLU 

6 – 8 Size of minibatch 1 - 8 

9 L1 regularization yes/no 

10 L2 regularization yes/no 

11 – 13 1 of Adam optimizer 0.9 - 0.99999 

   

14 – 16 2 of Adam optimizer 0.9 - 0.99999 

17 – 19  of Adam optimizer 10-10 - 10-6 

   

 

Algorithm 1. Genetic algorithm applied to the DC-SNN. 

1 Import dataset; 

2 Normalize dataset (min-max normalization); 

3 Shuffle dataset order; 

4 Split dataset into a training set, a validation set and a test set; 

5 Generate N populations of M chromosomes, where N = number 

of design sizes to predict and M=64; 

6 while max(best validation_error for each size to predict) 

 > 0.05 do 

for i = 0, i < N do 

 

7 

8 for j = 0, j < M do 

9 Fix the hyperparameters of new_MLPji for chromosome j  

in population i; 

10 

11 

 

while validation_error improves do  

                Load training and validation set using MLP sequence 

                Shuffle training set order. 

                Train new_MLPji; 

                Validate new_MLPji; 

                if validation_ error of new_MLPji < validation_ error 

 of old_MLPji do 

append MLPji to MLP sequence 

Selection phase on each population; 

Reproduction phase on each population; 

Mutation phase on each population; 

Test MLP sequence 

12 

13 

14 

15 

 

16 

17 

18 

19 

20 
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component size from the performance specifications. This 
makes it possible to evaluate the impact of increasing the 
communication between MLPs on the sizing performance, 
starting with an architecture with no communication (I-MLP), 
to one with only successful MLPs communicating (FC-SNN), 
to one with all MLPs communicating (DC-SNN). The 
hyperparameters of the different models were all optimized by 
GA as described in Methodology. 

1) Low-Noise Amplifier 

The circuit topology of the LNA is shown in Fig. 3. It is the 
same as in [55] and consists of a cascode common-source stage 
with source degeneration and inductive load. The cascode 
configuration was selected for its design simplicity (easier 
matching, stability, etc.) and widespread use. All the 
inductances, including the matching networks’, were assumed 
to be non-ideal with Q-factors of 10, which is consistent with 
current CMOS fabrication processes. To further simplify the 
design effort and reduce the number of parameters, only the      
L-shaped matching network shown in Fig. 3b is considered for 
50 Ω source and load impedance matching. The source 
inductance (LS) was also fixed at 0.578nH for all designs. 

  

 

Two hundred LNA microcircuits were designed using 
180 nm CMOS technology. Table II shows the performance (P) 
and design (D) variables of the different designs, with the 
considered ranges of values.  

2) Voltage-Controlled Oscillator 

The second circuit topology is the symmetrical cross-coupled 
VCO illustrated in Fig. 4. It is a common VCO configuration 
that allows almost rail-to-rail output swing, with the cross-
coupled PMOS-NMOS pair helping to reduce 1/f noise [56]. 

Two hundred VCO microcircuits were designed in CMOS 
130 nm technology. Table III shows the performance and 
design variables of the different designs, and the considered  
ranges of values. The current source and inductance were fixed 
before each design and given as input to the sizing process, and 
Vtune was varied within each design to get the tuning range. 

 

 

3) Mixer 

The circuit topology considered for the mixer is the double-
balanced Gilbert cell presented in Fig. 5. It was selected because 
of its common use, since it provides good conversion gain and 
rejection at the input ports [56]. Moreover, the version used 
here includes a resonator that allows, through its parallel 
inductance L and capacitance C, to adjust the mixer for 
maximum response at the required frequency [57]. 

Here also, 200 mixer microcircuits were designed using 
CMOS 130 nm technology, with the lengths of all transistors 
fixed to 130 nm.  Table IV shows the performance and design 
variables of the different designs, including the considered 

 

Fig. 3. LNA topology (a), input matching network (b) and output 

matching network (c) [55]. 

Table II. Considered ranges of performance parameters and design 

variables for the LNA 

 Name Min. value Max. value 

P
erfo

rm
an

ce 
 

Bandwidth (MHz) 387.0 882.3 

1-dB compression Point (dB) -21.04 -13.03 

Center Frequency (GHz) 2.07 4.76 

IIP3 (dB) -11.58 2.64 

Noise Figure (dB) 1.386 3.33 

S21 (dB) 9.11 15.29 

D
esig

n
 

 

Input capacitance (fF) 238.2 1528.2 

Input Inductance (nH) 1.811 10.610 

Output capacitance (fF) 260.0 2902.6 

Output Inductance (nH) 4.913 14.123 

Transistor Q1 length (nm) 160 510 

Transistor Q1 width (µm) 60 560 

Transistor Q2 length (nm) 200 610 

Transistor Q2 width (µm) 90 500 

Drain Inductance – LD (nH)  1.707 8.671 

Bias voltage - VB (mV)  300 600 

 

 
Fig. 4. VCO topology [56]. 

Table III.  Considered ranges of performance parameters and design 
variables for the VCO 

 

Name Min. value Max. value 

P
erfo

rm
an

ce 

Oscillation frequency (GHz) 2.022 9.924 

Tuning range (MHz) 52.4490 723.40 

Phase noise (dB/Hz) -102.7 -88.2 

Power consumption (mW) 1.386 3.33 

D
esig

n
 

 

Transistor Q1 length (µm) 0.5 4.1 

Transistor Q1 width (µm) 2.5 55 

Transistor Q2 length (µm) 0.5 4.4 

Transistor Q2 width (µm) 3 55 

Transistor Q3 length (µm) 0.8 4.2 

Transistor Q3 width (µm) 15 98 
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ranges of values. Resistance R was fixed before the mixer 
sizing, and the size and gate voltage of transistor Q3, which was 
part of a current mirror, were given as inputs in the sizing 
process.  

  

 
4) Procedure 

The prediction performances of the proposed FC-SNN and 
DC-SNN architectures, along with those of the I-MLP set of 
independent MLPs, were compared based on the designed 
LNA, VCO and mixer microcircuits. For each set of 200 
designs previously described, 180 were used for training, 10 for 
validation and 10 for testing, with 2-fold cross-validation. The 
models were coded in Python using the Theano [58] and 
Lasagne [59] libraries. The simulations were run on a laptop 
computer with an Intel i7-7700HQ CPU clocked at 2.8 GHz, 
with 8 GB RAM and no dedicated graphics card. The genetic 
algorithms were set to run for a maximum of 10 generations. 

The sizing performance of each trained model for the LNA, 
VCO and mixer was first assessed with three metrics: 1) the 
number of correctly predicted component sizes (i.e. with an 
error below 5 % of the normalized target sizes during the test 
phase), 2) The mean prediction error during the testing phase, 

which measures the generalization ability of the solutions 
within the performance ranges in tables II, III and IV, 3) the 
number of GA generations to reach the testing phase (i.e. get a 
size prediction error below 5 % for all components during the 
validation phase). However, as 5% component size tolerance 
does not necessarily lead to 5% performance tolerance in non-
linear circuits, the predicted component sizes by DC-SNN were 
simulated in Cadence in additional experiments, and the 
obtained microcircuit performances were compared to the 
reference ones. 

V. RESULTS 

Table V summarizes the obtained results, showing the       
DC-SNN success in predicting all the component sizes of the 
three different microcircuits with a mean error at test time 
smaller than 5 %. The worst prediction performance what that 
of I-MLP, showing the superiority of the FC-SNN and DC-
SNN over predicting the component sizes independently from 
each other. 

The learning time of DC-SNN was 4 minutes and 37 seconds 
for the LNA, 36 minutes and 21 seconds for the VCO and 47 
minutes and 56 seconds for the mixer. Once trained, the tool 
took less than 5 seconds to size each of the ten test circuits for 
each of the three types. Hence, the response time was very fast 
to find the component sizes given a set of performance criteria.  

To further confirm the robustness of the DC-SNN algorithm, 
it was run 20 times for the LNA circuit, leading to a mean 
prediction error of 3.39% with 0.6% standard deviation, and all 
20 runs predicted the sizes of the components with less than a 
5% error threshold. 

 
Table VI to Table VIII present examples of the mean 

absolute error (MAE) of the predicted component sizes and 
resulting performance of the LNA, VCO, and mixer 
microcircuits. As expected, the errors on the component sizes 
do not generate the same magnitude errors on the circuit 
performances, but the MAE remained under 5 % for both the 
component sizes and circuit performances of the three circuit 
topologies.  

Table IX shows the average MAEs of both the predicted 
parameters and the simulated performances for the 10 predicted 
designs by the algorithm. These results show that the non-linear 
dependencies between the component sizes and the circuit 
performances are not important enough for the predicted sizes 
to degrade the desired performance beyond the 5% threshold. 
Then, using the predicted sizes, sweep analysis can be used for 
fine-tuning, or hindsight about the circuit behavior to change 

 

Fig. 5. Cross-coupled Gilbert cell mixer topology [57] 

 Cross-coupled Gilbert cell mixer topology [59].  Table IV. Considered ranges of performance parameters and design 
variables for the mixer 

 

Name 

 

Min. value Max. value 

P
er

fo
rm

an
ce

 

RF frequency (GHz) 1.5 2.5 

IF frequency (MHz) 50 500 

Bandwidth (MHz) 48.68 409.1 

1 db compression point (dBm) -18.69 -8.613 

IIP3 (dB) -9.185 2.626 

Voltage gain (dB) 4.894 15.97 

SSB noise figure (dB) 4.464 5.637 

LO to IF isolation (dB) -424.2 -169.3 

LO to RF isolation (dB) -377.4 -278.4 

RF to IF isolation (dB -235.8 -137 

Power consumption (mW) 8.560 47.712 

D
es

ig
n
 

Capacitance (pF) 0.965 129.899 

Inductance (nH) 210 990 

Transistor Q1 width (µm) 200 430 

Transistor Q2 width (µm) 200 430 

Voltage at the gate of Q1 (V) 0.7 1.1 

Voltage at the gate of Q2 (V) 0.65 0.9 

 

Table V. Simulation results summary 

Circuit 
Neural 

network  

GA generations  

for minimum 
prediction error 

Predicted sizes 

within 5% error 
threshold  

Mean 

error on 
test set 

LNA 

DC-SNN 1 10/10 0.0391 

FC-SNN 1 10/10 0.0402 

I-MLP 10 8/10 0.0690 

VCO 

DC-SNN 2 6/6 0.0429 

FC-SNN 10 4/6 0.0731 

I-MLP 10 3/6 0.0924 

Mixer 

DC-SNN 3 6/6 0.0487 

FC-SNN 10 4/6 0.0708 

I-MLP 10 3/6 0.0861 
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specific component parameters for the desired performances. 
A single deep MLP was also tested to predict all the 

component sizes of a circuit at once. This network was allowed 
between 20 and 50 hidden layers by the genetic algorithm and 
the vanishing gradient problem that often occurs in deep neural 
networks was attenuated by using residual connections [60]. 
However, its prediction accuracy was very poor and not worth 
reporting.  This failure may be due to the small training set (200 
circuit examples) in comparison to the large number of 
parameters to learn for such a network. Still, an earlier 
experiment with a shallow MLP was tested for the LNA with 
similarly poor results [54], hence emphasizing the importance 
of an architecture such as a C-SNN in the context of small 
training sets.  

 
VI. DISCUSSION AND CONCLUSION 

Our results show that the proposed deep neural network 
made of a cascade of separately trained shallow MLPs can 
successfully perform an initial sizing of the components of an 
analog RF circuit design, as it successfully did so for three 
different types of RF microcircuits within the set error margin 
for values and performances. More precisely, the FC-SNN 
variant predicted all the components sizes of an LNA within 
five percent error tolerance, and all components’ sizes of a VCO 
and a mixer within eight percent error tolerance, and DC-SNN 
variant predicted the components sizes of all three circuit types 
within five percent error tolerance.  

The developed architecture offers an effective way to 

Table VI. Example of prediction errors and resulting performances for the LNA 

Component size Target value Predicted 

value 

AE (%) Performance Target value Value from 

predicted sizes 

AE (%) 

LD (nH) 4.706 4.486 4.67 Bandwidth (MHz) 510 480 5.88 
Q1 width (µm) 280 292.46 4.45 Noise Figure (dB) 2.308 2.287 0.91 

Q1 length (nm) 380 363.78 4.27 S21 (dB) 14.419 15.033 4.26 

Q2 width (µm) 400 413.57 3.39 IIP3 (dB) -2.034 -2.147 5.55 
Q2 length (nm) 500 481.18 3.76 1-dB comp. point (dBm) -17.284 -18.272 5.71 

CIN (pF) 1328.2 1367.34 2.95     

LIN (nH) 4.734 4.821 1.84     
COUT (pF) 1430 1403.13 1.88     

LOUT (nH) 9.278 9.728 4.85     

                                     MAE: 3.56  MAE: 4.46 

      

 
Table VII. Example of prediction errors and resulting performances for the VCO 

Component size Target value Predicted 
value 

AE (%) Performance Target value Value from 
predicted sizes 

AE (%) 

Q2 length (µm) 1.5 1.575 5.00 Frequency of oscillation (GHz) 4.658 4.497 3.46 

Q2 width  (µm) 26 27.014 3.90 Minimum frequency (GHz) 3.951 3.823 3.24 

Q1 length (µm) 2 1.9173 4.14 Maximum frequency (GHz) 5.467 5.302 3.02 
Q1 width  (µm) 38 39.7405 4.58 Tuning range (GHz/GHz) 0.325 0.329 1.23 

Q3 length (µm) 2 2.08374 4.19 Phase noise (dBc/Hz @ 1MHz) -108.6 -106.2 2.21 

Q3 width  (µm) 80 83.644 4.56     

 MAE: 4.39  MAE: 2.63 

 Table VIII. Example of prediction errors and resulting performances for the Mixer 

Component size Target value  Predicted 

value 

AE (%) Performance Target value Value from 

predicted sizes  

AE (%) 

C (pF) 90  85.77 4.70 Bandwidth (MHz) 45.52 46.26 1.63 
L (nH) 28.14  29.07 3.30 1-dB comp. point (dBm) -15.91 -15.38 3.33 

R (Ω) 400  411.5 2.88 IIP3 (dBm) -4.989 -6.02 20.7 

Q1 width (µm) 400  388.58 2.86 Voltage gain (dB) 13.13 13.62 3.73 
Q2 width (µm) 430  450.76 4.83 SSB noise figure (dB) 4.411 4.403 0.18 

Q3 width (µm) 370  361.99 2.16 LO to IF isolation (dB) -119.937 -122.56 2.19 

VBIAS (V) 0.58  0.605 4.31 LO to RF isolation (dB) -256.5 -256.5 0.00 
VRF (V) 0.76  0.735 3.29 RF to IF isolation (dB) -120.36 -124.77 3.66 

VLO (V) 1.04  1.015 2.40     

  MAE: 3.41  MAE: 4.42 

 
Table IX. Test set MAE of the sizing predictions and resulting performances for the LNA, VCO and mixer circuits 

Design Number LNA VCO Mixer 

 MAE of 

parameters 

(%) 

MAE of 

performances 

(%) 

MAE of 

parameters 

(%) 

MAE of 

performances 

(%) 

MAE of 

parameters 

(%) 

MAE of 

performances 

(%) 

1 3.56 4.46 4.39 2.63 3.41 4.42 

2 4.64 4.07 3.14 4.41 4.56 3.21 

3 3.19 4.67 2.22 4.49 3.17 3.34 
4 4.7 4.54 2.88 3.21 3.14 4.51 

5 2.88 3.25 4.76 3.45 2.25 3.87 

6 4.41 3.27 3.23 4.31 3.66 3.57 
7 2.99 3.41 2.37 3.19 4.37 3.19 

8 3.73 3.86 4.45 4.55 2.58 4.18 

9 4.64 3.95 4.49 3.9 3.73 3.36 
10 4.42 4.58 4.34 3.22 3.56 2.76 

Average MAE (%) 3.92 4.01 3.63 3.74 3.44 3.64 

Standard Deviation 0.73 0.55 0.96 0.68 0.71 0.58 
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circumscribe the neighborhoods of the sought component 
values in solution space, and the presented work is an efficient 
first step in a two-step solution to the sizing problem, where the 
second step fine-tunes the predicted values to account for layout 
and EM issues. As mentioned in Introduction, this second step 
is still a challenge as no automatic procedure exists for arbitrary 
circuit topologies and performances. Ongoing research to 
automate the whole process includes techniques based on 
surrogate models [30], Bayesian fusion [38], layout migration 
and reuse [61], layout self-organization [62], reinforcement 
learning [63], and training our deep neural network using a 
database of successfully fabricated circuits.  However, the 
current cost of IC fabrication prevented us from creating such a 
database, given the number of end-to-end designs that must 
have been completed. 

The proposed neural network-based methodology 
distinguishes itself by the relatively small training set required 
for training, thus circumventing the difficulty to gather the large 
number of microelectronic circuit designs normally required to 
train a deep neural network, a problem that does not exist in 
other domains that use deep learning such as image 
classification or language translation. Here, only two hundred 
exemplars were included in each dataset to learn the final MLP 
sequences. This was made possible by predicting the 
component sizes one by one and using MLPs with only one or 
two hidden layers, hence reducing the network complexity and 
quantity of parameters to learn at each step. That allowed a 
progressive process of constrained predictions to take place, 
with a relatively small training set used to solve the circuit 
sizing problem.  

Another distinction of the proposed method from the related 
work is to go beyond finding idiosyncratic component values, 
as it creates a general mapping from the desired performance 
criteria to the component sizes without being specific to any set 
of performance values. Indeed, although the exemplars used for 
testing the model were not seen by the algorithm during the 
training or validation phases, there was no need to retrain the 
network for each one of them. 

In this respect, the proposed approach is useful to generate a 
C-SNN that provides the initial sizing conditions to a more 
precise idiosyncratic optimization method. This would reduce 
the convergence time of those methods while preserving their 
accuracy. 

The final component values obtained during the test phase 
were not fabricated and thus, the corresponding specifications 
were not tested post-fabrication. At the present stage, the goal 
of the proposed method is mainly to help designers decrease the 
time needed to reach the final values of their analog RF circuit 
components for IC implementation, by saving lengthy 
simulation time for the initial sizing before layout. Moreover, 
as different designers have different styles, the component sizes 
yielded by the algorithm reflect the design experience and bias 
of the designers of the microelectronic circuits used for training 
the algorithm. In the future, standardized databases might be 
useful to minimize this potential bias. The tool could also be 
trained with a more complete database including the extracted 
parasitic components and it could be constrained to specific 
inductances that were designed with EM simulations, however, 
such a training database is difficult to build as already 
discussed. 

Finally, the obtained results show that the proposed method 
can be applied to many different types of circuits and 
technologies with appropriate training. Thus, it generalizes 

well. Here, it was successful in correctly predicting the 
component sizes of an LNA, a VCO, and a mixer, where the 
first was designed using CMOS 180 nm technology, and the 
other two using CMOS 130 nm technology, but different 
circuits, topologies, and CMOS technologies could have been 
used as well and for arbitrary performances, by using the 
appropriate completed designs as training examples.  
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