
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023 3715

A Search-Based Testing Approach for
Deep Reinforcement Learning Agents

Amirhossein Zolfagharian , Manel Abdellatif , Lionel C. Briand , Fellow, IEEE,
Mojtaba Bagherzadeh , and Ramesh S

Abstract—Deep Reinforcement Learning (DRL) algorithms have
been increasingly employed during the last decade to solve various
decision-making problems such as autonomous driving, trading
decisions, and robotics. However, these algorithms have faced great
challenges when deployed in safety-critical environments since
they often exhibit erroneous behaviors that can lead to poten-
tially critical errors. One of the ways to assess the safety of DRL
agents is to test them to detect possible faults leading to critical
failures during their execution. This raises the question of how we
can efficiently test DRL policies to ensure their correctness and
adherence to safety requirements. Most existing works on testing
DRL agents use adversarial attacks that perturb states or actions
of the agent. However, such attacks often lead to unrealistic states
of the environment. Furthermore, their main goal is to test the
robustness of DRL agents rather than testing the compliance of
the agents’ policies with respect to requirements. Due to the huge
state space of DRL environments, the high cost of test execution,
and the black-box nature of DRL algorithms, exhaustive testing of
DRL agents is impossible. In this paper, we propose a Search-based
Testing Approach of Reinforcement Learning Agents (STARLA) to
test the policy of a DRL agent by effectively searching for failing
executions of the agent within a limited testing budget. We rely
on machine learning models and a dedicated genetic algorithm to
narrow the search toward faulty episodes (i.e., sequences of states
and actions produced by the DRL agent). We apply STARLA on
Deep-Q-Learning agents trained on two different RL problems
widely used as benchmarks and show that STARLA significantly
outperforms Random Testing by detecting more faults related to
the agent’s policy. We also investigate how to extract rules that
characterize faulty episodes of the DRL agent using our search

Manuscript received 15 June 2022; revised 6 April 2023; accepted 15 April
2023. Date of publication 25 April 2023; date of current version 18 July 2023.
This work was supported by a research Grant from General Motors as well as the
Canada Research Chair and Discovery Grant programs of the Natural Sciences
and Engineering Research Council of Canada (NSERC). Recommended for
acceptance by D. Lo. (Corresponding author: Amirhossein Zolfagharian.)

Amirhossein Zolfagharian is with the School of Electrical Engineering and
Computer Science (EECS), University of Ottawa, Ottawa, ON K1N 6N5, Canada
(e-mail: A.zlf@uottawa.ca).

Manel Abdellatif is with the Software and Information Technology Engineer-
ing Department, École de Technologie Supérieure, Montreal, QC H3C 1K3,
Canada, and also with the School of EECS, University of Ottawa, Ottawa, ON
K1N 6N5, Canada (e-mail: Manel.abdellatif@etsmtl.ca).

Lionel C. Briand is with the School of Electrical Engineering and Computer
Science (EECS), University of Ottawa, Ottawa, ON K1N 6N5, Canada, and also
with the SnT Centre for Security, Reliability and Trust, University of Luxem-
bourg, 4365 Esch-sur-Alzette, Luxembourg (e-mail: Lbriand@uottawa.ca).

Mojtaba Bagherzadeh is with Cisco, Ottawa, ON K1N 6N5, Canada, and also
with the School of EECS, University of Ottawa, Ottawa, ON K1N 6N5, Canada
(e-mail: Mbagherz@cisco.com).

Ramesh S is with the Department of Research and Development, General
Motors, Warren, MI 48092 USA (e-mail: Ramesh.s@gm.com).

Digital Object Identifier 10.1109/TSE.2023.3269804

results. Such rules can be used to understand the conditions under
which the agent fails and thus assess the risks of deploying it.

Index Terms—Genetic algorithm, machine learning, reinforce-
ment learning, state abstraction, testing.

I. INTRODUCTION

R EINFORCEMENT LEARNING (RL) algorithms have
seen tremendous research advances in recent years, both

from a theoretical standpoint and in their applications to solve
real-world problems. Reinforcement Learning [1] trains an
agent to make a sequence of decisions to reach a final goal and is
therefore a technique gaining increased interest in many appli-
cation contexts, such as autonomous driving and robotics. Deep
Reinforcement Learning (DRL) techniques [2], [3], [4], a branch
of deep learning where RL policies are learned using Deep
Neural Networks (DNNs), have gained attention in recent years.
However, like DNN components, their application in production
environments requires effective and systematic testing, espe-
cially when used in safety-critical applications. For instance,
deploying a reinforcement learning agent in autonomous driving
systems raises major safety concerns as we must pay attention
not only to the extent to which the agent’s objectives are met but
also to damage avoidance [5].

One of the ways to assess the safety of DRL agents is to
test them to detect possible faults leading to critical failures
during their execution. By definition, a fault in DRL-based
systems corresponds to a problem in the RL policy that may lead
to the agent’s failure during execution. Since DRL techniques
use DNNs, they inherit the advantages and drawbacks of such
models, making their testing challenging and time-consuming.
Furthermore, DRL-based systems are based on a Markov Deci-
sion Process (MDP) [6] that makes them stateful. They embed
several components including the agent, the environment, and
the ML-based policy network. Testing a stateful system that
consists of several components is by itself a challenging prob-
lem. It becomes even more challenging when ML components
and the probabilistic nature of the real-world environments are
considered.

Furthermore, in a DRL context, two types of faults can be
defined: functional and reward faults. The former happens when
an RL agent takes an action that leads to an unsafe state (e.g.,
a driverless car does not stop at a stop sign). The latter occurs
when an agent does not reach the desired reward (e.g., when a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2411-7938
https://orcid.org/0000-0002-8647-1676
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-0253-671X
https://orcid.org/0000-0002-8501-7447
mailto:A.zlf@uottawa.ca
mailto:Manel.abdellatif@etsmtl.ca
mailto:Lbriand@uottawa.ca
mailto:Mbagherz@cisco.com
mailto:Ramesh.s@gm.com

3716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

driverless car reaches its destination an hour late). Functional and
reward faults are often in tension, as we can obtain a high reward
while observing a functional fault. For example, an unsafe action
can help the agent reach the desired state faster (e.g., when
not stopping at stop signs, the driverless car may reach its
destination sooner). This makes the detection of such types of
faults challenging, especially when the agent is well-trained and
failures are rare. We should note that we focus our analysis on
functional faults since they are more critical. Thus, the detection
of reward faults is left for future work and is out of the scope of
this paper.

There are three types of testing approaches for deep learning
systems that depend on the required access levels to the system
under test: white-box, black-box, and data-box testing [7], [8].
White-box testing requires access to the internals of the DL
systems and its training dataset. Black-box testing does not
require access to these elements and considers the DL model as
a black box. Data-box testing requires access only to the training
dataset. Prior testing approaches for DL systems (including
DNNs) have focused on black-box and white-box testing [9],
[10], [11], [12], [13], [14], [15], depending on the required
access level to the system under test. However, limited work
has been done on testing DRL-based systems in general and
using data-box testing methods in particular [11], [13], [15],
[16]. Relying on such types of testing is practically important, as
testers often do not have full access to the internals of RL-based
systems but do have access to the training dataset of the RL
agent [17].

Most existing works on testing DRL agents are based on
adversarial attacks that aim to perturb states of the DRL en-
vironment [18]. However, adversarial attacks lead to unrealistic
states and episodes, and their main objective is to test the RL
agents’ robustness rather than test the agents’ functionality (e.g.,
functional safety). In addition, a white-box testing approach for
DRL agents has been proposed that focuses on fault localization
in the source code of DRL-based systems [11]. However, this
testing approach requires full access to the internals of the DRL
model, which are often not available to testers, especially when
the DRL model is proprietary or provided by a third party. Also,
localizing and fixing faults in the DRL source code do not pre-
vent agent failures due to imperfect policies and the probabilistic
nature of the RL environment. Furthermore, because of the huge
state space, the high cost of test execution, and the black-box
nature of DNN models (policy networks), exhaustive testing of
DRL agents is impossible.

In this paper, we focus on testing the policies of DRL-based
systems using a data-box testing approach, and thus address
the needs of many practical situations. We propose STARLA,
a Search-based Testing Approach for Reinforcement Learning
Agents, that is focused on testing the agent’s policy by searching
for faulty episodes as effectively as possible. An episode is a
sequence of states and actions that results from executing the RL
agent. To create these episodes, we leverage evolutionary testing
methods and rely on a dedicated genetic algorithm to identify
and generate functional-faulty episodes [19]. We rely on state
abstraction techniques [20], [21] to group similar states of the

agent and significantly reduce the state space. We also make
use of ML models to predict faults in episodes and guide the
search toward faulty episodes. We applied our testing approach
on two Deep-Q-Learning agents trained for the widely known
Cart-Pole and Mountain Car problems in the OpenAI Gym en-
vironment [22]. We show that our testing approach outperforms
Random Testing, as we find significantly more faults.

Overall, the main contributions of our paper are as follows:
� We propose STARLA, a data-box search-based approach

to test DRL agents’ policies by detecting functional-faulty
episodes.

� We propose a highly accurate machine learning-based
classification of RL episodes to predict functional-faulty
episodes, which we use to improve the guidance of the
search. This is based in part on defining and applying the
notion of abstract state to increase learnability.

� We applied STARLA on two well-known RL problems.
We show that STARLA outperforms the Random Testing
of DRL agents as we detect significantly more faults when
considering the same testing budget (i.e., the same number
of the generated episodes).

� We provide online1 a prototype tool for our search-based
testing approach as well as all the needed data and config-
urations to replicate our experiments and results.

The remainder of the paper is structured as follows. Section II
presents the required background and establishes the context
of our research. Section III describes our research problem.
Section IV presents our testing approach. Section V reports
our empirical evaluation and results. Section VI discusses the
practical implications of our results. Section VII analyzes the
threats to validity. Finally, Sections VIII and IX contrast our
work with related work and conclude the paper, respectively.

II. BACKGROUND

Reinforcement Learning trains a model or an agent to make
a sequence of decisions to reach a final goal. It is therefore
a technique gaining increased interest in complex autonomous
systems. RL uses trial and error to explore the environment by
selecting an action from a set of possible actions. The actions
are selected to optimize the obtained reward. In the following,
we will describe an example application of RL in autonomous
vehicles.

A. Definitions

To formally define our testing framework, we rely on a running
example and several key concepts that are introduced in the
following sections.

A Running Example. Assuming an Autonomous Vehicle (AV)
cruising on a highway, an RL agent (i.e., AV) receives obser-
vations from an RGB camera (placed in front of the car) and
attempts to maximize its reward during the highway driving
task, which is calculated based on the vehicle’s speed. The agent
is given one negative/positive reward per time step when the

1[Online]. Available: https://github.com/amirhosseinzlf/STARLA

https://github.com/amirhosseinzlf/STARLA

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3717

vehicle’s speed is below/above 60 MPH (miles per hour). Avail-
able actions are turning right, turning left, going straight, and
no-action. The cruising continues until one of the termination
criteria is met: (1) the time budget of 10 seconds is consumed,
or (2) a collision has occurred.

Definition 1 (RL Agent Behavior): The behavior of an RL
agent can be captured as a Markov Decision Process [6]
〈S,A, T,R, γ〉 where S and A denote a set of possible states
and actions accordingly, T : S ×A× S −→ [0, 1] refers to the
transitions function, such that T (s′, a, s) determines the prob-
ability of reaching state s′ by performing action a in state s,
R : S ×A −→ [0, Rmax] is a reward function that determines
the immediate reward for a pair of an action and a state, and
γ ∈ [0, 1] is the discount factor indicating the difference of
short-term and long-term reward [23].

The solution of an MDP is a policyπ : S −→ A that denotes the
selected action given the state. The agent starts from the initial
state (s0 ∈ S) at time step t = 0 and then, at each time step (ti,
i ≥ 0), it takes an action (ai ∈ A) according to the policy π that
results in moving to a new state si+1. Also, ri refers to the reward
corresponding to the action ai and state si that is obtained at the
end of the step ti. Note that there may not be a reward at each
step, which in that case is considered to be zero. Finally,

∑i ri
refers to the accumulative reward until step ti.

Definition 2 (Episodes): An episode e is a finite sequence
of pairs of states and actions, i.e., [(sj , aj)|sj ∈ S, aj ∈ A, 0 ≤
j ≤ n, n ∈ N], where the state of the first pair is an initial state,
and the state of the last pair is an end state. An end state is, by
definition, a state in which the agent can take no more action. The
accumulative reward of episode e is

∑|e| r, where |e| denotes
the length of the episode. We refer to the accumulated reward of
episode ewith r′e. A valid episode is an episode where each state
is reachable from the initial state with respect to the transition
function presented in definition 1. Moreover, the episode is
executable (i.e., consistent with the policy of an agent) if starting
from the same initial state and in each state, the selected action
of the agent is consistent with the action in the episode that we
want to execute.

Definition 3 (Faulty state): A faulty state is a state in which
one of the defined requirements (e.g., the autonomous vehicle
must not hit obstacles) does not hold, regardless of the accumu-
lated reward in that state. A faulty state is often an end state. In
the context of the running example, a faulty state is a state where
a collision occurs.

Definition 4 (Faulty Episode): We define two types of faulty
episodes:
� Functional fault: If an episode e contains a faulty state,

it is considered as a faulty episode of type functional.
A functional fault may lead to an unsafe situation in the
context of safety-critical systems (e.g., hitting an obstacle
in our running example).

� Reward fault: If the accumulative reward of episode e is
less than a predefined threshold (r′e ≤ τ), it is considered a
faulty episode of type reward (i.e., the agent failed to reach
the expected reward in the episode). Intuitively, regarding
our running example, if we assume a reward fault threshold

of τ = 100, then each episode with a reward below 100
is considered to contain a reward fault. In our running
example, this occurs when the AV agent drives at 25 MPH
all the time. As we mentioned earlier, the detection of this
type of fault is out of the scope of this paper and is left for
future work.

B. State Abstraction

State abstraction is a means to reduce the size of the state
space by clustering similar states to reduce the complexity of the
investigated problem [20], [21]. State abstraction can be defined
as a mapping from an original state s ∈ S to an abstract state
sφ ∈ Sφ

φ : S −→ Sφ (1)

where the abstract state space is often much smaller than the
original state space. Generally, there are three different classes
of abstraction methods in the RL context [24], [25]:

1) π∗-irrelevance abstraction: s1 and s2 are in the same ab-
straction state φ(s1) = φ(s2), if π∗(s1) = π∗(s2), where
π∗ represents the optimal policy.

2) Q∗-irrelevance abstraction: φ(s1) = φ(s2) if for all
available actions a ∈ A, Q∗(s1, a) = Q∗(s2, a), where
Q∗(s, a) is the optimal state-action function that returns
the maximum expected reward from state s up to the final
state when selecting action a in state s.

3) Model-irrelevance abstraction: φ(s1) = φ(s2) if for any
action a ∈ A and any abstract state sφ ∈ Sφ, R(s1, a) =
R(s2, a) and the transition dynamics of the environment
are also similar, meaning that

∑
s′∈φ−1(sφ) T (s

′, a, s1) =∑
s′∈φ−1(sφ) T (s

′, a, s2) where T (s′, a, s) returns the
probability of going to state s′ from state s performing
action a, as defined in definition 1.

As we are testing RL agents in our work, we use the Q∗-
irrelevance abstraction method in this study because it repre-
sents the agent’s perception. We also choose this abstraction
method because it is more precise than π∗-irrelevance. Indeed,
π∗-irrelevance only relies on the predicted action (i.e., the action
with the highestQ∗-value) to compare two different states, which
makes it coarse. In contrast, Q∗-irrelevance relies on Q∗-values
for all possible actions.

To clarify, assume two different states in the real world for
which our trained agent has the same Q-values. Given the
objective to test the agent, it is logical to assume these states to be
similar, as the agent has learned to predict identical state-action
values for both states (i.e., the agent perceives both states to be
the same).

Further, abstraction methods can be strict or approximate.
Strict abstraction methods use a strict equality condition when
comparing the states of state-action pairs, as presented above.
Although they are more precise, they bring limited benefits in
terms of state space reduction. In contrast, more lenient abstrac-
tion methods can significantly reduce the state space, but they
may yield inadequate precision. Approximate abstractions relax
the equality condition in strict abstraction methods to achieve a

3718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

balance between state space reduction and precision. For exam-
ple, instead of Q∗(s1, a) = Q∗(s2, a), approximate abstraction
methods use the condition |Q∗(s1, a)−Q∗(s2, a)| < ε, where
ε is a parameter to control the trade-off between abstraction
precision and state space reduction.

Another important property is transitivity, as transitive ab-
stractions use a transitive predicate. For example, assume that
two states, s1 and s2, are similar based on an abstraction predi-
cate and the same is true for s2 and s3. Then, we should be able
to conclude that s1 and s3 are similar. Transitive abstractions are
efficient to compute and preserve the near-optimal behavior of
RL agents [21]. Moreover, this property helps to create abstract
states more effectively.

Considering the properties that we explained previously, we
use the following abstraction predicate φd that is transitive and
approximates the Q∗-irrelevance abstraction:

φd(s1)=φd(s2) ≡ ∀a∈A :

⌈
Q∗(s1, a)

d

⌉
=

⌈
Q∗(s2, a)

d

⌉
(2)

where d is a control parameter (abstraction level) that can
squeeze more states together when increasing and thus reduce
the state space significantly. Intuitively, this method discretizes
the Q∗-values with buckets of size d.

III. PROBLEM DEFINITION

In this paper, we propose a systematic and automated ap-
proach to test a DRL agent. In other words, considering a limited
testing budget, we aim to exercise the agent in a way that
results in detecting faulty episodes, if possible. This requires
finding faulty episodes in a large space of possible episodes
while satisfying a given testing budget, defined as the number
of executed episodes.

A. RL Agent Testing Challenges

Since DRL techniques use DNNs, they inherit the advantages
and drawbacks of DNNs, making their testing challenging and
time-consuming [26], [27], [28], [29]. In addition, RL tech-
niques raise specific challenges for testing:
� Functional faults: The detection of functional faults in

DRL systems is challenging because relying only on the
agent’s reward is not always sufficient to detect such faults.
Indeed, an episode with a functional fault can reach a high
reward. For example, by not stopping at stop signs, the car
may reach its destination sooner and get a higher reward if
the reward is defined based on the arrival time. Even if we
consider a penalty for unsafe actions, we can still have an
acceptable reward for functional-faulty episodes. Relying
only on the agent’s reward makes it challenging to identify
functional faults.

� State-based testing with uncertainty: Most traditional ML
models, including DNNs, are stateless. However, DRL
techniques are based on an MDP that makes them stateful
and more difficult to test. Also, an RL agent’s output
is the result of an interaction between the environment
(possibly consisting of several components, including ML
components) and the agent. Testing a system with several

components and many states is by itself a challenging prob-
lem. Accounting for ML components and the probabilistic
nature of real-world environments makes such testing even
more difficult [7], [30].

� Cost of test execution: According to the previous discus-
sion, testing an RL agent requires the execution of test
cases by either relying on a simulator or by replaying the
captured logs of real systems. The latter is often limited
since recording a sufficient number of logs that can exhaus-
tively include the real system’s behavior is impossible, es-
pecially in the context of safety-critical systems, for which
logs of unsafe states cannot (easily) be captured. Thus,
using a simulator for testing DRL agents, specifically in the
context of safety-critical domains, is often inevitable. De-
spite significant progress made in simulation technology,
high-fidelity simulators often require high-computational
resources. Thus, testing DRL agents tends to be computa-
tionally expensive [13], [30], [31].

� Focus on adversarial attacks: Most existing works on
testing DRL agents use adversarial attacks that are focused
on perturbing states [14]. However, such attacks lead to
unrealistic states and episodes [32]. The main goal of such
attacks is to test the robustness of RL policies rather than
the agents’ functionality [13], [33], [34].

The exhaustive testing of DRL agents is impossible due to
the large state space, the black-box nature of DNN models
(policy networks), and the high cost of test execution. To address
these challenges, we propose a dedicated search-based testing
approach for RL agents that aims to generate as many diverse
faulty episodes as possible. To create the corresponding test
cases, we leverage meta-heuristics and most particularly genetic
algorithms that we tailor to the specific RL context.

B. Assumptions

In this work, we focus on testing RL agents with discrete
actions and a deterministic policy interacting with a stochastic
environment. A discrete action setting reduces the complexity
of the problem in defining genetic search operators, as we will
see in the following sections. It also reduces the space of pos-
sible episodes. Moreover, assuming a deterministic policy and
stochastic environment is realistic because in many application
domains (specifically in safety-critical domains), randomized
actions are not acceptable and environments tend to be com-
plex [35]. We further assume that we have neither binary nor
noisy rewards [36], [37] (i.e., where an adversary manipulates
the reward to mislead the agent) since the reward function should
provide guidance in our search process. We build our work
on model-free RL algorithms since they are more popular in
practice and have been extensively researched [38], [39].

IV. APPROACH

Genetic Algorithms (GA) are evolutionary search techniques
that imitate the process of evolution to solve optimization prob-
lems, especially when traditional approaches are ineffective or
inefficient [40]. In this research, as for many other test automa-
tion problems, we use genetic algorithms to test RL agents.

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3719

This is accomplished by analyzing the episodes performed by an
RL agent to generate and execute new episodes with high fault
probabilities from a large search space.

A. Reformulation as a Search Problem

We are dealing with a high number of episodes represented as
sequences of pairs (Definition 2), which are executed to test an
RL agent. To properly translate the process into a search problem
using a genetic algorithm, we need to define the following
elements.
� Individuals: Individuals consist of a set of elements called

genes. These genes connect together and form an individual
that is a solution. Here, individuals are episodes complying
with Definition 2, which should ideally have a high prob-
ability of failure. Naturally, each gene is represented by a
pair of state and action.

� Initial population: A set of individuals forms a population.
In our context, a population is a set of episodes. However,
it is imperative for the search to select a diverse set of
individuals to use as the initial population. The sampling
process is detailed in Section IV-C.

� Operators: Genetic operators include crossover, mutation,
and selection [41], which are used to create the next gener-
ation of episodes. In the crossover, we use two episodes as
input and create a new offspring that hopefully has a higher
fault probability. We use the current population as the input
and select an episode for the crossover (using tournament
selection). The selection of such an episode is in relation
to its fitness. We then select a crossover point randomly,
search for a matching episode, and join it with the selected
episode.
Mutation is an operator that adds diversity to our solutions.
An episode is selected using the tournament selection
again. Then, one pair is randomly selected as the mutation
point, which is altered according to a defined policy that is
detailed in Section IV-E2.
Selection is the last operator used in each generation. It
combines the episode from the last generation with the
newly created episode in a way that does not eliminate
good solutions from previous generations. More detailed
explanations are provided in Section IV-E3.

� Fitness function: The fitness function should indirectly
capture how likely an episode is to be faulty. To that end,
we define a multi-objective fitness [42] function that we use
to compare episodes and select the fittest ones. As further
explained in Section IV-D, we consider different ways to
indirectly capture an episode’s faultiness: (1) the reward
loss, (2) the predicted probability of observing functional
faults in an episode based on machine learning, and (3) the
certainty level for the actions taken in an episode.

� Termination criteria: This determines when the search
process should end. Different termination criteria can be
used, such as the number of generations or iterations, the
search time, and convergence in population fitness. For
the latter, the search stops when there is no improvement
above a certain threshold over a number of newly generated
episodes.

Algorithm 1: High-Level Genetic Algorithm.

B. Overview of the Approach

As depicted in Fig. 1, the main objective of STARLA is to
generate and find episodes with high fault probabilities to assess
whether an RL agent can be safely deployed.

To apply a genetic algorithm to our problem, we first need to
sample a diverse subset of episodes to use as the initial popula-
tion. In the next step, we use dedicated genetic operators to create
offspring to form the new population. Finally, using a selection
method, we transfer individuals from the old population to the
new one while preserving the diversity of the latter. For each
fitness function, we have a threshold value, and a fitness function
is satisfied if an episode has a fitness value beyond that threshold.
We repeat this process until all fitness functions are satisfied, or
until the maximum number of generations is reached.

Algorithm 1 shows a high-level algorithm for the process
previously described, based on a genetic algorithm. AssumingP
is the initial population, that is, a set of episodes containing both
faulty and non-faulty episodes, the algorithm starts an iterative
process, taking the following actions at each generation until the
termination criteria are met (lines 3–16). The search process is
as follows:

1) We create a new empty population Pnew (line 5).
2) We create offspring using crossover and mutation, and add

newly created individuals to Pnew (lines 6–11).
3) We calculate the fitness of the new population (line 12)

and update the archive α and the condition FitSatisfied
capturing whether all fitness functions are satisfied (line
13). The archive contains all solutions that satisfy at least
one of our three fitness functions (line 14).

4) If all fitness functions are satisfied, we stop the process
and return the archive (i.e., the set of solutions that satisfy
at least one fitness function). Otherwise, the population P
is updated using the selection function, and then we move
to the next generation (lines 15–16).

3720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 1. Overview of STARLA.

Furthermore, in our genetic search algorithm, we set the
crossover rate c to 75% and the mutation rate m to the 1

V ,
where V is the length of the selected episodes for mutation
based on the suggested parameters for genetic algorithms in
the literature [43]. In the following, we discuss each step of the
search in detail.

C. Initial Population

The initial population of our search problem is a set containing
|P | episodes. We use random executions of the agent to build
the initial population of the generic search. Consequently, we
initiate the environment with different initial states in which we
randomly change the alterable parameters of the environment
when available (e.g., changing the weather or time of the day
in the running example, or changing the starting position of
the car). We execute the RL agent starting from the randomly
selected initial states and store the generated episodes as the
initial population of the search.

D. Fitness Computations

A fitness function quantitatively assesses the extent to which
an individual fits the search objectives and is meant to effectively
guide the search. Recall that our objective is to find faulty
episodes that can exhibit functional faults. We therefore define
the following three fitness functions that complement one an-
other to capture the extent to which an episode is close to being
faulty. We consider (1) the agent reward as a fitness function, as it
guides the search toward low-reward episodes, which are more
likely to lead to functional faults, if designed properly, as the
reward may capture some of the agent’s unsafe behavior; (2) the
probability of functional faults, which complement the reward
and can provide additional guidance toward functional faults if
the estimation of such probabilities is accurate (see Section III-A
for more explanation); and (3) the certainty level that guides the
search toward episodes where the agent is highly uncertain about
the selected action.

Next, we define our fitness functions and illustrate their
relevance through scenario examples (Sections IV-D1, IV-D2,
and IV-D3). Specifically, we explain how each fitness function
contributes to guiding the search toward faulty episodes. We
then explain in Sections IV-D4, IV-D5, IV-D6, and IV-D7 the
different steps of applying machine learning to estimate the prob-
ability of functional faults, which is one of our fitness functions.
Finally, we explain our search objectives in Section IV-D8.

1) Reward: The first fitness function in our search is meant
to drive the search toward episodes with low reward. The reward

fitness function of an episode is defined as follows.

f1(e) = r′e (3)

where r′e is the accumulated reward of an episode e.
In the initial population, the rewards of selected episodes are

known. Also, when genetic operators are applied, we calculate
the reward of new individuals using the reward function accord-
ing to Definition 1. The search aims to minimize the reward of
episodes over generations to guide the search toward finding
faulty episodes.

Example: A well-defined reward function which is corre-
lated to functional faults can provide valuable guidance toward
the identification of such faults. For instance, in our running
example, if the reward function incorporates a penalty based on
the car’s proximity to the border of the lane or other vehicles,
minimizing the reward function would result in the car being
driven dangerously close to other lanes, thereby increasing the
risk of accidents. Such low-reward episodes are of particular in-
terest, as applying crossover and mutation (Section IV-E) to them
can reveal potential functional faults in the later generations.
However, it is worth mentioning that designing a reward function
that is capable of capturing all possible functional faults remains
a challenging task in most real-world scenarios. We therefore
rely on other complementary fitness functions (certainty level
and the probability of functional faults) that we describe in the
following sections to further guide the search toward functional
faulty episodes.

2) Probability of Functional Fault: The second fitness func-
tion captures the probability of an episode to contain a functional
fault. Such probability is predicted using an ML model. The
fitness function is defined as follows:

f2(e) = 1− Prf [e] (4)

where Prf [e] is the probability of having a functional fault in
an episode e ∈ E, and E is the space of all possible episodes.
In the context of the running example, driving very close to
obstacles has a higher probability of revealing a functional fault
(high probability of collision) than an episode that maintains a
safe distance from them. We therefore want the first episode to
be favored by our search over the second one. The ML model
that we use takes an episode as input, uses the presence and
absence of abstract states in the episode as features, and returns
the probability of functional fault for that episode. A detailed
explanation of the probability prediction method using ML is
provided in Section IV-D4. In the search process, instead of
maximizing Prf [e], we minimize its negation f2(e) to (1) have
a consistent minimization problem across all fitness functions,

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3721

and (2) guide the search toward finding episodes with a high
probability of functional faults.

Example: In the context of our running example, it is possible
to encounter a scenario where the speed of the vehicle is above 60
MPH (getting a positive reward at each time step) but excessively
high, resulting in challenges to control the car, thus increasing
the risk of collision. In such a case, using the reward fitness
function is inadequate to guide the search toward such faulty
episodes since they get high rewards. To address such situations,
we can leverage the fitness function based on the probability of
functional faults, which is predicted based on the presence of
abstract states. With this approach, we can identify episodes
that have a high probability of resulting in functional faults,
even when the reward function cannot guide the search process
effectively.

3) Certainty Level: This fitness function captures the level of
certainty associated with the actions taken in each state within
an episode. It is calculated as the average difference in each
state-action pair between the probability of the chosen action,
assigned according to the learned policy, and the second-highest
probability assigned to an action [44].

A higher accumulated certainty level across the sequence of
actions in an episode suggests that the agent is more confident
overall about the selected actions. On the other hand, a lower ac-
cumulated certainty level can guide our search toward situations
in which the agent is highly uncertain of the selected action.
Thus, it is relatively easier to lure the agent to take another
action, which makes these episodes suitable for applying search
operators.

The certainty level is calculated as shown in Equation (5),
where e is the given episode, |e| is its length, ai is the selected
action in state si (i.e., ai is the action with the highest selection
probability), Ai is the set of possible actions in state si, and
Pr(ai|si) is the probability of selecting ai in state si.

f3(e) =

∑|e|
i=1 (Pr(ai|si)− max

aj∈Ai & j �=i
Pr(aj |si))

|e| (5)

In our search algorithm, we aim to minimize this fitness
function to guide the search toward finding episodes with high
uncertainty levels.

Example: Suppose that in our running example, we have
episodes where (1) the reward is high (i.e., driving with a speed
above 60 MPH); (2) the probability of functional fault is low
(i.e., the speed is not too high and the risk of collision is low);
and (3) the uncertainty of the agent in selecting the optimal
action is high. Such episodes are of particular interest, as they are
promising candidates for our mutation operator (Section IV-E2).
Indeed, by applying a small realistic transformation to these
episodes, we can easily change the optimal action and explore
new search directions that have the potential to reveal functional
faults. This fitness function is especially useful when the reward
function and probability of functional fault cannot guide the
search process effectively, and we need to explore different
actions and states to identify potential functional faults. Incor-
porating the certainty level metric into our fitness functions can
thus help us to identify such episodes more effectively. In other

words, by targeting episodes with high uncertainty levels, we
can increase our chances of discovering new functional faults
and improve the overall performance of our search process.

4) Machine Learning for Estimating Probabilities of Func-
tional Faults: A machine learning algorithm is used to learn
functional faults and estimate their probabilities in episodes
without executing them. This model is expected to take episodes
as input and predict the probabilities of functional faults. The
labels of each episode are functional-faulty or not faulty. We
choose Random Forest as a candidate modeling technique be-
cause (1) it can scale to numerous features, and (2) its robustness
to overfitting has been well studied in the literature [45], [46].
We also tried several other ML models to predict functional
faults, such as K-Nearest Neighbor, Support Vector Machine,
and Decision Trees. However, Random Forest led to the most
accurate prediction model. Since this is not a crucial or central
aspect of the work, we do not include the results of these
experiments in the paper.

5) Preparation of Training Data: To build the above-
mentioned machine learning model, the training data are col-
lected from training episodes and random executions of the RL
agent. More precisely, our ML training dataset contains both
faulty and non-faulty episodes generated through the training
and random executions of the agent.

Episodes From RL Training. We sample episodes from the
agent’s training phase to increase the diversity of the dataset. We
also include such episodes in case we do not find enough faulty
episodes based on random executions. Providing data with dif-
ferent types of episodes (i.e., functional-faulty and non-faulty)
makes training the ML models possible. Since the training phase
of the RL agents is exploratory, it contains a diverse set of faulty
and non-faulty episodes, which helps learning and increases
model accuracy. One issue with sampling from the training
episodes is that they may not be consistent with the final policy of
the trained agent. The agent may execute a faulty episode during
training because of (1) randomness in action selection, due to the
exploratory nature of the training process, and (2) incomplete
agent training. To alleviate this issue, when sampling to form
the training dataset of the ML model, we give a higher selection
probability to the episodes executed in the later stages of the
training, since they are more likely to be consistent with the
final behavior of the trained agent.

Assuming a sequence of n episodes ([Ei : 1 � i � n]) that
are explored during the training of the RL agent, the probability
of selecting episode Ei (Pr[Ei]) is calculated as follows.

Pr[Ei] =
i

Σn
j=1j

(6)

We thus give a higher selection probability to episodes ex-
ecuted in the later stage of the training phase of the agent
(Pr[E1] < Pr[E2] < . . . < Pr[En]).

Episodes From Random Executions: To build the training
dataset of our ML model, we also include episodes generated
through random executions of the agent to further diversify the
training dataset with episodes that are consistent with the final
policy of the agent. In practice, we use the episodes of the initial
population of the generic search since they have been already

3722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Algorithm 2: High-Level Algorithm to Create Abstract
States.

created with random executions of the RL agent (Section IV-C),
thus minimizing the number of simulations (and therefore the
testing budget).

6) State Abstraction for Training Data: After collecting the
training episodes, we need to map each concrete state to its
corresponding abstract state to reduce the state space and thus
enable effective learning. Indeed, this is meant to facilitate the
use of machine learning with more abstract features. To do so, we
rely on the transitive Q∗-irrelevance abstraction method, which
was described in Section II-B.

The state abstraction process is defined in Algorithm 2. The
algorithm takes the concrete states as input and finds abstract
states sφd ∈ Sφ considering the abstraction function ofφd where
d is the abstraction level. For each concrete state, we try to
find the abstract state that corresponds to the concrete state by
calculating the Q∗-values of all available actions, as described
in Section II-B. If a match with an abstract state of a previous
concrete state that was already processed is found, we assign the
abstract state to the concrete state. Otherwise, we create a new
abstract state.

7) Feature Representation: Presence and Absence of Ab-
stract States: To enable effective learning, each episode consists
of state-action pairs, where the states are abstract states instead
of concrete states. To train the ML model, we determine whether
abstract states are present in episodes and use this information as
features. As described in the following, each episode is encoded
with a feature vector of binary values denoting the presence (1)
or absence (0) of an abstract state Sφ

i in the episode and n is the
total number of abstract states.

Sφ
1 Sφ

2 · · · Sφ
i · · · Sφ

n

episodei 0 1 · · · 0 · · · 1

The main advantage of this representation is that it is amenable
to the training of standard machine learning classification mod-
els. Furthermore, we were able to significantly reduce the feature

space by grouping similar concrete states through state abstrac-
tion, where the selected action of the agent is the same for all
concrete states within one abstract state. As a result, considering
n different abstract states, the feature space of this representa-
tion is 2n. Note that we only consider the abstract states that
have been observed in the training dataset of the ML model,
which we expect to be rather complete. Further, in this feature
representation, the order of the abstract states in the episodes
is not accounted for, which might be a weakness if we are not
able to predict functional faults as a result. Empirical results
will tell whether the two above-mentioned potential problems
materialize in practice.

8) Multi-Objective Search: We need to minimize the above-
mentioned fitness functions to achieve our goal, and this is
therefore a multi-objective search problem. More specifically,
our multi-objective optimization problem can be formalized as
follows:

min
x∈E

F (x) = (f1(x), f2(x), f3(x)) (7)

where E is the set of possible episodes in the search space,
F : E −→ R3 consists of three real-value objective functions
f1(x), f2(x), f3(x), and R3 is the objective space of our op-
timization problem.

E. Search Operators

We describe below three genetic operators. The first operator
is crossover, which generates new offspring using slicing and
joining high-fitness, selected individuals. The second operator
is mutation, which introduces small changes in individuals to
add diversity to the population, thus making the search more
exploratory. Finally, the selection operator determines which
individuals survive to the next generation. We provide a detailed
description of how we defined these operators.

1) Crossover: The crossover process is described in Algo-
rithm 3. It uses the population as input and creates offspring as
output. It begins by sampling an episode (line 2) with the sample
function. This function draws an episode using tournament
selection [47]. In a K-way tournament selection, K individuals
are selected, and we run a tournament between the selected
individuals where fitter individuals are more likely to be selected
for reproduction. Then, we randomly select a crossover point
(line 3) using the uniform distribution.

After finding the crossover point, we must find a matching pair
(line 4). We do so by considering individuals in the population
containing the abstract state of the pair selected as a crossover
point. The search function tries to find a matching pair for the
crossover point based on the Q∗-irrelevance abstraction method
(Section II-B). If no matching pair is found (line 5), we repeat
the process from the beginning (lines 1–5). Otherwise, offspring
are created on lines 6-9. Whether a match can be found for
the crossover point highly depends on the abstraction level.
Therefore, this can be controlled by changing the abstraction
level to prevent bottlenecks.

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3723

Fig. 2. The crossover operator.

The crossover process is illustrated in Fig. 2. Let us assume
that the selected parent is as follows:

Parent = [(s1, a1), (s2, a2), . . ., (sf−1, af−1), (sf , af),

(sf+1, af+1), . . ., (sm, am)] (8)

where (sf , af) is the pair selected as a crossover point.
The matching function tries to find an episode containing a

pair that has a concrete state that belongs to the same abstract
class as state (sf) to ensure the validity of the new episode.
Recall that all states in the same abstraction class are perceived
to be the same by the RL agent. Also, since they have the same
Q∗-values, their certainty level is the same.

Match = [(s′1, a
′
1), (s

′
2, a

′
2), . . ., (s

′
v−1, a

′
v−1),

(s′v, a
′
v), . . ., (s

′
n, a

′
n)] (9)

where s′v and sf result into the same abstract state based on
our abstraction method (i.e., φd(s

′
v) = φd(sf)). As a result, the

selected actions are also the same.
The newly created offspring are:

Offspring1 = [(s1, a1), . . ., (sf−1, af−1),

(s′v, a
′
v), . . ., (s

′
n, a

′
n)] (10)

Offspring2 = [(s′1, a
′
1), . . ., (s

′
v−1, a

′
v−1),

(sf , af), . . ., (sm, am)] (11)

The first offspring contains the first part of the matching
individual up to the crossover point with state sf−1 and the
second part is taken from the parent and vice versa for the second
offspring.

Based on the selected state abstraction method (Section II-B),
we create episodes that are more likely to be valid, though this
is not guaranteed. Also, we may get inconsistent episodes (i.e.,
episodes that cannot be executed by the RL agent). Further-
more, due to the high simulation cost of the RL environment,
we are not executing episodes after applying crossover during
the search. The validity of the episodes in the final archive is
therefore checked by executing the final high-fitness episodes.
The execution process is described in detail in Section IV-F.

Algorithm 3: High-Level Crossover Algorithm.

2) Mutation: The mutation operator starts by selecting an
episode using a K-way tournament selection. Then a mutation
point is randomly selected using the uniform distribution. To
ensure the exploratory aspect of the mutation operator, we alter
the state of the mutation point using some image transformation
methods that are selected by considering the environment and the
learning task to produce realistic and feasible states [10], [48].
These transformations are context-dependent. They should be
realistic and representative of situations with imprecise sensors
or actuators, as well as external factors that are not observable. In
our running example, transformations matching such situations
include changing the brightness and contrast of the image,
adding tiny black rectangles to simulate dust on the camera
lens, or changing the weather. Another example is the Cart-Pole
problem (Section V-B), where the task is to balance a pole
on a moving cart. For this type of environment, we rely on
other transformations, such as slightly changing the position,
the velocity, and the angle of the pole.

After mutating the gene, we run the episode. Although exe-
cuting episodes is computationally costly, mutation is infrequent
and helps create valid and consistent episodes exploring unseen
parts of the search space. Then, the updated episode is added to
the population. Also, if we find any failure during the execution
of the mutated episodes, we mark such episodes as failing and
exhibiting a functional fault.

Assume that (1) the selected episode for mutation is eh, (2)
we select (sc, ac) from eh as a candidate pair, and (3) the
mutated/transformed state for sc is stc. The mutated episode emh
is then as follows:

eh = [(s1, a1), . . ., (sc, ac), (sc+1, ac+1),

. . ., (sm, am)] (12)

emh = [(s1, a1), . . ., (s
t
c, a

t
c), . . .] (13)

where the states after the mutation point are determined from
executing episode emh .

3) Selection: Given that our search involves optimizing mul-
tiple fitness functions and the possibility of incorporating addi-
tional fitness functions to address different types of faults, it is
imperative to employ a search algorithm that can handle more
than three fitness functions. Additionally, it is worth noting that
our focus is not on Pareto front optimization or the generation
of a well-distributed set of solutions that capture the trade-off

3724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

between objectives. Rather, we need a search algorithm that can
optimize all the fitness functions concurrently and separately.

Considering these search requirements, we do not rely on
traditional dominance-based algorithms like NSGA-II, particle
swarm optimization (PSO) [49], or SPEA-II [50] because they
show poor performance in problems with many objectives [51]
and they target Pareto front optimization. Additionally, to build
a generalizable and extensible testing approach, we opt for the
Many Objective Sorting Algorithm (MOSA) [43] to select the
best individuals that minimize our fitness functions. This is be-
cause we anticipate that, in many cases, we will need to consider
more than three fitness functions, and MOSA is specifically
tailored to our application context, software test automation.
MOSA can indeed accommodate a large number of objectives
and is better at generating diverse solutions to address all of the
fitness functions. MOSA is therefore an optimal choice for our
problem domain because no other search algorithm fulfills our
requirements.

MOSA is a dominance-based multi-objective search algo-
rithm based on NSGA-II [52]. Although traditional dominance-
based algorithms like NSGA-II and SPEA-II [50] show poor
performance in problems with many objectives [51], MOSA
performs well even for a large number of objectives. It is widely
used in the literature and tries to generate solutions that cover the
fitness functions separately, instead of finding a well-distributed
set of solutions (i.e., diverse trade-offs between fitness func-
tions). More specifically, in our context, MOSA’s purpose is to
generate faulty episodes that separately satisfy at least one of
the search objectives rather than to find episodes that capture
diverse trade-offs among them. It drives the search toward the
yet-uncovered search objectives and stores in an archive all
solutions that satisfy at least one search objective.

MOSA works as follows. Similar to NSGA-II, it starts from
an initial population and generates new offspring at each gen-
eration using genetic operators (i.e., mutation and crossover).
We calculate the fitness value of each individual in the popu-
lation based on the three fitness functions that we described in
Section IV-D. MOSA then uses a novel preference method to
rank the non-dominant solutions. In this preference method, the
best solutions according to each fitness function are rewarded
with the rank = 0, and the other solutions are ranked based
on the traditional non-dominated sorting in NSGA-II. During
the transition to a new population, we select the highest-ranked
individuals using MOSA and add them to the new population
without any changes. We also transfer a subset of the individuals
with the highest fitness from the previous population to avoid
losing the best solutions. Finally, an archive is used to store the
best individuals for each individual fitness function.

F. Execution of Final Results

After completing the execution of the genetic algorithm,
we obtain a population that contains episodes with high fault
probability. We need to execute these final episodes to check
their validity, their consistency with the policy of the agent,
and whether they actually trigger failures. We assume that an

episode is consistent if the RL agent can execute it. We retain
failing episodes that are both valid and consistent.

During the execution process, we may observe deviations
where the agent selects an action other than the action in the
episode. To deal with such deviations, we replace the state ob-
served by the agent with the corresponding state from the episode
and observe the selected action. For example, let us assume
that we want to execute an episode e′ produced by STARLA
where e′ = [(s′i, a

′
i)|s′i ∈ S, a′i ∈ A, 0 ≤ i ≤ n, n ∈ N]. We set

the state of the simulator to the initial state of the episodes s′0.
Then we use the states from the environment as input to the
agent and we check the action selected by the agent. If during
the execution, the agent selects an unexpected action ai �= a′i at
state si, we replace si with state s′i from episode e′ to drive the
agent to select action a′i.

If the action selected by the agent is not a′i, we consider that
episode e′ is invalid and we remove it from the final results.

Replacing states in this situation is acceptable since (1) we
assume that the environment is stochastic, (2) states in episode
e′ are real concrete states generated in the environment, and (3)
we noticed that the states of the environment and in the episodes
where deviations occur are very similar. The latter is likely
due to the selection of the crossover point based on identical
abstract states. Indeed, we observed that 94% of the environment
and episode states where deviations occur in the Cart-Pole
environment, which we will describe in detail in Section V-B1,
have a cosine distance lower than 0.25. Similarly, we observed
that 99% of the deviations in the Mountain Car environment
(see Section V-B2 for more details) have a cosine distance lower
than 0.25. Replacing similar states where deviations of the agent
occur is therefore a sensible way to execute such episodes (if
possible) because, in real-world environments, we may have
incomplete or noisy observations due to imperfect sensors.

V. EMPIRICAL EVALUATION

This section describes the empirical evaluation of our ap-
proach, including the research questions, the case study, the
experiments, and the results.

A. Research Questions

Our empirical evaluation is designed to answer the following
research questions.

1) RQ1. Do we find more faults than Random Testing with
the same testing budget? We aim to study the effectiveness of
our testing approach in terms of the number of detected faults
compared to Random Testing. We want to compare the two
approaches with the same testing budget, which is defined as
the number of executed episodes during the testing phase. Given
that the cost of real-world RL simulations can be high (e.g.,
autonomous driving systems), this is the main cost factor.

2) RQ2. Can we rely on ML models to predict faulty episodes?
In this research question, we want to investigate whether it is
possible to predict faulty episodes using an ML classifier. We
do not execute all episodes during the search; therefore, we want
to use the probabilities of functional faults that are estimated by

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3725

Fig. 3. Cart-Pole balancing problem.

an ML classifier as a fitness function to guide our search toward
finding faulty episodes.

3) RQ3. Can we learn accurate rules to characterize the faulty
episodes of RL Agents? One of the goals of testing an RL agent is
to understand the conditions under which the agent fails. This can
help developers assess the risks of deploying the RL agent and
focus its retraining. Therefore, we aim to investigate the learning
of interpretable rules that characterize faulty episodes from the
final episodes that are executed once the search is complete.

B. Case Studies

In our study, we consider two Deep-Q-Learning (DQN) agents
on the Cart-Pole2 balancing problem and Mountain Car,3 both
from the OpenAI Gym environment.

We have chosen these RL case studies because they are open
source and widely used as benchmark problems in the RL litera-
ture [53], [54], [55]. We have also considered these benchmarks
as they include a large number of concrete states. Furthermore,
the simulations in such environments are fast enough to enable
large-scale experimentation.

1) Cart-Pole Balancing Problem: In the Cart-Pole balancing
problem, a pole is attached to a cart, which moves along a track.
The movement of the cart is bidirectional and restricted to a
horizontal axis with a defined range. The goal is to balance the
pole by moving the cart left or right and changing its velocity.

As depicted in Fig. 3, the state of the agent is characterized
by four variables:
� The position of the cart.
� The velocity of the cart.
� The angle of the pole.
� The angular velocity of the pole.
We provide a reward of +1 for each time step when the pole

is still upright. The episodes end in three cases: (1) the cart is
away from the center with a distance more than 2.4 units, (2)
the pole’s angle is more than 12 degrees from vertical, or (3) the
pole remains upright during 200 time steps. We define functional
faults in the Cart-Pole balancing problem as follows.

If, in a given episode, the cart moves away from the center by
a distance above 2.4 units, regardless of the accumulated reward,

2gymlibrary.dev/environments/classic_control/cart_pole/
3gymlibrary.dev/environments/classic_control/mountain_car/

Fig. 4. Mountain Car problem.

we consider that there is a functional fault in that episode. Note
that termination based on the pole’s angle is an expected behavior
of the agent and thus a normal execution, whereas termination
based on passing the borders of the track can cause damage and
is therefore considered a safety violation.

2) Mountain Car Problem: In the Mountain Car problem, an
under-powered car is located in a valley between two hills. The
objective is to control the car and strategically use its momentum
to reach the goal state on top of the right hill as soon as possible.
The agent is penalized by -1 for each time step until termination.
As illustrated in Fig. 4, the state of the agent is defined based on
(1) the location of the car along the x-axis, and (2) the velocity
of the car. There are three discrete actions that can be used to
control the car:
� Accelerate to the left.
� Accelerate to the right.
� Do not accelerate.
Episodes end in three cases: (1) reaching the goal state, (2)

crossing the left border, or (3) exceeding the limit of 200 time
steps. In our custom version of the Mountain Car (Fig. 4), climb-
ing the left hill is considered an unsafe situation. Consequently,
reaching the leftmost position in the environment results in a
termination with the lowest reward. Therefore, if in a given
episode, the car crosses the left border of the environment, we
consider that there is a functional fault in that episode.

C. Implementation

We used Google Colab and stable baselines [56] to implement
RL agents for both case studies (see Section V-B). Our RL agents
are based on a DQN policy network [57] using standard setting
of stable baselines (i.e., Double Q-learning [4], and dueling
DQN [58]). Our Cart-Pole RL agent has been trained for 50
000 time steps. The average reward of the trained agent is 124
(which is also equal to the average length of the episodes). In
general, the pole is upright over 124 time steps out of a maximum
of 200. The Mountain Car agent has been trained for 90 000 time
steps. The average reward is −125 and the average length of the
episodes is 112.

Finally, we execute the search algorithm for a maximum of
10 generations for both case studies. The mean execution time
of STARLA on Google Colab was 89 minutes for the Cart-Pole
problem and 65 minutes for the Mountain Car problem.

gymlibrary.dev/environments/classic_control/cart_pole/
gymlibrary.dev/environments/classic_control/mountain_car/

3726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

D. Evaluation and Results

1)RQ1. Do we find more faults than Random Testing with the
same testing budget? In this research question, we want to study
STARLA’s effectiveness in finding more faults than Random
Testing when we consider the same testing budget B, measured
as the number of executed episodes. To do so, we consider two
practical testing scenarios:
� Randomly executed episodes are available or inexpensive:

In the first scenario, we assume that we want to further
test a DRL agent provided by a third-party organization.
We assume that both training episodes and some randomly
executed episodes of the RL agent, used for testing the
agent, are provided by the third party. Therefore, we can
extract ML training data and an initial population from such
episodes without using our testing budget.
We can also consider another situation where the RL agent
is trained and tested using both a simulator and hardware
in the loop [59]. Such two-stage learning of RL agents
has been widely studied in the literature, where an agent
is trained and tested on a simulator to “warm-start” the
learning on real hardware [59], [60]. Since STARLA pro-
duces episodes with a high fault probability, we can use
it to test the agent when executed on real hardware to
further assess the reliability of the agent. In this situation,
STARLA uses prior episodes that have been generated on
the simulator to build the initial population and executes
the newly generated episodes on the hardware.
In this case, randomly executed episodes using a simulator
become relatively inexpensive. Therefore, only episodes
that are executed with hardware in the loop and in the real
environment are accounted for in the testing budget.
To summarize, when randomly executed episodes are avail-
able or inexpensive, the testing budget B is equal to the
sum of (1) the number of mutated episodes that have been
executed during the search, and (2) the number of faulty
episodes generated by STARLA that have been executed
after the search.

� Randomly executed episodes are generated with STARLA
and should be accounted for in the testing budget: In
the second scenario, we assume that the agent is trained
and then tested by the same organization using STARLA.
Therefore, we have access to the training dataset but need
to use part of our testing budget, using random executions,
to generate the initial population. More precisely, the total
testing budget in this scenario is equal to the sum of (1)
the number of episodes in the initial population that have
been generated through random executions of the agent; (2)
the number of mutated episodes that have been executed
during the search; and (3) the number of faulty episodes
generated by STARLA that have been executed after the
search.

Because of randomness in our search approach and its signif-
icant execution time (Section V-C), for both case studies, we re-
executed the search algorithm 20 times and stored the generated
episodes and the executed episodes with mutations at each run.
We computed the mean number of generated functional-faulty

Fig. 5. Number of functional-faulty episodes generated with STARLA com-
pared to Random Testing in the Cart-Pole problem.

episodes N (in Cart-Pole Nc = 5313 and in Mountain Car Nm

= 2809) and the mean number of mutated executed episodes
M (in Cart-Pole case studyMc = 128 and in Mountain Car
Mm = 139) over the 20 runs. We analyzed the distribution of the
total number of functional faults identified with STARLA over
the 20 runs. Then, we randomly selected (with replacement)
100 samples from the set of episodes that were generated with
Random Testing. Each sample contained B episodes to ensure
that we had the same testing budget as in STARLA.

In the Cart-Pole case study, for the first scenario, B is equal to
5441 (which corresponds to the mean number of generated faulty
episodes and executed mutated episodes with STARLA over the
20 runs). On the other hand, for the second scenario, B is equal
to 6941 because, as previously explained, this testing budget
accounts for the number of episodes in the initial population,
which were generated with Random Testing (1500). Also, in the
Mountain Car case study, the mean number of generated faulty
episodes and executed mutated episodes over the 20 runs is equal
to 2948 (B = 2948 in scenario 1). For the second scenario, B is
equal to 4448.

We analyzed the distribution of the identified faults in the
two testing scenarios, compared it with STARLA, and reported
the results. The results of the Cart-Pole and Mountain Car
case studies are depicted in Figs. 5 and 6, respectively. We
should note that in the first scenario, we only compute faults
that are generated with the genetic search. We do not consider
faults that are in the initial population because we assume that
these episodes are provided to STARLA and are not included
in the testing budget. In contrast, in the second scenario, we
include in STARLA’s final results the faulty episodes in the
initial population as they are part of our testing approach and
are included in the testing budget.

As we can see from the boxplots, our approach outperforms
Random Testing in detecting faults in both scenarios. Indeed, in
the first scenario, the average number of faulty episodes detected
by STARLA is 2367, while an average of 1789 faulty episodes
is detected with Random Testing in the Cart-Pole case study.

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3727

Fig. 6. Number of functional-faulty episodes generated with STARLA com-
pared to Random Testing in the Mountain Car problem.

In the Mountain Car case study, the average number of faulty
episodes detected by STARLA is 466 while an average of 390
faulty episodes is detected with Random Testing (+19.5%).

In the second scenario, where we consider a bigger testing
budget, STARLA also outperforms Random Testing by iden-
tifying, on average, 2861 faulty episodes compared to 2291
identified by Random Testing (+24.9%) in the Cart-Pole case
study, and 657 faulty episodes compared to 591 identified by
Random Testing. To assess the statistical significance of the
average difference of the number of detected functional faults be-
tween STARLA and Random Testing, we use the non-parametric
Mann-Whitney U-test [61] and compute the corresponding p-
value in both testing scenarios and case studies.

In both scenarios for the two case studies, the p-values are
far below 0.01, and thus show that our approach significantly
outperforms Random Testing in detecting functional faults in
DRL-based systems.

Answer to RQ1: We find significantly more functional faults
with STARLA than with Random Testing using the same
testing budget.

2)RQ2. Can we rely on ML models to predict faulty episodes?
We investigate the accuracy of the ML classifier to predict faulty
episodes of the RL agent. We use Random Forest to predict the
probability of functional faults in a given episode. To build our
training dataset in the Cart-Pole case study, we sampled 2111
episodes, including 1500 episodes generated through random
executions of the agent and 611 episodes from the agent’s train-
ing phase (as described in Section IV-C). Of these episodes, 733
correspond to functional faults while 1378 are non-functional
faulty. Further, the ML training dataset of the Mountain Car
case study is created by sampling 2260 episodes where (1) 1862
episodes are generated through random executions of the agent,
and (2) 398 episodes are from the training phase of the Mountain
Car agent. Of these episodes, 456 are functional-faulty while
1804 are not.

TABLE I
PREDICTION OF FUNCTIONAL FAULTS WITH RANDOM FOREST IN THE CART-POLE

CASE STUDY. THE FIRST COLUMN REPRESENTS THE ABSTRACTION LEVEL d,
THE SECOND COLUMN SHOWS THE NUMBER OF ABSTRACT STATES FOR EACH

ABSTRACTION LEVEL, AND WE REPORT THE ACCURACY, PRECISION, AND

RECALL IN THE NEXT COLUMNS

TABLE II
PREDICTION OF FUNCTIONAL FAULTS WITH RANDOM FOREST IN THE MOUNTAIN

CAR CASE STUDY. THE FIRST COLUMN REPRESENTS THE ABSTRACTION LEVEL

d, THE SECOND COLUMN SHOWS THE NUMBER OF ABSTRACT STATES FOR

EACH ABSTRACTION LEVEL, AND WE REPORT THE ACCURACY, PRECISION,
AND RECALL IN THE NEXT COLUMNS

In both case studies, we trained Random Forest models using
the previously described datasets to predict functional faults.
Because of the high number of concrete states in our dataset
(about 250 000 in Cart-Pole and 270 000 in Mountain Car) ,
we need to reduce the state space by using state abstraction to
facilitate the learning process of the Random Forest models.
As presented in Section IV-D6, we used the Q∗-irrelevance
state abstraction technique [21] to reduce the state space. We
experimented with several values for the abstraction level d
(Section II-B) and reported the prediction results in terms of
precision, recall, and accuracy in Tables I and II. We obtained
fewer abstract states when we increased d because more concrete
states were included in the same abstract states. For each value of
d, we considered a new training dataset (with different abstract
states). For each dataset, we trained Random Forest by randomly

3728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

sampling 70% of the data for training and used the remaining
30% for testing.

The overall prediction results for functional faults are promis-
ing. As shown in Table I, the best results for the prediction
of functional faults yield a precision and a recall of 97% in
the Cart-Pole problem. Similarly, a precision and a recall of
99% was achieved in the Mountain Car problem as depicted in
Table II.

Also, for both case studies, we observe that when we increase
the state abstraction level, the accuracy of the ML classifiers
improves until it plateaus and then starts to decrease as informa-
tion that is essential for classification is lost. This highlights
the importance of finding a proper state abstraction level to
(1) facilitate the learning process of the ML classifiers, and (2)
more accurately predict functional faults. Note that we consider
the abstraction level d that maximizes the accuracy of the ML
model while significantly decreasing the total number of distinct
abstract states in the dataset. In the Cart-Pole and Mountain Car
case studies, d is equal to 1 and 500, respectively. Differences in
the abstraction levels are due to the differences in the complexity
of the environments and the state representations.

Answer to RQ2: By using an ML classifier (based on
Random Forest) combined with state abstraction, we can
accurately classify whether episodes are functional-faulty
or not. Such a classifier can therefore be used as fitness
functions in our search. However, finding a suitable level
of state abstraction is essential to increase the learnability of
the ML classifier and thus to improve the accuracy of the
fault prediction results.

3) RQ3. Can we learn accurate rules to characterize the faulty
episodes of RL Agents? We investigate the learning of inter-
pretable rules that characterize faulty episodes to understand
the conditions under which the RL agent can be expected to
fail. Consequently, we rely on interpretable ML models, namely
Decision Trees, to learn such rules. We assess the accuracy
of decision trees and therefore our ability to learn accurate
rules based on the faulty episodes that we identify with our
testing approach. In practice, engineers will need to use such an
approach to assess the safety of using an RL agent and targeting
its retraining.

In our analysis, we consider a balanced dataset that contains
(1) faulty episodes created with STARLA, and (2) non-faulty
episodes obtained through random executions of the RL agent.
We consider the same proportions of faulty and non-faulty
episodes. Such a dataset would be readily available in practice
to train decision trees. For training, we use the same type of
features as for the ML model that was used to calculate one of
our fitness functions (Section IV-D7). Each episode is encoded
with a feature vector of binary values denoting the presence
(1) or absence (0) of an abstract state in the episode. We rely
on such features because the ML model that we have used to
predict functional faults showed good performance using such
representation. Moreover, we did not rely on the characteristics
of concrete states to train the model and extract the rules due to

Fig. 7. Accuracy of rules predicting faults in Cart-Pole.

Fig. 8. Accuracy of rules predicting faults in Mountain Car.

(1) the potential complexity of state characteristics in real-world
RL environments, and (2)Q∗-values matching abstract states are
more informative since they also capture the next states of the
agent and the optimal action (i.e., the agent’s perception).

Since we simply want to explain the faults that we detect by
extracting accurate rules, we measure the accuracy of the models
using K-fold cross-validation. We repeat the same procedure for
all executions of STARLA in each case study to obtain a distri-
bution of the accuracy of the decision trees. More specifically,
we study the distributions of precision, recall, and F1-scores for
the detected faults and report the results in Figs. 7 and 8.

As shown in Figs. 7 and 8, we learned highly accurate decision
trees and therefore rules (tree paths) that characterize faults in
RL agents. Indeed, rules predicting faults in the Cart-Pole case
study have a median precision of 98.75%, a recall of 98.90%,
and an F1-score of 98.85%.

Furthermore, rules predicting functional faults in the Moun-
tain Car case study have a median precision of 96.25%, a recall
of 93%, and an F1-score of 94.75%. The rules that we extract
consist of conjunctions of features capturing the presence or
absence of abstract states in an episode.

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3729

Fig. 9. Interpretation of Rule R1. Each cart represents one abstract state. The
gray cart depicts the state of the system in abstract state Sφ

5 , which should be
absent in the episode. The black carts represent the presence of abstract states
Sφ
12 and Sφ

23, respectively. Having both latter states appearing in an episode and
not having the state on the left is highly likely to lead to a fault.

We provide in the following an example of a rule that we
obtained in the Cart-Pole problem:

R1:not(Sφ
5) and Sφ

12 andSφ
23

where rule R1 states that an episode is faulty if there are no
concrete states in the episode that belong to abstract state Sφ

5

and we have at least two concrete states matching abstract state
Sφ
12 and Sφ

23, respectively.
From a practical standpoint, such highly accurate rules can

help developers understand, with high confidence, the conditions
under which the agent fails. For example, one can analyze the
concrete states that correspond to abstract states that lead to
faults to extract real-world conditions of failure. For example, to
interpret the rule R1, we first extract all faulty episodes following
this rule. Then, we extract from these episodes all concrete states
belonging to the abstract states that must be present according
to R1 (i.e., Sφ

12 and Sφ
23, respectively). For abstract states that

the rule specifies as absent (abstract state Sφ
5 in our example),

we extract the set of all corresponding concrete states from all
episodes in the final dataset. Finally, for each abstract state in
the rule, we analyze the distribution of each characteristic of the
corresponding concrete states (e.g., the position of the cart in the
Cart-Pole environment, the velocity, the angle of the pole, and
the angular velocity) to interpret the situations under which the
agent fails. Due to space limitations, we include the box plots of
the distributions of the states’ characteristics in our replication
package. Note that we did not rely directly on the abstract states’
Q∗-values to understand the failing conditions of the agent since
they are not easily interpretable. We rely on the median values
of the distribution of the states’ characteristics to illustrate each
abstract state and hence the failing conditions. We illustrate these
conditions in Fig. 9. Our analysis shows that the presence of
abstract states Sφ

12 and Sφ
23 represent situations where the cart is

close to the right border of the track and the pole strongly leans

toward the right. To compensate for the large angle of the pole,
shown in the figure, the agent has no choice but to push the cart
to the right, which results in a fault because the border is crossed.
Moreover, abstract state Sφ

5 represents a situation where (1) the
angle of the pole is not large, and (2) the position of the cart
is toward the right but not close to the border. In this situation,
the agent will be able to control the pole in the remaining area
and keep the pole upright without crossing the border, which
justifies why this abstract state is absent in faulty episodes that
satisfy rule R1. Note that we only provide an example of a faulty
rule from the Cart-Pole case study. Different rules that consist of
more complex combinations of different abstract states can be
extracted and therefore analyzed. Such interpretable rules can
thus assist engineers to ensure safety and analyze risks prior to
deploying the agent. We acknowledge that the extracted rules
from the detected faulty episodes are not sufficient to evaluate
the risk of deploying RL agents. However, characterizing the
DRL agent’s faulty episodes, as we automatically do, is indeed
a necessary piece of information for risk analysis. If they are
accurate, such rules can be used to understand the conditions
under which the agent is likely to fail.

Answer to RQ3: By using our search-based technique and
interpretable ML models, such as Decision Trees, we can ac-
curately learn interpretable rules that characterize the faulty
episodes of RL agents. Such rules can then serve as the basis
for risk analysis before deployment of the agent to avoid
safety violations.

VI. DISCUSSIONS

In this paper we propose STARLA, a search-based approach
to detect faulty episodes of an RL agent. To the best of our
knowledge, this is the first testing approach focused on testing
the agent’s policy and detecting what we call functional faults.

Simulation Cost: We rely on a small proportion of the training
data of an RL agent and do not need to access the internals of
the RL-based system, hence the data-box nature of our solution.
Our testing approach outperforms Random Testing of RL agents
because we were able to find significantly more functional faults
with the same simulation budget. However, Random Testing
might outperform our testing approach in simple environments
with fast simulations since it typically generates a much higher
number of episodes, including faulty episodes. Nonetheless,
RL agents are generally used in complex environments (e.g.,
cyber-physical systems), where the simulation and therefore test
execution costs are very high. Narrowing the search toward the
faulty space of the agent is therefore crucial to optimize RL
testing in a scalable way.

Feature Representation: Relying on state abstraction helped
us to reduce the search space and increase the learnability of
the ML models that we used to (1) calculate the probabilities
of functional faults, and (2) extract and interpret the rules
characterizing faulty episodes. However, depending on the type
of the RL task, in practice, one needs to select the right state
abstraction type and level to effectively guide the search toward

3730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

finding faults in the RL agent. State abstraction has allowed us
to extract accurate rules predicting the presence of faults and
thus enables effective risk analysis. Although we investigated
different feature representations, such as encoding episodes with
sequences of abstract states, the accuracy of the ML model
was only slightly improved. Therefore, it was considered not
worth the additional complexity to account for such sequential
information.

State Abstraction: As described in Section IV-E1, we rely on
state abstraction to find matching states for crossover points.
Based on the applied abstraction method, the matched abstract
states may not capture the exact physical situations. However,
they correspond to concrete states leading to similar expected
rewards for the same selected actions. State abstraction is one of
the key heuristics to enable an effective search in our context. If
we find two similar states where the agent has similarQ∗-values,
we consider that those states are similar enough to perform the
crossover. Like any heuristic, it needs to be evaluated. Therefore,
to ensure the validity of the generated episodes, we validated
the final created episodes by re-executing them as explained in
Section IV-F. We also re-executed these episodes to check their
consistency with the policy of the agent and whether they actu-
ally trigger failures. To further investigate the physical similarity
of concrete states from the same abstract states, we analyzed the
distribution of concrete state parameters (e.g., position, velocity,
pole angle) in abstract states. We checked the abstract states in
the rules characterizing the faulty episodes and have included
examples of these distributions in our replication package. Our
analysis revealed low variance in the distributions of param-
eters, indicating that concrete states within the same abstract
state exhibit similar physical characteristics and Q∗-values. Our
validation also shows that the states of the environment and in the
episodes where deviations occur are not frequent and have very
low cosine distances. Furthermore, the results confirmed that
such abstraction still leads to good search guidance since our
approach outperforms Random Testing by finding significantly
more functional faults.

Functional Faults: We should note that the number of func-
tional faults in our case studies is relatively high since the reward
function of the RL agents does not help prevent this type of fault
(despite the high average reward of the agent). As mentioned
in Section V-B, we have relied on standard reward functions.
For example, in the Cart-Pole environment, the agent’s reward
does not increase when it crosses the borders (i.e, where there
is a functional fault and the episode terminates). We are using
a standard, widely used, artificial benchmark to validate our
testing approach, but we expect the number of functional faults
in real-world RL agents to be much lower. Indeed, in more
complex environments, a high penalty for functional faults could
be part of the reward function to minimize them and prevent
safety violations. However, as we explained in Section III-A,
this is not always enough to prevent safety-critical situations
because the agent’s reward could still be relatively acceptable
in the presence of functional faults. For example, a car may
successfully reach its destination sooner by driving at a higher
speed while being dangerously close to other cars. In this case,
we have a high reward, because the car successfully reached the

destination sooner without having any accident (the reward is
defined based on the time of arrival and the penalty is applied
when a collision actually occurs). However, such an episode has
a high probability of functional fault since the ego car remains
very close to the other cars. Relying only on the agent’s reward
thus makes it challenging for the search to identify functional
faults. In other words, the reward and probability of functional
faults are not always related. They are instead complementary
and both used by STARLA to guide the search toward functional-
faulty episodes.

Furthermore, we can have multiple types of functional faults
related to an RL agent. In that case, we can consider the prob-
ability of each type of fault as a separate fitness function in
the genetic algorithm. More specifically, we can rely on the ML
model to predict the probability of each type of fault and use them
as separate fitness functions. Note that considering more fitness
functions to predict multiple types of functional faults is rather
straightforward thanks to the use of MOSA, which is specifically
designed for many-objective search problems (Section IV-E3).

Initial Population: We also investigated different sizes of the
initial population (i.e., 500, 1050, and 3000) and obtained con-
sistent results: STARLA outperformed Random Testing in terms
of the total number of detected functional faults. Furthermore,
we observed that the number of detected faults increased with
the size of the initial population of the search. For example, in
the Cart-Pole case study, the accuracy of the faults prediction
decreased for training data sets with less than 670 episodes.
In some practical cases, costly simulations may lead to limited
data for testing RL agents with STARLA. Consequently, this
can affect the accuracy of ML models due to small ML training
datasets and the results of the genetic search (i.e., due to the
small initial population). From a practical standpoint, the size
of the initial population is bounded by a predetermined testing
budget and can be determined according to the accuracy of the
ML model. Depending on the case study, we may choose the
size of the initial population that maximizes the accuracy of the
ML model while consuming a reasonable portion of the testing
budget.

Improving the diversity in initial populations for genetic
algorithms may potentially increase the quality of the search
results by enabling a faster convergence to optimal solutions.
As mentioned in Section IV-C, we considered episodes starting
from different initial states to diversify the initial population. In
future work, we aim to investigate the use of state-of-the-art
diversity metrics to guide the generation of a diverse initial
population to determine whether the additional diversity compu-
tations are beneficial given that they use part of the test budget.
Examples of such metrics include geometric diversity [62],
entropy measure [63], and hamming distance [64].

Rules Characterizing Faulty Episodes: In this paper, we
investigate the learning of interpretable rules that characterize
faulty episodes to understand the conditions under which the RL
agent can be expected to fail. If accurate, these rules can help
developers to focus their analysis on specific abstract states that
lead to faults, and analyze the risks related to the deployment of
the RL agent. For example, after analyzing the failing rules of
the agent, engineers can use abstract states leading to faults to

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3731

automatically ensure safety at run-time. The agent state can be
monitored to assess the risks and activate corrective measures.
To prevent a failure, for example, the agent can be forced to
avoid specific actions that lead to states that can violate safety
requirements. We have relied on the presence and absence of
abstract states as features to learn rules that characterize faulty
episodes. However, other types of features that consider tem-
poral information regarding the agent’s states and actions in
faulty episodes (e.g., considering the sequence of abstract states)
could provide additional relevant information to explain the
occurrence of faulty episodes. However, learning such temporal
patterns typically requires much more data to achieve accurate
results and appeared to be unnecessary and therefore practically
justified in our two case studies. In future work, we aim to
investigate other feature representations that include temporal
information to extract rules that characterize faulty episodes.
We also intend to investigate in depth the use of STARLA for
safety analysis before deploying RL agents. Finally, we aim to
perform a user study to understand how engineers can use such
rules to make decisions about the safety of the RL agent under
test.

This paper takes a first step toward testing RL agents using
a data-box genetic search. Our proposed testing approach and
associated results have several practical implications. The gener-
ated faulty episodes and the corresponding rules that character-
ize them can be used for safety analysis and retraining. Indeed,
analyzing the states and actions in the generated faulty episodes
could help developers to (1) understand the root-causes of faults
in the RL agent, and (2) analyze the safety risks at run-time
based on the prevalence of such root causes in practice and the
consequences of identified faults. Moreover, one can retrain the
agent using some of the generated faulty episodes, guided by
the rules, as a mechanism to improve the policy of RL agents.

VII. THREATS TO VALIDITY

In this section, we discuss the different threats to the validity
of our study and describe how we mitigated them.

Internal Threats concern the causal relationship between
the treatment and the outcome. Invalid episodes generated by
STARLA might threaten internal validity. To mitigate this threat
and to ensure the validity of the generated final episodes, we have
relied on state abstraction and the application of realistic state
transformations when using the search operators. For instance,
for crossover, instead of selecting random crossover points,
we have used state abstraction to find a matching pair for the
crossover point. Furthermore, to ensure the validity and the
exploratory aspect of the mutation operator, we alter the state of
the mutation point using realistic state transformation methods
to produce realistic and feasible states that could happen in the
real-world environment. Finally, the validity of the episodes is
checked through their execution. Thus, we only retain valid
failing episodes in our final results. Frequent replacement of
states during executions may pose a potential threat to the
validity of our study. However, we observed that the replaced
states are highly similar in terms of cosine similarity, suggesting
that the physical characteristics of the replaced states are also
similar.

Our search approach relies on the specification of several
thresholds that are context-dependent and vary from case to case.
The threshold of the reward can change based on the expected
minimum reward of the agent. For the reward fitness function in
the Cart-Pole problem, we used a threshold equal to 70, while in
the Mountain Car problem the reward threshold was -180. Based
on experiments, we also realized that STARLA performs better
when the threshold of the probability of functional fault fitness
value is 95% and the threshold of the certainty level is 0.04. It is
important to fine-tune these parameters for each case study to get
optimal detection results. We acknowledge that the fine-tuning
of STARLA parameters may require additional efforts from
practitioners for more complex RL problems. Therefore, in
future work we plan to investigate how to fine-tune STARLA
parameters for more complex problems.

The choice of an inappropriate state abstraction method and
level might also be a threat. To mitigate it, we have studied
several state abstraction methods and have tried different ab-
straction levels to train our ML model. We have selected the
best abstraction level that maximizes the accuracy of the model
and significantly decreases the number of abstract states.

The current solution does not consider newly seen abstract
states during testing. We acknowledge that this is a limitation of
our testing approach, though any ML solution is always based on
incomplete features, and what matters is whether the guidance
provided to the test process is sufficiently effective. To mitigate
the risk of missing abstract states in our feature representation,
we have relied on a state abstraction method that considers a
large number of concrete states in both the training phase and
random executions of the RL agent. We computed the percentage
of newly seen abstract states during the execution of the RL
agent. We observed, on average, eight new abstract states out
of 93 in the Mountain Car problem and 209 new abstract states
out of 1035 in the Cart-Pole problem. Nevertheless, our results
show that we trained accurate models based on known abstract
states in both case studies. To further enhance the accuracy
of the ML model, we can increase the size of the training
dataset, thereby expanding the range of abstract states from
which the model can learn. Additionally, we can retrain the ML
model after newly identified abstract states are found, enabling
the model to incorporate these states into the decision-making
process.

Conclusion threats are concerned with the relationship be-
tween treatment and outcome. The randomness in our search
approach leads to the generation of different episodes after each
run of STARLA. To mitigate this threat in our experiments,
we executed several runs of our search method and studied the
distribution of the number of the detected faults for both our
method and Random Testing.

Reliability threats concern the replicability of our study re-
sults. We rely on publicly available RL environments and pro-
vide online all the materials required to replicate our study
results. This includes the set of the executed and generated
episodes and the different configurations that we used in our
experiments.

External threats concern the generalizability of our study. Due
to the high computational expense of our experiments and the
lack of publicly available, realistic RL agents, we relied on two

3732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

case studies in this paper. However, we mitigated this threat
by using widely studied RL tasks which are considered as valid
benchmark problems in many RL-related studies [55], [65], [66],
[67]. However, our approach is customizable and can be applied
to any other RL problem. Furthermore, in future work we aim to
apply our testing approach on other RL problems to generalize
the obtained results.

VIII. RELATED WORK

Several approaches have been proposed in the literature to
study the safety of RL agents during the training and execution
phases. However, limited research has been targeted at testing
RL-based systems.

In a very recent study, Tapple et al. [68] presented a search-
based testing method for RL agents. The method relies on a
backtracking-based, depth-first search algorithm [69] that is
used in the RL agent’s execution to identify a reference trace
that solves the RL task and contains a set of boundary states that
can lead to unsafe states. Test suites are generated by extracting
the action traces that lead to these boundary states from the initial
state. The main objective of these test suites is therefore to guide
the RL agent toward safety-critical states. Furthermore, to eval-
uate the agent’s performance, performance test suites are gener-
ated by using a genetic algorithm to create a diverse set of action
traces starting from the reference trace. The average reward
gained by the policy of the agent is then compared to the average
reward from the fuzz trace executions to evaluate the agent’s
performance. However, this testing approach is only applicable
to RL agents with a stochastic policy, while our focus is on testing
agents with a deterministic policy interacting with a stochastic
environment (which is normally the case in safety-critical do-
mains). Another limitation is that this approach relies on finding
a reference trace that (1) solves the RL task, and (2) contains
boundary states that lead to all unsafe states. Given these require-
ments, such a reference trace may be difficult to find and may not
lead to all possible safety-critical scenarios. Indeed, while this
framework can identify safety-critical situations near boundary
states, it may not be able to identify all potential safety issues
in more complex environments. Finally, the approach requires
the repetitive execution of all possible actions from the different
states in the reference trace, making it computationally intensive
and highly sensitive to the size of the action space. Nikanjam et
al. [11] presented a taxonomy of DRL faults and a tool to locate
these faults in DRL programs. To build the taxonomy, they an-
alyzed DRL programs on GitHub, mined Stack Overflow posts,
and conducted a survey with 19 developers. They proposed
DRLinter, a model-based fault detection tool that relies on static
analysis of DRL programs and graph transformation rules to lo-
cate existing faults in DRL source code. Although we have sim-
ilar objectives, this work differs greatly from ours, as we detect
faults related to the execution of RL agents through the search for
and generation of faulty episodes. Nonetheless, this work may
complement our approach and could be used as a root cause anal-
ysis mechanism of the faults reported by our search approach.

Trujillo et al. [7] studied the reliability of neuron coverage [70]
in testing DRL systems. They studied the correlation between
coverage metrics and rewards obtained by two different models

of DQN that were implemented for the Mountain Car prob-
lem [71]. They show that neuron coverage is not correlated to
the agent’s reward. For instance, reaching high coverage does
not necessarily mean success in an RL task in terms of reward.
They also showed that maximum coverage is obtained through
excessive exploration of the agent, which leads to exploration of
different actions that do not help maximize the agent’s reward.
Finally, they conclude that neuron coverage is not suitable to
guide the testing of DRL systems. We therefore do not use search
guided by neuron coverage as a baseline in our work.

Several approaches have been proposed in the literature
to study the robustness of RL agents against adversarial at-
tacks [13], [14], [15]. For example, Ilahi et al. [13] studied 28
adversarial attacks on RL and provided a taxonomy of existing
attacks in the literature. They considered attacks that rely on
perturbing (1) the state space, (2) the reward space, (3) the
action space, and (4) the model space, where one can perturb
the model’s learned parameters. They show that although many
defense approaches are proposed to increase the safety of DRL-
based systems, the robustness of such systems to all possible
adversarial attacks is still an open issue. This is because the
proposed defense techniques in the literature can respond to the
types of attacks they are built for. Besides, Moosavi-Dezfooli et
al. [72] argue that regardless of the number of adversarial exam-
ples added to the training data, they were able to generate new
adversarial examples to alter the normal behavior of the system.

Huang et al. [14] studied the robustness of neural network
policies in the presence of adversaries. They studied the ef-
fectiveness of black-box and white-box adversarial attacks on
policy networks such as DQN [57], TRPO [73], and A3C [74],
trained on Atari games [75]. They showed that adversarial
attacks can significantly degrade the performance of the agent,
even with small, imperceptible perturbations.

Pan et al. [15] studied the robustness of the reinforcement
learning agent in the specific learning task of power system
control. They proposed a new adversary in both white-box and
black-box (using a surrogate model) scenarios. They studied
the effectiveness of their method and compared it with random
and weighted adversarial attacks previously proposed for power
system controls [76], [77]. Moreover, they studied the robustness
improvement of the agent trained with adversarial training.

Other existing approaches in the literature [16], [55], [78],
[79], [80], [81], [82], [83], [84] have proposed adversarial
training techniques to increase the robustness of RL agents to
adversarial attacks. For example, Pattanaik et al. [55] proposed
a training approach for DRL agents to increase their robustness
to gradient-based adversarial attacks. They train the agent us-
ing adversarial samples generated from gradient-based attacks.
They show that adding noise to the training episodes increases
the robustness of the DRL agent to adversarial attacks.

Tan et al. [16] also proposed an adversarial training approach
for DRL agents used for decision and control tasks. The purpose
of their training approach is to increase the robustness of DRL
agents against adversarial perturbations to the action space
(within specific attack budgets). Consequently, they relied on
gradient-based white-box adversarial attacks during the training
phase of a DRL agent. They show that the proposed method
increases the robustness of the agent against similar attacks.

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3733

These works differ from our testing approach, as we do not
focus on the robustness of RL agents to adversarial attacks.
Rather, we test the policies of RL agents, without using any
of their internal information, by relying on a genetic search to
effectively find faulty episodes.

IX. CONCLUSION

In this paper, we propose STARLA, a data-box search-based
approach to test the policy of DRL agents by effectively search-
ing for faulty episodes. We rely on a dedicated genetic algorithm
to detect functional faults. We make use of an ML model to
predict DRL faults and guide the search toward faulty episodes.
To this end, we use state abstraction techniques to group similar
states of the agent and significantly reduce the state space. This
helped us to increase the learnability of the ML models and
build customized search operators. We showed that STARLA
outperforms Random Testing as we find significantly more faults
when considering the same testing budget. We also investigated
how to extract rules that characterize the faulty episodes of RL
agents using our search results. The goal was to help developers
understand the conditions under which the agent fails and thus
assess the risks of deploying the RL agent.

In future work, we aim to detect other types of faults, such as
reward faults, and investigate the retraining of the RL agent using
the generated faulty episodes. We aim to study the effectiveness
of such episodes in improving the agent’s policy. We also want
to support the safety of RL-based critical systems by providing
mechanisms based on ML and state abstraction to identify sub-
episodes that may lead to hazards or critical faults.

ACKNOWLEDGMENT

We express our gratitude to Ul Haq et al. [85] for generously
sharing the implementation of their search algorithm, which
greatly facilitated our study.

REFERENCES

[1] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,” Adapt.
Learn. Optim., vol. 12, no. 3, 2012, Art. no. 729.

[2] M. Sewak, Deep Reinforcement Learning. Berlin, Germany: Springer,
2019.

[3] C. Lei, “Deep reinforcement learning,” in Deep Learning and Practice
With MindSpore. Berlin, Germany: Springer, 2021, pp. 217–243.

[4] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1.

[5] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world
reinforcement learning,” 2019, arXiv: 1904.12901.

[6] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 1st ed. New York, NY, USA: Wiley, 1994.

[7] M. Trujillo, M. Linares-Vásquez, C. Escobar-Velásquez, I. Dusparic,
and N. Cardozo, ”Does neuron coverage matter for deep reinforcement
learning? a preliminary study,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng. Workshops, 2020, pp. 215–220.

[8] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Black-box adversarial sample
generation based on differential evolution,” J. Syst. Softw., vol. 170, 2020,
Art. no. 110767.

[9] Z. Aghababaeyan, M. Abdellatif, L. Briand, R. S, and M. Bagherzadeh,
“Black-box testing of deep neural networks through test case diversity,”
IEEE Trans. Softw. Eng.,, pp. 215–220, 2023. [Online]. Available: http:
//dx.doi.org/10.1109/TSE.2023.3243522

[10] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.
Softw. Eng., 2018, pp. 303–314.

[11] A. Nikanjam, M. M. Morovati, F. Khomh, and H. Ben Braiek, “Faults
in deep reinforcement learning programs: A taxonomy and a detec-
tion approach,” Automated Softw. Eng., vol. 29, no. 1, pp. 1–32,
2022.

[12] X. Xie et al., “Deephunter: A coverage-guided fuzz testing framework for
deep neural networks,” in Proc. 28th ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2019, pp. 146–157.

[13] I. Ilahi et al., “Challenges and countermeasures for adversarial attacks
on deep reinforcement learning,” IEEE Trans. Artif. Intell., vol. 3, no. 2,
pp. 90–109, 2021.

[14] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and P. Abbeel, “Ad-
versarial attacks on neural network policies,” 2017, arXiv: 1702.02284.

[15] A. Pan, Y. Lee, H. Zhang, Y. Chen, and Y. Shi, “Improving robustness of
reinforcement learning for power system control with adversarial training,”
2021, arXiv:2110.08956.

[16] K. L. Tan et al., “Robustifying reinforcement learning agents via action
space adversarial training,” in Proc. IEEE Amer. Control Conf., 2020,
pp. 3959–3964.

[17] T. Byun, S. Rayadurgam, and M. P. Heimdahl, “Black-box testing of deep
neural networks,” in Proc. IEEE 32nd Int. Symp. Softw. Rel. Eng., 2021,
pp. 309–320.

[18] Y.-C. Lin et al., “Tactics of adversarial attack on deep reinforcement
learning agents,” 2019.

[19] J. H. Holland, “Genetic algorithms,” Sci. Amer., vol. 267, no. 1, pp. 66–73,
1992.

[20] R. Akrour, F. Veiga, J. Peters, and G. Neumann, “Regularizing reinforce-
ment learning with state abstraction,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2018, pp. 534–539.

[21] D. Abel, D. Arumugam, L. Lehnert, and M. Littman, “State abstractions for
lifelong reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 10–19.

[22] Gym library, 2020. [Online]. Available: https://github.com/openai/gym
[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[24] N. Jiang, “Notes on state abstractions,” 2018. [Online]. Available: http:

//nanjiang.web.engr.illinois.edu/files/cs598/note4.pdf
[25] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of state

abstraction for MDPs,” Proc. Int. Symp. Artif. Intell. Math., vol. 4, no. 5,
pp. 1–9, 2006.

[26] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore, “Testing
deep neural networks,” 2018, arXiv: 1803.04792.

[27] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ash-
more, “Deepconcolic: Testing and debugging deep neural networks,” in
Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.: Companion Proc., 2019,
pp. 111–114.

[28] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proc. IEEE/ACM 33rd Int.
Conf. Automat. Softw. Eng., 2018, pp. 109–119.

[29] L. Ma et al., “DeepGauge: Multi-granularity testing criteria for deep
learning systems,” in Proc. IEEE/ACM 33rd Int. Conf. Automated Softw.
Eng., 2018, pp. 120–131, doi: 10.1145/3238147.3238202.

[30] G. Dulac-Arnold et al., “Challenges of real-world reinforcement learning:
Definitions, benchmarks and analysis,” Mach. Learn., vol. 110, no. 9,
pp. 2419–2468, 2021.

[31] T. Chaffre, J. Moras, A. Chan-Hon-Tong, and J. Marzat, “Sim-to-real trans-
fer with incremental environment complexity for reinforcement learning
of depth-based robot navigation,” 2020, arXiv: 2004.14684.

[32] S. Ghamizi et al., “Search-based adversarial testing and improve-
ment of constrained credit scoring systems,” in Proc. 28th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020,
pp. 1089–1100.

[33] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[34] H. Zhang et al., “Robust deep reinforcement learning against adversarial
perturbations on state observations,” in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 21024–21037.

[35] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world
reinforcement learning,” 2019, arXiv:1904.12901.

[36] X. Zhang, Y. Ma, A. Singla, and X. Zhu, “Adaptive reward-poisoning
attacks against reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 11 225–11 234.

[37] A. Rakhsha, X. Zhang, X. Zhu, and A. Singla, “Reward poisoning in
reinforcement learning: Attacks against unknown learners in unknown
environments,” 2021, arXiv:2102.08492.

[38] P. Swazinna, S. Udluft, D. Hein, and T. Runkler, “Comparing model-
free and model-based algorithms for offline reinforcement learning,”
2022, arXiv:2201.05433.

http://dx.doi.org/10.1109/TSE.2023.3243522
http://dx.doi.org/10.1109/TSE.2023.3243522
https://github.com/openai/gym
http://nanjiang.web.engr.illinois.edu/files/cs598/note4.pdf
http://nanjiang.web.engr.illinois.edu/files/cs598/note4.pdf
https://dx.doi.org/10.1145/3238147.3238202

3734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

[39] Openai, 2018. Accessed: Jan. 24, 2022. [Online]. Available: https://
spinningup.openai.com/en/latest/spinningup/rl_intro2.html

[40] I. Alsmadi, “Using genetic algorithms for test case generation and selection
optimization,” in Proc. IEEE Can. Conf. Elect. Comput. Eng., 2010,
pp. 1–4.

[41] D. Whitley, “A genetic algorithm tutorial,” Statist. Comput., vol. 4, no. 2,
pp. 65–85, 1994.

[42] T. Murata et al., “MOGA: Multi-objective genetic algorithms,” in Proc.
IEEE Int. Conf. Evol. Comput., Piscataway, NJ, USA, 1995, pp. 289–294.

[43] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in Proc. IEEE 8th
Int. Conf. Softw. Testing Verification Validation, 2015, pp. 1–10.

[44] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,” in
Proc. 26th Int. Joint Conf. Artif. Intell., 2017, pp. 3756–3762.

[45] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001, doi: 10.1023/A:1010933404324.

[46] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[47] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection schemes,
and the varying effects of noise,” Evol. Comput., vol. 4, no. 2, pp. 113–131,
Jun. 1996, doi: 10.1162/evco.1996.4.2.113.

[48] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated white-
box testing of deep learning systems,” Commun. ACM, vol. 62, no. 11,
pp. 137–145, Oct. 2019. [Online]. Available: https://doi.org/10.1145/
3361566

[49] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: An
overview,” Soft Comput., vol. 22, pp. 387–408, 2018.

[50] V. J. Amuso and J. Enslin, “The strength pareto evolutionary algorithm
2 (SPEA2) applied to simultaneous multi- mission waveform design,” in
Proc. IEEE Int. Waveform Diversity Des. Conf., 2007, pp. 407–417.

[51] R. Tanabe, H. Ishibuchi, and A. Oyama, “Benchmarking multi- and
many-objective evolutionary algorithms under two optimization scenar-
ios,” IEEE Access, vol. 5, pp. 19597–19619, 2017.

[52] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[53] S. Nagendra, N. Podila, R. Ugarakhod, and K. George, “Comparison of
reinforcement learning algorithms applied to the cart-pole problem,” in
Proc. IEEE Int. Conf. Adv. Comput. Commun. Inform., 2017, pp. 26–32.

[54] C. Aguilar-Ibáñez, J. Mendoza-Mendoza, and J. Dávila, “Stabilization of
the cart pole system: By sliding mode control,” Nonlinear Dyn., vol. 78,
no. 4, pp. 2769–2777, 2014.

[55] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary, “Robust
deep reinforcement learning with adversarial attacks,” in Proc. 17th Int.
Conf. Auton. Agents MultiAgent Syst., 2018, pp. 2040–2042.

[56] A. Hill et al., “Stable baselines,” 2018. [Online]. Available: https://github.
com/hill-a/stable-baselines

[57] V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

[58] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[59] A. Marco et al., “Virtual versus real: Trading off simulations and physical
experiments in reinforcement learning with Bayesian optimization,” in
Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 1557–1563.

[60] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[61] P. E. McKnight and J. Najab, “Mann-whitney U test,” Corsini Encyclo-
pedia Psychol., pp. 1–1, 2010. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470479216.corpsy0524

[62] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” 2012, arXiv:1207.6083.

[63] N. Albunian, G. Fraser, and D. Sudholt, “Measuring and maintaining
population diversity in search-based unit test generation,” in Proc. Int.
Symp. Search Based Softw. Eng., 2020, pp. 153–168.

[64] R. W. Morrison and K. A. D. Jong, “Measurement of population diversity,”
in Proc. Int. Conf. Artif. Evol., 2001, pp. 31–41.

[65] V. Behzadan and W. H. Hsu, “Adversarial exploitation of policy imitation,”
2019, arXiv: 1906.01121.

[66] V. Behzadan and W. Hsu, “Sequential triggers for watermarking of deep
reinforcement learning policies,” 2019, arXiv: 1906.01126.

[67] K. Chen, T. Zhang, X. Xie, and Y. Liu, “Stealing deep reinforcement
learning models for fun and profit,” 2006, arXiv: 2006.05032.

[68] M. Tappler, F. C. Cordoba, B. Aichernig, and B. Könighofer, “Search-
based testing of reinforcement learning,” in Proc. 31st Int. Joint Conf.
Artif. Intell., 2022, pp. 503–510.

[69] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146–160, 1972.

[70] L. Ma et al., “DeepGauge: Multi-granularity testing criteria for deep
learning systems,” in Proc. IEEE/ACM 33rd Int. Conf. Automated Softw.
Eng., 2018, pp. 120–131.

[71] R. S. Sutton, Andrew G Barto Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[72] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” 2016, arXiv:1610.08401.

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[74] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[75] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” J. Artif.
Intell. Res., vol. 47, pp. 253–279, Jun. 2013, doi: 10.1613/jair.3912.

[76] A. Marot et al., “L2rpn: Learning to run a power network in a sustainable
world neurips2020 challenge design,” Réseau de Transport d’Électricité,
Paris, France, White Paper, 2020.

[77] L. Omnes, A. Marot, and B. Donnot, “Adversarial training for a continuous
robustness control problem in power systems,” in Proc. IEEE Madrid
PowerTech., 2021, pp. 1–6.

[78] J. Kos and D. Song, “Delving into adversarial attacks on deep policies,” in
Proc. 5th Int. Conf. Learn. Representations, Toulon, France, Apr. 24–26,
2017, pp. 1–6. [Online]. Available: https://openreview.net/forum?id=
BJcib5mFe

[79] X. Y. Lee, Y. Esfandiari, K. L. Tan, and S. Sarkar, “Query-based tar-
geted action-space adversarial policies on deep reinforcement learning
agents,” in Proc. IEEE/ACM 12th Int. Conf. Cyber-Phys. Syst., New
York, NY, USA: Association for Computing Machinery, 2021, pp. 87–97,
doi: 10.1145/3450267.3450537.

[80] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. M. Bayen, “Ro-
bust reinforcement learning using adversarial populations,” 2020, arXiv:
2008.01825.

[81] K. L. Tan, Y. Esfandiari, X. Y. Lee Aakanksha, and S. Sarkar, “Robusti-
fying reinforcement learning agents via action space adversarial training,”
2007, arXiv: 2007.07176.

[82] V. Behzadan and A. Munir, “Mitigation of policy manipulation attacks on
deep q-networks with parameter-space noise,” 2018, arXiv: 1806.02190.

[83] V. Behzadan and M. Arslan, “Whatever does not kill deep reinforcement
learning, makes it stronger,” 2017, arXiv: 1712.09344.

[84] Y. Han et al., “Reinforcement learning for autonomous defence in
software-defined networking,” 2018, arXiv: 1808.05770.

[85] F. U. Haq, D. Shin, L. C. Briand, T. Stifter, and J. Wang, “Automatic
test suite generation for key-points detection dnns using many-objective
search (experience paper),” in Proc. 30th ACM SIGSOFT Int. Symp.
Softw. Testing Anal. (ISSTA), New York, NY, USA, 2021, pp. 91–102,
doi: 10.1145/3460319.3464802.

Amirhossein Zolfagharian is a member of Nanda
Lab and is currently working toward the PhD degree
in the School of EECS, University of Ottawa. He
gained valuable practical experience from his intern-
ship with General Motors’ research and development
lab in the United States. Throughout his academic
career, he has been the recipient of several academic
awards, including a PhD admission scholarship, an
international doctoral scholarship from the University
of Ottawa, and an honorable award for admission
to the master’s program in computer science with

Amirkabir University of Technology. In 2017, he was ranked as the 4th-best
student among all computer science students at Amirkabir University, placing
him in the top 5% of his class in GPA. His research interests primarily focus on
machine learning, empirical software engineering, and testing and verification
of RL-based systems.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://dx.doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.1162/evco.1996.4.2.113
https://doi.org/10.1145/3361566
https://doi.org/10.1145/3361566
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://dx.doi.org/10.1613/jair.3912
https://openreview.net/forum{?}id$=$BJcib5mFe
https://openreview.net/forum{?}id$=$BJcib5mFe
https://dx.doi.org/10.1145/3450267.3450537
https://dx.doi.org/10.1145/3460319.3464802

ZOLFAGHARIAN et al.: SEARCH-BASED TESTING APPROACH FOR DEEP REINFORCEMENT LEARNING AGENTS 3735

Manel Abdellatif received the PhD degree in com-
puter science from Polytechnique Montréal, Canada.
She is a faculty member at École de Technologie
Supérieure. She was a postdoctoral fellow at the
School of EECS, University of Ottawa. She has ac-
tively contributed to the research community, serving
as a program committee member and a reviewer for
numerous journals and conferences. Her research in-
terests include testing machine learning-based sys-
tems, service computing, and empirical software
engineering.

Lionel C. Briand (Fellow, IEEE) is a professor of
software engineering and has shared appointments
between (1) School of EECS, University of Ottawa,
Canada and (2) SnT centre for Security, Reliability,
and Trust, University of Luxembourg. He is the head
of the SVV department at the SnT Centre and a
Canada Research Chair in Intelligent Software De-
pendability and Compliance (Tier 1). He has con-
ducted applied research in collaboration with industry
for more than 25 years, including projects in the
automotive, aerospace, manufacturing, financial, and

energy domains. He is a fellow of the IEEE and ACM. He was also granted the
IEEE Computer Society Harlan Mills award (2012), the IEEE Reliability So-
ciety Engineer-of-the-year award (2013), and the ACM SIGSOFT Outstanding
Research Award (2022) for his work on software testing and verification.

Mojtaba Bagherzadeh received the PhD degree in
computer science from Queen’s University, Canada,
in 2019. He is a highly experienced software engineer
with a proven track record of success in both industry
and academia. He currently works as a software engi-
neer with Cisco Systems and has previously worked
as a software developer with IBM and a startup com-
pany. He has contributed to this research during his
tenure as a postdoctoral researcher with the University
of Ottawa. His research interests include testing and
debugging machine learning-based systems, model-

driven engineering, software testing, and empirical software engineering.

Ramesh S senior technical fellow, has been with Gen-
eral Motors Research and Development (R&D) for
more than 15 years conducting and leading advanced
research projects in the areas of model-based devel-
opment of embedded systems and software, rigorous
verification and validation, and more recently, AI/ML
based systems. Prior to joining GM R&D, he was
a full professor with the Department of Computer
Science and Engineering, Indian Institute of Tech-
nology Bombay, India, where he co-founded a Centre
for Formal Design and Verification of Software. He

has published more than 125 research papers in international journals and
conferences and authored many patents in the areas of modeling, analysis, and
verification of embedded systems and software. He has been on the program
committees of several international research conferences and on the editorial
boards of journals. He leads an USCAR committee and serves as an expert in
ISO and SAE committees to develop guidelines for AI/ML based systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

