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Abstract: The operation and maintenance of wind turbines benefit from reliable information on the
wind turbine condition. Data-driven models use data from the supervisory data acquisition system.
In particular, great performance is reported for artificial intelligence models. However, the lack
of interpretability limits their effective industrial implementation. The present work introduces a
new condition-monitoring approach for wind turbines featuring a built-in visualization tool that
confers interpretability upon the model outcomes. The proposed approach is based on a supervised
implementation of the variational autoencoder model, which allows the projection of the wind
turbine system onto a low-dimensional representation space. Three outcomes follow from such
representation: a health indicator for the early detection of abnormal conditions, a classifier providing
the diagnosis status, and a visualization tool depicting the wind turbine condition as a trajectory
in a 2D plot. The approach is implemented with a vast database. Two case studies demonstrate
the potential of the proposed approach. The proposed health indicator detects the main bearing
overtemperature 11 days before the control system alarm, one week earlier than a competing approach.
Study cases illustrate that the built-in visualization tool enhances the interpretability and trust in the
model outcomes, thus supporting wind turbine operation and maintenance.

Keywords: wind turbine; condition monitoring; variational autoencoder; SCADA data; early
detection; diagnosis; model interpretability

1. Introduction

The rapid and assured growth of the global wind power capacity results from efforts
to decarbonize energy production. This trend is supported by and depends on a com-
petitive Levelized Cost of Energy (LCOE) for a Wind Turbine (WT). Notably, Operation
and Maintenance (O&M) expenditures correspond to a significant share of the WT LCOE,
with estimations ranging from 20% to 30% [1,2].

O&M in-situ interventions include inspections, preventive maintenance, and curative
maintenance. Currently, scheduling of the WT O&M interventions relies on data-driven
analysis to a limited extent. Typically, Performance Monitoring (PM) uses data from
the WT Supervisory Control and Data Acquisition (SCADA) system to detect overall
underperformance, while Condition Monitoring (CM) approaches aim at detecting and
diagnosing abnormal conditions in specific critical components based on the SCADA
data [3,4].

The WT CM literature pays particular attention to Artificial Intelligence (AI) models.
This interest is due to the availability of ever-increasing databases from operating wind
farms, not to mention the proven performance of AI-based models. Among these, the Vari-
ational Autoencoder (VAE) model (see Kingma and Welling [5]) stands out given its ability
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to analyze systems characterized by a large number of features, including features with a
noisy and stochastic nature, as is the case of the measures from the WT system [6–8]. Never-
theless, the effective implementation of AI-based models in WT CM requires scientific and
technological gaps to be addressed, notably the lack of interpretability. Visualization tools
are among the main approaches to overcoming the black-box nature of AI models [9,10].
The VAE low-dimensional latent space is used to develop visualization tools allowing one
to interpret the model outcomes. Proven results are reported in applications emerging from
diverse domains of study [8,11–14]. To the best of our knowledge, the use of the VAE latent
space as a visualization tool is not exploited in any publication on WT CM.

The present work aims to exploit the VAE model in the definition of a CM approach
for WT with a built-in visualization tool for enhanced interpretability. Precisely, the pro-
posed approach is based on a supervised implementation of the VAE. The dimension
reduction capability of the VAE model allows for the definition of a unified approach for
(1) the early detection of abnormal conditions, (2) the diagnosis of the abnormal conditions,
and (3) the definition of a visualization tool in which the evolution of the wind turbine
condition is represented in a 2D plot.

1.1. Related Works

The present work introduces a supervised implementation of the VAE model that
leads to the detection and diagnosis of abnormal conditions, as well as a visualization tool.
Previous works are briefly reviewed below.

1.1.1. Detection of Wind Turbine Abnormal Conditions Using the VAE Model

The literature on VAE-based WT detection includes two kinds of analysis. The models
can focus on sub-systems and critical components or rather consider the overall WT con-
dition. Among the former, Zhao et al. [15] use the Autoencoder (AE) model to detect
abnormal conditions and anticipate failure in the gearbox, the main shaft bearing, and the
generator. Wang et al. [16] use the AE model to perform CM of the WT breakage system.
A wavelet-enhanced AE model is proposed by Yuan et al. [17] to detect blade icing. Hem-
mer et al. [18] define a VAE-based Health Indicator (HI) for the WT main bearing condition.
The authors exploit, in particular, the VAE latent space, the HI being a function of the
latent variables.

CM approaches analyzing the overall WT condition are often called system-wide CM.
Jiang et al. [19] use a denoising AE to deal with the non-linear and stochastic WT measures.
Wu et al. [20] exploit the denoising AE similarly. In both cases, the denoising AE allows the
capture of different information from the features. Meanwhile, Renström et al. [21] use the
VAE model in an overall WT CM approach based uniquely on SCADA data. The authors
analyze the influence of the model architecture and Gaussian denoising. In particular, they
conclude that the range of choices for the VAE architecture is broad, with multiple dimensions
of the VAE latent space leading to similar performance. Moreover, their work reports that no
noise lead to the best performance when using the SCADA 10-min measures [21].

1.1.2. Diagnosis of Wind Turbine Abnormal Conditions Using the VAE Model

Diagnosis aims at characterizing the detected abnormal behaviors in terms of severity [14],
category [22], location, and root causes [23]. We refer to Stetco et al. [24] for a comprehensive
review of diagnosis approaches for WT.

The VAE model successfully diagnoses defaults in rolling bearings in [14]. The unsu-
pervised training of the VAE allows for diagnosis due to the database characteristics and
specific modeling choices. First, the database emerges from a controlled laboratory setting.
Second, the available data include vibratory measures, which have proven accuracy in
detecting abnormal conditions in rotating components [25,26]. Finally, the authors select
the key features using feature engineering specific to the conditions of interest.

Roelofs et al. [23] investigated the use of the component-wise VAE reconstruction error
to diagnose the WT condition. However, the classical unsupervised VAE seems insufficient
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to diagnose wind turbines when only SCADA data are available [23]. The intricate nature
of the features limited the success of their proposition, with a weak causal relation between
some components of the reconstruction error and the abnormal behavior under analysis.

Previous works achieve good performance in diagnosis by combining the VAE with
other Neural Network (NN) models in the framework of generative adversarial net-
works [27,28]. Liu et al. [28] introduced a diagnosis approach for the categorization of
abnormal conditions in multiple WT sub-systems. The authors proposed the sparse dictio-
nary learning-based adversarial variational auto-encoders (AVAE_SDL) model and used
only measures from the SCADA system. Scores from the reconstruction errors specific to
each SCADA measure lead to the categorization of abnormalities. The AVAE_SDL-based
diagnosis correctly categorizes selected study cases, outperforming competing approaches
regarding the frequency of false alarms. More recently, Zhang et al. [27] proposed a di-
agnosis approach for WT bearings using vibration signals. The authors reported good
accuracy for multiple case studies with typical bearing vibration data and data with added
noise. The conditional variational generative adversarial network (CVAE-GAN) model
allowed for addressing two major problems in other vibration-based approaches, namely
the imbalance of databases and the high frequency of false alarms.

1.1.3. VAE Model as a Visualization Tool

The VAE latent space is exploited as a visualization tool in diverse domains, includ-
ing audio and speech processing [11], manufacturing [12], X-ray diffraction [13], bearing
diagnosis [14], and hydrogenerator monitoring [8]. The VAE-based visualization tools are
reported to outperform competing approaches such as Principal Component Analysis and
t-distributed Stochastic Neighbor Embedding Projection [8,12]. Zemouri et al. [8] use the
VAE to define a 2D visualization and classification tool for partial discharge, which is a
consequential symptom of degradation in hydrogenerators. Proteau et al. [12] use the VAE
model to detect early changes in the state of machining processes, with the corresponding
latent space serving as a visualization tool. The authors recently proposed a prognosis ap-
proach from the VAE latent space [29]. Cheng and Chen [14] propose a diagnosis approach
for ball bearings based on a VAE model. They show, in particular, that selecting the most
sensitive features for a specific degraded condition can enhance cluster disentanglement in
the latent space.

1.2. Main Contributions

To our knowledge, no previous works have used the VAE model to simultane-
ously address the WT CM and render a visualization tool for enhanced interpretability.
The present work fills this gap. The three main contributions of the present paper are
summarized below:

• This work introduces a new supervised implementation of the VAE model, hereafter
referred to as the VAE embedded with Classification (VAEC) model, for detecting and
diagnosing the WT operating conditions. The VAEC allows the representation of the
WT condition in a low-dimensional and physically representative space.

• The VAEC latent space as a visualization tool for the WT condition is introduced and
illustrated with two case studies. The proposed visualization tool derives directly from
the VAEC model when the latent space dimension is set as two or three. The resulting
2D or 3D visualization is interpretable and is expected to enhance trust and confidence
among O&M practitioners.

• A HI is introduced based on the VAEC encoding of SCADA datasets into the VAEC
latent space. The proposed HI uses the Mahalanobis distance to measure how far
data points are from the healthy cluster. The Exponentially Weighted Moving Aver-
age (EWMA) control chart is then used to detect trends in the daily average of the
Mahalanobis distance [30]. Tests with real data show that the proposed HI allows the
detection of abnormal conditions earlier than competing approaches.
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1.3. Paper Organization

This paper is organized as follows. Section 2 describes the SCADA database from
an operating wind farm. Section 3 reviews the VAE model. Section 4 introduces the
VAEC model. It is then used in an approach comprising both CM and a visualization
tool. Section 5 presents the methodology. Section 6 shows encouraging results from the
implementation of the proposed approach in case studies. Finally, Section 7 concludes
the work.

2. SCADA Database

This work uses data from a North American wind farm comprising over a hun-
dred WTs. The database covers two years and four months of operation, a period that
includes occurrences of multiple abnormal behaviors, some of which characterize the
degradation or failure of specific critical components. The machines are horizontal and
upwind and have three-blade rotors of nearly 90 m diameter and a hub height of 80 m. Each
WT has a rated power of 1.85 MW and a rated wind speed of Vr = 13 m/s. The WTs are
pitch-controlled with cut-in wind speed Vin = 3.5 m/s and cut-off wind speed Vout = 20 m/s.

Temperature measures are commonly used to detect abnormal conditions in WT com-
ponents when no vibratory measure is available Beretta et al. [31], which is the case for
the WTs analyzed in the present study. Five interest conditions are summarized in Table 1.
“HY” is the reference representing healthy operation. Four of the selected conditions consist
of overtemperature at critical components. Ice accretion on blades can happen in WTs
operating under icing conditions, eventually resulting in non-winterized WTs [32], as is the
case for the units under analysis.

Table 1. WT conditions of interest to demonstrate the proposed CM approach.

ID Description

HY Healthy condition
BEA Main bearing overtemperature
GBX Gearbox oil overtemperature
GEN Generator stator winding overtemperature
ICE Ice accretion on blades
SWT Gearbox oil overtemp. from thermal switch

The database made available for the present research comprises 35 SCADA measures
for each WT. The SCADA system comprises multiple sensors, including geometrical,
kinematic, thermal, and electrical measures. The SCADA measures are continuously
acquired at frequencies that depend on each sensor and then stored following the 10-min
aggregation industrial standard, i.e., each data point is the average of measures over a
period of 10 minutes [33]. This data format is suitable for performance monitoring and
eases data management and processing [34].

As evidenced by Cheng and Chen [14], the appropriate selection of informative
features enhances the discriminative power of autoencoding models such as the VAE. In the
present study, the selection of the SCADA measures was guided by the sensitivity analysis
specific to each interest condition [14] and general feature selection criteria [28,34].

Each abnormal condition has key features indicating the physical nature of the condi-
tion itself. For example, the main bearing temperature TBEA (◦C) is the most informative
feature to analyze the BEA condition. Analogously, the gearbox oil temperature TGBX−OIL
(◦C) is essential to analyze GBX and SWT; generator temperature TGEN (◦C) is essential to
analyze GEN. The ICE condition can be characterized from the power curve, i.e., from the
pair wind speed WS (m/s) and active power P (kW) [35].

Some of the available measures add little or no information to the characterization
of the WT condition. Such a lack of informative power can be related to three reasons.
First, some variables are highly correlated with already selected measures [36]. For exam-
ple, the battery box temperature is measured at three positions TBAX−BOXi, i ∈ {1, 2, 3}.
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The cross-correlation coefficient between each pair among these three measures is one;
thus, only TBAX−BOX1 was retained to describe the battery box temperature. Second, the
10-min average erases any significant information from measures varying at a very high
frequency, such as the electrical frequency and voltage (both neglected in the model) [37].
Thirdly, some variables are too scarce, i.e., their time series present many missing or non-
numerical entries [38]. Such is the case for the nacelle yaw position angle. Finally, it is
worth mentioning that no vibratory or acoustic measures were available for the wind farm
under analysis.

In light of the previous considerations, the present work uses the 13 key SCADA
measures listed in Table 2. For each measure, the upper and lower bounds (LB and UB,
respectively) were defined from the statistical analysis of the measures from all wind
turbines. Such bounds have a twofold goal in pre-processing: first, filtering out physically
incoherent values, i.e., values outside of the interval [LB, UB]; second, normalizing the
measures into the [0, 1] interval with min-max normalization [38].

Table 2. SCADA measures used as features with the respective lower (LB) and upper (UB) bounds.

Measure Symbol Unit LB UB

Wind Speed WS m/s 0 31
Rotor Speed nROTOR rpm 0 18
Active Power P kW 0 2000
Ambient Temp. TAMB °C −25 45
Nacelle Temp. TNAC °C −20 70
Main Bearing Temp. TBEA °C −20 70
Gearbox Bearing Temp. TGBX−BEAR °C 0 100
Gearbox Oil Temp. TGBX−OIL °C 0 100
Generator Temp. Position 1 TGEN1 °C −10 140
Generator Temp. Position 2 TGEN2 °C −10 140
Generator Cooling Temp. TGEN−COOL °C −10 120
Pitch Axis Box Temp. TAX−BOX °C 0 60
Battery Box Temp. Position 1 TBAT−BOX1 °C 0 45

Besides the raw SCADA measures, the database includes SCADA log files and O&M
reports. Both sources contain information on eventual underperformance root causes,
degradation symptoms, and failure patterns in specific components. One can exploit such
metadata to select the abnormal conditions in a given wind farm. The SCADA log files
indicate exceptions on the WT operation, while the O&M reports are multi-entry forms
filled out by the O&M practitioners.

Section 5.1 describes the definition and labeling of the condition-specific datasets.
Figure 1 depicts the distribution of the datasets of interest in two plots.

Figure 1. Distribution of the datasets of interest in (a) the normalized power curve and in the (b) TBEA

versus nROTOR plot.
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The superposition of clusters in Figure 1 illustrates the difficulties in characterizing
the WT conditions based on subspaces of the high-dimensional WT physical space. Rather
than analyzing such a space, the approach proposed in the present work is based on a
low-dimensional representation of the WT condition.

3. Background

A brief description of the VAE model in Section 3.1 is followed by the characterization
of the VAE latent space for multiple-class databases in Section 3.2. Then, Section 3.3 reviews
semi-supervised and supervised implementations of the VAE.

3.1. Variational Autoencoder

Kingma and Welling [5] introduced the VAE as a generative model combining vari-
ational Bayesian and deep learning methods. We refer to [39,40] for a comprehensive
presentation of the VAE. A brief description of the VAE is given below.

Let x = [x1, . . . , xnF ]
T ∈ RnF be a vector describing the physical state of an arbitrary

system. The VAE is a Deep Neural Network (DNN) model that builds an approximation
for x, denoted x̂, through three transformations, namely the encoder, the reparametrization
trick, and the decoder. Figure 2 illustrates the VAE architecture.

x
Encoder

µ, σ = fφ(x)

µ

σ

ε

.

+

LKL
LRE

z
Decoder
x̂ = hθ(z)

x̂

Figure 2. Schematic representation of the VAE model. The dimension of the input x and the output x̂
is nF (number of features describing the system). The dimension of the latent (or code) space variable
z is nL, with nL < nF. The loss function components LRE and LKL are highlighted.

The encoder is a DNN with parameters φ that maps x into the latent space mean
µ ∈ RnL and standard deviation σ ∈ RnL , as given by Equation (1), where nL < nF.

fφ : x 7→ {µ, σ},RnF → RnL ×RnL (1)

The reparametrization trick introduces a variational Bayesian approximation to the
latent space [40]. It maps the µ and σ into the latent variable z ∈ RnL according to
Equation (2), where ε ∼ N (0, 1) is a nL-dimension Gaussian vector with sample space E ,
and • is the element-wise product.

g : {µ, σ, ε} 7→ z = µ+ σ • ε,RnL ×RnL × E → RnL . (2)

Finally, the VAE decoder is a DNN mapping the latent space variable z into the
VAE output x̂, as given by Equation (3), where θ is the set of the decoder parameters.

hθ : z 7→ x̂,RnL → RnF . (3)

Training the VAE involves minimizing the loss function LVAE with an algorithm such as
the stochastic gradient descent. The VAE loss function is given by Equation (4), where LRE
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is the reconstruction error, LKL is the Kullback-Liebler (KL) divergence, and the coefficient
βkl > 0 is set to prevent the KL-vanishing problem [41,42].

LVAE = LRE + βklLKL (4)

The reconstruction error LRE is given by Equation (5):

LRE =
1

nF

nF

∑
j=1

(xj − x̂j)
2 (5)

The LKL loss function measures the statistical distance between the latent variable
distribution and the multivariate Gaussian distribution. Equation (6) gives LKL as a
function of µ and σ.

LKL =
1
2

nL

∑
j=1

(σ2
j + µ2

j − logσ2
j − 1). (6)

Such training forces the VAE parameters to assume values so that (i) the encoder
keeps essential information from the physical space and (ii) the decoder reconstructs
a good approximation for the input features from the latent space variable. Moreover,
the variational approximation implies that (iii) the encoding of the training database projects
points in the latent space that follow approximately a multivariate Gaussian distribution.

3.2. VAE Latent Space for a Multiple-Condition Database

Once the VAE is trained, the encoding of the training database projects its points
into the latent space. Due to the variational approximation, datasets corresponding to a
particular condition are encoded into a specific region in the latent space. The distribution
of the encoded training points in the latent space depends on the characteristics of the
training database and the βkl coefficient. For instance, the encoding of a homogeneous
database, i.e., whose points correspond to only one condition, results in a unique cluster
of points in the latent space. A heterogeneous training database, on the contrary, projects
into multiple clusters in the VAE latent space. In both cases, the set of all points together
follows approximately the multivariate Gaussian distribution in the latent space. Setting a
relatively large βkl forces the latent space points to follow the Gaussian distribution.

The clusters corresponding to multiple datasets can be disjointed or entangled. Datasets
sharing common patterns tend to project into superposed clusters, while very different
behaviors would project into disentangled clusters. These cases are illustrated in Figure 3
for a subset of the MNIST database [43]. Notice that the clusters corresponding to the
numbers 2, 3, and 8 are partially superposed.

Figure 3. A 2D latent space corresponding to the VAE trained on the subset {2,3,6,8} of the
MNIST database with βkl = 0.001.
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Apropos, one can characterize a cluster by its distribution in the latent space. Let
Ωk be a cluster with Nk points {zΩk

1 , . . . , zΩk
Nk
} in the nL-dimension VAE latent space. The

cluster’s centroid CΩk is the average position, with coordinates CΩk
` , ` ∈ {1, . . . , nL}, given

by Equation (7).

CΩk
` =

1
Nk

Nk

∑
i=1

zΩk
i,` (7)

3.3. Semi-Supervised and Supervised Variational Autoencoder

Latent space configurations with disentangled clusters better suit the purpose of using
the latent space to characterize the original system. However, the VAE-based modeling
of real-world cases with heterogeneous databases often implies a latent space with en-
tangled clusters. Multiple works address techniques to disentangle clusters in the latent
space [14,44–47].

Cheng and Chen [14] use the VAE to detect and diagnose abnormal behavior in ball
bearings. The authors use sensitivity analysis to guide the selection of features, which leads
to the disentanglement of clusters in the latent space and to the enhanced performance of
the proposed VAE-based detection approach.

Another approach to increase the disentanglement of clusters in the VAE latent space
and enhance the overall VAE capabilities is to include information on the classes of subsets
of the database, leading to semi-supervised and supervised implementations of the VAE.
Kingma et al. [44] tackle the problem of classification when only a small share of the
database is labeled. Sohn et al. [47] propose the fully supervised model Conditional VAE
that allows for specific condition data generation since its decoder takes the classes as input.

More recently, Proteau et al. [12] introduced an approach based on the VAE model with
two independent training steps. After training a classical VAE in the first step, an NN model
is defined as the combination of VAE encoder layers (including the reparametrization trick)
and a classification neural network taking the latent space as input. The final model is an
ANN inheriting the encoder’s architecture that allows the disentanglement of the clusters
in the latent space.

4. Proposed Condition Monitoring Approach

The present work introduces a new supervised implementation of the VAE aiming
at disentangling the multiple clusters in the latent space. This model is referred to as
VAEC and is presented in Section 4.1. Ultimately, the VAEC latent space with disentangled
clusters will serve the definition of both the HI and the visualization tool in Sections 4.2
and 4.3, respectively.

4.1. VAEC Model

The VAEC consists of a VAE embedded with a classification NN, as schematized
in Figure 4.

In the VAEC, the classification NN takes the latent space variable z ∈ RnL as input
and its output ŷ ∈ RnC is defined by the Softmax activation function [48]. The components
ŷi, i ∈ {1, . . . , nC}, indicate therefore the probability that the system’s class is si among the
set of classes S = {s1, . . . , snC}. See Equation (8).

gγ : z 7→ ŷ,RnL →
{

ŷ ∈ [0, 1]nC :
nC

∑
i=1

ŷi = 1

}
. (8)
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x
Encoder

µ, σ = fφ(x)

µ

σ

ε

y

.

+

LKL
LRE

LCL

z
Decoder
x̂ = hθ(z) x̂

ŷ
Classifier
ŷ = gγ(z)

Figure 4. Schematic representation of the VAEC model. The input of the classifier NN is the latent
space variable z, and its output is the vector ŷ with dimension nC (number of classes). The loss
function components are highlighted.

The classifier NN is identified by minimizing the classification loss function LCL.
An usual formulation for LCL is the cross-entropy function given by Equation (9), where
y = ek ∈ RnC results from the categorical one-hot-encoding transformation [48] corre-
sponding to the set of labels S , and ŷ is the Softtmax-shaped output of the classifier gγ.

LCL = y · log(ŷ) + (1− y) · log(1− ŷ). (9)

The VAEC loss function is given by Equation (10). It combines LRE (Equation (5)), LKL
(Equation (6)), and LCL (Equation (9)). The weights βkl ≥ 0 and βcl ≥ 0 allow us to adjust
the loss function components. Setting βcl = 0 retrieves the classical VAE.

LVAEC = LRE + βklLKL + βclLCL (10)

Figure 5 depicts the VAEC latent space for the subset of the MNIST database consid-
ered previously.

Figure 5. The 2D latent space corresponding to the VAEC trained with the MNIST database with
βkl = 0.001, βcl = 0.1.

It is worth noticing that the loss function coefficients βkl and βcl have different impacts
on the latent space distribution. While the βkl coefficient is mainly associated with the scat-
tering of points in the latent space, the coefficient βcl directly affects the clusters’ separation.
For instance, setting a relatively large βkl value implies a latent space distribution closer
to the multivariate Gaussian distribution. On the other hand, setting a large βcl forces the
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VAEC training to distinguish the different WT conditions. The proposed approach is partic-
ularly suitable for databases with labeled conditions, as is the case of WTs characterized by
SCADA measures and whose operating conditions can be characterized.

4.2. Proposed Health Indicator, Detection, and Diagnosis

Once the VAEC is trained on the WT condition database, its encoder projects the
training database into the latent space. For a VAEC identification chosen as a reference, one
can characterize the distribution of the cluster ΩHY ⊂ RnL corresponding to the healthy
dataset HY. Let nHY � 1 be the number of points belonging to ΩHY. The vectors of the
coordinates of all points ZHY

` ∈ RnHY , ` ∈ {1, . . . , nL}, allow the estimation of the average
position CHY ∈ RnL and the covariance matrix SHY ∈ RnL×nL . The Mahalanobis distance
between a point z ∈ RnL in the latent space and the ΩHY distribution is then given by
Equation (11).

dM(z) =
√
(z−CHY)TS−1

HY(z−CHY) (11)

In the latent space, a data point corresponding to a degraded condition is encoded
to a position far from the ΩHY cluster, thus implying a larger distance dM(z). The HI IDm
is defined as the average of the Mahalanobis distances during the period Tk, as given by
Equation (12), where n[Tk] is the number of data points in Tk.

IDm(Tk) =
1

n[Tk]
∑

t∈Tk

dM(z(t)) (12)

The EWMA control chart is used to detect trends in IDm. For the WT under analy-
sis, data from operation in a healthy condition are used to estimate the reference statis-
tics for IDm, particularly the average ZM and the standard deviation sM. The EWMA
time series associated with the HI IDm, EWMADm, is then given by the initial condition
EWMADm(0) = ZM, and the recursive relation in Equation (13) for k ∈ {1, 2, . . .}, where
λ ∈ [0, 1] is the EWMA parameter that attributes weight to the previous observations of
the variable under analysis.

EWMADm(k) = λIDm(k) + (1− λ)EWMADm(k− 1). (13)

The Upper Control Limit (UCL) is given by Equation (14), where L is a parameter of
the EWMA control chart.

UCL(i) = ZM + L · sM

(
λ

2− λ

)
[1− (1− λ)2i]. (14)

The base detection criterion is given by Equation (15).

EWMADm(k) > UCL(k). (15)

In the present work, each subgroup Tk covers one calendar day, which corresponds to
up to 144 time steps. The EWMA coefficients are set as λ = 0.1 and L = 3. Finally, an alarm
is triggered when the base detection criterion is met in three consecutive time steps.

The settings mentioned above follow practical recommendations for the EWMA control
chart on Gaussian-distributed variables and analysis on multiple case studies from the
WT condition database. The Mahalanobis distance and the EWMA control chart are also
exploited by Renström et al. [21]. Contrary to our proposition, the previous work applied the
EWMA control chart directly on the Mahalanobis distance (the corresponding distribution
is approximately a χk, not Gaussian) and an exceptionally small λ (0.007).

The VAEC classifier has a twofold purpose in the proposed approach: first, it allows
adjustment of the VAEC latent space; second, it gives information on the diagnosis of the
WT condition via the output ŷ. The WT condition si ∈ S is indeed given by argmax{ŷ}.
It is worth mentioning that the detection captures the point at which the projection of the
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WT in the latent space is distanced from the healthy condition cluster ΩHY. In such a case,
the projection of the WT in the latent space might move closer to any of the abnormal
condition clusters under analysis. The diagnosis of the transition to a new abnormal
condition follows from both the classifier output and the visualization tool.

4.3. Visualization Tool

Setting the VAEC latent space dimension as two or three allows us to use this low-
dimensional space as a visualization tool. The proposed visualization consists of two
superposed layers. The first layer consists of the clusters resulting from the VAEC encoding
of the training database. It is therefore fixed once a reference VAEC is adopted. The second
layer projects the successive datasets xSCADA

τk
over the first layer. This projection is updated

periodically, which allows visualization of the evolution of the WT condition in the map of
conditions set by the first layer.

To improve the readability of the visualization tool for data covering larger periods,
one can plot the centroids corresponding to the projection of datasets instead of individual
data points. This choice can be adjusted to suit different periods of analysis and O&M
requirements. A four-day time window is used in the present work. Additionally, a se-
quential colormap highlights the timeline in the visualization tool, with cyan dots at the
beginning of the timeline and magenta dots for the latest data points. Finally, a gray dashed
line connects the successive dots.

5. Methodology

The implementation of the proposed approach consists of two phases, namely online
and offline, as schematized in Figure 6.

WIND FARM
DATABASE

O&M
reports

SCADA
log files

SCADA
raw data

OFFLINE PHASE

Database
Definition

Condition
Database

Supervised
Training

Detection
criteria
settings

- Labelling
- Balancing
- Partitioning

x E

y

z D x̂

ŷC

HI

ONLINE PHASE

xSCADAτ,WT

Pre-
Processing

xτ
VAEC

Encoder

zτ

Health
Indicator

IDτ
Detection

Status

VAEC
Classifier

ŷτ
Diagnosis

Status

VAEC
Decoder

x̂τ

Visualization Tool

Figure 6. Flowchart identifying the phases of the proposed approach with the respective steps.
The wide gray arrows symbolize steps implemented once with information from multiple machines.
The black arrows indicate transformations specific to one WT and repeated periodically.
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The offline phase is performed once and takes data from multiple machines of the
wind farm assumed to be from the same model and to operate in similar conditions. On the
other hand, the online phase is periodically fed with SCADA measures from one WT and
gives an updated CM status for this specific machine. The building blocks comprising the
online phase’s pipeline are defined in the offline phase.

The preparation of the multiple-condition labeled database comprises filtering and
normalizing the SCADA data, labeling, balancing, and partitioning. These steps are
discussed in Sections 5.1 and 5.2. Section 5.3 describes the architecture, hyperparameters,
and training of the VAEC.

5.1. Database Pre-Processing

The pre-processing of the database follows the industry practices for WT SCADA data,
which includes filtering and normalization.

Measures from the SCADA system eventually present unlikely values (e.g., beyond phys-
ical limits) that can bias and distort the CM approach. Filters are therefore used to remove any
physically incoherent values. Band-pass filters specific to each measure are set with the lower
and upper limits from Table 2 [49]. For the database under analysis, data outside the limits in
Table 2 correspond to less than 1% of all data points.

Moreover, the CM analysis considers only data corresponding to energy production.
A second filtering step is therefore included to select data points verifying P(kW) > 0 and
nROTOR(rpm) > 0.

After the two filtering steps, each measure is normalized to the [0, 1] interval for use in
the NN models. The min-max normalization technique [50] uses the limits from Table 2.

5.2. Data Labeling, Balancing, and Partitioning

The task of dataset labeling uses three sources of information: SCADA raw measures,
SCADA log files, and O&M reports. Combining these data and metadata allows for the
definition of the datasets corresponding to the conditions listed in Table 1. To detect
a changing operating condition early on, the data points selected to represent a given
condition might exceed the set of data points with a reported SCADA exception. For a
given condition, the three steps to define the dataset are the following:

(i) Select a subset of the WT affected by the condition of interest. This step uses the
SCADA log files and the O&M reports.

(ii) Enumerate the degradation cases from the subset of WT defined in (i). The outcome
of this step is a list of cases, each identified by the WT identifier, the starting instant,
and the ending instant.

(iii) Gather the data corresponding to the cases listed in (ii). The resulting dataset com-
prises data points from multiple wind turbines and is supposed to represent the
overall condition of interest.

Figure 7 illustrates step (ii) of the definition of the GBX dataset. The gearbox oil
temperature TGBX−OIL is plotted within an interval comprising the “Gearbox oil overtem-
perature” SCADA alarm. The threshold for abnormal behavior is manually set considering
multiple samples for the same condition, which leads to the definition of the extended
dataset highlighted in Figure 7.

The datasets resulting from step (iii) have different numbers of points. Therefore, a data
augmentation technique based on the VAE model is used to balance the datasets [51,52].
Precisely, each homogeneous condition dataset is used to train a VAE model. Its latent space
is the support to randomly generate points using the Gaussian distribution. Then, the VAE
decoding of the latent space points generates the augmented dataset [52]. The target
number of points for each dataset is n =10,000.
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Figure 7. Illustration of the definition of the dataset “Gearbox oil overtemperature” considering
time series for two normalized measures: (a) ambient temperature TAMB(1) and (b) gearbox oil
temperature TGBX−Oil(1). Time is indicated in the format YYYY-MM.

The final database is a collection of six datasets with n = 10,000 data points each.
For the sake of training and evaluation, this database is partitioned into three databases:
training (with 50% of all data points), validation (20%), and testing (30%).

5.3. VAEC Model: Architecture and Training

The proposed approach was implemented with Python (ver. 3.10). In particular,
the implementation of the NN models used TensorFlow [53] and the Keras API. The VAEC
architecture and training hyperparameters are described below. These settings were chosen
following sensitivity analysis with the training and testing databases.

• Dimensions: input space nF = 13; latent space nL = 2; classification output nC = 6.
• Architecture:

– Encoder: the encoder is a DNN with three hidden layers. The number of nodes per
layer is, successively, 13 (input layer), 32, 16, 8, and 2 (output layer). The encoder
input layer is set with the ReLU activation function, while tanh is used in the
hidden layers. Moreover, a 10% dropout layer enters after the 32-node layer to
prevent overfitting.

– Decoder: the decoder is symmetric to the encoder (nodes per layer: 2, 8, 16, 32,
and 13). The decoder output layer is set with the linear activation function. All
the other decoder layers are set with the tanh activation function.

– Classification NN: the input of the classification NN is the latent space with
dimension 2. The successive hidden layers have a decreasing number of nodes:
128, 64, 32, and 16. The tanh activation function is used in the input and the
hidden layers. Finally, the classification output is a six-node layer using the
Softmax activation function.

• Training: the Adam algorithm [54] is used with learning rate 0.0001, clipvalue 0.3,
number of epochs 1024, and batch size 128.

6. Results and Discussion

The reference VAEC model is presented in Section 6.1. Two case studies in Section 6.2
demonstrate the proposed approach.
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6.1. Reference VAEC Model

Training the VAE with the wind turbine condition database described in Section 2
results in latent spaces with entangled clusters. This is illustrated in Figure 8 for βkl = 1
and βkl = 0.05.

Figure 8. VAE latent space distribution for the labeled wind turbine condition database from Table 1.
(a) βkl = 1 (b) βkl = 0.05.

Adjusting βkl to decrease the weight of the KL loss disentangles the clusters to some
extent, but not sufficiently for the purposes of defining the health indicator and an intuitive
visualization tool. The VAEC was designed to disentangle the clusters corresponding to
the labeled database of wind turbine conditions.

Due to the randomness of the VAEC training and the reparametrization trick, multiple
training instances have different outcomes. In particular, the encoding of the training
database has different projections into the latent space. Comparative analysis with multiple
loss function coefficients led to the choice of the hyperparameters βkl = 0.05 and βcl = 10,
which gives a classification confusion matrix with accuracy higher than 98% for multiple
training instances, and a latent space with overall disentangled clusters.

Figure 9 depicts the VAEC-encoding projection and confusion matrix for one specific
training of the VAEC model with the retained loss function coefficients—βkl = 0.05 and
βcl = 10. The corresponding VAEC model (architecture and identified parameters) is
adopted as the reference for the online CM approach.

Figure 9. VAEC latent space distribution for the labeled wind turbine condition database from Table 1
with βkl = 0.05 and βcl = 10. (a) Encoding of train and test databases. (b) Classifier confusion matrix
for the test database.
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Notice that the VAEC encoding of the test datasets occupies virtually the same regions
as the corresponding training datasets in Figure 9a. The encoding of the training database
defines the visualization tool’s static layer. The VAEC classifier has accuracy close to 100%
for the training instance above, as depicted in Figure 9b. Such high performance can be
related to the quality of the semi-manual labeling of the datasets. It also supports the choice
of the latent variable z as the input for the classifier in the VAEC model.

6.2. Case Studies

Two case studies demonstrate the proposed approach: Section 6.2.2 analyzes the case
of a main bearing degradation until failure, and Section 6.2.1 presents the impact of a severe
cold wave on the WT operation.

6.2.1. Case Study I: Main Bearing Degradation

Case Study I refers to the degradation of the main bearing of the machine WTA within
the period [1 May 2020, 1 August 2020]. This case is particularly suitable to demonstrate
the proposed approach given that it starts at the healthy condition and then degrades
progressively until its failure and shutdown. The machine WTA was kept shut down for
more than a month twice within 2020: first, after the shut down at tShutDown1 = 1 March
2020; then, months later, after the shut down at tShutDown2 = 10 August 2020. The available
data suggest that a provisory maintenance intervention occurred in March, and a second
one was performed in August after the main bearing failure. Such a chronology of O&M
interventions is related to the weather conditions at the wind farm location. Indeed,
historical data show that the windiest months were April, May, and June. August, on the
contrary, had the lowest average wind speed.

The reference VAEC model allows the projection of the data points from Case Study I,
resulting in the visualization tool depicted in Figure 10.

Figure 10. Visualization tool for Case Study II: WTA, [1 May 2020, 1 August 2020]. Cyan-colored
markers correspond to the beginning of the timeline, and magenta-colored markers toward the end
of it.

In practice, the visualization tool might be updated periodically, with the inclusion
of new points in the trajectory representing the wind turbine condition. Figure 10 can be
interpreted as a snapshot of the visualization tool at t = 1 August 2020. It shows that the
WT was initially in the healthy cluster (as the cyan markers superpose the HY cluster)
and then clearly shifted to the main bearing overtemperature (as the magenta markers
superpose the BEA cluster).
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The detection follows from the HI IDm and the EWMA control chart, as introduced
in Section 4.2. Figure 11a depicts IDm and EWMADm. These time series lead to an alarm
at tD = 15 June 2020. This date is 11 days before the SCADA alarm at tS = 26 June 2020 and
one week before the detection by the regression model residue-based approach proposed in
Cambron et al. [55]. The latter method performs the main bearing degradation exclusively
and leads to detection at tDo2 = 21 June 2020. The same period [1 October 2019, 15 December
2019] is used as the reference for the healthy condition in both estimations.

Figure 11. Case Study II: (a) detection, (b) diagnosis. Time is indicated in the format YYYY-MM-DD.

The diagnosis is provided by the classifier output ŷ depicted in Figure 11b. Each
vertical line corresponds to a 10-min time step. HY is the most probable condition at the
beginning of the period, with ŷHY = 1 most of the time. After 15 June 2020, however,
the most probable condition becomes the main bearing overtemperature (BEA). There is
some dispersion on ŷ, the classifier eventually indicating other overheating conditions such
as GEN and STW. The authors judge that such dispersion partially reflects the evolution of
the WT’s condition over time. Ultimately, one might define the diagnosis status by setting
adequate post-processing on ŷ. The definition of the diagnosis status is left for future work.

The diagnosis in the proposed approach is based on the classifier DNN that consti-
tutes the VAEC model. The confusion matrix from Figure 9b evidences that the VAEC
properly categorizes among selected WT conditions, therefore outperforming the diagnosis
based only on the unsupervised VAE model [23]. The VAEC model is simpler than both
AVAE_SDL [28] and CVAE-GAN [27]. A strict comparison of the performance of the three
models is a difficult task since they use different types of inputs. For instance, the diagnosis
from Zhang et al. [27] relies on vibration data unavailable in the database under analysis.

6.2.2. Case Study II: Impact of a Cold Wave

This case study analyzes the operation of the machine WTB under icing conditions
observed during the 2021 cold wave in North America [56]. The ambient temperature
measured by the WTB’s SCADA system reached values as low as TAMB − 16.5 ◦C in
February 2021. The blades of the WT under analysis are not equipped with anti-icing
systems. In case of exceptional icing conditions, careful condition monitoring is required to
detect and diagnose ice accretion on blades, which should trigger protocols for curtailment
or even shutdown [57].

Figure 12 depicts the visualization tool for Case Study II, i.e., data points from the
machine WTB covering the period of interest [1 December 2020, 4 March 2021]. Such a
projection uses the reference VAEC model defined in Section 6.1.
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Figure 12. Visualization tool for Case Study I: WTB, period [1 December 2020, 4 March 2021].

Figure 12 reveals a shift in the WT condition toward the ICE cluster. It is worth noticing
that the trajectory in the latent space remains mostly inside the HY cluster, indicating that
the ice accretion observed during the period under analysis was milder than the cases in
the ICE training dataset. The power curve confirms this since the Case Study II data points
remain closer to the HY cluster than the ICE cluster. More severe ice accretion is expected
to shift the projection into the ICE cluster.

The proposed CM approach captures the WTB changing condition under the 2021 cold
wave. Indeed, as depicted in Figure 13a, the period of the cold wave corresponds to an
increased value for IDm, with an alarm triggered at tD = 15 February 2021. The EWMA
control chart used the period [5 December 2020, 5 January 2021] as a reference.

Figure 13. Case Study I: (a) detection and (b) diagnosis. Time is indicated in the format YYYY-MM-DD.

Figure 13b depicts the classifier output ŷ. Here, ŷHY = 1 most of the time, except for
a few time steps when ŷICE = 1. The comparison with competing approaches is left for
future work.

From the O&M standpoint, the actions to take in the scenario of ice accretion on blades
are limited. In extreme cases, curtailment or shutdown might be necessary to prevent
overloading of the rotor blades. After such an event, damage detection specific to the wind
turbine blades would be recommended to assess the health condition [58,59].
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7. Summary and Conclusions

The present work introduced a new CM approach allowing for the early detection and
diagnosis of abnormal conditions in WTs. The proposed approach includes a visualization
tool for enhanced interpretability.

A supervised implementation of the VAE model was introduced to project the multiple-
condition SCADA system into a 2D disentangled representation space. This 2D represen-
tation is a built-in visualization tool for the AI model. Furthermore, the low-dimensional
representation is representative of the dynamics of the physical measures, and it led to
the definition of the proposed HI, the respective alarm criteria, and the classifier giving
diagnosis information.

It was shown that each condition in the physical space was VAEC-encoded into a
specific region in the latent space. In such a space, the evolution of the WT condition is
expressed as a trajectory in a 2D space. The proposed IDm uses the Mahalanobis distance to
measure the distance between data points and the healthy cluster distribution in the latent
space. The EWMA control chart allowed for the detection of changing trends in the HI
time series.

Two case studies pertinently demonstrated the potential of the proposed approach
in detecting, diagnosing, and visually representing abnormal conditions in WTs. The
proposed alarm criteria led to satisfactory anticipation of the SCADA alarms. In particular,
IDm triggered an alarm for main bearing overtemperature 11 days earlier than the best-
performing competing method. The two case studies illustrated the pertinence of the
visualization tool. In practice, the visualization tool would be updated periodically in the
online CM, providing a visual representation of any trends in the WT condition. Such a tool
enhances the interpretability of the outcomes, therefore easing its use by O&M practitioners.

It is worth mentioning that the supervised training of the VAEC implies the need
for labeled datasets. Such a task is time-consuming and costly. Fortunately, once the
offline phase is completed for a subset of WTs, the online CM is inexpensive, and its
parameters can be adjusted according to the in situ experience. Further research might
investigate alternatives to the VAEC model, eventually a semi-supervised VAE or methods
to disentangle the (unsupervised) VAE latent space. The proposed visualization tool is an
advantage compared to black-box models and establishes new examples for the literature
on interpretable AI. Nevertheless, metrics to evaluate the interpretability remain to be
established. A future investigation should evaluate the acceptability of the proposed
visualization tool among O&M practitioners. Finally, the industrial implementation of the
proposed approach would require evaluating the proposed approach within an extensive
selection of case studies and WT models.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
CM Condition Monitoring
DNN Deep Neural Network
EWMA Exponentially Weighted Moving Average
HI Health Indicator
KL Kullback-Liebler
LCOE Levelized Cost of Energy
NN Neural Network
O&M Operation and Maintenance
SCADA Supervisory Control and Data Acquisition
VAE Variational AE
VAEC VAE Embedded with Classification
WT Wind Turbine

References
1. Dao, C.; Kazemtabrizi, B.; Crabtree, C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy

2019, 22, 1848–1871. [CrossRef]
2. Costa, Á.M.; Orosa, J.A.; Vergara, D.; Fernández-Arias, P. New tendencies in wind energy operation and maintenance. Appl. Sci.

2021, 11, 1386. [CrossRef]
3. Nicod, J.M.; Chebel-Morello, B.; Varnier, C. From Prognostics and Health Systems Management to Predictive Maintenance 2: Knowledge,

Reliability and Decision; John Wiley & Sons: Hoboken, NJ, USA, 2017.
4. Tautz-Weinert, J.; Watson, S.J. Using SCADA data for wind turbine condition monitoring—A review. IET Renew. Power Gener.

2017, 11, 382–394. [CrossRef]
5. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2014, arXiv:1312.6114.
6. Helbing, G.; Ritter, M. Deep Learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198.

[CrossRef]
7. Badihi, H.; Zhang, Y.; Jiang, B.; Pillay, P.; Rakheja, S. A Comprehensive Review on Signal-Based and Model-Based Condition

Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis. Proc. IEEE 2022, 110, 754–806. [CrossRef]
8. Zemouri, R.; Levesque, M.; Amyot, N.; Hudon, C.; Kokoko, O.; Tahan, S.A. Deep convolutional variational autoencoder as a

2D-visualization tool for partial discharge source classification in hydrogenerators. IEEE Access 2019, 8, 5438–5454. [CrossRef]
9. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of

machine learning. In Proceedings of the IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA),
Turin, Italy, 1–3 October 2018; pp. 80–89.

10. Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and
slippery. Queue 2018, 16, 31–57. [CrossRef]

11. Tits, N.; Wang, F.; Haddad, K.E.; Pagel, V.; Dutoit, T. Visualization and interpretation of latent spaces for controlling expressive
speech synthesis through audio analysis. arXiv 2019, arXiv:1903.11570

12. Proteau, A.; Zemouri, R.; Tahan, A.; Thomas, M. Dimension reduction and 2D-visualization for early change of state detection in
a machining process with a variational autoencoder approach. Int. J. Adv. Manuf. Technol. 2020, 111, 3597–3611. [CrossRef]

13. Banko, L.; Maffettone, P.M.; Naujoks, D.; Olds, D.; Ludwig, A. Deep learning for visualization and novelty detection in large
X-ray diffraction datasets. Npj Comput. Mater. 2021, 7, 1–6. [CrossRef]

14. Cheng, R.C.; Chen, K.S. Ball bearing multiple failure diagnosis using feature-selected autoencoder model. Int. J. Adv. Manuf.
Technol. 2022, 120, 4803–4819. [CrossRef]

15. Zhao, H.; Liu, H.; Hu, W.; Yan, X. Anomaly detection and fault analysis of wind turbine components based on deep learning
network. Renew. Energy 2018, 127, 825–834. [CrossRef]

16. Wang, L.; Zhang, Z.; Xu, J.; Liu, R. Wind Turbine Blade Breakage Monitoring with Deep Autoencoders. IEEE Trans. Smart Grid
2018, 9, 2824–2833. [CrossRef]

17. Yuan, B.; Yuan, B.; Wang, C.; Luo, C.; Luo, C.; Jiang, F.; Jiang, F.; Long, M.; Yu, P.S.; Liu, Y. WaveletAE: A Wavelet-enhanced
Autoencoder for Wind Turbine Blade Icing Detection. arXiv 2019, arXiv:1902.05625.

18. Hemmer, M.; Klausen, A.; Van Khang, H.; Robbersmyr, K.G.; Waag, T.I. Health indicator for low-speed axial bearings using
variational autoencoders. IEEE Access 2020, 8, 35842–35852. [CrossRef]

19. Jiang, G.; Xie, P.; He, H.; Yan, J. Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information.
IEEE-Asme Trans. Mechatron. 2017, 23, 89–100. [CrossRef]

20. Wu, X.; Jiang, G.; Wang, X.; Xie, P.; Li, X.; Li, X. A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault
Detection. IEEE Access 2019, 7, 59376–59387. [CrossRef]

http://doi.org/10.1002/we.2404
http://dx.doi.org/10.3390/app11041386
http://dx.doi.org/10.1049/iet-rpg.2016.0248
http://dx.doi.org/10.1016/j.rser.2018.09.012
http://dx.doi.org/10.1109/JPROC.2022.3171691
http://dx.doi.org/10.1109/ACCESS.2019.2962775
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1007/s00170-020-06338-y
http://dx.doi.org/10.1038/s41524-021-00575-9
http://dx.doi.org/10.1007/s00170-022-09054-x
http://dx.doi.org/10.1016/j.renene.2018.05.024
http://dx.doi.org/10.1109/TSG.2016.2621135
http://dx.doi.org/10.1109/ACCESS.2020.2974942
http://dx.doi.org/10.1109/TMECH.2017.2759301
http://dx.doi.org/10.1109/ACCESS.2019.2914731


Energies 2023, 16, 4544 20 of 21

21. Renström, N.; Bangalore, P.; Highcock, E. System-wide anomaly detection in wind turbines using deep autoencoders. Renew.
Energy 2020, 157, 647–659. [CrossRef]

22. Lei, J.; Liu, C.; Jiang, D. Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Energy 2019,
133, 422–432. [CrossRef]

23. Roelofs, C.M.; Lutz, M.A.; Faulstich, S.; Vogt, S. Autoencoder-based anomaly root cause analysis for wind turbines. Energy AI
2021, 4, 100065. [CrossRef]

24. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine learning methods for
wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635. [CrossRef]

25. Peeters, C.; Guillaume, P.; Helsen, J. Vibration-based bearing fault detection for operations and maintenance cost reduction in
wind energy. Renew. Energy 2018, 116, 74–87. [CrossRef]

26. Barszcz, T. Vibration-Based Condition Monitoring of Wind Turbines; Springer: Berlin/Heidelberg, Germany, 2019.
27. Zhang, L.; Zhang, H.; Cai, G. The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep

learning generative model. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]
28. Liu, X.; Teng, W.; Wu, S.; Wu, X.; Liu, Y.; Ma, Z. Sparse dictionary learning based adversarial variational auto-encoders for fault

identification of wind turbines. Measurement 2021, 183, 109810. [CrossRef]
29. Proteau, A.; Zemouri, R.; Tahan, A.; Thomas, M.; Bounouara, W.; Agnard, S. CNC machining quality prediction using variational

autoencoder: A novel industrial 2 TB dataset. In Proceedings of the Prognostics and Health Management Conference, London,
UK, 27–29 May 2022.

30. Roberts, S. Control Chart Tests Based on Geometric Moving Averages. Technometrics 1959, 1, 239–250. [CrossRef]
31. Beretta, M.; Julian, A.; Sepulveda, J.; Cusidó, J.; Porro, O. An ensemble learning solution for predictive maintenance of wind

turbines main bearing. Sensors 2021, 21, 1512. [CrossRef]
32. Hochart, C.; Fortin, G.; Perron, J.; Ilinca, A. Wind turbine performance under icing conditions. Wind Energy Int. J. Prog. Appl.

Wind Power Convers. Technol. 2008, 11, 319–333. [CrossRef]
33. Standard IEC 61400; Wind Energy Generation Systems—Part 12-1: Power Performance Measurement of Electricity Producing

Wind Turbines. International Electrotechnical Commission: Geneva, Switzerland, 2022.
34. Pandit, R.; Astolfi, D.; Hong, J.; Infield, D.; Santos, M. SCADA data for wind turbine data-driven condition/performance

monitoring: A review on state-of-art, challenges and future trends. Wind Eng. 2022, 1, 20. [CrossRef]
35. Guo, P.; Infield, D. Wind turbine blade icing detection with multi-model collaborative monitoring method. Renew. Energy 2021,

179, 1098–1105. [CrossRef]
36. Zeng, H.; Dai, J.; Zuo, C.; Chen, H.; Li, M.; Zhang, F. Correlation Investigation of Wind Turbine Multiple Operating Parameters

Based on SCADA Data. Energies 2022, 15, 5280. [CrossRef]
37. Beretta, M.; Pelka, K.; Cusidó, J.; Lichtenstein, T. Quantification of the Information Loss Resulting from Temporal Aggregation of

Wind Turbine Operating Data. Appl. Sci. 2021, 11, 8065. [CrossRef]
38. Marti-Puig, P.; Blanco-M, A.; Cárdenas, J.J.; Cusidó, J.; Solé-Casals, J. Effects of the pre-processing algorithms in fault diagnosis of

wind turbines. Environ. Model. Softw. 2018, 110, 119–128. [CrossRef]
39. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. Found. Trends® Mach. Learn. 2019, 12, 307–392. [CrossRef]
40. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
41. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. Beta-vae: Learning basic visual

concepts with a constrained variational framework. In Proceedings of the International Conference on Learning Representations,
San Juan, Puerto Rico, 2–4 May 2016.

42. Zemouri, R.; Lévesque, M.; Boucher, É.; Kirouac, M.; Lafleur, F.; Bernier, S.; Merkhouf, A. Recent Research and Applications in
Variational Autoencoders for Industrial Prognosis and Health Management: A Survey. In Proceedings of the Prognostics and
Health Management Conference (PHM-2022 London), London, UK, 27–29 May 2022; pp. 193–203.

43. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.
Mag. 2012, 29, 141–142. [CrossRef]

44. Kingma, D.P.; Mohamed, S.; Jimenez Rezende, D.; Welling, M. Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems 27 (NIPS 2014); NeurIPS: New Orleans, LA, USA, 2014; Volume 27.

45. Mathieu, E.; Rainforth, T.; Siddharth, N.; Teh, Y.W. Disentangling disentanglement in variational autoencoders. In Proceedings of
the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 5–9 June 2019; pp. 4402–4412.

46. Ezukwoke, K.; Hoayek, A.; Batton-Hubert, M.; Boucher, X. GCVAE: Generalized-Controllable Variational AutoEncoder. arXiv
2022, arXiv:2206.04225.

47. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. In Advances in
Neural Information Processing Systems 28 (NIPS 2015); NeurIPS: New Orleans, LA, USA, 2015; Volume 28.

48. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2022.

49. Oliveira-Filho, A.M.d.; Cambron, P.; Tahan, A. Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and
Informed by the Principle of Energy Conservation. In Proceedings of the 2022 Prognostics and Health Management Conference
(PHM-2022 London), London, UK, 27–29 May 2022; pp. 276–282.

50. Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462.

http://dx.doi.org/10.1016/j.renene.2020.04.148
http://dx.doi.org/10.1016/j.renene.2018.10.031
http://dx.doi.org/10.1016/j.egyai.2021.100065
http://dx.doi.org/10.1016/j.renene.2018.10.047
http://dx.doi.org/10.1016/j.renene.2017.01.056
http://dx.doi.org/10.1109/TIM.2022.3178483
http://dx.doi.org/10.1016/j.measurement.2021.109810
http://dx.doi.org/10.1080/00401706.1959.10489860
http://dx.doi.org/10.3390/s21041512
http://dx.doi.org/10.1002/we.258
http://dx.doi.org/10.1177/0309524X221124031
http://dx.doi.org/10.1016/j.renene.2021.07.120
http://dx.doi.org/10.3390/en15145280
http://dx.doi.org/10.3390/app11178065
http://dx.doi.org/10.1016/j.envsoft.2018.05.002
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1109/MSP.2012.2211477


Energies 2023, 16, 4544 21 of 21

51. Tanner, M.A.; Wong, W.H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 1987, 82, 528–540.
[CrossRef]

52. Chadebec, C.; Thibeau-Sutre, E.; Burgos, N.; Allassonnière, S. Data augmentation in high dimensional low sample size setting
using a geometry-based variational autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2879–2896. [CrossRef]

53. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A system for Large-Scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
55. Cambron, P.; Tahan, A.; Masson, C.; Pelletier, F. Bearing temperature monitoring of a wind turbine using physics-based model.

J. Qual. Maint. Eng. 2017, 23, 479–488. [CrossRef]
56. Doss-Gollin, J.; Farnham, D.J.; Lall, U.; Modi, V. How unprecedented was the February 2021 Texas cold snap? Environ. Res. Lett.

2021, 16, 064056. [CrossRef]
57. Veers, P.; Kroposki, B.; Novacheck, J.; Gevorgian, V.; Laird, D.; Zhang, Y.; Corbus, D.; Baggu, M.; Palmintier, B.; Dhulipala, S.

Examination of the Extreme Cold Weather Event Affecting the Power System in Texas—February 2021; Technical Report; National
Renewable Energy Lab. (NREL): Golden, CO, USA, 2021.

58. Márquez, F.P.G.; Chacón, A.M.P. A review of non-destructive testing on wind turbines blades. Renew. Energy 2020, 161, 998–1010.
[CrossRef]

59. Kaewniam, P.; Cao, M.; Alkayem, N.F.; Li, D.; Manoach, E. Recent advances in damage detection of wind turbine blades:
A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 167, 112723. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01621459.1987.10478458
http://dx.doi.org/10.1109/TPAMI.2022.3185773
http://dx.doi.org/10.1108/JQME-06-2016-0028
http://dx.doi.org/10.1088/1748-9326/ac0278
http://dx.doi.org/10.1016/j.renene.2020.07.145
http://dx.doi.org/10.1016/j.rser.2022.112723

	Introduction
	Related Works
	Detection of Wind Turbine Abnormal Conditions Using the VAE Model
	Diagnosis of Wind Turbine Abnormal Conditions Using the VAE Model
	VAE Model as a Visualization Tool

	Main Contributions
	Paper Organization

	SCADA Database
	Background
	Variational Autoencoder
	VAE Latent Space for a Multiple-Condition Database
	Semi-Supervised and Supervised Variational Autoencoder

	Proposed Condition Monitoring Approach
	VAEC Model
	Proposed Health Indicator, Detection, and Diagnosis
	Visualization Tool

	Methodology
	Database Pre-Processing
	Data Labeling, Balancing, and Partitioning
	VAEC Model: Architecture and Training

	Results and Discussion
	Reference VAEC Model
	Case Studies
	Case Study I: Main Bearing Degradation
	Case Study II: Impact of a Cold Wave


	Summary and Conclusions
	References

