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Abstract: Predicting context-aware activities using machine-learning techniques is evolving to be-
come more readily available as a major driver of the growth of IoT applications to match the needs
of the future smart autonomous environments. However, with today’s increasing security risks
in the emerging cloud technologies, which share massive data capabilities and impose regulation
requirements on privacy, as well as the emergence of new multiuser, multiprofile, and multide-
vice technologies, there is a growing need for new approaches to address the new challenges of
autonomous context awareness and its fine-grained security-enforcement models. The solutions
proposed in this work aim to extend our previous LCA-ABE work to provide an intelligent, dy-
namic creation of context-aware policies, which has been achieved through deploying smart-learning
techniques. It also provides data consent, automated access control, and secure end-to-end communi-
cations by leveraging attribute-based encryption (ABE). Moreover, our policy-driven orchestration
model is able to achieve an efficient, real-time enforcement of authentication and authorization (AA)
as well as federation services between users, service providers, and connected devices by aggregating,
modelling, and reasoning context information and then updating consent accordingly in autonomous
ways. Furthermore, our framework ensures that the accuracy of our algorithms is above 90% and
their precision is around 85%, which is considerably high compared to the other reviewed approaches.
Finally, the solution fulfills the newly imposed privacy regulations and leverages the full power of
IoT smart environments.

Keywords: context aware; attribute-based encryption; privacy; security; machine learning; smart
environment

1. Introduction

Security and privacy have become a headache for the industry, which has to cope
with the current technological trends as well as the future vision of 6G networks that
will impact every interconnected device by including intelligent connections. Context
awareness and encryption can be used to tackle these challenges coming from the industry.
Context awareness is a term used to represent the case where computers and embedded
devices sense and react according to changes in their environment. First introduced
by Schilit and Theimer [1] in 1994, a context-aware system acquires, understands, and
recognizes the context, and then takes an action according to that precise context. Context
awareness evolved from desktop applications, web applications, mobile computing, and
pervasive/ubiquitous cloud computing to the Internet of Things (IoT) over the last few
years. Moreover, 6G networks are continuously evolving to match the needs of the future
IoT smart, self-adoptive applications. Currently, one billion IoT devices are connected
machine-to-machine (M2M), and these interrelated devices are provided with unique
identifiers and the ability to transfer data over a network with the improved efficiency,
accuracy, and economic benefit of IoT environments. Therefore, new applications and
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business models of the future IoT require new performance criteria, such as big data,
multidevice functionality, limited access control, security, privacy, and regulations.

Besides the massive scale of connected end devices, new multidevice technologies
have advanced, making identity and access management more complex, while bringing
new security and privacy challenges. Smartwatches are good examples of devices that
complement smartphones, with the capabilities for checking time, messages, emails, no-
tifications, and many more functionalities with easier accessibility. Another example is
vehicles equipped with sensors and internet access that connect to other devices, both
inside and outside the vehicle, to provide additional benefits such as traffic alerts and
emergency assistance. Section 5 covers more of these solution examples and use-cases
in detail.

While the success of all these technological advancements is obvious, the complexity
that they add to both identity and access management is crucial. The massive volume of
data generated by these devices raises the need for a context-aware, adaptive access control
solution to avoid any misuse or leak of confidential information to unauthorized parties.

Moreover, this rapid growth will evolve the exchange of big data to build these smart
and self-conscious autonomous environments. According to a study by Zaslavsky et al. [2],
it is expected that the total amount of data on earth will reach up to 35 ZB in 2022. Thus,
big data becomes more challenging and raises new IoT and 5G requirements for higher
levels of access control, context awareness, privacy, and security.

In addition to the big data challenges, the protection of personal data becomes very
relevant for the adoption of these technologies. Therefore, it is critically important to
properly understand the main aspects of current regulations, which have an impact on 5G
and IoT security. The new regulations are mainly proposed to enhance, unify, and protect
the data of each individual. The European Union (EU) has formulated and planned to
implement and enforce a new general data protection regulation (GDPR) [3]. The GDPR is
anticipated to protect the export of personal data within and outside the EU. Furthermore,
the United States is working to protect customers, maintain competitions, and advance
organizational performance by forming the Federal Trade Commission (FTC) and the
Federal Information Security Management Act (FISMA). The FTC and FISMA follow
dynamic and effective law enforcement, with the principle mission of protecting consumer
privacy [4,5]. All of these regulations impose that service providers cannot collect personal
information that is not required, while data collection, storage, and processing have to be
conducted securely. A service provider (SP) should keep the data of the user only during
the business period, and the user is the one who has the right to grant access to their data.
Hereby, the continuous success and future development of 6G and the IoT will depend on
the ability to adopt and comply with these regulations.

Accordingly, as will be discussed in the literature section, several studies have covered
many context-aware aspects [6–16], of which two main aspects are still challenging: The
first aspect is the lack of a context-awareness broker that can manage the complex identities
of interconnected sensors from different devices. In such situations, context-aware policies
will play the main role in deciding what and when data need to be processed or shared,
and much more. In addition, the current smart IoT environments need such context-
awareness brokers as central points of control, as different middleware solutions developed
by different parties will be employed to connect to sensors for collecting, modelling, and
reasoning context information.

The second aspect is updating consent based on the context information. While the data
aggregated by the sensors need to be shared with the authorized providers or observers,
consent is not fixed and can be updated so that data are not shared in certain contexts. In
our study, as shown in Figure 1, our main contexts are activity, identity, time, and location.
Furthermore, we collected data from multiple devices, such as watches, cars, and tablets,
which are viewed as inputs for the contexts. For example, consent can be updated so
that data are shared when switching between devices or when switching between users,
or so that data based on location and time (in meetings, at work, and at home) are not
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shared. Furthermore, consent can be updated to share data again based on events, such
as an insurance company needing to restore data to determine what caused an accident.
Therefore, to effectively perform this aspect, we need an intelligent, dynamic adaptation
of contexts, which can be achieved through smart-learning techniques. In such situations,
machine-learning techniques will take the context information as inputs to learn models
that are able to adapt the consent accordingly.

Therefore, the context broker will coexist with different middlewares by managing the
complex identities of interconnected multidevice sensors for different providers. In these
situations, context-aware policies will play the main role in deciding what and when
data need to be processed or shared, and much more. In addition, the current smart
IoT environments need such context brokers to be central points of control, as different
middleware solutions developed by different parties will be employed to connect to sensors
and collect, model, and reason context. When a subscriber device wants to send data to
the business application or application server, it has to authenticate itself to the broker to
obtain the decryption key from the KMS. When the service provider (SP) wishes to decrypt
the data, it has to authenticate itself to the broker to obtain the decryption key from the
KMS. The broker will check the context and the access privileges for that data and the SP.
If the SP is authorized, it will be able to see the data. The details of these processes are
shown in Section 3.

In addition to all of the above challenges, security is a key requirement for the evo-
lution of the new automated smart IoT environments that provide security services and
identity management. This growth raises the need to protect data exchanged between
different entities by many methods (e.g., authorization, automated access control, and
data encryption). In this scope, many encryption-based access control schemes have been
proposed and adopted in IoT environments, starting with symmetric key encryption and
moving to the public key infrastructure (PKI), which provides a data signature to ensure
integrity and session keys to ensure confidentiality. Still, PKI requires a huge infrastructure
(certifying authorities, registration authorities, repositories, archives, and end entities) to
manage and maintain the certificates [17]. Goyal et al. [18] introduced an asymmetric
encryption technique called attribute-based encryption (ABE), which is one of the most
recent access-control-based encryption schemes. This technique allows for the definition of
fine-grained access control policies for data privacy and security. Yet none of the existing
works fulfill our requirements for context-aware, smart, adaptive environment use-cases.

Ultimately, smart context-aware encryption is the key solution to new secure smart
systems evolution. The present novel solution discloses a context-aware, adaptable, in-
telligent, and lightweight security solution. The solution extends our previous work on
LCA-ABE [12] to deliver our adaptable data consent, automated access control, and se-
cure end-to-end communications between different users, network operators, and service
providers by aggregating, modelling, and reasoning context information and then updating
consent accordingly in an autonomous way. Finally, the solution fulfills the newly imposed
privacy regulations, considering the 5G technologies, leveraging the full power of IoT
security, multi environments, and access control of big data.

The main contributions of this research are as follows:

• Proposes a context-aware, adaptable, intelligent, and lightweight security solution.
• Achieves the novel intelligent dynamic creation of context-awareness policies through

smart-learning techniques.
• Provides a context-aware dynamic encryption model by leveraging attribute-based

encryption (ABE).
• Formulates the ABE context-awareness policies based on machine-learning techniques.
• Presents a solution that fulfills the newly imposed privacy regulations.

We organized the article into different sections. Section 2 gives a brief idea of the
background and related research in the field of context-aware systems, machine learning,
and ABE. We explain the architectural design in Section 3, and in Section 4 we explain the
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formal definition of the problem. In Section 5, we have the use-cases, implementation, and
evaluation. The conclusion and future work are in Section 6.

2. Background and Literature Review

In the IoT domain, there is lots of research being performed in the field of context-
aware security and attribute-based encryption. In this section, we will mainly list out the
research specific to adaptive context awareness and the feasibility of using ABE in the
IoT domain.

2.1. Adaptive Context Awareness

The context-awareness policies vary depending on each domain’s requirements, such
as mobile computing, web applications, and, recently, IoT smart environments. One of the
leading mechanisms for defining context types in IoT environments is presented in [19],
where they have two main categories: The primary context and the secondary context.
The primary context represents any information retrieved directly from sensors, such as
location data from a GPS sensor, user identity based on a SIM card, time read from a
device clock, or activity from a smartwatch sensor. The secondary context represents any
information that can be computed using the primary context, such as predicting the user’s
activity based on the user’s calendar or predicting the user’s location based on an image
retrieved from a map service provider. Figure 1 presents a context-awareness taxonomy
for IoT environments. According to the taxonomy, we can split the context awareness into
four main steps, named the context life cycle [20]. Each phase of the life cycle has its own
challenges. The challenges of the acquisition step are related to the context-aware system’s
capability to support the registration of new data sources (i.e., data providers, sensors, and
devices) and its technical issues, as well as the network communication used to acquire the
data source information. The modelling and reasoning phases hold the same challenges
because these phases strictly depend on each other.
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Figure 1. Context awareness Life Cycle.

In today’s era of big data and smart environments, many researchers raise the essential
need for context awareness and dynamic access policy management to protect resources
from unauthorized access. In [9,13–16], the authors proposed different automatic adaptive
access policy specification frameworks for IoT environments based on a rule-based method.
This research conducted an interesting dynamic accessibility method, but did not provide
an adequate machine-learning method to support such adaptive access control.

Context-awareness aspects along with machine-learning techniques have been suc-
cessfully used in different domains, including mobile cloud computing, E-health, smart
homes, and IoT smart autonomous environments where most of these systems rely on in-
telligent context-aware applications. The researchers in [6,21] investigated various popular
machine-learning classification techniques, such as decision trees (DT), k-nearest neighbour
(KNN), random forest (RF), naive Bayes classifier (NB), support vector machines (SVM),
and deep learning, for creating smart models for different mobile use-cases. In the mobile
cloud computing domain, some studies, such as [7], have analyzed the context of the
device’s operations and their related security aspects. Furthermore, they have developed
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an agent-based adaptive system that uses machine-learning algorithms to enable the opti-
mization of services on the mobile device and secure the allocation of tasks in conventional
cloud resources. Moreover, the idea of using ML and context awareness is investigated in
many studies, such as [8,10], to provide the appropriate services to users in E-health and
smart homes.

In summary, the above-discussed ML and context-awareness techniques allow for
the definition of fine-grained, context-aware access control policies for data privacy in
different domains. Yet none of the existing works fulfill our requirements for the automated
creation of context-aware policies and the automated encryption according to these auto-
generated policies. Therefore, in this work, we have experimentally tested more use-cases
to automatically analyze the user behaviour according to different context information
and the utilization of their smart-device datasets. All use-cases will be discussed in the
experimentation and evaluation section.

2.2. Attribute-Based Encryption

The authors in [18,22] proposed an encryption technique that allows access control
based on attributes. According to various studies, ABE is one of the best techniques to have
access control along with data security. ABE is a public key encryption technique, which
utilizes attributes and policy to encrypt and decrypt the data as well as access control.
Attributes can be basically anything, such as postal code, departments, locations, services,
etc. There are two types of ABE, cipher-text policy ABE (CP-ABE) [22] and key policy ABE
(KP-ABE) [18].

There has been a lot of research conducted in various domains with ABE. The authors
in [23–25] performed different types of analyses regarding the feasibility, performance, and
survey of ABE in the cloud, smart devices, and smart environments. Ambrosin et al. [26]
provided a comprehensive study in terms of resource utilization and execution time for
CP-ABE and KP-ABE in constrained devices. From their experimentation, it is clear that
ABE can be incorporated in resource-constrained devices. In [27,28], the authors proposed
that ABE can be used to secure patient data before storing them on the cloud where only
the specific personnel can view the patient records. The authors in [29] also showed that
it is important to encrypt the patient data collected from different sources in the hospital
before sending them to the cloud. The authors in [30] implemented a framework using
OpenHAB to secure the data generated in the smart home before being shared with the
cloud service providers. In [31], the authors studied the feasibility of the ABE in a body
sensor network and proved that it has very good prospects in the domain of smart devices.
The authors in [32] proposed online/offline attribute-based proxy re-encryption for smart
phones to encrypt the data before they are transferred to the cloud. They also showed the
performance and feasibility of using their ABE scheme in smart devices such as cellphones.
In [33], the authors proposed a CP-ABE offloading technique where the authors performed
partial encryption on the resource-constrained devices, and the actual encryption in the
cloud where there are enough resources.

2.3. Summary of the Literature Reviews

As shown in Table 1, previous studies have covered many mobile and IoT context-
aware aspects for different domains. Many technical limitations need to be addressed
in order to meet with the new IoT context-aware, adaptable, intelligent, and lightweight
security solution requirements. Therefore, we have classified the main reviewed work
according to our research objectives. Furthermore, many other research and industrial
aspects in the future of IoT applications are still challenging to fulfill, such as the newly
imposed privacy regulations and the emergence of new multiuser, multiprofile, and multi-
device technologies. Above all the mentioned aspects, security is a key requirement for the
evolution of new automated smart IoT environments. Therefore, context-aware encryption
is our proposed solution for overcoming some of the reviewed security limitations and
opening up promising future directions for both academia and industry professionals.
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Table 1. Comparison of existing related work.

Reference Domain Rule Base
Machine Learning

Algorithm
Context aware Dynamic Multi Users Privacy ABE

BehavDT [6] Mobile 7 Decision Tree X X 7 7 7

ACAO [7]
Mobile

Cloud Computing
7

Naïve Bayes (NB),

Decision Tree,

Random Forest

X X 7 X 7

SMAF [8] E-health 7 Grey Model (GM) X X 7 7 7

[9] IoT X 7 X X 7 X 7

AppsPred [10] Smart home X Random Forest X X 7 7 7

HybridGuard [11]
Hybrid

Mobile
X 7 X 7 7 7 7

LCA-ABE [12] Mobile X 7 X 7 7 X X

Our work Smart Environment X
Artificial Neural Network

Markov Chain
X X X X X

3. Architecture

In this research, we propose a new approach for fine-grained privacy and confidential-
ity using context awareness and ABE for access control and data security. We are extending
our previous work [12] and adding extra components to make the framework dynamic and
adaptive with the context. Figure 2 shows our architecture for smart-environment systems.

Context Broker

Encryption 
Engine

Policy Store

ABE policy 
Generator

Model Generator Decryptor

Service Provider

Data Store

KMS

Sensors

Figure 2. Proposed Architecture.

The architecture is divided into multiple modules, which are as follows:

• The context broker is the entry point for all the data coming from the sensors and
different services, and it also acts as a medium for the services to access the sensors
and service data. The context broker has two functionalities:

– When the context broker receives data, it generates a context based on the location,
time, activity, etc., as attributes, and transfers the data and the attributes to the
ABE policy generator for further processing.

– When the context broker receives a request from a service provider, it retrieves the
context from the environment and uses the classification algorithm to decide
whether the service provider has the rights to access the data. If the service provider
has access, then the context broker gives the service provider access to the database
to access the data; otherwise, it does not. Once the decision is completed, the
context and the decision are both sent to the policy storage for future use.

• The ABE policy generator uses the attributes received from the context broker and uses
the model generated by the model generator to generate a CP-ABE policy, and then
forwards the data and the policy to the encryption engine. Furthermore, it sends the
policy to the policy store as a dataset entry for future use.

• The encryption engine encrypts the data using the policy received from the ABE policy
generator using CP-ABE and saves it in the database.
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• The policy store is a database that stores the context and decision for the service
providers, as well as the ABE policy generated for each context, all of which will be
used by the model generator.

• The model generator periodically collects the data stored in the policy store to generate
machine-learning models, which will be used by the context broker and ABE policy
generator. For the context broker, it uses the naive Bayes classification model, while for
the ABE policy generator, it generates a Markov chain.

• The key management system (KMS) generates and stores all the necessary keys, such
as the master key, public key, and private key, for the whole ecosystem.

• The decryptor is a decryption module used by the service providers to decrypt the
data they requested. The decryptor will try to decrypt the data using the secret key
from the service provider, and if the service provider has access to the data, then it
will return the data, else it will return denied access to the data.

• The data store is storage in the cloud, or can be in the device itself, where the data are
stored after the encryption process in complete.

• The service provider is the application or cloud service that the user has subscribed to.

Figures 3 and 4 explain the sequence of operations for our framework. Figure 3 shows
the sequence diagram for the data life cycle when it arrives to the context broker from the
sensor. Figure 4 shows the steps of operation being performed when a service provider
wants to access a sensor’s data.

Sensor
Context 
Broker

ABE Policy 
Generator

Encryption 
Engine

KMSData Store

Data

Data and 
Contexts

Data, Policy

Generate 
contexts

Generate 
ABE policy 
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Get PK

Send PK
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Encrypted Data

Policy Store
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Figure 3. Sequence Diagram for sensors generating data.
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Figure 4. Sequence Diagram for Service Provider requesting data.
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4. Problem Definition

IoT smart applications must be adaptable, intelligent, and secure in order to fulfill
the newly imposed privacy regulations, defining and updating consent according to the
user’s context information in autonomous ways. Furthermore, the execution of the context-
aware policies for IoT services and devices must be dynamic, lightweight, and platform-
specific. In order to tackle the dynamic nature of the IoT environment, we need to solve the
autonomic access control problem and formulate an adaptive policy that can be generated
on the basis of context. We present a formal definition of our research problem for context
awareness and ABE. In this section, we perform the derivation of formulas for context-
aware classification and ABE policy generation. In this research, the problem definition for
the context-aware ABE is conducted in two phases, namely:

• The applications need to access the data, but due to security reasons, that needs to be
controlled based on the permission, context, source, and application details. The access
granted to the application is either “Allow” or “Deny”, which is a binary classification
problem wherein the permission, context, source, etc., can be viewed as features, and
based on these features, we need to classify whether the application will be granted
access or not.

• The context provided by the system needs to be transformed into ABE policy automati-
cally, using operators such as “AND” or “OR” and contexts such as “time”, “location”,
etc., which can be viewed as prediction problems. We need to predict the best possible
operators and contexts for encrypting the data that can satisfy the user’s behaviour.

4.1. Context-Aware Access Control

In a smart environment, there are applications and cloud services that require ambient
data generated by the sensors and other applications in order to provide the user with
a better experience and ease of use. However, these data need to be shared with the
applications and cloud services based on the user permissions.

In this research, we extended the context-aware policy definition of LCA-ABE [12] for
the formulation of our context-aware access control. An application or cloud service App
contains a list of information, such as name, class, visibility, and API, which we denote as
App = (name, class, visibility, API). Permission of an App P, which is P = (name, resources,
securityLevel), where name is the name of the permission, resources can be personal data,
calendar, camera, etc., and securityLevel is the level of security of the permission, such
as normal or dangerous. The context c is the circumstances during which the data are
generated from the sensors and application. The context can be the time when the data
are generated, location of the data, activity of person using the device, etc. The context is
represented by c = (time, location, activity).

Based on our context-aware policy definition, a context-aware rule for a fitness ap-
plication can be written as Allowgps(Fitness) ← (gps ∈ Fitness.APIs) ∧ (P.resources =
gps) ∧ (c.activity = exercise) ∧ (c.time = 7am) ∧ (c.location = park). Another example,
Denynoti f ications ← ((notification ∈ ∀ APIs) ∧ (notification 6= (gps ∨maps) ∧ (c.activity =
driving) will be applied to the user’s car, so that all the notifications from the cellphone
are blocked except the navigation system. In order to automate the decision process of
context-aware policies, the policies were transformed into tables with multiple features
that can be used by a machine-learning algorithm, as shown in Table 2. Using a simple clas-
sification algorithm, we are able to solve the context-aware control problem. For instance,
as shown in [34], if the user has to include all the rules for a device’s sensor data for access
control, then it will become a hassle and be infeasible, so we need to use an automated
system that will grant the access for the device data based on the user’s behaviour. So in
order to automate this process, we need to use machine learning, where the ML algorithm
can automatically grant the access permission and generate the access policy on behalf of
the user.
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Table 2. Sample Transformation of context-aware policy.

Application Permission Context
Source User Decision

Name Class Visibility API Name Resource Type Security Level Time Location Activity

Fitness Well-being Background Get data GPS GPS Medium 700 Park Jogging GPS Bob Allow

Fitness Well-being Background Get data GPS GPS High 900 Office Meeting GPS Bob Deny

Map Navigation Background All All Notification Medium 800 Hollywood Boulevard Driving Apps Bob Deny

Map Navigation Background GPS GPS Notification Medium 800 Hollywood Boulevard Driving Apps Bob Allow

4.2. Dynamic ABE Policy

The data which are being generated from the different sources need to be encrypted
before being stored in the device itself or sent to the cloud. Furthermore, based on the
context of the user, the data privacy will change. ABE, which provides encryption of data
along with access control to the data, is the most suitable solution for the context-aware
environment [35,36]. In order to encrypt data, ABE needs a policy that contains attributes
and operators that combine these attributes, e.g., “Bob AND 7AM AND Exercise AND Well-
being” is a policy for encrypting the GPS data that makes sure that the fitness application
can access the data for that context. However, the catch for this process is to generate
the ABE policy dynamically, which is challenging. In order to hurdle the challenge, we
introduce a new procedure for the automatic generation of the ABE policies.

Figure 5 shows an example of ABE policy based on the context provided by the
system. The system has all the attributes, i.e., the contexts, the only thing missing being the
operators, which can be easily determined based on the user’s predetermined behaviour.
This problem can be viewed as a travelling salesperson problem, where we need to find the
best route from beginning to end.

Exercise

Well-being

Sleep

Bob OR

OR

AND

AND

AND

7 AM

5 AM

OR AND

Figure 5. A visual representation of ABE policy.

The application, permission, context, and users, which are attributes denoted by
A, are assumed as cities, and the operators ‘AND’ and ‘OR’ are the cost for travelling
from one city to another. The cost is calculated based on the probability of the operators
based on the behaviour of the user, based on the example in Figure 5. For reference, the
transition matrix will look like Table 3. The probability of each state will be calculated using
Sn = S0 × Qn, where Sn is the initial state vector, which is Bob, and Q is the transition
matrix to move from state i to state j, as shown in Table 3. In our research, we did not
intend to find the path with the best cost, but searched for the longest one because that
is where we will find the best attributes for these contexts, which will eventually become
the policy for the data’s ABE encryption. Using Dantzig–Fulkerson–Johnson formulation,
we can find the path without having subtours or loops. So the equation without loops is

Aij =

{
1 The path goes f rom Ai to Aj

0 Otherwise
.
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Table 3. Transition Matrix.

Bob 5am 7am Sleep Exercise Well-Being

AND OR AND OR AND OR AND OR AND OR AND OR

Bob 0 0 0.3 0 0.5 0 0.02 0.02 0.03 0.04 0.03 0.06

5am 0 0 0 0 0 0 0.4 0.3 0.1 0.05 0.06 0.09

7am 0 0 0 0 0 0 0.15 0.15 0.3 0.2 0.1 0.1

Sleep 0 0 0 0 0 0 0 0 0 0 1 0

Exercise 0 0 0 0 0 0 0 0 0 0 0.4 0.6

By taking Cij > 0 to be the cost from attribute i to attribute j, the formulation can be
derived using an integer linear programming problem:

max
n

∑
i=1

n

∑
j 6=i,j=1

Cij Aij where,

n

∑
i=1,i 6=j

Aij = 1

n

∑
j=1,j 6=i

Aij = 1

∑
i∈Q

∑
j 6=i,j∈Q

Aij ≤ Q− 1 ∀Q * 1, . . . , n, Q ≥ 2

(1)

In order to solve this NP hard problem, we have utilized a discrete Markov chain to
find the best attributes for the policy chain based on the context provided. The Markov
chain is a stochastic statistical model, where the future state depends on the past states.
In our case, the total number of contexts available in the environment are the states. So, the
following equation (Equation (2)) is the classical Markov equation of higher order [37], and
by taking as state space the ordered m-tuples of A, it is used in order to find the optimal
policy chain of that particular context for encrypting the data.

P(An = a0 An−1 = a1, . . . , An−k = ak) = max
k

∑
i=1

λiqa0 ai (2)

where ∑k
i=1 λi = 1, λi is non-negative, k is the total number of attributes, and Q = [q ij]

is the transition matrix where the sum of the column is equal to one. Using [38], the
generalization of [37] as follows:

An+k+1 = max
k

∑
i=1

λiQi A(n+k+1−i) (3)

With Equation (3), we will be able to find the best path with the highest probabil-
ity given any number of attributes and form the policy for the ABE encryption. Using
Equation (3) and the transition matrix, the result for different states is calculated in the
form of Bob 7am (0.3), Exercise (0.3), Well-being (0.6). Then, using the transition matrix and
the value, we will find the operators, and the policy will look like Bob AND Time = “7am”
AND Exercise OR Well-being.

4.3. Algorithm

We have utilized two algorithms to solve the context-aware-based encryption problem.
Algorithm 1 is designed for dynamic access control and Algorithm 2 is for generating the
ABE policy for encrypting the data based on the context, where Algorithm 1 is hosted in
the context broker and Algorithm 2 is in the ABE policy generator. We have created the
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initial transition matrix using a probabilistic method. The descriptions of the algorithms
are as follows:

Algorithm 1 performs the decision making for the application when it wants to access
specific data from the data store. The algorithm takes parameters as shown in Table 2 and
uses a trained deep-learning model to take the decision, whether it has access to the data or
not, with respect to the current contexts.

Algorithm 1 Access Control

Require: Parameters[Application, Permission, Context, Source, User], Trained Model
Result = Classify the Parameters using Trained Model
if Result = Allow then

give access to the data
else

return “Denied” to the application or service
end if

Algorithm 2 is called whenever the system generates data. It automatically generates
an ABE policy based on the contexts (attributes) provided by the system. The algorithm
takes attributes as shown in Table 2, which contains application details, permission of
the application, context, data source, and the user who is currently using the device.
Furthermore, the algorithm requires a transition matrix that contains the probabilities of
each attribute with another attribute. The transform array contains the probability, which
corresponds to the operators. The algorithm then uses Equation (2) to calculate the best
path for the attribute and stores the value of the path it took to reach the goal. After that,
the algorithm uses the values and the transform array to find the operators. Finally, using
the path and the operators, it generates the ABE policy for the current context and sends it
to the encryption module.

Algorithm 2 Policy Generator

Require: Attributes[Application, Permission, Context, Source, User], Transition Matrix M,
Transform Array T
Path = Evaluate Equation (2) using Attributes and M
Operators = Get operators using Path and T
for All value in Path do

Find the value of Path[i] corresponding to T
Append value Operators

end for
for All value in Attributes do

Append Attributes[i] AND Operators[i] to policy
end for
return policy

5. Experimentation and Evaluation

In this section, we evaluate our framework in terms of resource utilization as well as
evaluate the algorithms. We also present four use-cases used during our experimentation.
The use-cases represent the different rules that can be used based on the user’s predefined
context and their representation of the ABE policy.

5.1. Use-Cases

Figure 6 presents our solution’s examples and use-cases. The descriptions of the
use-cases are as follows:
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Figure 6. Solution Examples Model.

5.1.1. Scenario 1: Exercising

Bob is going for his regular morning run and is using a fitness application while he
exercises. According to normal fitness apps, at the time of installation, Bob was required to
allow/deny this app access to some of his smartphone/smartwatch resources. Therefore,
using our model, Bob will be able to manage his access policies for while he exercises
according to his needs within a specific location and during specific time frames. Examples
of the resources that Bob is sharing include location, heartbeat, and accelerator.

Our model defines the application, permissions (resources), and contexts as discussed
in Section 4. We assume the following are the permissions that Bob has set to control access
to his device:

• Rule 1: The fitness app may have access to heartbeat and accelerator meter sensors
while exercising.

• Rule 2: The fitness app may only access the heartbeat and accelerator meter sensors
while Bob is at the park.

• Rule 3: The fitness app may only access the heartbeat and accelerator sensors at
6:00 a.m. or 6:00 p.m.

• Rule 4: The fitness app may never share/access the location.

The rules are be represented as follows:

q The context-aware access control policy:

– AllowFitnessApplication ← ActivitySport ∧ Locationpark ∧ Time6am ∨ Time6pm
← Dataheartbeat,accelerator

– DenyFitnessApplication ← ActivitySport ∧ Locationpark ∧ Time6am ∨ Time6pm ←
Datalocation

q The ABE policy at that specific moment, which are the data collected at 6am for
different sensors, is as follows:

– Dataheartbeat → Application = ‘Fitness Application’ AND Location = ‘park’ AND
Time = ‘6am’ AND Activity = ‘Sport’

– Dataaccelerator → Application = ‘Fitness Application’ AND Location = ‘park’ AND
Time = ‘6am’ AND Activity = ‘Sport’

– DataGPS → Application = ‘ 6= Fitness’ AND Location = ‘park’ AND Time = ‘6am’
AND Activity = ‘Sport’

5.1.2. Scenario 2: Meeting with a Supervisor

Bob is a graduate student who has scheduled regular meetings with his supervisor,
Alice. According to Alice and the school regulations, all graduate students must respect
some policies regarding access to their device resources while attending meetings, during
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specific time frames, and in specific locations (offices, labs, or meeting rooms). Examples
of the resources that Alice could allow/deny a student access to include the microphone,
camera, GPS, and notifications.

We assume the following are the policy rules that Bob sets to fulfill Alice’s meeting
requirements:

• Rule 1: No app can have access to the voice recorder and camera while in meetings.
• Rule 2: No app can have access to the voice recorder and camera while in a meeting in

the meeting room.
• Rule 3: No app can have access to the voice recorder and camera while in a meeting in

the meeting room during specific time frames.
• Rule 4: During meetings, no app may ever share/access the location.

Using our model, the rules for this scenario are as follows:

q The context-aware access control policy:

– DenyApplication←ActivityMeeting ∧ LocationMeetingRoom ∨ Time≥10am ∧ Time≤11am
← DataMicrophone,Camera,GPS,Noti f ication

q The ABE policy at that specific moment, which are the data collected at 11am for
different sensors:

– DataGPS → Application = ‘All’ AND Activity = ‘Meeting’ AND Location = ‘Meet-
ing Room’ OR Time = ‘11am’

– DataCamera → Application = ‘Personal’ AND Activity = ‘Meeting’ AND Location
= ‘Meeting Room’ OR Time = ‘11am’

– DataMicrophone → Application = ‘Personal’ AND Activity = ‘Meeting’ AND Loca-
tion = ‘Meeting Room’ AND Time = ‘11am’

5.1.3. Scenario 3: Driving a Car

Bob has a car insured by a well-known insurance company. Bob does not want to
receive any annoying notifications while driving. Furthermore, he does not want to share all
of his car’s/smart device’s resource information with the insurance company while driving.
Therefore, Bob defines the attributes and context policies to allow/deny the insurance
app access to some of his smart car/smartphone/smartwatch resources according to his
consent. Moreover, our model allows Bob to update his consent anytime to share data again
based on an event, such as the insurance company needing to obtain the data to determine
what caused an accident.

Examples of the resources that Bob could allow/deny the insurance company app
access to include GPS tracking, navigation, speed, and hours of driving. We assume the
following are the permissions that Bob sets to control access to his devices while driving
his car:

• Rule 1: The insurance app has no access to GPS tracking and navigation while driving.
• Rule 2: No app can send/receive notifications while driving.

The rules for this scenario are as follows:

q The context-aware access control policy:

– DenyApplication ← ActivityDriving ← DataNoti f ication

– DenyInsurance ← ActivityDriving ← DataGPS,Navigation

q The ABE policy at that specific moment, which are the data collected at 5pm for the
GPS sensor:

– DataGPS → Application = ‘ 6= Insurance’ AND Activity = ‘Driving’ AND Location
= ‘Peel’ AND Time = ‘5pm’

5.1.4. Scenario 4: Smart Home

Bob is staying home after finishing his job and is watching a TV show with his family
on their smart TV. Most applications installed on smart TVs have access to many resources
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that can leak some private information, such as location and favourite shows, etc. Bob
has to allow/deny these apps access to some of their smart home/smart TV resources.
Therefore, using our model, Bob will be able to manage their access policies while staying
home according to their needs within a range of specific activities (sleeping, watching TV,
and eating) and during specific time frames. Examples of the resources that Bob is sharing:
location, GPS, and heartbeat.

We assume the following are the permissions that Bob sets to control access to their
smart home resources:

• Rule 1: All health apps may have access to heartbeat sensors while sleeping.
• Rule 2: All apps may only access heartbeat and accelerator sensors while Bob is at

the park.
• Rule 3: No app may ever share/access the exact location while Bob is at home.

The rules for this scenario are as follows:

q The context-aware access control policy:

– AllowFitnessApplication ← ActivitySleeping ← Dataheartbeat

– DenyApplication ← ActivityWatchingTV ← DataNoti f ication

– DenyApplication ← ActivitySleeping ← DataNoti f ication

q The ABE policy at that specific moment, which are the data collected at 11pm for the
GPS sensor:

– Dataheartbeat → Application = ‘Fitness Application’ AND Location = ‘park’ AND
Time = ‘11pm’AND Activity = ‘Sleeping’ OR Activity = ‘TV’

– Dataaccelerator → Application = ‘Fitness Application’ AND Location = ‘park’ AND
Time = ‘11pm’ AND Activity = ‘Sleeping’ OR Activity = ‘TV’

– DataGPS → Application = ‘ 6= Fitness’ AND Location = ‘park’ AND Time = ‘11pm’
AND AND Activity = ‘Sleeping’ OR Activity = ‘TV’

5.2. Implementation

In this section, we explain the implementation of the main algorithms and dataset for
our adaptive context-aware encryption framework

5.2.1. Dataset

The principal role of the system is to automatically grant the access control of the
sensor and to generate policy for ABE. For this reason, we have collected data by monitoring
Fitbit and a person’s cell phone applications (mainly the google map data) for a period of
one month. The google map data are collected from the historical information stored in the
map history, and the Fitbit data are gathered from the personal historical data from their
website. The types of data which are collected are as follows:

• Permissions requested by applications include the name of the sensor it is accessing,
the type of resources, and the security level;

• Google Map data while driving, which includes the latitude and longitude;
• Permissions of the services, mainly the GPS, and services requested by the Fitbit;
• Activity tracking, which includes sleep, exercise, swimming, heart rate, SpO2, steps,

time in heart-rate zone, and calories burned during that time.

After the collection of the data, we had to removed excess unnecessary features and
information such as heart-rate zone, calories burned, etc. Then, we aggregated the data and
categorized them into respective features, which is similar to Table 2. Some of the features,
such as the source of the data, permission name, and resource type, are correlated, which
was not covered in this article. The data for the first dataset are balanced as we manually
labelled the data for the access control that will be used by algorithm 1 for classification.
The second dataset contains the ABE policy, which we manually created to test whether
Algorithm 2 is able to generate the desired policy. This dataset is mainly used to create a
transition matrix by using the probabilistic methods, which is similar to Table 3.
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5.2.2. Deployment

To implement our framework, we adopted the implementation provided by [12] and
implemented the classification and policy generation algorithms, which were not available
in that framework. We employed Scikit-learn to implement the naive Bayes classifier. We
normalized the dataset for the classification and split the dataset for training and testing
into 80% and 20%, respectively, and then executed Algorithm 1. To implement Algorithm 2,
we used python. For the algorithm, which needed a transition matrix to generate the
policy, we first normalized the second dataset and used probabilistic analysis to generate
the operator values for each context. This way, the algorithm would be able to generate
the policy properly. We used Raspberry Pi 3 Model B as our IoT device and the details
regarding the hardware and software are given in Table 4. We used Raspberry Pi 3 Model B
as our IoT device and a desktop PC for the services. Raspberry Pi hosted the context broker,
model generator, ABE policy generator, and the policy store. The desktop PC hosted the
service provider, data store, decryptor, and KMS. Communication between Raspberry Pi
and the desktop PC was achieved using a python websocket. The details regarding the
hardware and software are given is Table 4.

Table 4. Hardware and Software Specification.

Raspberry Pi Desktop PC

Processor
1.2 GHz 64 bit quad-core

ARM Cortex-A53 3.2 GHz 4 core

RAM 1 GB 8 GB

Storage 16 GB eMMC flash storage 320 GB

Operating System Raspberian Debian OS Ubuntu

In our experimentation, we used a python script to determine the resource utilization.
The latency was measured using the difference between the time when the data were
collected and when the encryption was completed. The decryption latency includes the
decryption time along with the communication time to ask the context broker whether it
has permissions to access the data or not.

5.3. Evaluation

The main objective of this experiments was to study the feasibility of our framework
as well as the resource utilization. We have compared our algorithms with other ML
algorithms, such as logistic regression, decision trees, random forest, and LSTM.

In order to evaluate the performance of our algorithm, we performed various experi-
ments. For the access control evaluation, we experimented with logistic regression, decision
trees, and naive Bayes. For the policy generator evaluation, we experimented with random
forest, LSTM, and Markov chains. We analyzed the precision, recall, and F1-score of the
algorithm, using the equations provided in [39].

We evaluated the algorithms using our dataset to determine the accuracy, precision,
and recall, as well as the training time required to prepare the models, which are shown
in Table 5. For experimentation and evaluation of the algorithm, we split 80% for training
the models and 20% for testing the algorithm performances. As shown in Table 5 for the
access control, the F-score of the logistic regression is higher, but the precision and training
are lower. The decision tree has the lowest training time, but the naive Bayes gives the
best results in terms of precision, F-score, and training time. For the policy generation
evaluation, the lowest performance is provided by the random forest, but the training time
is the lowest. LSTM has an average accuracy, but the training time is the highest among
the other algorithms. Markov chain is the model in terms of all metrics. To summarize,
from Table 5, we see that the accuracy of our algorithms is above 90% and their precision is
above 85%.
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Table 5. Evaluation of the Algorithms.

Algorithm Precision Recall F1 Training Time

Access Control

Logistic Regression 0.9183 0.8681 0.8925 0.0086

Decision Tree 0.9248 0.8348 0.8755 0.0024

Algorithm 1 (Naive Bayes) 0.9515 0.9062 0.9283 0.0037

Policy Generator

Random Forrest 0.8426 0.6775 0.7324 0.4581

LSTM 0.8936 0.7976 0.8429 34.7515

Algorithm 2 0.8926 0.913 0.9027 2.8564

Figures 7–9 are the experiments performed to find the resource utilization in our frame-
work. In these experiments, we increased the policy length gradually with increments of
five attributes, up to fifty attributes. The policy length is the total number of attributes
in the policy. In Figure 7 is the CPU consumption with varying policy lengths. The CPU
consumption is for encryption gradually increases as the length of the policy increases.
On the other hand, decryption has almost the same CPU utilization when the number of
policy attributes varies between 30 and 50. The CPU utilization does not go above 50%
in the worst case, which means that the length of the policy compromises 50 attributes.
Figure 8 is the memory utilization for encryption and decryption in megabytes. The mem-
ory utilization for encryption is lower than the memory utilization. Another interesting
observation is that the memory utilization for decryption stabilizes after 35 attributes and
is 25 attributes for the encryption. Lastly, Figure 9 is the overall time required for the
encryption after data are received by the context broker. The execution time for decrypting
is higher as it has to communicate with the context broker to obtain the permission for the
data from the data store before it can start the process of decryption. From this figure, we
see that, as the policy length increases, the execution time for the whole process increases
from 0.5 s up to 16 s for encryption and 18 s for decryption.

In summary, the approach we proposed for developing our context-aware, adaptable,
intelligent and lightweight security model consists of two main axes, namely, the dynamic
creation of context-aware policies and the context-awareness dynamic encryption model.
The conducted in-depth experiments proved the efficiency of both. Our framework ensures
that the accuracy of our algorithms is above 90%, and their precision is around 85%, which
is considerably high compared to the other approaches studied. However, many industrial
aspects are still challenging and could affect our model accuracy rates, such as the complex
identity management of multiuser, multiprofile, and multidevice technologies.
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Figure 9. Execution time.

Furthermore, the implemented lightweight security framework is capable of granting
secure interapplication data communication by encrypting all the requested sensitive
sensor data and making them available for only the authorized applications according
to the generated context-aware policies. Thorough experiments have been performed
demonstrating the efficiency of CPU and memory utilization, as well as the execution time
for the whole encryption/decryption process. More evaluation criteria might be considered
for future improvements.

Finally, we believe that our smart adaptive model will open up promising direc-
tions for research and improvements using different ML techniques in heterogeneous
IoT environments.

6. Conclusions and Future Work

In this paper, we have extended our previous work on LCA-ABE to provide a smart,
adaptive, context-aware security model by adopting a novel intelligent dynamic creation of
context-aware policies, which was achieved through smart-learning techniques. By lever-
aging attribute-based encryption (ABE), we also provided a context-awareness dynamic
encryption model. Furthermore, our implemented security framework is capable of grant-
ing secure interapplication data communication by encrypting all of the requested sensor’s
sensitive data and making it available only for the authorized applications according to
the predefined context-aware policies. Thorough experiments and evaluations, and by
leveraging the full power of modern IoT smart environments and the newly imposed
privacy regulations, we demonstrate the efficiency of the proposed solution.

We believe that our secure adaptive model will open up promising directions and can be
used in many potential research applications for both academia and industry professionals,
where context awareness, security, privacy, and access control are required. In the near future,
we are planning to improve our model, using different ML techniques to solve problems
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in several military systems, such as command, control, communications, intelligence, and
surveillance in different challenging and heterogeneous networking environments.
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