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Abstract
This paper explores a deep-learning approach to evaluate the position of circular de-
limiters in cartridge case images. These delimiters define two regions of interest (ROI), 
corresponding to the breech face and the firing pin impressions, and are placed manu-
ally or by an image-processing algorithm. This positioning bears a significant impact on 
the performance of the image-matching algorithms for firearm identification, and an 
automated evaluation method would be beneficial to any computerized system. Our 
contribution consists in optimizing and training U-Net segmentation models from digi-
tal images of cartridge cases, intending to locate ROIs automatically. For the experi-
ments, we used high-resolution 2D images from 1195 samples of cartridge cases fired 
by different 9MM firearms. Our results show that the segmentation models, trained 
on augmented data sets, exhibit a performance of 95.6% IoU (Intersection over Union) 
and 99.3% DC (Dice Coefficient) with a loss of 0.014 for the breech face images; and a 
performance of 95.9% IoU and 99.5% DC with a loss of 0.011 for the firing pin images. 
We observed that the natural shapes of predicted circles reduce the performance of 
segmentation models compared with perfect circles on ground truth masks suggesting 
that our method provide a more accurate segmentation of the real ROI shape. In prac-
tice, we believe that these results could be useful for firearms identification. In future 
work, the predictions may be used to evaluate the quality of delimiters on specimens 
in a database, or they could determine the region of interest on a cartridge case image.
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Highlights

•	 Deep Learning (U-Net) is promising for automated segmentation of ROI on cartridge case images.
•	 Improved ROI detection, with natural shape prediction for breech face and firing pin 

impressions.
•	 Segmentation method locates BF and FP impressions on 9 mm CC with a Dice Coefficient 

reaching 99%.
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1  |  INTRODUC TION

Bullets and cartridge cases discharged by a firearm provide ballis-
tic samples that contain characteristic marks, which can supply in-
formation about the weapon used to fire the ammunition. Firearm 
identification is based on the principles of tool mark identification, a 
forensic discipline interested in establishing whether a specific tool 
has produced a mark on another object. In the context of ballistics, 
the firearm represents a tool that transfers marks onto bullets and 
cartridge cases [1–7]. To determine or eliminate the use of a particu-
lar firearm, the ballistic identification specialist relies on the obser-
vation, recognition, and matching of characteristic marks present on 
the specimens [8].

Since the 1980s, many researchers have turned to computers to 
improve the science of firearms identification. The increasing num-
ber of samples contained in databases, the time involved in visual 
evaluations by experts, and the inherent bias of human opinion all 
contribute to the automation of ballistic specimen acquisition and 
the matching process. In this regard, various computerized systems 
have emerged, supported by recent developments, namely the im-
provement of image acquisition equipment with 3D topography, 
the advance of image-processing technology, and research work 
on comparison algorithms introducing a quantitative and objec-
tive match between two samples [9]. For example, the Integrated 
Ballistic Identification System (IBIS), appointed by the Bureau of 
Alcohol, Tobacco, and Firearms (ATF), the Drugfire program (now-
adays withdrawn), proposed by the Federal Bureau of Investigation 
(FBI) both developed in the early 1990s in America; and the National 
Integrated Ballistics Information Network (NIBIN), an evidence da-
tabase established in 1999 [2, 10–12]. These systems automate the 
imaging of samples, identify regions of interest (ROI), and provide a 
numeric estimate of likely matches. They typically include an optical 
microscope, a signature analysis station, and a matching algorithm 
for an end-to-end ballistics evaluation [2, 4, 7, 13–15].

The firing process of a gun transfers several characteristic marks 
to the cartridge case, which vary according to the model of the fire-
arm [2, 13]. Among these marks are the firing pin (FP) impression and 
the breech face (BF) impression, produced at different times during 
the firing process. The FP impression is partially created when the 
firing pin strikes the primer before the propellant ignites, thus, im-
printing the negative topography of the firing pin surface on the 
case. This imprint's shape, position, dimensions, and depth are spe-
cific to the firearm model [3, 4]. The BF mark is created as a result of 
the sequence of events following the propellant ignition. The accu-
mulation of hot gasses produced by the explosion projects the bullet 
through the barrel, recoiling the cartridge case in the opposite direc-
tion until it impacts the breech face of the firearm. At this instant (or 
upon collision), the negative topography of the breech face surface 
is imprinted on the head of the cartridge case. Specialists consider 
these impressions as reliable tool marks for identification purposes 
[4, 16]. Because the position of the cartridge case may vary between 
the instants of the FP strike and the BF collision, the relative align-
ment of the two marks may differ among exhibits. Therefore, they 

are usually separated before conducting a computational ballistic 
analysis [1], and automating this procedure represents a valuable ad-
dition to any firearm identification system.

1.1  |  Problem definition

Modern computerized systems typically use traditional image-
processing methods to position circular delimiters on the cartridge 
case images to establish the ROI corresponding to the BF mark and 
the FP impression. This step is usually followed by human valida-
tion, where a system user or an expert verifies and repositions these 
delimiters as needed. This positioning bears a significant impact on 
the performance of the image-matching algorithms. Mainly because 
calculations to establish the level of similarity between the images 
in the database only consider the ROI area since it is the location of 
the microscopic marks specific to each firearm. As such, the ability 
to retrieve similar cartridge cases from the databases depends heav-
ily on the position accuracy of the delimiters. Therefore, an auto-
mated method to evaluate the delimiters of images in a database or 
verify their positioning accuracy upon the image acquisition would 
be beneficial to any computerized system; whether an algorithm is 
responsible for a suboptimal position or a user repositioned them 
incorrectly.

1.2  |  Background

Several studies involving ballistic cartridge case samples have pro-
posed solutions for developing or improving matching algorithms to 
establish a quantitative similarity score between tool marks [1, 3, 
4, 7, 8, 13, 14, 16–19]. But in many of these studies, the steps of 
detection and selection for the region of interest are not always well 
defined. Some studies even omit this step, and we assume that the 
ROI is selected manually by placing delimiting circles around them. 
However, this manual method is not ideal because rapid processing 
becomes unrealistic with increasing numbers of cartridge case sam-
ples. Second, manual segmentation by a human operator injects bias 
and variation into the samples [14, 15]. In other studies, the authors 
report using preprocessing steps to segment the images and separate 
the different types of marks. Still, they do not specify the methods 
to achieve this [1, 13, 17–19]. A few studies mention an automatic 
identification of the ROI using traditional image-processing meth-
ods, mainly edge detection, such as the Sobel operator or the Canny 
edge detector. Sometimes, image segmentation operations paired 
with thresholding techniques isolate the ROI from the background 
image and produce a mask (a binary image displaying black or white 
pixels) [2]. Tai et al. present a detailed description of an automated 
mark selection step using traditional image-processing methods: the 
primer region is initially identified with a combination of operations 
(Gaussian filter, histogram equalization, flood fill, dilation, and ero-
sion). The FP impression is then removed with a similar combina-
tion of operations, with the addition of a Canny edge detector. This 
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combination retains the true shape of the firing pin mark since this 
shape yields an identification value [14]. A few studies also focused 
predominantly on the automated segmentation of ROI on cartridge 
cases images using traditional image-processing methods: a combi-
nation of methods including Connected Components Labeling, the 
Canny operator, and the Randomized Hough Transform; a second 
method using the image focus information for each pixel paired with 
a Hough transform [20], and thresholding technique using Surface 
Height Image information [15].

Machine learning is a scientific discipline using computer algo-
rithms to identify congruences in data and use them in tasks such 
as classification or segmentation [7, 17]. Today, many fields are 
turning to machine-learning techniques to solve problems involv-
ing computer vision tasks. Some researchers use traditional image-
processing methods to extract useful features from an image and a 
machine-learning algorithm to categorize or segment them. At the 
same time, others are interested in the opportunities arising from 
the rapid evolution of deep learning, which has repeatedly been 
shown to match and even surpass human performance on pattern 
recognition tasks. In addition, access to various open-source soft-
ware options and the availability of a vast network filled with re-
sources greatly facilitate using these modern techniques [21].

Nevertheless, to this day, few works have used deep learning-
based methods to delimit ROI in images of cartridge cases. However, 
other domains have often used machine learning or deep learning 
to assist in the discovery of different ROI in images with charac-
teristics resembling those of cartridge case images, for instance, 
high-resolution grayscale photographs and 3D topographic images. 
Specifically, medical imaging offers many studies involving mono-
chrome or 3D images with reliefs (magnetic resonance, X-rays, 
computed tomography, etc.). Many studies in this field used deep-
learning architectures specialized in classification, object detection, 
or segmentation to identify, locate, or recognize ROI in images. For 
example, convolutional neural networks (CNN) have succeeded in 
classifying liver tumors in magnetic resonance image (MRI) scans 
[22]; faster R-CNN, YOLOV3, and SSD networks have detected brain 
lesions in MRI [23]; a Hierarchical Convolutional Neural Network 
(HCNN) was used to segment iris in images of the eye for biometric 
identification purposes [24]; and the FCN, FCN-DenseNet, U-Net, 
and LinkNet architectures have been utilized to segment salivary 
glands in ultrasound images [25].

In other areas, the U-Net, SegNet, Dilated Net, PSPNet, DeepLab 
v3+, and Dilated Residual Net architectures have been tested to de-
tect solar panels in high-resolution satellite images [26]. The U-Net 
architecture has successfully segmented areas corresponding to 
landslides, farmland, and clouds in remote-sensing images [27]. And 
an R-CNN based on the ResNet architecture successfully segmented 
topographic regions from images of a moon replica site [28].

This study aims to determine if a modern deep-learning approach 
could evaluate the positioning of circular delimiters in cartridge case 
images and eventually help identify images with suboptimal circular 
delimiters in ballistic sample databases. This solution could also be 
implemented in image acquisition software to perform segmentation 

or validation during the acquisition of a cartridge case image. This 
study examines two types of cartridge case ROI. The breech face 
(BF) impression is represented by an image with two delimiting cir-
cles (Figure 1), and the firing pin (FP) impression is represented by an 
image with a single delimiting circle (Figure 2).

2  |  MATERIAL S AND METHODS

2.1  |  Deep learning

Many segmentation architectures, such as the fully convolutional 
network FCN, are based on the convolutional neural network CNN 
and are divided into two parts: an encoder and a decoder. The func-
tion of the encoder is to downsample the input image to obtain a 
high-level contextual feature map. This part typically includes sev-
eral convolutions and pooling operations. The decoder's task is to 
upsample this low-resolution feature map by carrying out transposed 
convolutions to predict a high-resolution dense label map. To train a 
segmentation model, the data set must include the images to be seg-
mented, plus binary masks matching these images and representing 
the ground truth, that is, the masks manually segmented by an ex-
pert [26, 27, 29, 30]. The U-Net architecture entails an enhanced ver-
sion of the FCN, incorporating skip connections to link the encoder's 
lower layers to the decoder's upper layers. These shortcuts improve 
the performance of the dense prediction, using a concatenation of 
the features extracted in the encoder and the ones obtained in the 
decoder to transfer the features already learned by the model, al-
lowing the model to use the global information extracted from the 
early layers of the network when evaluating the pixels prediction 
[29,31]. Several layers comprise the U-Net architecture, divided into 
two sections: the encoder and the decoder. The encoder performs 
the downsampling through a series of layers, made of two convolu-
tional operations, followed by a max-pooling operation with a ReLU 
activation function, where the number of filters is doubled between 
every layer. The decoder carries out the upsampling using a succes-
sion of transposed convolutional layers. At the network output, a 
1 × 1 convolutional layer maps each feature vector to the target class 
(0 or 1 in the case of a binary mask, contingent on the pixel being 
part of the ROI) [25, 31]. The R-CNN mask, another popular option, 
divides the segmentation problem into two subtasks: detection and 
localization of a ROI, followed by feature segmentation and mask 
creation [32].

To evaluate the quality of the results in segmentation tasks, sev-
eral authors used the Dice Coefficient (DC), also called the F1 mea-
sure or Dice Metric (DM) [26, 29, 32–35]. The DC metric is computed 
between the predicted binary masks at the output of the network 
and the ground truth. DC denotes the ratio between the intersection 
of two regions and the union of these regions, namely the overlap 
between two images. It is defined by Equations 1 and 2, where A 
represents the network prediction, and B represents the ground 
truth. TP, FP, and FN represent the true positive, false positive, and 
false negative values [26].
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4  |    LE BOUTHILLIER et al.

The Intersection over Union (IoU), also known as Jaccard's index, 
is another popular metric to evaluate the results of a segmentation 
task  [26, 36]. Like DC, the IoU metric represents the overlap rate 
between the predictions and the ground truth [27]. This metric is 
defined by Equations 3 and 4.

Both DC and IoU metric presents a number between 0 and 1. 
The closer this value is to 1, the higher the overlap and similarity 
between the two images and the more accurate the segmentation 

predicted by the model. A value equal to 1 means a perfectly over-
lapping segmentation, whereas a value equal to 0 means the absence 
of overlap. The DC and the IoU metrics are positively correlated, 
which connotes that if one metric evaluates a model as superior to 
another, the second metric will yield the same evaluation. In general 
practice, the Dice Coefficient provides a measure of average per-
formance, whereas the IoU provides a measure closer to the worst 
outcome [26, 34, 36].

Typically, neural networks work with an optimization process 
using an objective function to minimize or maximize a value. When 
this value is minimized, the objective function is called the loss func-
tion. The principle of the optimization process is to provide a set 
of weights to the model to make the predictions, then calculate an 
error on these predictions and adjust the weights to minimize the 
error on the next iteration. The more the predictions deviate from 
the ground truth, the higher the value of the loss function. Many 
basic architectures use stochastic gradient descent as an optimi-
zation algorithm, but other options could be better suited: for ex-
ample, RMSProp, Adagrad, Adadelta, Adam, Adamax, Nadam. The 
Cross-Entropy loss function is commonly used to compute the error 

(1)DC (A,B) =
2|A ∩ B|

|A| + |B|

(2)DC =
2TP

2TP + FP + FN

(3)IoU =
|A ∩ B|

|A ∪ B|

(4)IoU =
TP

TP + FP + FN

F I G U R E  1  Images of the breech face mark captured with a ring light source. Circular delimiters correctly positioned: image (A), ground 
truth mask (B). Circular delimiters badly positioned: image (C), ground truth mask (D). 
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    |  5LE BOUTHILLIER et al.

between the output and the ground truth in deep-learning models, 
including models for segmentation tasks [25, 29, 34, 37].

Alternatively, a few studies have used the Dice Loss (DL), de-
fined by Equation  5. The Dice Coefficient, previously defined by 
Equation  1, determines this loss value. The Dice Loss also allows 
for the optimization of the DC value during a model's training [26]. 
Similarly, Equation 6 defines the Jaccard Loss (JL).

Thus, for this project, we chose the U-Net segmentation archi-
tecture since it was shown to outperform FCN, is known to provide 
suitable results from relatively few images and offers a simple im-
plementing solution. We also chose to use the standard metrics for 
evaluating the results of segmentation tasks: the Dice Coefficient 
(Equation 1) and the Intersection over Union (Equation 3). These met-
rics are well recognized and have been proven in many similar studies.

2.2  |  Data

The data set is provided by the research department at Ultra 
Electronics Forensic Technology [11]. It consists of 1195 sam-
ples from cartridge cases fired by different 9MM guns. For each 
case, the data set contains images from the two regions of inter-
est under study (breech face and firing pin), geometric informa-
tion on the positioning of the delimiting circles, and a binary mask 
representing these circles. The images were obtained using a 
BrassTRAX acquisition station, a commercial system that captures 
high-resolution 2D images and 3D topographic information of the 
cartridge cases. For this project, we utilized 2D images illuminated 
from a ring light source. Initially positioned automatically by an 
image-processing algorithm, the circular delimiters were checked 
by an expert and repositioned as needed. The resulting masks 
were used as the ground truth and were corroborated by a visual 
inspection prior to the training. Figure S1 shows examples of the 
BF and FP images and displays the full headstamp, the frontal print 
of the cartridge case.

(5)DL = 1 − DC

(6)JL = 1 − IoU

F I G U R E  2  Images of the firing pin, captured with a ring light source. Circular delimiters correctly positioned: image (A), ground truth mask 
(B). Circular delimiters badly positioned: image (C), ground truth mask (D). 
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6  |    LE BOUTHILLIER et al.

2.3  |  Preprocessing

Similar studies use image resizing, image normalization, and data 
augmentation preprocessing techniques. Resizing involves chang-
ing the resolution of the original image and is mainly used to reduce 
computational complexity and training time, to accommodate the 
input requirements of a deep-learning architecture, or to mitigate 
hardware limitations [27, 38, 39]. In some cases, resizing has been 
used to homogenize the data resolution, especially when images 
come from different sources [34]. Data augmentation increases the 
number of available images by applying slight distortions to the origi-
nal images. During training, this technique improves the likelihood of 
the network learning distinctive and useful features while reducing 
the risks of overfitting [22, 34, 40]. Some of the most popular modi-
fications applied to images to carry out augmentation include rota-
tions, shifts, scale transformations, horizontal and vertical flips [26, 
34, 39, 41, 42], noise, blur masks [25, 38], and brightness variations 
[22]. For example, one study exploited the symmetry property of the 
lungs by applying vertical flips to radiographic images [38].

We randomly separated the original data and their masks into 
three sets for this project. The training and validation sets (80% and 
10% of the data) are used when training the models, and the test set 
(10% of the data) is used to evaluate the models after completing the 
training sessions. The test set is important because it allows us to 
evaluate the models with new samples unseen during the training. 
The data split is applied before the data augmentation to prevent 
allocating similar variations of an image to different sets.

Next, we used augmentation techniques to increase the training 
and validation sets three times (i.e., adding two randomly modified 
images for each sample) and the test set six times (five modified im-
ages per sample). Figure  3 shows a schematic illustrating the pre-
processing steps with the data augmentation procedure. We chose 
to apply randomly selected transformations on the images and the 
corresponding masks. The possible transformations are a rotation 
of 36° to 180°, a translation of 15 to 75 pixels in x or y, a horizontal 
or vertical flip, and variable salt and pepper noise. An edge effect 
can appear when we apply a rotation or translation to an image (see 
Figure S2). Gaussian or salt and pepper noise (with random grain size 
and gray tone) replaces the black areas to prevent the model from 
identifying these always-black regions as defining features of the im-
ages. This step does not apply to the image masks since their black 
background makes the edge effects indistinguishable. Figure  S3 
shows an image modified by three random transformations. As a 
last preprocessing step, we resized all images and their masks to a 
256 × 256 resolution, as required for the U-Net input, and normal-
ized the images by dividing each pixel by 255 so that all values lie in 
the range [0–1].

2.4  |  Methodology

We then followed a typical machine-learning methodology divided 
into three main parts: optimizing the hyperparameters for the 

models, training the different models, and evaluating them to com-
pare the results. This section presents the methodology details, and 
Figure 4 illustrates the general process of the model.

The hyperparameter optimization stage involves a grid search, 
that is, the training of several U-Net models using different hyper-
parameter configurations to determine the ideal hyperparameter 
combination. We based our choice on the learning curves and the 
metrics obtained during the evaluation of the models. The learning 
curves are created from different values collected during training. 
They contain information about the evolution of the performance 
(the metric) and the optimization of a model (the loss). For the se-
lection of the best hyperparameters, we compared the convergence 
and the visual fluidity of the learning curves (training and validation), 
and the values of the evaluation metrics and loss. For these optimi-
zation pieces of training, we used images of the breech face mark, 
photographed with a ring light (Figure S1A). The default learning rate 
value was used for all the optimizers tested. Some of the optimizers 
feature an adaptive learning rate, where the value of the learning 
rate is modified internally during the training process. For the non-
adaptive optimizers, we used a parameter of the callback function 
that acts in a similar way, by reducing the learning rate when the val-
idation loss has stopped improving. Table 1 shows the values consid-
ered for the three hyperparameters evaluated during these training 
iterations: batch size, loss function, and optimizer; whereas Table 2 

F I G U R E  3  Data augmentation schema. 
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    |  7LE BOUTHILLIER et al.

presents the optimal combination determined at the end: a batch 
size of 8, a Jaccard Loss function, and the Adam optimizer.

Once identified, we trained four segmentation models from dif-
ferent image sources using this optimal hyperparameter combina-
tion. We trained one model from the original (nonaugmented) data 
set and one model from the augmented data set for each type of ROI 
considered in this project: the breech face and the firing pin. Table 3 
shows the four models trained. We analyzed the results for each of 
these models, first comparing the training curves. The training learn-
ing curve (from the training data) presents a snapshot of how well 
the model learned. The validation learning curve (from the valida-
tion data) presents an overview of the model's generalization ability. 
Once the training was completed, we examined the metrics obtained 
from the model evaluations (from the test data) to gain information 
on the performance of the models with unseen data. The values 

considered are the same as those used for the training curves: IoU, 
DC, and JL. For each model, we conducted two evaluations: a first 
evaluation with a nonaugmented test set and a second evaluation 
with an augmented test set, to simulate cases where the images are 
not ideal (e.g., decentered or noisy images). This double evaluation 
allows us to get a better idea about the performance of the models 
and to be able to assess the improvements obtained when we train 
the models with augmented data.

2.5  |  Implementation

The experimentations were performed on a 2019 MacBook Pro (see 
Table 5 for specifications). U-Net was implemented in Python and 
Keras, following the original architecture, without using pretrained 
weights [31]. All models include an early stop option for the training 
via a callbacks parameter. This early stopping allows the configura-
tion of certain conditions to trigger the end of the training. For this 

F I G U R E  4  General process. 

TA B L E  1  Hyperparameters for segmentation models training.

Hyperparameter Values considered

Batch size 8, 16, 32, 64

Loss function Binary cross-entropy, Dice Loss (DL), Jaccard 
Loss (JL)

Optimizer SGD, RMSprop, Adagrad, Adadelta, Adamax, 
Nadam, Adam

TA B L E  2  Selected hyperparameters for segmentation.

Hyperparameter Values

Batch size 8

Loss function Jaccard Loss

Optimizer Adam

TA B L E  3  Segmentation models.

Model Ensemble ROI Images

BF-O Original data Breech face

BF-A Augmented data

FP-O Original data Firing pin

FP-A Augmented data
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project, training stops when the validation loss has not changed for 
10 epochs. If this condition is never reached, the training continues 
for the predetermined number of epochs (iterations).

3  |  RESULTS

This section presents the results obtained during segmentation ex-
periments with the U-Net architecture.

3.1  |  Segmentation models for breech 
face markings

3.1.1  |  Model BF-O: Breech face trained 
with original data

This training spanned 32 epochs (iterations) using the early stop fea-
ture. The average training time is 278 seconds per epoch (~5 min), for a 
total training time of about two and a half hours. With a batch size of 
8, each epoch comprises 120 steps, representing an average training 
time of 2.32 seconds per step. Figure S4 shows two graphs containing 
the training and validation learning curves for performance with IoU 
and DC values and for optimization with the values of the Jaccard Loss.

Once training was completed, we used the two test sets (origi-
nal and augmented) to evaluate the models on unseen data. Table 4 
shows the results obtained during the evaluations. For the BF-O 
model, we can observe a decrease in the value of the metrics (more 
pronounced for the IoU metric) and a slight increase in the value of 
the loss when we evaluate using the augmented test set compared 
with using the original set. This implies that the augmented test data 
contain variations the model did not learn during training. These re-
sults were to be expected, as we trained this model on the original, 
that is, nonaugmented data.

3.1.2  |  Model BF-A: Breech face trained with 
augmented data

This training lasted 27 epochs, using the early stop feature. The av-
erage training time is 989 s per epoch (~16 min), for a total training 
time of approximately seven and a half hours. With a batch size of 
8, each epoch features 359 steps, representing an average training 

time of 2.75 s per step. Figure S5 shows the performance and opti-
mization training curves, and Table 4 presents the results obtained 
from the two evaluations of the BF-A model. The original and aug-
mented test sets give similar metric and loss value results. These 
results indicate that the model successfully learned the variations of 
the augmented data.

3.1.3  |  Comparison of the BF-O and BF-A models

The comparison graphs in Figure 5 show the metrics and the loss 
of training curves for the two models trained from the breech face 
images. The green curve represents the BF-O model trained from 
the original (nonaugmented) data, and the orange curve represents 
the BF-A model trained from the augmented data. We can see that 
the two models show similar behavior: the shape of the two training 
curves is similar in all the comparison plots. The evaluation of both 
models also delivers similar performances. Still, we observe that the 
metrics are more stable with the BF-A model when shown the dif-
ferent data sets, indicating the effectiveness of the data augmenta-
tion strategy. We also notice a slight performance increase when the 
models are trained from the augmented data set (99.25% vs. 99.32% 
DC with the original test set evaluation).

3.2  |  Segmentation models for firing pin 
impressions

3.2.1  |  Model FP-O: Firing pins, trained 
with original data

This training spanned 43 epochs, using the early stop feature. The 
average training time is 298 s per epoch (~5 min), for a total training 
time of approximately three and a half hours. With a batch size of 8, 
each epoch comprises 120 steps, representing an average training 

TA B L E  4  Models evaluation.

BF-O BF-A FP-O FP-A

Test set Test set Test set Test set

Original Augmented Original Augmented Original Augmented Original Augmented

DC 99.25% 97.78% 99.32% 99.29% 99.45% 97.99% 99.45% 99.40%

IoU 95.15% 87.00% 95.62% 95.40% 95.85% 86.54% 95.89% 95.57%

Loss 0.0159 0.0453 0.0143 0.0150 0.0114 0.0406 0.0113 0.0124

TA B L E  5  Hardware configuration.

MacBook Pro

Processor 2.3 GHz 8-Core Intel Core i9

Memory 16 GB 2667 MHz DDR4

Graphics AMD Radeon Pro 5500 M 4 GB
Intel UHD Graphics 6,301,536 MB
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    |  9LE BOUTHILLIER et al.

time of 2.49 s per step. Figure S6 shows the performance and opti-
mization training curves, and Table 4 presents the results obtained 
during the two evaluations of the FP-O model. We can observe the 
same behavior as with the BF-O model: a decrease in the value of 
the metrics and an increase in the value of the loss when the evalu-
ation uses an augmented test set compared to the original test set.

3.2.2  |  Model FP-A: Firing pin, trained with 
augmented data

This training took place over 41 epochs, using the early stop feature. 
The average training time is 1094 s per epoch (~18 min), for a total 
training time of approximately twelve and a half hours. With a batch 
size of 8, each epoch features 358 steps, representing an average 
training time of 3.06 s per step. Figure S7 shows the performance 
and optimization training curves, and Table 4 gives the results ob-
tained during the two evaluations of the FP-A model. Similar to the 
BF-A model, we observe comparable metrics and loss values for the 
original and augmented test sets.

3.2.3  |  Comparison of the FP-O and FP-A models

The comparison graphs in Figure 6 show the training curves for the 
metrics and loss of the two firing pin segmentation models. We can 

observe that the training of the FP models behaves similarly to the 
BF models, with both augmented and nonaugmented data. The same 
applies to the evaluation performances: increased stability with the 
FP-A model, trained with augmented data.

4  |  DISCUSSION

When evaluated with the original test set, the BF-A model obtained 
an IoU value of 95.62% with a loss of 0.0143, signifying a substantial 
overlap between the ground truth masks and the masks predicted by 
the model. Figure 7 shows an example of segmentation with a high 
overlap rate for a BF image and a variation of the same image.

Most results predicted by the BF-A model display this high over-
lap rate. Figure S8 presents some instances of these successful pre-
dictions, chosen from unusual images where segmentation could 
have been problematic. For example, a very thin area of interest (a), 
a circle cut on two edges due to translations (b), a challenging inner 
circular delimiter (c), and a stretched inner circular delimiter (d).

In a few cases, the segmentation appears correct. Still, a protru-
sion (Figure  8A–E) or a cavity (Figure  8E,F) emerges on the outer 
circular delimiter. Placing a perfect circle to rectify the misshapen 
prediction would likely improve the overall results.

We can hypothesize that visible marks on the cartridge case are 
causing the prediction error for the image in Figure 8D. But in most 
cases, it is difficult to determine why the network predicted these 

F I G U R E  5  Comparative training plots of BF segmentation models: IoU (A), DC (B), and loss (C). 

F I G U R E  6  Comparative training plots of FP segmentation models: IoU (A), DC (B), and loss (C). 
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10  |    LE BOUTHILLIER et al.

F I G U R E  7  BF images, segmentation results with high overlap: original image (A) and transformed image (B).

F I G U R E  8  BF images and segmentation results show different protrusions and cavities.
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    |  11LE BOUTHILLIER et al.

protrusions or cavities by looking at the images. We also noticed 
that some prediction errors vary with the transformations applied to 
the images during the augmentation step. Figure S9 provides some 
examples of error variations depending on the transformation. The 
images in the left column show predictions with a significant error, 
while those in the right column show a variation of the same image 
with a lessened error. We speculate that since directional transfor-
mations in x and y are applied with the convolution and clustering 
operations of the neural network during training, a rotation of the 
image could affect the impact of these transformations on certain 
features.

Finally, an interesting observation is that when an image pres-
ents a segmentation result with a high error rate, most variations 
of this image from the augmentation step also show some segmen-
tation difficulties. This suggests that, in such cases, the base image 
presents segmentation difficulties for the network. It could also 
suggest that the segmentation method provide a more accurate 
segmentation of the real ROI shape than the one provided by the 

ground truth mask. Figure S10 depicts four variations of the same 
image with different error rates.

When evaluated with the original test set, the FP-A model 
achieved an IoU value of 95.89% with a loss value of 0.0113. Figure 9 
and Figure S11 illustrate segmentation with high overlap rates for 
different firing pin images.

Generally, we notice smaller prediction errors on the firing pin 
images' circular delimiter than the outer delimiter in the breech face 
images. We also observe the same pattern described earlier. When 
an image provokes a prediction error, most variations of that image 
show similar errors. As with the BF images, the prediction error of 
the FP images varies with the transformations but with subtler dis-
similarities. Figure 10 presents an image with segmentation errors 
and three variations of the same image. Figure S12 shows some ex-
amples of firing pin image segmentation, selected from cases with 
the highest error rates. Sometimes, the reason for the error seems 
obvious. For example, the unusual double center may explain the 
challenge experienced by the network during segmentation (a); the 

F I G U R E  9  FP images, segmentation results with high overlap.

F I G U R E  1 0  FP images, segmentation results with high error rates show different variations of an image.
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12  |    LE BOUTHILLIER et al.

many circles in the image may be difficult to differentiate (b); blurred 
and dark images might diminish details distinction (c–f).

Ultimately, the segmentation architecture provides a detailed 
answer to the original problem: automated validation of a circle de-
limiting a ROI. Rather than providing a simple “yes or no” answer 
(correctly or incorrectly positioned), the segmentation prediction 
provides a percentage error. We could then modify the acceptance 
threshold for this error to fit different applications without requiring 
the training of new models. Furthermore, we could use the predicted 
masks directly to automate a ROI selection.

5  |  CONCLUSION

This study was to investigate using a deep-learning method to evalu-
ate the positioning of circular delimiters in images of cartridge cases. 
Following the literature review, we selected a segmentation approach 
that could detect the entire region of interest; and metrics that sup-
ply a value of overlap between the prediction and another mask, the 
ground truth in this case. We considered images with two types of ROI: 
the breech face mark and the firing pin impression. The BF images have 
two circular delimiters, forming a doughnut-shaped ROI. The FP im-
ages have a single circular delimiter, forming a circle-shaped ROI. The 
initial data set includes several image formats for each region of inter-
est, with a binary mask representing the ground truth and a file list-
ing the coordinates of the circular delimiters. We selected 960 × 960 
resolution images photographed with a ring light for our experiments.

We chose the U-Net deep-learning architecture for segmen-
tation since it stands out in similar studies, with excellent perfor-
mances on semantic segmentation tasks. We then chose to use 
commonly used metrics for evaluating the models: the Intersection 
over Union (IoU) and the Dice Coefficient (DC), and training curves 
of performance and optimization to compare the robustness of the 
models. To prepare the data for training, we split the set into three 
random subsets: 80% for a training set, 10% for a validation set, and 
10% for a test set. To complete the data preparation, we created 
augmented training and validation sets by increasing the data by 
a factor of three and an augmented test set, increased by a factor 
of six. To this effect, we used random transformations of rotation, 
translations, flips, and salt and pepper noise.

Following a typical machine-learning methodology, we then 
started experiments with the U-Net segmentation architecture. We 
began by optimizing the hyperparameters of the models and se-
lected a batch size 8, Jaccard's Loss function, and Adam's optimizer 
train the final models. Next, we trained two final models for both 
regions of interest: breech face mark and firing pin impression (BF 
and FP). We trained the first model (BF-O, FP-O) with the original 
(nonaugmented) data set and the second model (BF-A, FP-A) with 
the augmented data set. We presented model training curves and 
model evaluation results. The BF-A model achieved a performance 
of 95.6% IoU and 99.3% DC with a loss of 0.014. The FP-A model 
achieved a performance of 95.9% IoU and 99.5% DC with a loss of 
0.011. We could improve these performances by perfectly fitting 

circles over the natural shapes of the predicted masks, thus correct-
ing various prediction errors.

Finally, we presented images of segmentation predictions and 
discussed some observable errors. We propose that with more work, 
the segmentation predictions could be used to detect misplaced de-
limiters in databases, using a threshold to control the rate of accept-
able errors. We conclude that using a deep-learning segmentation 
method shows promising results applicable to the domain of firearm 
identification.

5.1  |  Future work

More work must be done to use the segmentation predictions in a 
tool to detect misplaced circles in a database. We also believe that 
the method could be used as a stand-alone ROI selector. Further 
work is therefore needed to assess how this method performs 
compared with other traditional methods currently employed in 
automated ROI detection. Another idea consists of creating a new 
mask with perfect circles positioned over the predicted ROI, mean-
ing drawing perfect circles on top of the segmented shapes, which 
rather follow the natural outline of the ROI on the cartridge case. 
This could be achieved with contour detection on the predicted 
masks, followed by coordinate extraction for the points belonging 
to these contours. An algorithm could then draw a perfect circle 
passing through these points. The main interest of this idea is that 
perfect circles could explain some overlapping errors in the metrics; 
the ground truth masks feature perfect circles, while the predicted 
masks have irregularities depending on the natural formation of 
the ROI. They could also correct some segmentation errors in the 
results, such as those in the predictions in Figure 8 or Figure S12. 
Future work could also include additional metrics on the data set, 
such as intra-annotation and extra-annotation information. Finally, 
some additional work involving the use of other images to optimize 
and train the models, for instance, the 3D topographic images or a 
solution leveraging combinations of 2D and 3D images. Images from 
different calibers of firearms might also constitute interesting pos-
sibilities and could add more flexibility to the tool.
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