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Deep learning framework 
for sensor array precision 
and accuracy enhancement
Julie Payette , Fabrice Vaussenat  & Sylvain Cloutier *

In the upcoming years, artificial intelligence is going to transform the practice of medicine in most of 
its specialties. Deep learning can help achieve better and earlier problem detection, while reducing 
errors on diagnosis. By feeding a deep neural network (DNN) with the data from a low-cost and 
low-accuracy sensor array, we demonstrate that it becomes possible to significantly improve the 
measurements’ precision and accuracy. The data collection is done with an array composed of 32 
temperature sensors, including 16 analog and 16 digital sensors. All sensors have accuracies between 
0.5− 2.0

◦

C . 800 vectors are extracted, covering a range from to 30 to 45 ◦
C . In order to improve the 

temperature readings, we use machine learning to perform a linear regression analysis through a 
DNN. In an attempt to minimize the model’s complexity in order to eventually run inferences locally, 
the network with the best results involves only three layers using the hyperbolic tangent activation 
function and the Adam Stochastic Gradient Descent optimizer. The model is trained with a randomly-
selected dataset using 640 vectors (80% of the data) and tested with 160 vectors (20%). Using the 
mean squared error as a loss function between the data and the model’s prediction, we achieve a loss 
of only 1.47x10−4 on the training set and 1.22x10−4 on the test set. As such, we believe this appealing 
approach offers a new pathway towards significantly better datasets using readily-available ultra low-
cost sensors.

Artificial intelligence (AI) has been gradually changing medicine throughout the last few years. As exhibited by 
Bohr &  Memarzadeh1, it can impact all areas of healthcare by enabling more precise disease detection, image 
analysis, patient monitoring, more efficient self-administration medication among  others2. Combining AI with 
health monitoring devices can significantly decrease healthcare  costs1. In particular, deep learning (DL) can help 
find hidden correlations and patterns using advanced machine-learning algorithms, including artificial neural 
networks (ANN)3,4. Thereby, deep machine learning can be used to achieve earlier recognition of complex pat-
terns in a patient’s data in order to detect anomalies and correlate symptoms & diseases. This new branch of 
medicine can make it more accessible and  affordable5,6. Exploiting machine learning, we seek to demonstrate 
that combinations of lower-cost & lower-precision sensors can potentially become as precise as any cutting-edge 
healthcare technology, reducing costs and providing a more universal access to  healthcare1. Building on this 
philosophy, this report establishes how a deep learning approach can yield more accurate data predictions from 
an ultra low-cost temperature sensors array.

Temperature sensors. Temperature sensors come in many designs and materials, according to their target 
application. Beyond cost, the key features to consider are reliability, response time, accuracy, sensitivity, tem-
perature range and, for skin temperature,  wearability7. They can include thermocouples, resistance temperature 
detectors (RTDs), thermistors and semiconductor sensors, each with their own advantages and  disadvantages8–10. 
Detailed specifications for these sensors are found in the  literature7,9. For this project, we use negative tempera-
ture coefficient (NTC) thermistors and semiconductor-based integrated circuits (ICs). The NTC sensors meas-
ure change in resistance. The temperature is then computed with the Steinhart-Hart equation given  as11,

where T is temperature in Kelvin, R is the thermistor resistance and A,B,C are constants specific to the sensor 
device, usually provided by  manufacturers11. These are analog sensors where the output is a continuous electric 

(1)
1

T
= A+ B lnR + C(lnR)3
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signal that is converted to temperature. In contrast, integrated circuits (IC)-based sensors use bipolar transistors 
to do the measurements. The specific IC sensor chosen for this work also includes an analog-to-digital converter. 
As such, the output signal from the sensor is a non-continuous temperature reading.

Temperature in medicine. Body temperature is one of the key vital signs for health assessment. The nor-
mal temperature may slightly vary between individuals, but is considered normal when at 37 ◦

C12. However, the 
temperature will be different depending on the part of the body where it is measured, the ambient temperature 
and the subject’s activities. Extremities tend to be  colder13. The human body has built-in temperature regulation 
mechanisms in order to maintain its temperature at 37 ◦

C . These mechanisms can be cold-activated like shiver-
ing, hunger and goosebumps, or they can be heat-activated like sweating and accelerated  breathing13. As such, 
temperature measurements are especially useful to detect infections and inflammations, but more generally for 
immune response detection. Bacterial discharge and virus load cause fever and can also be detected through 
a temperature  increase12,14. Using wearable devices, it is now possible to continuously monitor several health 
indicators and vital signs outside the  clinics14,15. For example, temperature imaging can be used to verify blood 
flow in order to detect small temperature changes on patients with vascular  disorders16. Another application is to 
monitor disease and treatment evolution through temperature, for example in pneumonia  patients17 or high-risk 
diabetic patients afflicted with foot  ulcerations18. Furthermore, temperature can be used to distinguish between 
superficial and deep skin burns, but also to monitor and predict the skin regeneration and healing  processes19. It 
is also used for the monitoring of infected  wounds20,21. Currently, thermal imaging is almost exclusively used in 
clinical settings. Although it offers many advantages as a simple non-invasive approach, its main disadvantage is 
that it works better directly on the  skin17. This can cause accessibility, comfort and privacy issues, depending on 
the affected area. Furthermore, it can only be done in a medical environment. In contrast, temperature sensors 
can be easily implemented in wearable devices such as  watches14,  patches22 and even face  masks23 to be even 
less intrusive and allow to monitor the patients continuously. Although this can bring calibration and accuracy 
issues, we intend for our DL model to improve wearable devices and learn to make-up for these intrinsic issues.

Machine learning. The lower accuracies and precisions of low-cost printed sensors usually stem from less 
reliable designs, coupled with cheaper materials and fabrication techniques. As such, an interesting idea would 
be to exploit machine learning algorithms on a statistically-significant number of those low-cost sensors (array) 
in order to potentially learn to compensate for those design and fabrication flaws. So far, only a handful of 
research groups have reported significant progress in this exciting new approach to further enhance the perfor-
mances of inkjet printed sensors beyond their physical limits. In 2019, an array of 20 printed sensors coupled 
with a two-stage machine learning approach produced an artificial nose used for food  classification24. There, 
a featurized-random forest or k-nearest neighbor classification (with similar accuracy) is first used for clas-
sification into food categories (ex: cheese, liquor, oil). Then, a combinatorial selector scan is used to class the 
specific food item within its category (ex: rum, vodka, whiskey, gin, and tequila as liquors)24. In 2020, research-
ers achieved sign-to-speech translation using machine-learning-assisted stretchable sensor  arrays25. Meanwhile, 
biomolecular & protein  sensing26,27, as well as gases & pollutant mixtures  detection28,29 were also demonstrated 
using low-cost printed sensors with machine learning treatment. In 2020, a multi-disciplinary team developed a 
smartphone-based DNA diagnostic tool for malaria used in rural Uganda in order to also improve connectivity 
between such communities and centralized medical  facilities30. They used low-cost paper-based microfluidic 
diagnostic test and had a disease detection accuracy over 98%30. In all those cases, the idea was ultimately to 
equip these low-cost sensor arrays with some intelligence in order to perform a certain classification  task24–29,31.

Low-cost sensors usually lead to low-precision and low-accuracy results due to equipment quality. This work 
demonstrates that low-cost temperature sensors used in combination with deep machine learning frameworks 
yield better precision and accuracy. This opens a wide range of applications, especially in the medical field, where 
cheaper sensors could be placed on different body parts, but still predict the body temperature.

Materials and methods
Data collection. Materials. In order to create our sensor array, we chose two types of low-cost tempera-
ture sensors. We used 16 digital temperature sensors and 16 analog temperature sensors, all with accuracies 
between 0.5 to 2.0◦ C. To collect the data from our sensors, we use an Arduino  Mega265032 and Arduino’s IDE. 
The Mega2650 offers 54 digital inputs and 16 analog inputs, which is sufficient to connect all our sensors to the 
microcontroller. It operates at 5V and 16 MHz frequency.

Methods. The sensors are mounted on an IKA C-MAG HS 7 control  hotplate33 with thermal paste to ensure 
conductivity and fixed with thermally-conductive tape, using the configurations shown in Figs. 1 &2. The sen-
sors are placed in a 4x8 array, covering the center of the plate as indicated in Fig. 1a. Two (2) rows consist of the 
digital sensors and two (2) rows for the analog sensors. This specific configuraton is only chosen to facilitate wire-
management and data-collection. Using two types of sensors helps diversify our dataset, while providing enough 
data for a meaningful distribution (see Supplementary Information section to compare both sensor types). All 
32 sensors are connected through wires to the Arduino microcontroller as shown in Fig. 1. There, Fig. 1a shows 
a representation of the experimental setup condition. The approximate placement of the 32 low-cost temperature 
sensors is schematically represented atop a thermal image of the hotplate when set at 50 ◦

C . From the thermal 
image acquired using a FLIR-One infrared camera, it is clear that the temperature is not uniform everywhere 
on the hotplate. This configuration was chosen on purpose to represent the human body, where the temperature 
can fluctuate quite a bit from one location to another. We cycled the hotplate’s set-temperature from 30 to 45 ◦

C , 
with increments of 1 ◦

C as a staircase signal. The heating plate’s accuracy is ±0.15
◦
C according to specifications. 
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As the temperature varies quite significantly over the surface, this parameter isn’t really meaningful in this study. 
Instead, we want our model to learn to predict the hotplate’s set temperature with the highest precision. Similarly, 
the body temperature can also vary significantly from one point to another. When measured orally, this tem-
perature is established as true, whereas elsewhere it may be different. Thus, we want our model learn to predict 
the established temperature of the plate, even if it is changing wildly depending on the position of the sensors on 
the hotplate. Fig. 1b shows the circuit on the Arduino Mega2650. For each degree measurement, we waited for 
two minutes to make sure that the hotplate’s temperature is stable before collecting the sensors’ readings each 1.5 
seconds for four minutes using the Arduino. Afterwards, 50 random vectors were chosen from the entire sample. 

Figure 1.  (a) Placement of the 32 low-cost temperature sensors schematically represented atop a thermal image 
of the hotplate when set at 50◦C . The two rows bounded in the black box are analog sensors, where as the green 
box contains digital sensors. (b) Schematic of our circuit. Only four sensors of each type are shown to simplify 
the figure. Generated with Fritzing v0.9.10 (https:// fritz ing. org).

Figure 2.  Optimized deep neural network (DNN) architecture used to learn to predict the (set) temperature 
from the read-out data of our 4 x 8 array of low-cost and low-accuracy temperature sensors.

https://fritzing.org
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Thus, our dataset consists of 50 vectors of 32 components for each temperature degree, for a total of 800 vectors. 
All vectors are then labeled according to the plate’s set temperature and accuracy.

Neural network. Methods. A feed-forward artificial neural network is a deep learning algorithm generally 
using large quantities of data to learn to recognize hidden patterns in order to make more accurate  predictions34. 
In this case, we designed a regression model, which predicts an output based off the data you feed it. The archi-
tecture of an artificial neural network is composed of interconnected neuron layers. It also contains an input 
layer, which forwards the data to the hidden layers for computational purpose. The information is then spread to 
the output layer, making a final prediction. Here, we used a supervised training  method35. To do so, the data set 
is randomly split in two subsets using Numpy’s random module. 80% went to the training set, while the remain-
ing 20% composed the validation set. A verification was performed to validate that the entire temperature range 
was covered equally in the training set for it to be unbiased and complete. (See Supplementary Information for 
the distribution.) To design our model, we use TensorFlow’s module  Keras36. We chose a three-layer deep neural 
network (DNN) shown in Fig. 3. Its hidden layer has 20 neurons and all are activated with an hyperbolic tangent 
function (tanh(x) = ex−e−x

ex+e−x ) . We chose the Adam optimizer with a 0.01 learning rate. The computed loss func-
tion for our regression is the mean squared error (MSE = 1

n

∑n
j=1

(Yj − Ŷj)
2) . We obtained a minimal loss by 

training the data set with 300 epochs. All these choices were made according to tests and grid search’s results ob-
tained with Python’s Scikit-Learn module. (See Table S1 in Supplementary Information for optimization details 
on the algorithm and grid search results.)

In this project, the model trains itself with 640 temperature vectors composed from the readings of the 32 
sensors and labelled with the set temperature of the hotplate. Using this training set, the model learns to pre-
dict the set temperature of the hotplate (labels) from the patterns and features of the array. Once the model is 
trained, we evaluate its performances using the test vectors and evaluate its set-temperature predictions from 
the sensors’ data. The predictions according to the set temperature and compared with the sensors’ readings are 
shown in Fig. 4.

Results and discussion
As seen in Fig. 3, the recorded temperatures fluctuate wildly from one sensor to another and the averaged sensor 
readings tend to increasingly underestimate the actual (set) temperature as the temperature is increased. For a 
set temperature of 45 ◦

C , some sensors read temperatures as low as 33 ◦
C . After only a few iterations of train-

ing, we observe that the DNN model architecture shown in Fig. 3 can predict the actual (set) temperature with 
a 0.12 ◦

C accuracy using extremely low-quality sensing devices. These results suggest that the DNN learns to 
compensate extremely well for the poor sensors’ precision and accuracy, as well as for the non-homogeneous 
temperature profile of the plate.

Results from Fig. 3 clearly highlight the sensors’ large margin for error. The red vertical dotted lines indicate 
each sensors’ readings according to each set temperature. As the set temperature increases, it is clear that lower 
temperature readings tend to move further from the actual set temperature than the maximal one. As such, the 
mean value extracted from the 32 sensors increasingly underestimates the set temperature. This increasing mar-
gin of error as the temperature rises can be explained by (1) the sensors’ low-precision and (2) the non-uniformity 
of the hotplate’s thermal profile for higher temperatures. The blue data points show the model’s prediction, which 
accurately follows the set temperature. The sensors’ readings’ mean rather follows a logarithmic regression. We 

Figure 3.  Individual temperature readings from each of the 32 sensors, mean value of all readings and the 
model’s predictions as a function of the hotplate’s set temperature. The dashed blue line indicates the target (set) 
temperature value.
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computed a 0.998 coefficient of determination ( R2 ) between prediction and set temperature, as well as a 0.999 
cosine similarity.

Even if the hotplate’s thermal profile becomes non-uniform as the temperature rises, our algorithm still 
performs very well. This is because the model also learns the behavior of each sensor according to its place-
ment. Figure 4 shows a 3D representation of our 4x8 sensor array as the temperature increases on the hotplate 
(heatmap) from two (2) different viewpoints. Just like the thermal image of Fig. 1, it is clear that some sensors 
are subjected to different temperatures locally. At 30◦ , the whole array is red (lower temperatures), and it then 
becomes increasingly yellow (higher temperatures) at different rates. It is clear from these results that the tem-
perature is not uniform everywhere on the hotplate. Indeed, this experimental system was selected on purpose 
in order to accurately mimic the non-uniform temperatures experienced across the human body.

As mentioned earlier, the body temperature can vary significantly depending on where the measurement is 
taken, just like the sensors in our work. However, our model still manages to predict accurately the hotplate’s 
reference (set) temperature, which would be the core body temperature in a clinical setting. Thus, we could 
place sensors over a patient’s body and be able to know the core body temperature. This could also be helpful in 
creating a heat map of the patient’s body. For instance, becomes possible to accurately predict the temperature 
at point A from a reading at point B, as shown in Fig. 5, where the algorithm could predict the oral temperature 
from the wrist sensor. But most importantly, it helps to get more accurate temperature readings from low-cost 
sensors. Even though these timely results present an appealing proof-of-concept, this study also represents a 
strong foundation for future investigations. For example, one could try different types of sensors an/or modify 
the positioning and shape of the array. We already did a first try of data augmentation and randomized the test set 
to get an idea of the effect’s on the prediction, as discussed in the Ablation Study below. The chosen temperature 
range for this project is convenient for skin temperature measurements, but we could also try to expand it and 
accommodate the model’s behavior in order to target other applications.

Ablation study. In order to develop the best model for this project, we tried different parameters for the 
algorithm. This section describes the model’s optimization process.

Loss and activation functions. We compared the results using different loss functions for our regression model. 
We tried the mean absolute error (Fig. 6a) and the mean squared logarithmic error and the root mean squared 
error (Fig. 6b) resulting in loss values of 2.79x10−2 and 4.57x10−2 respectively. As shown in Fig. 6c, the mean 
squared error yields significantly better results. Furthermore, the combination of the hyperbolic tangent activa-
tion function for both layers results in the best precision.

Indeed, this precise combination of hyperparameters provides the best restults : a 1.47x10−4 loss on the 
training set and 1.22x10−4 on the test set. As such, we can conclude that the framework has great generaliza-
tion ability, since it performs just as well on the test set on unseen data than in its training. This ability depends 
mostly of the variance-bias tradeoff. In this case, the model has a low variance (0.03) and bias (0.002), which is 
the optimal case for machine learning  models37.

Randomized vectors. If we shuffle the components of the testing vectors, the algorithm doesn’t perform as well. 
This is because part of the algorithm is also learning the heat profile of the hotplate, as it is intended. For instance, 

Figure 4.  3D heatmaps of our individual sensors’ readings with increasing temperature in the black arrow’s 
direction from two (2) different viewpoints. Each dotted line represents the evolution of one sensor. Axes going 
from 1 to 4 (row) and 1-8 (column) indicate the sensors’ individual placement. Generated with Mathematica 
Online v13.1 (https:// www. wolfr am. com/ mathe matica/ online/).

https://www.wolfram.com/mathematica/online/
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a shuffled test set fed into our model achieves a MSE of 6.58x10−3 , which is roughly a factor thirty (30×) larger 
than our best MSE result. This is due to the fact that when shuffling the components of each vector, we mix the 
heat map of our dataset. Therefore, the model can’t rely on that specific property to predict the temperature, and 
that’s why it becomes a bit less precise.

As a result, we also tried to train our model using randomly-shuffled vectors. Each one was randomly shuf-
fled so that the mapping aspect is completely eliminated. The same model computed a 6.97x10−4 of the test set, 
which is only a factor five (5× ) higher than our best MSE results. Comparison for both models is shown in Fig. 7.

However, we also tried to predict the temperature from a new heatmap. Instead of randomly shuffling each 
vector separately, we shuffled the sensors’ placement to create a different thermal profile as a test set. We did not 
retrain the model with this placement, so this allows us to assess the generalization ability for our model. Indeed, 
the new heatmap fed into the model achieves a MSE of 1.50x10−3 , which is only a factor ten (10× ) higher than 
the loss for the specific heatmap the model was initially trained on (1.22x10−4 ). In this current work, the goal 
is for the model to learn the heatmap and placement of sensors. Indeed, if the sensors were placed on a human 
body, we would want the model to be able to correlate the sensors to their placement on the patient. Thus, the 
focus can be fixed on a particular heatmap only.

Conclusion
While it is important to continue to improve materials and fabrication processes to improve sensors, the impact 
that artificial intelligence can also have should not be overlooked. This paper clearly demonstrates that machine 
learning algorithms are a powerful way to rapidly enhance readily-available low-cost sensor performances and 
to generate heatmaps from low-cost sensor arrays. Research is currently oriented towards implementing some 
intelligence onto sensor arrays in order to perform classification tasks. We show that applying such deep learning 
algorithms to low-cost sensor arrays can also improve their performances. In the future, it will be interesting to 
try this approach to identify the best designs to measure body temperatures. To do so, researchers will need to 
consider the sensor’s biocompatibility with  skin38. This system has a great potential for medical applications for 
non-invasive temperature measurements. As it is currently done with  biomarkers20, such sensor arrays could 
also be used to monitor inflammatory responses or recovery in burned and wounded patients. The advantage 
our sensors is that they require no chemical reactions and aren’t disposable. Furthermore, the thermal map 
generated by our model could be helpful to monitor the evolution of wounds and injuries, at much lower costs 
than current methods.

Figure 5.  Representation of our model’stransition onto the human body.
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Figure 6.  Results for different loss functions used to optimize our model in a logarithmic scale. (a) mean 
absolute error(MAE), (b) root mean squared error (RMSE) and (c) mean squared error (MSE), all with 
hyperbolic tangent activation function.

Figure 7.  (a) MSE loss function on logarithmic scale for our model (b) MSE loss function on logarithmic scale 
for a model trained using a completely randomized data set.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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