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Abstract Improving the healthcare system is imperative for increasing efficiency and reducing

costs. The rapid adoption of Internet of Medical Things (IoMT) has facilitated a broad range of

healthcare applications and services, from real-time and critical care monitoring to telemedicine.

These services typically have highly distinct quality of service (QoS) requirement for communica-

tion networks and thus cannot be served with a uniform network. In such a context, network slicing

technologies in 5G can be employed to create virtually independent and customized communication

networks for these use cases to meet their QoS requirement. In this wok, we model network slicing

for healthcare services as a virtual network embedding (VNE) problem and propose a two-sided

matching theory-based virtual network embedding (MT-VNE) solution. In MT-VNE, four novel

preference indexes are devised to construct differential preference lists. The deferred acceptance

and modified shortest path-based algorithms are utilized to perform the virtual node and link map-

ping, respectively. Extensive simulations demonstrate that MT-VNE outperforms other baselines in

terms of accepting more healthcare services and effectively utilizing physical network resources.

Moreover, MT-VNE also significantly reduces service embedding time.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

In recent years, the application of 5G technology into health-
care has given rise to numerous advanced healthcare use cases,
such as telemedicine, medical image transmission, medical

monitoring, remote surgery, etc. However, these use cases
often have distinct or conflicting quality of service (QoS)
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requirements for the communication networks that support
them. For example, remote surgery requires a support network
with ultra-low latency and ultra-high reliability [1], whereas

medical image transmission services require enhanced network
broadband but are less sensitive to traffic delay [2]. In addition,
medical monitoring services need to provide network connec-

tivity for a large number of sporadically active Internet of
Medical Things (IoMT) devices [3], such as wearable and
implantable medical devices, as well as smart sensing remote

and in–house monitoring devices.
The diverse QoS requirements of the medical services illus-

trate that the traditional ”one size fits all” network provision-
ing approach is no longer adequate for the current healthcare

industry. Therefore, in this context, 5G network slicing tech-
nologies can be utilized to facilitate the coexistence of multiple
medical services with varying requirements on a shared under-

lying physical network. By providing separate virtual networks
with specific QoS guarantees for each medical service, network
slicing enables efficient resource allocation and better manage-

ment of network resources, ensuring that each medical service
can operate with the desired level of performance and security.
Fig. 1 Network slicing f
Fig. 1 illustrates the network slicing implemented for
healthcare services. In this scenario, each healthcare service
is abstracted as a logical virtual network (VN), where virtual

nodes can be identified as communication instances in health-
care services such as hospitals, schools, and communities.
These virtual nodes are interconnected through virtual links,

thereby forming a virtual topology. Moreover, each VN is con-
figured with specific resource requirements, such as processing,
storage, and bandwidth resources, that correspond to the

demand of the corresponding service. Based on network virtu-
alization (NV) technology, the hardware resources of underly-
ing 5G distributed cloud networks are virtualized into pools of
computing/networking-related resources. This innovative

approach enables the creation of multiple medical slices with
varying characteristics that can be co–hosted on the same sub-
strate network (SN). The virtual resources in physical net-

works are allocated to each slice to provide corresponding
services, as illustrated in the ‘‘underlying substrate network”
in Fig. 1. Therefore, the network slicing for healthcare services

can be modeled as a virtual network embedding (VNE)
problem.
or healthcare services..



Table 1 Key VNE notations.

Notation Description

GS ¼ NS;LS
� �

Substrate network.

GV ¼ NV;LV
� �

Virtual network.

CPUnS ;LocnS Unoccupied CPU resource and node

location of substrate node nS.

BWlS ;DLlS Unoccupied bandwidth resource and

propagation delay of substrate link lS.

CPUnV ;LocnV ;LDCnV CPU demand, preferred location, and

location constraint of virtual node nV.

BWlV ;DLClV Bandwidth demand and maximum

propagation delay tolerance of virtual link

lV.

XnV

nS
Binary variable indicates if nV is embedded

onto nS.

YlV

pS
Continuous variable specifies the amount

of bandwidth that pS allocated to lV.

PS2V;PV2S Preference lists of substrate nodes to

virtual nodes, and virtual nodes to

substrate nodes, respectively.

PvalV2S;PvalS2V Preference value of virtual nodes to

substrate nodes, and substrate nodes to

virtual nodes, respectively.

RV2S Resource preference index.

DV2S Location preference index.

Ddir
V2S;D

adj
V2S

Direct and adjacent location preference

index.

ES2V Resource utilization efficiency index.

LS2V Link connectivity index.
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Traditional research on VNE provides insights into medical
network slicing. By considering various objectives such as opti-
mizing resource utilization efficiency, minimizing energy costs,

or maximizing economic revenue, researchers have modeled
VNE as diverse optimization problems, attempting to derive
exact solutions with optimization solvers. However, the NP-

hard nature of VNE problems makes it time-consuming to
obtain exact VNE solutions. Consequently, researchers resort
to heuristic and meta-heuristic methods to balance the trade-

off between VNE result quality and computational complexity.
Representative heuristic VNE algorithms include node
ranking-based and subgraph isomorphism detection-based
methods [4,5], while meta-heuristic algorithms involve particle

swarm optimization (PSO)-based and genetic algorithm (GA)-
based methods [6–8]. With the increasing application of deep
reinforcement learning (DRL) in communication and net-

working [9], researchers have recently introduced DRL algo-
rithms to solve VNE problems [10–12].

Apart from their similarities, healthcare network slicing-

oriented VNE and traditional VNE problems also exhibit
some distinct characteristics. For example, certain medical ser-
vices, such as remote surgery, emergency rescue, and medical

robots, often require low latency to ensure their proper func-
tioning [13]. Therefore, it is necessary to consider the commu-
nication latency requirements between virtual nodes when
performing healthcare network slicing. Furthermore, the vir-

tual nodes in the logical medical network are commonly con-
centrated in densely populated regions, such as hospitals,
communities, and schools, which typically possess static geo-

graphical positions. As a result, healthcare services may
impose location constraints in VNE process.

Traditional methods have proven insufficient to address the

challenges posed by latency requirements and location con-
straints in healthcare network slicing. As a result, this study
proposes the matching game theory-based VNE (MT-VNE)

algorithm, which integrates the two-sided matching theory into
VNE. In MT-VNE, four preference indexes are devised to con-
struct preference lists. Then, the obtained preference list infor-
mation is used to execute virtual node mapping with deferred

acceptance algorithm [14]. Finally, the modified shortest path-
based algorithm performs the virtual link mapping. The main
contributions of this work are summarized as follows.

1. This work aims to address the problem of service provision-
ing for healthcare use cases. To meet the diverse network

requirements of different use cases, we incorporate network
slicing architecture into the problem and model it as a vir-
tual network embedding process. Additionally, we analyze
the distinct characteristics of medical network slicing and

take these characteristics into account during the
problem-solving process.

2. Given the inefficiency of traditional VNE methods, we have

introduced two-sided matching theory into medical net-
work slicing and proposed the MT-VNE algorithm. In
MT-VNE, we have devised four preference indexes to con-

struct separate preference lists for each substrate/virtual
node. The obtained preference lists provide more targeted
preference relationships between virtual and substrate

nodes, leading to more reasonable VNE results.
3. Extensive simulations were conducted to compare the per-

formance of MT-VNE with several baselines [5,6,15]. The
experimental results showed that MT-VNE outperformed
the baselines in terms of service acceptance ratio and phys-

ical resources utilization, especially when taking into
account the delay constraint. In addition, MT-VNE also
demonstrated a significant reduction in VNE execution

time. Besides, we also conducted a comparative experiment
to illustrate the effect of the four preference indexes in MT-
VNE.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related works. Then, in Section 3, we present
the healthcare network slicing problem formulation. Section 4

briefly reviews the two-sided matching theory, while Section 5
provides a detailed explanation of the MT-VNE algorithm. In
Section 6, we present the simulation configurations and exper-

imental results. Finally, in Section 7, we conclude this paper
and suggest several promising research directions. Important
notations of this paper are reported in Table 1.
2. Related works

2.1. Healthcare network slicing

The technology of network slicing comprises a pivotal ingredi-
ent of the 5G and forthcoming communication systems, facil-

itating the partition of the underlying physical network into
several logical virtual networks that are tailored to distinct ser-
vices. With the medical industry experiencing rapid advance-

ments, a plethora of innovative medical services have
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surfaced that are beyond the scope of conventional networks.
Hence, scholars have delved into the realm of network slicing
to grapple with these quandaries. Tebe et al. proposed an opti-

mization method for maximizing the medical data throughput
of different slices in a mobile hospital system in [16]. The work
[17] constructed a fingerprinting based architecture to quickly

customize resources for slices to meet the reliability require-
ments of smart health applications. In [18], Lin et al. investi-
gated resource allocation in a multi-access edge computing-

based cellular network to optimize the performance of mobile
health applications. However, most of these works did not
consider the QoS and location requirements specific to health-
care services. In this paper, we incorporate delay and location

constraints into the system model to make it more practical
and applicable to the healthcare services.

2.2. Virtual network embedding methods

Heuristic VNE algorithms. Due to the dynamic and unpre-
dictable nature of virtual network request (VNR) arrivals in

online VNE problems, the execution time plays a crucial role
in achieving efficient and timely service provisioning. Hence,
some works have focused on employing heuristic solutions

such as node ranking and subgraph isomorphism detection
based methods to solve VNE problems. Node ranking-based
methods [19,5] divide the VNE procedure into two phases,
namely node mapping and link mapping, and subgraph iso-

morphism detection based methods solve VNE by identifying
an isomorphic subgraph within the SN that satisfies the VN
requirements. Building on the node ranking VNE framework,

Cao et al. [5] proposed a novel multiple network topology
attributes and network resource-considered (NTANRC) algo-
rithm. In this work, NTANRC adopted the form of Cou-

lomb’s law and Google PageRank algorithm to obtain stable
node ranking lists.

Meta-heuristic VNE algorithms. Some researchers model

VNE as a combinatorial optimization problem which seeks
the optimal solution within a discrete solution space. However,
finding the exact solution for such a problem with large VNE
requests is a challenging task. To address this, meta-heuristics

such as genetic algorithms, particle swarm optimization (PSO),
or simulated annealing are often employed. These methods
aim to obtain near-optimal solutions by iteratively improving

a candidate solution based on a given quality measure. Wang
et al. [6] constructively introduced the PSO into VNE (CPSO-
VNE). CPSO-VNE encoded virtual node mapping and link

mapping as particle positions. The velocity is defined as a
matrix, with its elements indicating the probability of selection
for each substrate node by virtual nodes. Moreover, this study
employed a stepwise solution construction strategy to harmo-

nize the mapping of virtual nodes and links in a single stage [6].
Deep reinforcement learning (DRL)-based VNE algorithms.

By modeling the VNE problem as a Markov decision process,

researchers [10,11,15] have explored the utilization of DRL
methods for solving it. In DRL-based approaches, the knowl-
edge of SN and VNR are represented as the input state of the

agent. The agent then performs actions to allocate physical
nodes, links, and related resources to the VNRs for service
provisioning. In [15], Wang et al. proposed a temporal-

difference learning-based VNE algorithm (TD-VNE) that aims
to maximize the long-term revenue of service provider. TD-
VNE leverages a node ranking-based VNE algorithm to gener-
ate multiple node-mapping candidates for a VNR, and selects
the candidate with the highest ‘‘state-action value” as the vir-

tual node embedding decision.
The above-mentioned VNE algorithms have demonstrated

satisfactory performance in simulation experiments. However,

they exhibit several shortcomings that render them inadequate
for healthcare network slicing.

1. In node ranking-based algorithms, the ranking values of
substrate/virtual nodes are calculated based on their respec-
tive topology and resource characteristics, resulting in all
substrate/virtual nodes having identical preferences without

expressing their differential inclination to the other parts.
2. The PSO-based algorithms own higher computational com-

plexity compared with heuristic algorithms, which leads to

a longer VNE execution time. However, the execution time
is of great significance for online healthcare slicing problem
since the VNRs’ arrival time is dynamic and cannot be

known beforehand [20].
3. The DRL-based algorithm is founded on deep neural net-

works, and the representation structure of input state can

hardly be changed once the neural network is determined.
Therefore, the trained DRL model is not universally appli-
cable and needs to be redesigned and retrained when
applied to different physical networks.

In this study, the proposed MT-VNE algorithm is designed
to overcome these limitations and is suitable for healthcare

network slicing. The approaches discussed in this section
[5,6,15] will serve as the baselines to compare with the pro-
posed MT-VNE algorithm.

3. System model and problem formulation

3.1. System model

The underlying SN of the system can be aptly represented as

an undirected graph, referred to as GS ¼ NS;LS
� �

. Here, NS

comprises a collection of substrate nodes nS that constitute

the substrate network, while LS comprises all communication

links lS. Each substrate node nS is distinguished by its unoccu-

pied CPU resources CPUnS Besides, the location LocnS repre-
sents the geophysical position of the NV-enabled substrate
node. The substrate links are characterized by their unoccu-

pied bandwidth resource BWlS and link propagation delay

DLlS . Moreover, all paths between different substrate nodes,

devoid of any loops, are denoted by the set of PS, with each

specific path pS 2 PS.
Similarly, the representation of medical services by the VN

can also be modeled as a weighted undirected graph

GV ¼ NV;LV
� �

. Here, NV and LV correspond to the set of vir-

tual nodes nV and virtual links lV, respectively. The virtual

node nV possesses attributes such as CPU demand CPUnV , pre-
ferred location LocnV , and location constraint LDCnV . Among
these, LocnV can denote the geographical position of virtual

nodes (e.g., schools, apartment complexes, and other commu-
nities that may be involved in medical services), and LDCnV

indicates the maximum distance that nV can accept from the

embedded substrate node. Furthermore, lV is characterized
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by its bandwidth demand BWlV and maximum propagation

delay tolerance DLClV .

3.2. Problem formulation

The VNE can be formulated as a mixed integer programming

problem (MILP) that contains two variables XnV

nS and YlV

pS . The

binary variable XnV

nS indicates whether the virtual node nV is

mapped onto the physical node nS. If yes, XnV

nS ¼ 1; otherwise,

XnV

nS ¼ 0. Variable YlV

pS represents the amount of bandwidth

that pS allocated to lV. The objective is to minimize the VNE
cost while balancing the SN load [21]. The VNE process must
also satisfy node constraints, aggregated bandwidth con-
straints, resource constraints, location constraints, propaga-

tion delay constraints, and domain constraints. Overall, the
VNE problem can be formulated as:

Objective function:

min
X
nS2NS

a
CPU

nS
þd

X
nV2NV

XnV

nS � CPUnV

þ
X
lS2LS

b
BW

lS
þd

X
pS2PS

X
lV2LV

YlV

pSIflS2pSg
; ð1Þ

where If�g is an indicator function. It takes the value 1 if the

conditions in parentheses are met and 0 otherwise. The weight
coefficients a and b are tunable non-negative weights to bal-
ance the importance of CPU and bandwidth resources, respec-
tively, with aþ b ¼ 1. The constant d is a small positive

number that prevents the denominator from being zero. The
objective function aims to minimize the cost of a single VN
and balance the load of the SN.

Subject to:
Node Constraints:X

nS2NS

XnV

nS ¼ 1; 8nV 2 NV: ð2Þ

X
nV2NV

XnV

nS 6 1; 8nS 2 NS: ð3Þ

Constraint (2) ensures that each virtual node is mapped onto a
substrate node. Constraint (3) restricts that different virtual
nodes in a single VNR can not embed onto the same substrate

node.
Bandwidth Constraints:X

pS2PS

YlV

pS ¼ BWlV ; 8lV 2 LV: ð4Þ

X
pS2PS

YlV

pSðX
nl
V

1

n
pS

1

X
nl
V

2

n
pS

2

þ X
nl
V

2

n
pS

1

X
nl
V

1

n
pS

2

Þ ¼ BWlV ; 8lV 2 LV: ð5Þ

Eq. (4) states that the sum of the allocated bandwidth on each

physical path must equal the bandwidth demand of the corre-

sponding virtual link. In Eq. (5), np
S

1 and np
S

2 represent the end

substrate nodes of pS, while nl
V

1 and nl
V

2 are the end nodes of lV.

Therefore, constraint (5) ensures that the total bandwidth allo-

cated to lV from substrate paths connecting the mapping nodes

of nl
V

1 and nl
V

2 equals lV’s bandwidth demand [22]. The combi-
nation of constraints (4) and (5) ensures that lV’s bandwidth
demand can only be allocated to paths connecting substrate

nodes where lV’s end virtual nodes are mapped to.
Resource Constraints:X

nV2NV

XnV

nS � CPUnV 6 CPUnS ; 8nS 2 NS: ð6Þ

X
lV2LV

X
pS2PS

YlV

pS � IflS2pSg 6 BWlS ; 8lS 2 LS: ð7Þ

Constraints (6) and (7) ensures that the virtual nodes and links

are mapped onto the substrate nodes and links with sufficient
resources.

Location Constraint:X
nS2NS

DðLocnV ;LocnSÞ � XnV

nS 6 LDCnV ; 8nV 2 NV: ð8Þ

Medical network slicing may require a location constraint to

limit the distance between substrate nodes and virtual nodes.
In (8), Dð�Þ is a function used to measure the Euclidean dis-

tance between nV and nS. The distance constraint ensures that
the virtual nodes and their target substrate nodes satisfy the
location constraint of virtual nodes.

Delay Constraint:X
lS2pS

DLlS 6 DLClV ; 8lV 2 LV; 8YlV

pS – 0: ð9Þ

Constraint (9) indicates that virtual link lV can only be mapped

onto the substrate paths in which the sum of physical links’
propagation delay is less than or equal to the virtual link’s
propagation delay constraint.

Domain Constraints:

XnV

nS 2 0; 1f g; 8nS 2 NS; 8nV 2 NV: ð10Þ

YlV

pS P 0; 8pS 2 PS; 8lV 2 LV: ð11Þ
Constraints (10) and (11) impose the domain constraints on

the variables XnV

nS and YlV

pS , respectively.

If there exist XnV

nS and YlV

pS that satisfy constraints (2)–(11),

then there exists a feasible VNE solution for the VNR; other-
wise, no feasible solution exists, and the corresponding health-
care services will be declined.

3.3. Evaluation metrics

In this subsection, four quantitative metrics are defined to

evaluate the performance of the proposed method: acceptance
ratio (AR), revenue-to-cost ratio (R2CR), substrate node
resource utilization rate (NUR), and substrate link resource

utilization rate (LUR).

1. The AR is a measure of the proportion of successfully
accepted VNRs out of all VNRs received. It can be calcu-

lated as follows:

AR ¼ NumðVNRsucÞ
NumðVNRÞ : ð12Þ
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in which NumðVNRsucÞ and NumðVNRÞ denote the

amount of accepted and total VNRs, respectively.
2. The R2CR metric serves to assess the profitability of the

VNE method, and its computation is given by the following

expressions:

R2CR ¼ ResdðVNRsucÞ
RescðVNRsucÞ ; ð13Þ

ResdðVÞ ¼
X
nV2NV

CPUnV þ
X
lV2LV

BWlV ; ð14Þ

RescðVÞ ¼
X
nS2NS

X
nV2NV

XnV

nS � CPUnV

þ
X
lS2LS

X
pS2PS

X
lV2LV

YlV

pSIflS2pSg
: ð15Þ
in which ResdðVNRsucÞ and RescðVNRsucÞ represent the

resource demand and consumption of the successfully
embedded VN, respectively.

3. The denotations of NUR and LUR are lucid. NUR embod-

ies the mean rate of resource utilization among operable
substrate nodes, and LUR embodies the mean rate of
resource utilization among operable substrate links.

4. Two-side matching theory overview

Matching plays a vital role in various market operations, such

as marriage, recruitment, and school admission [23]. Two-side
matching involves two disjoint groups, where members in both
groups desire to be paired up with members in the counterpart

group. The matching theory aims to satisfactorily pair up the
members in both groups [24].
4.1. Two-side matching game

The matching problem in VNE may include two distinct

groups: the substrate node set NS and the virtual node set

NV, which are mutually exclusive (NS \NV ¼ £). Each mem-
ber of one group is presumed to possess a comprehensive and
transitive preference for all participants in the other group.
Specifically, the preference of substrate nodes for virtual nodes

and vice versa can be denoted by preference lists PS2V and

PV2S, respectively. For instance, the preference list of nS1 for

the participants in NV can be denoted as

PS2VðnS1 Þ ¼ nV2�nS
1
nV3�nS

1
� � � �nS

1
nV1 . This indicates that n

V
2 is the

top preference of nS1 , followed by nV3 and so forth. The match-

ing game can be expressed as ðNS;NV;PS2V;PV2SÞ, where the
objective is to pair up the members of both groups satisfacto-
rily [24].

Definition 1. (One-to-one Matching) A matching l is a one-to-
one correspondence that can be represented as a mapping from

NS [NV onto itself of order two, denoted as l2ðxÞ ¼ x, where

lðnSÞ 2 NV [ nS and lðnVÞ 2 NS [ nV. The mate of x can be
represented as lðxÞ [25].
4.2. Stable matching

Marriage is a classic example of a two-sided matching game. In
this subsection, we will use the marriage example to introduce
the concept of stable matching.

Definition 2. (Block). A block occurs when a player x prefers

to remain single rather than be matched with the mate assigned
by the matching l (i.e., x�xlðxÞ). Furthermore, if a pair

ðnS; nVÞ prefer each other over their assigned mates under the

matching l (i.e., nS�nVlðnVÞ and nV�nSlðnSÞ), then the
matching l is blocked by that pair [20].

Definition 3. (Stable Matching). If there are no individuals or

pairs that can block the matching l, then we say that the
matching lis pairwise stable [26].

The literature [14] proposed the Deferred Acceptance algo-
rithm to find a stable marriage matching. In this algorithm,
members of one group (men, for example) propose to members

of the other group (women, for example) according to their
preference list. If a woman receives multiple proposals, she
holds the most preferred one and rejects others. Then, the

remaining men propose to their most preferred women who
have not refused them before, respectively. This cycle repeats
until all men are held, or no man is willing to apply. Finally,

the algorithm terminates, and each woman is matched with
the man she ultimately holds.It is worth noting that there is
also a stable matching when women apply to men. In literature
[14], the following theorems were proven for stable matching.

Theorem 1. In the marriage market, at least one stable
matching always exists.

Theorem 2. When men and women have strict preferences for
each other, there always exists a unique man-optimal stable

matching and a unique woman-optimal stable matching. In
the man-optimal stable matching, each man is matched with
his most preferred mate among all stable matchings. Similarly,

in the woman-optimal stable matching, each woman is
matched with her most preferred mate among all stable match-
ings. The delayed acceptance algorithm, when applied with

men proposing, finds the men-optimal stable matching, and
when applied with women proposing, finds the women-
optimal stable matching.
5. Matching theory-based VNE method

The challenge of VNE in healthcare network slicing can be
likened to the classic marriage matching problem. In this anal-
ogy, virtual and substrate nodes play the roles of men and

women, respectively. As detailed in subSection 4.1, we
employed the virtual and substrate node notations to denote
the two sides of the matching game. The resulting matching
outcomes reflect the embedding decisions of virtual nodes.

For example, should virtual node nV2 and substrate node nS1
be paired, nV2 would opt to embed on nS1 . However, to obtain

such results, we still need to obtain the preference relationship
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between substrate and virtual nodes. MT-VNE introduces four
metrics to quantify the relationship between virtual nodes and
substrate nodes: node resource, location, resource efficiency,

and link connectivity preference metrics. The roles of these
four metrics in MT-VNE are depicted in Fig. 2. When a
VNR arrives, the node and location preference metrics are

employed to evaluate the preference of virtual nodes for sub-
strate nodes, while the node resource efficiency and link con-
nectivity metrics are utilized to measure the preference of

substrate nodes for virtual nodes. As a result, the preference
relationship between the two components can be determined.
For example, as illustrated in Fig. 2, virtual node a exhibits
the highest preference for substrate node A, followed by B

and so on.

5.1. Virtual nodes preference construction

The preference of a virtual node over physical nodes is mainly
based on two aspects: the difference in CPU resources between
the nodes and the deviation in their locations. Without loss of

generality,we consider the virtual node nV and physical node nS

as an example. The preference value of nV to nS can be calcu-
lated as follows:

PvalV2SðnV; nSÞ ¼ c � RV2SðnV; nSÞ þDV2SðnV; nSÞ; ð16Þ
in which RV2SðnV; nSÞ and DV2SðnV; nSÞ represent the node

resource and location preference index of nV to nS. A weight

coefficient, c, is introduced to balance the relative importance

of these two indices. Using the computed preference values, nV

will prioritize its preference for nS in descending order.
Eq. (17) formulates the resource preference index

RV2SðnV; nSÞ. This index serves as a metric to gauge the relative

attractiveness of nS to nV, based on the availability of unoccu-

pied CPU resources. Specifically, the resource preference index

compares the unoccupied CPU resource of nS with the

demand of nV, and assigns a value of 1 if the remainder can

satisfy the demand, and �1 otherwise. Therefore, nV exhibits
a preference for substrate nodes that possess resources exceed-

ing its demand, in accordance with the resource constraint.
Fig. 2 Four indexes are devised in this work to measure the preferenc

virtual nodes.
RV2SðnV; nSÞ ¼
1 CPUnS P CPUnV

�1 CPUnS < CPUnV

�
ð17Þ

The location preference index of virtual nodes can be divided
into two parts: the direct location preference index

Ddir
V2SðnV; nSÞ and adjacent location preference index

Dadj
V2SðnV; nSÞ. These indexes can be calculated as follows:

DV2SðnV; nSÞ ¼ Ddir
V2SðnV; nSÞ þDadj

V2SðnV; nSÞ; ð18Þ

Ddir
V2SðnV; nSÞ ¼ � expðDðLocnV ;LocnSÞÞ; ð19Þ

Dadj
V2SðnV; nSÞ ¼X

l
nVn0V2LV

maxð Ddir
V2Sðn0V; n0SÞ : lnSn0S 2 LS

� �Þ: ð20Þ

The direct location preference index can be modeled by (19),

which captures the relationship between the distance between

virtual and substrate nodes. Notably, value of Ddir
V2S nV; nSð Þ

exhibits a downward trend with increasing DðLocnV ;LocnSÞ.
Additionally, the exponential function expedites the rate of
decay, thereby reinforcing the location constraint and render-

ing virtual nodes nV more inclined to select proximal substrate
nodes.

The formulation of the adjacent location preference index is

provided by (20), wherein n0V and n0S denote the neighboring

nodes of nV and nS, respectively. The maxð�Þ operator is uti-
lized to identify the maximal element of the set enclosed within

the brackets. Thus, Dadj
V2SðnV; nSÞ endeavors to minimize the

summation of distances between the adjacent nodes of nS

and nV. In essence, the adjacent location preference index
heightens the probability of interconnected virtual nodes being

embedded onto interconnected substrate nodes, thereby cur-
tailing the hops and bandwidth consumption of substrate
paths that virtual links are mapped into.

In conclusion, the substrate nodes that are favored by nV

exhibits three distinct features: (i) an abundance of resources

that exceed the demands of nV; (ii) close proximity to nV;
and (iii) adjacency to nodes that are in close proximity to the

adjacent nodes of nV.
e relationship (represented by the lists order) between substrate and



Fig. 3 The diagram of online MT-VNE process.
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5.2. Substrate nodes preference construction

The preference of a substrate node over virtual nodes is evalu-
ated based on two factors: node resource utilization efficiency
and link connectivity. The preference value of a substrate node

nS to virtual node nV can be calculated as follows:

PvalS2VðnS; nVÞ ¼ g � ES2VðnS; nVÞ þ LS2VðnS; nVÞ: ð21Þ
In Eq. (21), ES2VðnS; nVÞ represents the resource utilization effi-

ciency index, LS2VðnS; nVÞ denotes the link connectivity index,

and g is a coefficient used to balance the significance of these
two factors. These two factors are used to evaluate the prefer-
ence value of a substrate node over a virtual node.

ES2VðnS; nVÞ ¼ 1

ðCPUnS � CPUnVÞ þ d
ð22Þ

In Eq. (22), d is a small positive constant used to avoid division

by zero. One may observe that the efficiency index shall pro-
duce a negative, small positive, or large positive value contin-
gent upon whether the resource demand of the virtual node

exceeds, significantly falls short of, or slightly falls short of
the remaining resources of the substrate node. As a conse-
quence of the efficiency index, a substrate node exhibits a pref-

erence towards accommodating a virtual node whose resource
demand is moderately lower than its remaining resources. This
approach helps to make better use of the unoccupied resources
in working nodes.

In this investigation, we operate under the assumption that
the bandwidth requirements of virtual links cannot be dis-
tributed among multiple substrate paths. Consequently, the

chosen substrate nodes must possess adjacent links capable
of accommodating the bandwidth demands of the correspond-
ing virtual nodes’ adjacent links. To satisfy this prerequisite,

we introduce the link connectivity index, as depicted in (23),

where CðnS; lnVn0VÞ determines the number of adjacent links

belonging to nS that can fulfill the bandwidth necessities of

lnVn0V . The computation of CðnS; lnVn0VÞ is articulated in (24).

The link connectivity index is typically a non-negative quan-
tity, which reflects the variety of link embedding alternatives

offered by nS’s adjacent links to nV’s adjacent links.

LS2VðnS; nVÞ ¼
X
l
nVn0V

CðnS; lnVn0VÞ

�
Y
l
nVn0V

IfCðnS ;l
nVn0V Þ–0g

ð23Þ

CðnS; lVÞ ¼ lnSn0S 2 LS : BWl
nSn0S P BWlV

n o��� ��� ð24Þ

According to the rules established in this subsection, the sub-

strate node nS will exhibit a preference towards hosting virtual
nodes that satisfy the following conditions: (i) possess a
resource demand that is marginally lower than the residual

resources of nS, and (ii) have a node embedding that enables
a greater number of link embedding alternatives.

Ultimately, the preference lists PV2S and PS2V can be con-
structed based on the following principles:
PV2SðnVÞ : nS�nVn0S ()
PvalV2SðnV; nSÞ > PvalV2SðnV; n0SÞ

ð25Þ

PS2VðnSÞ : nV�nSn0V ()
PvalS2VðnS; nVÞ > PvalS2VðnS; n0VÞ

ð26Þ
5.3. The implementation of MT-VNE

The process of online MT-VNE is depicted in Fig. 3. It is
worth noting that the arrival and expiration time of VNRs
are subject to dynamic changes, rendering them unpredictable.

In light of this, the MT-VNE algorithm operates by sequen-
tially mapping or offloading VNRs as they arrive or terminate.
At each time slot t, the SN reclaims the resources allocated to
the expiring VNRs and offloads the services. MT-VNE is then

employed to embed the newly-arrived VNRs. Upon successful
mapping, the SN assigns resources to accommodate the VN
and updates the occupied and remaining SN resources. The

process repeats itself at the next time slot.
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Algorithm 1. MT-VNE

Input: SN state GS; arrival VNR GV

Output: VNE Solution

1: Calculate PvalV2S according to (16)–(20)

2: Calculate PvalS2V according to (21)–(24)

3: Based on the obtained PvalV2S and PvalS2V, derive the

preference lists PV2S and PS2V using (25) and (26)

4: Execute deferred acceptance algorithm-based virtual node

mapping (Algorithm 2)

5: if The virtual node mapping fails then

6: Reject the medical service request

7: else

8: Execute modified shortest path-based virtual link mapping

(Algorithm 3)

9: if The virtual link mapping fails then

10: Reject the medical service request

11: else

12: Accommodate the medical service request

13: end if

14: end if

15: Output the VNE result

Algorithm 2. Deferred Acceptance Algorithm-based Virtual
Node Mapping

Input: The preference lists PV2S and PS2V

Output: The virtual node mapping result

Initialize: Single virtual node set UV ¼ NV; the match result

l ¼ /
1: while UV – /and 9uV 2 UV; s:t:PV2SðuVÞ– / do

2: For all uV 2 UV; uV proposes to its most preferred substrate

node according to PV2SðuVÞ
3: For all uV 2 UV, remove the substrate node that uV has just

applied for in step 2 from PV2SðuVÞ
4: For each substrate node nS that receives proposals, it

evaluates each proposal and holds the most preferred virtual

node among previously held and new applicants, with the

guidance of PS2VðnSÞ
5: Refresh lwith current match pairs

6: end while

7: if UV – / then

8: The virtual node mapping fails

9: else

10: if For all nV 2 NV, the substrate node lðnVÞ satisfies the
location deviation and resource constraints of nV then

11: The virtual node mapping succeeds

12: else

13: The virtual node mapping fails

14: end if

15: end if

16: Output the virtual node mapping result l
Algorithm 3. Modified Shortest Path-based Virtual Link

Mapping

Input: The virtual node mapping result l
Output: The virtual link mapping result

Initialize: The shortest path set PS
shortest ¼ /

1: for lnVn0V in LV do

2: Temporarily remove the substrate links that do not meet

lnVn0V ’s bandwidth constraint

3: Utilizing Dijkstra’s algorithm to search for the shortest path

pSlðnVÞlðn0VÞ between the substrate nodes lðnVÞ and lðn0VÞ.
4: PS

shortest ¼ PS
shortest [ pSlðnVÞlðn0VÞ

5: end for

6: if For every virtual link lVnVn0V 2 LV, the selected substrate path

pSlðnVÞlðn0VÞ satisfies both the bandwidth and propagation

constraints of lVnVn0V then

7: The virtual link mapping succeeds

8: else

9: The virtual link mapping fails

10: end if

11: Output the virtual link mapping result PS
shortest

Algorithm 1 outlines the MT-VNE algorithm, which con-
sists of three main steps. First, the preference lists are gener-

ated based on the current state of the SN and the arriving
VNR (lines 1–3). Then, the deferred acceptance algorithm is
executed with the guidance of preference lists to determine
the virtual node embedding choices (line 4). If all virtual nodes

can be embedded successfully, the modified shortest path-
based algorithm is employed to embed the virtual links (line 8).

Algorithm 2 describes the deferred acceptance algorithm-
based virtual node mapping, while Algorithm 3 details the
modified shortest path-based virtual link mapping. In the vir-

tual node mapping stage, the matching pairs obtained by the
deferred acceptance algorithm represent the virtual node
embedding choices. If each substrate node in the match pairs

can meet its corresponding virtual node’s resource and loca-
tion requirements, the virtual node mapping can be executed
successfully. Then, MT-VNE proceeds to the virtual link map-

ping stage. In the virtual link mapping stage, the modified
shortest path-based algorithm first prunes the substrate links
that fail to meet the virtual link’s bandwidth requirements.

Based on the pruned SN, Dijkstra’s algorithm is adopted to

search for the shortest path between substrate nodes lðnVÞ
and lðn0VÞ to host the virtual link lnVn0V . If all selected substrate
paths can fulfill the corresponding virtual links’ resource and
propagation delay requirements, the virtual link mapping suc-
ceeds, and the VNR is embedded successfully. If any mapping

fails, the SN declines to provide service to the VNR.
The time complexity of the MT-VNE algorithm can be

divided into three parts: (i) calculation of preference lists rep-

resented as Oð NS
�� �� � NV

�� ��Þ; (ii) deferred acceptance algorithm



Table 2 Substrate network generation parameters.

Network generation

method

Waxman random graph, a ¼ 0:4 and

b ¼ 0:3

Substrate network size 60 substrate nodes

Node CPU capacity �U(50,100)

Node location x and y �U(0,100)

Link bandwidth capacity �U(50,100)

Link propagation delay �U(2,10)

Table 3 VNR generation parameters.

Network generation

method

Waxman random graph, a ¼ 0:4 and

b ¼ 0:3

VNRs’ arriving rate Poisson process, with a mean value of 50

VNRs per 100 time units

VNRs’ life time Exponential distribution, with a mean

value 200 time units

VNRs’ node numbers �DiscreteU(2,10)

Node CPU demand �U(1,20)

Node preferred

location

x and y �U(0,100)

Node distance

constraint

�U(10,20)

Link bandwidth

demand

�U(1,20)

Link propagation

delay constraint

Experiment 1: no delay constraint

Experiment 2: �U(10,30)
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based virtual node mapping as Oð NS
�� �� � NV

�� ��Þ; (iii) modified

shortest path-based virtual link mapping as

Oð LS
�� �� � LV

�� �� � log NS
�� ��Þ. Overall, MT-VNE can run in polyno-

mial time.

6. Performance evaluation

In this section, we evaluate the performance of MT-VNE and
compare it with three baselines to show its efficiency in medical
service provisioning.

6.1. Simulation settings

Table 2 and 3 present the parameters utilized in generating the

underlying 5G SN and VNRs representing healthcare services
for the simulation experiments. Most of the parameters used in
our simulation experiments are comparable to those used in
previous studies [5,15,27]. Notably, we integrated delay and

location requirements to tackle the distinctive aspects of med-
ical network slicing scenarios.

The coefficients used in (13), (18), and (19) are set based on

pre-commissioning, with c ¼ 500; g ¼ 200, and d ¼ 0:0001. All
simulations were conducted on a server equipped with two
Intel Core Xeon E5-267@2.5 GHz processors and 128G

RAM.
6.2. Simulation result

In this subsection, we compare the simulation results of differ-
ent algorithms: NTANRC [5], CPSO-VNE [6], TD-VNE [15],
and the proposed MT-VNE. We present the evaluation met-

rics, including AR, R2CR, NUR, and LUR, of these four
methods to compare their performance.

Fig. 4 depicts the performance metric variation curves of
diverse algorithms, acquired from experiment 1 (devoid of

delay constraint) and experiment 2 (with delay constraint), in
an order that has been adjusted to promote comparison
between the two experiments. Both experiments incorporate

the location constraint. The results evince that MT-VNE sur-
passes other algorithms in terms of acceptance ratio (AR),
node resource utilization rate (NUR), and link resource uti-

lization rate (LUR). This is owing to the fact that conventional
VNE algorithms do not consider location constraints, render-
ing them unsuitable for healthcare service provisioning. Fur-

thermore, the location preference index in MT-VNE
facilitates the mapping of virtual nodes to substrate nodes
within the required location range of services, thereby enhanc-
ing the acceptance rate and resource utilization rate.

After analyzing the simulation results of experiment 1
shown in Fig. 4(a)-(d), we can draw the following conclusions:
(i) The MT-VNE algorithm outperforms the other three algo-

rithms in terms of AR, NUR, and LUR metrics. In addition,
the MT-VNE’s AR metric in Fig. 4(a) approaches 1, indicating
high embedding success rate and efficient substrate resource

utilization. (ii) The CPSO-VNE algorithm achieves the highest
R2CR, which is reasonable as its objective is to find the VNE
solution with the lowest cost. However, CPSO-VNE’s highest
R2CR value does not necessarily lead to accommodating more

VNRs, which is evident from its second-lowest AR metric in
Fig. 4(a). In contrast, MT-VNE achieves the second-highest
R2CR value and outperforms CPSO-VNE in the AR value

by a considerable margin. (iii) The metric values obtained by
MT-VNE significantly outperform the node ranking based-
method NTANRC in Fig. 4(a)-(d), which confirms the effec-

tiveness of introducing matching theory into healthcare-
oriented VNE problems.

By analyzing the simulation results of experiment 2 pre-

sented in Fig. 4(a)-(d), and comparing them with Fig. 4(a)-
(d), we can draw the following conclusions: (i) The appearance
of delay constraint in experiment 2 leads to inferior AR, NUR,
and LUR metric values compared to experiment 1, while the

R2CR metric values show improvement. The increase in
VNE difficulty due to the delay constraint leads to a drop in
AR, NUR, and LUR metric values, while the delay constraint

restricts the virtual link embedding cost, thus increasing the
R2CR metric value. (ii) In experiment 2, the MT-VNE algo-
rithm continues to outperform the other algorithms on AR,

NUR, and LUR metrics. Moreover, the gap between the
R2CR values of MT-VNE and CPSO-VNE is further nar-
rowed. (iii) Comparing Fig. 4(a)-(d), and Fig. 4(e), we can con-
clude that the drop in AR metric values of CPSO-VNE is the

least when the delay constraint is added, as demonstrated by
the reduced gap between the AR metric values of CPSO-
VNE and NTABRC. This is because the objective function

of CPSO-VNE is to minimize the virtual link embedding cost,
which is in line with the delay constraint to some extent.



Fig. 4 The performance metrics garnered from experiment 1 and experiment 2 for various algorithms are illustrated in Figs. 4(a)-(d) and

4(e)-(h), respectively. Please note that (i) the order of sub-figures has been modified for the sake of facilitating a comparison between

experiment 1 and experiment 2, and (ii) all sub-figures share a common legend located at the bottom of the figure..

Table 4 Average running time of different algorithms.

CPSO-VNE NTANRC TD-VNE MT-VNE

Average map time (Experiment 1) 6.459s 0.445s 0.440s 0.084s

Average map time (Experiment 2) 3.897s 0.451s 0.398s 0.095s
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In addition to evaluating the VNE performance metrics, we
also analyze the average execution time of different algorithms,

as presented in Table 4. The results show that CPSO-VNE
algorithm spends the most time in embedding a service, which
is expected as it is a meta-heuristic method. TD-VNE algo-

rithm consumes slightly less time than NTANRC. Notably,
MT-VNE algorithm takes the least time to embed a VNR,
accounting for only 20:0% of NTANRC, 21:3% of TD-VNE,
and 1:73% of CPSO-VNE. In summary, MT-VNE algorithm

not only achieves excellent performance in VNE evaluation
metrics but also demonstrates significantly faster execution
time than the other algorithms.
6.3. Preference index utility analysis

In addition to the performance evaluation experiments, we
designed an experiment to investigate the impact of the four
preference indexes on MT-VNE. This experiment included five

simulations, namely, the original MT-VNE and four modified
versions of MT-VNE, each with one preference index
removed. All simulations were executed with the propagation

delay constraint, and the results are shown in Fig. 5.
In Fig. 5, RV2S and DV2S represent the node resource and

location preference indexes of the virtual node to the substrate

node, respectively, while ES2V and LS2V denote the node



Fig. 5 Simulation results depict the performance of the unaltered MT-VNE algorithm and four modified versions with the omission of

one of four preference indices. Please note that (i) del_RV2S, del_DV2S, del_ ES2V, and del_LS2V represent the modified algorithms with

corresponding indexes removed and (ii) all sub-figures share a common legend located at the bottom of the figure..
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resource utilization efficiency and link connectivity preference
indexes of the substrate node to the virtual node, respectively.
By comparing the simulation results in Fig. 5, we can conclude

the effects of each preference index as follows. (i) As previously
mentioned in Section 5-A, -A, RV2S is crucial in ensuring the
satisfaction of the node resource constraint. In Fig. 5, all four

metrics simultaneously drop to zero when deleting RV2S,
demonstrating its fundamental role in MT-VNE. (ii) Remov-
ing DV2S leads to a significant reduction in AR and R2CR.
This is reasonable since DV2S helps MT-VNE in reducing the

hops and bandwidth consumption of substrate paths that vir-
tual links are embedded in, which can improve the VNRs’
acceptance ratio as well as the revenue to cost ratio. (iii)

ES2V has a positive impact on all four evaluation metrics, while
LS2V only benefits AR, R2CR, and NUR metric values. How-
ever, compared with the preference indexes of virtual node to

substrate node (RV2S and DV2S), the preference indexes of sub-
strate node to virtual node (ES2V and LS2V) have a relatively
smaller effect on MT-VNE, as demonstrated by their closer
results to the original MT-VNE.

7. Conclusion

This study aims to address the challenge of healthcare service

provisioning by incorporating network slicing architecture and
modeling it as a virtual network embedding (VNE) problem.
Unlike traditional VNE problems, the medical network
slicing-oriented VNE problem is distinguished by its distinctive
features, which include the imposition of delay and location

constraints. In light of this, we proposed an algorithm that is
based on matching theory, known as the Matching Theory-
based VNE (MT-VNE) algorithm, in this work. In MT-

VNE, four preference indexes that take into account VNE
problem objectives and constraints are devised to construct
preference lists. The deferred acceptance algorithm is then uti-
lized to obtain virtual node mapping results, followed by vir-

tual link mapping with the modified shortest path algorithm.
Experimental results demonstrate that MT-VNE outperforms
baselines in terms of medical service acceptance ratio and

physical resource utilization, especially when considering the
delay constraint. Moreover, MT-VNE shows significant reduc-
tions in VNE execution time. Future research will investigate

the effects of substrate and virtual network topology charac-
teristics and load variations of healthcare services on the pro-
posed approach.
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