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ABSTRACT: In powder metallurgy materials, sintered density in Cu-Al alloy plays a
critical role in detecting mechanical properties. Experimental measurement of this
property is costly and time-consuming. In this study, adaptive boosting decision tree,
support vector regression, k-nearest neighbors, extreme gradient boosting, and four
multilayer perceptron (MLP) models tuned by resilient backpropagation, Levenberg−
Marquardt (LM), scaled conjugate gradient, and Bayesian regularization were employed
for predicting powder densification through sintering. Yield strength, Young’s modulus,
volume variation caused by the phase transformation, hardness, liquid volume, liquidus
temperature, the solubility ratio among the liquid phase and the solid phase, sintered
temperature, solidus temperature, sintered atmosphere, holding time, compaction
pressure, particle size, and specific shape factor were regarded as the input parameters of
the suggested models. The cross plot, error distribution curve, and cumulative frequency
diagram as graphical tools and average percent relative error (APRE), average absolute
percent relative error (AAPRE), root mean square error (RMSE), standard deviation
(SD), and coefficient of correlation (R) as the statistical evaluations were utilized to estimate the models’ accuracy. All of the
developed models were compared with preexisting approaches, and the results exhibited that the developed models in the present
work are more precise and valid than the existing ones. The designed MLP-LM model was found to be the most precise approach
with AAPRE = 1.292%, APRE = −0.032%, SD = 0.020, RMSE = 0.016, and R = 0.989. Lately, outlier detection was applied
performing the leverage technique to detect the suspected data points. The outlier detection discovered that few points are located
out of the applicability domain of the proposed MLP-LM model.

1. INTRODUCTION
Powder metallurgy (PM), due to its ability to remove the need
for secondary operations, is one of the most effective techniques
for manufacturing the near-net-shape and complex components,
and in some cases, it plays an indispensable role in achieving low-
cost parts.1,2 It also has major advantages like a homogeneous
microstructure, lower grain growth, and lower processing
temperature.3 Metallurgical technology includes materials with
enhanced properties of strength.4 Sintering is a crucial stage in
the development of raw materials based on powder metallurgy,
used in numerous applications.5 One of key elements in
determining the powder metallurgy’s mechanical properties is
the sintered density.6−8 The bonding between particles is mainly
connected by diffusion. Usually, porosity strongly affects the
mechanical properties of the material presents in PM
products.9,10 The literature has shown that the tensile strength
decreases by increasing the porosity.11 Ductility shows more
sensitivity to porosity, and also, fatigue resistance is closely
correlated with it.12,13 In the PM method, process parameters
and material selection involve inputs from several experts in the
field. The process of sintering that results in a material’s
densification relies on various variables, and the necessary

parameters must be adjusted as part of it to organize the required
densification, porosity, or connectivity. Construction of stand-
ard samples and the design of some testing methods that
determine the degree to which densification parameters affect it
are costly and time-consuming.14

One of the most precise predictive techniques is soft
computations that are appropriate to tremendously complicated
and multidimensional input/output engineering problems.15−20

Using these intelligent approaches, a significant number of
studies have been accomplished successfully to evaluate many
properties in broad metallurgy and material science engineering
areas. Design of advanced ultrahigh-strength stainless steels,21

predicting glass transition temperatures,22 fracture toughness,23

coating thickness,24 compositional optimization,25 and acoustic
properties of tellurite glasses26 was performed successfully by
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using intelligent models. Moreover, some researchers estab-
lished diverse intelligent techniques for advising on optimal
selection of PM materials and processing parameters. These
models help in reducing the number of experiments to be carried
out, and significant time and cost savings could be
achieved.27−29

Ma et al.30 utilized the back-propagation (BP) neural network
in synthesizing the nanocomposite WC−18at. %MgO powders
to optimize and predict ball milling and processing parameters.
Their model determined the correlations between processing
parameters and morphological properties of the nanocomposite
WC−18at. %MgO. The predictions of the BP neural network
presented outstanding agreement with the actual data, and the
model precision was proven by error analysis. In 2007, Torkar et
al.31 developed a three-layer ANN with a BP optimizing
algorithm procedure to estimate viscosity from the composition
of suspension and modeling the behavior of ceramic-paraffin
suspensions for low-pressure injection molding (LPIM). The
performance of the model shown by comparison between
experimental and predicted apparent viscosity curves demon-
strated a proper coincidence. Varol and Ozsahin32 utilized a
feed-forward BP-ANN method for predicting the attributes of
Al-Cu-Mg flake alloy components synthesized by ball milling.
The model inputs were different matrix sizes and different
milling times, and the output unit represented specific surface
area, apparent density, and flake size. The outcomes derived
using the artificial neural network show high similarity among
the actual findings and the predicted values. For predicted
values, the mean absolute percentage error (MAPE) did not
surpass 5.75%. Hence, the prediction ANN model is
appropriately operated to predict the Al-Cu-Mg flake alloy.
Drndarevic and Reljin33 built a BP-ANN learning algorithm to
precisely define dimensions of PM tools. The used model
decreased the dimension deviations of sintered parts with
suitably selected process regimes. Ozan et al.34 used the ANN
system for estimating the pore concentration of PM-produced
Al-NaCl compacts. Compacting pressure, NaCl content, and
NaCl particle size were considered as inputs in the ANN
training. The measured and predicted values compared to each
other, similarity clarified that the ANN was accurately trained,
and statistical values were within acceptable ranges. By using
isothermal compression, the hot deformation characteristics of
PM Ti-47Al-2Nb-2Cr alloys were studied by Sun et al.35 After
establishing the ANN and Arrhenius-type model, the perform-

ance of both models was evaluated with regard to statistical
factors. The flow stresses of PM Ti-47Al-2Nb-2Cr alloy were
estimated using the BP-ANN model in which the suggested
model demonstrated great accuracy and consistency. The
coefficient of correlation values for the model and the absolute
relative error (ARE) relationship to the prediction were 0.999
and within 5%, respectively. Al-Jabar et al.36 presented an ANN
model to forecast the barium titanate’s physical characteristics.
They predicted green density, firing shrinkage, porosity, and
density of BaTiO3 by using pressing pressure, particle size
distribution, pressing rate, sintering temperature, rate of
sintering, and soaking times as the input parameters. According
to the findings, the mean errors for the green density, shrinkage,
density, and porosity were 0.002, 0.04, 0.02, and 0.06,
respectively, which exhibited excellent performance of the
model. The effect of milling time, volume fraction, and compact
pressure on sintered density, hardness, and green density of Al-
Al2O3 metal matrix composites (MMCs) was predicted using
the ANN procedure by Canakci et al.15 For anticipated values,
the mean absolute percentage error (MAPE) did not surpass
5.53%. Consequently, the model is properly utilized to predict
the composite mechanical properties accurately. Moreover,
machine learning is a helpful tool for the design and optimization
of sintering performance.6

In the present work, intelligent techniques based on
multilayer perceptron (MLP), support vector regression
(SVR), k-nearest neighbors (KNN), extreme gradient boosting
(XGBoost), and adaptive boosting decision tree (AdaBoost-
DT) algorithm are implemented to predict the sintered density
of metal compact by PM. The goal of the present work is to
examine the impact of the changing parameters on sintered
density in Cu-9Al alloy. Moreover, various parametric and visual
analyses are utilized to assess the efficiency of the developed
models. After developing smart models, graphical and statistical
error assessments are applied to evaluate the efficiency of the
models. In addition, sensitivity analysis is employed to evaluate
the consequence of the model’s inputs on its output. Afterward,
the leverage method is performed for the purpose of identifying
the dataset’s outlier data points. Finally, the achieved results
were compared to models that are published in the literature.

2. MODEL DEVELOPMENT
2.1. Data Collection. The application of a widespread

database for modeling is one critical element to determine the

Table 1. Statistical Features of the Collected Databank in This Study

parameter minimum maximum average mode skewness kurtosis

yield strength (MPa) 15.97 450.00 101.76 29.57 1.73 1.10
Young’s modulus (MPa−1) 44.00 320.00 139.84 111.92 1.39 0.54
volume variation caused by the phase transformation (100%) −0.01 0.09 0.01 0.00 1.67 1.17
hardness (HBS) 27.50 333.00 90.74 34.69 1.58 0.71
liquid volume (100%) 0.00 0.28 0.09 0.00 0.49 −1.46
liquidus temperature (°C) 640.00 2613.00 1096.69 1005.00 1.71 3.02
SB/SA 0.00 1.00 0.52 1.00 0.02 −2.00
sintered temperature (°C) 500.00 1400.00 890.69 950.00 0.46 −0.78
solidus temperature (°C) 521.00 3387.00 1028.62 860.00 2.14 8.05
sintered atmosphere (100%) 0.00 39.95 6.72 0.00 1.70 1.18
holding time (h) 0.33 3.00 1.10 1.00 2.43 7.28
compaction pressure (MPa) 100.00 770.00 357.00 374.00 0.07 0.30
particle size (μm) 5.00 87.81 51.29 48.00 −0.40 −1.11
specific shape factor 6.00 11.22 6.94 7.30 2.20 7.69
experimental sintered density 0.56 1.00 0.85 0.96 −0.52 −0.71
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Figure 1. Box-and-whisker graphs for the input and output data points.
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strength of any modeling study, and these models can be used
for predicting output with high certainty. In this study, a large-
sized database consisting of 210 experimental sintered density in
terms of yield strength, Young’s modulus, volume variation
caused by the phase transformation, hardness, liquid volume,
liquidus temperature, the solubility ratio among the liquid phase
and the solid phase (SB/SA), sintered temperature, solidus
temperature, sintered atmosphere, holding time, compaction
pressure, particle size, and specific shape factor was gathered
from open literature,37−45 as mentioned in ref 6. The statistical
assessment of the applied database is shown in Table 1. The
distribution of the data is asymmetric in a parameter that
deviates from a normal distribution. Skewness defines the
asymmetry of a parameter distribution over its mean. Skewness
is zero for a normal distribution, and when the skewness is
positive, it illustrates that the larger portions of the data are
focused in the left-hand side of the function of probability, which

means that the amount of low value data is greater than the
number of high value data. It is similar for negative values of the
skewness. The form of the distribution function can be
statistically evaluated as compared to the normal distribution
by the kurtosis parameter. Positive kurtosis for unimodal
distributions that are symmetric refers to peakedness and
heavy tails relative to the normal distribution, while negative
kurtosis implies flatness and light tails. A box-and-whisker graph
is a reliable plot of describing the dataset on the basis of five
factors, namely, minimum, maximum, median (the databank’s
middle value), first quartile (the first half of the databank’s
median), and third quartile (the second half of the databank’s
median). The minimum is at its lowest position, and the
maximum point can be seen at the highest peak. Using a flat line
in the middle to represent the median, the box is shown fromQ1
to Q3 on a graph. The box-and-whisker graphs of inputs and
targets are shown in Figure 1.

Figure 2. Relative impact of input parameters on output by (a) Pearson correlation and (b) distance correlation.
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Pearson correlation and distance correlation were utilized to
measure linear or nonlinear relationships between the input and
output, respectively. With the method of Pearson, values
between −1 and 1 are produced. The negative value presents
that the output value decreases as this parameter is increased,
while the positive value demonstrates that as input increases, the
output value intensifies. The distance correlation coefficient is
nonnegative, which can take any value in the open unit interval
(0 to 1). Pearson correlation and distance correlation for relative
impact of input parameters on output are illustrated in Figure 2.
In these graphs, it is clear that liquid volume and SB/SA have the
greatest effect on sintered density. When a liquid is created
during sintering, there are two solubilities that are present: solid
phase solubility in the liquid phase and liquid phase solubility in
the solid phase. During heating, the uneven diffusivity between
the liquid and solid phases results in a change in dimension and
shrinkage or swelling happens. Figure 2 represents that volume
change induced by the phase transformation and compaction
pressure are two other factors that have a major impact on
sintered density. During sintering, the lattice type may change,
for example, from body-centered cubic to face-centered cubic,
and as a result, the volume change due to the phase
transformation will be effective on sintered density. Particles
slide or rearrange each other when the compaction pressure is
low. The primary mechanism for densification at greater
pressures is the particle’s plastic deformation. High-density
compacts can be produced as a result of greater compaction.

2.2. Extreme Gradient Boosting (XGBoost). For
minimizing an objective function set that has been used to a
training dataset, a collection of different classification and
regression trees (CARTs) is used in a tree-based ensemble
technique. One of these tree-based models within the gradient
boosting decision tree (GBDT) framework is called XGBoost.
As shown in Figure 3, the CART’s basic structure is made up of

three different nodes: (a) the main node (root node), (b)
internal nodes, and (c) leaf nodes. The root node will be divided
into internal nodes by the binary decision-making processes. In
this way, the root-located dataset will be divided into different
nodes in the internal nodes, and the leaf nodes will serve as the
final classes for the final classification. An ensemble of CATRs is
introduced and developed using determination of their influence
by assigning them a specific weight throughout the training
phase, with the goal of generating a powerful set in accordance
with the gradient booting model.46

To predict the y for a particular dataset, a group of n trees
needs to be trained; n andm are counts of instances and features,
respectively.

=

= { = }
=

y f X f f

f f X q T

( ),

with ( ) , ( : , )

i
k

N

k i k

q x
m T

1

( ) (1)

where using a specified decision rule q(x), a binary leaf index will
be created by mapping an example X. The corresponding space
of each regression tree is depicted in eqs 1 and 2 by f, f k shows the
kth independent tree, T denotes the number of leaves on the
tree, and the weight of the leaf is shown by w, as shown in eqs 2
and 3.
The second stage of the modeling process involves

determining tree sets by minimizing an objective function L.

= +

= +

L l y y f

f T

( , ) ( )

with ( )
1
2

i

n

i i
k

N

k

2

(2)

where Ω represents the regularization factor that lowers the
model’s complexity to help prevent overfitting, loss function is
demonstrated by l and is fundamentally a differentiable convex
function, theminimal loss reduction is represented by γ, which is
needed in division of a new leaf, and the coefficient of regulation
is denoted by λ. It is important to note that γ and λ facilitate
increasing the variance of the model and plummet overfitting.47

The objective functions for every individual leaf in the approach
of boosting are minimized iteratively as follows:

= { + } +
=

L l y y f X f( , ) ( ) ( )t

i

n

i i
t

t i t
( )

1

( 1)

(3)

Within the given formula, t represents the tth iteration in the
training process. The XGBoost technique greedily provides
sufficient space for regression trees, often known as a “greedy
algorithm,” to noticeably ameliorate the ensemble model. As a
result, the objective function is minimized continually to update
the output of the XGBoost model:

= +y y f X( )i
t

i
t

t i
( ) ( 1)

(4)

The XGBoost takes use of a shrinkage method that after each
level of boosting, a learning factor rate scales freshly increased
weights. By minimizing the impact of newly created trees on
already formed trees, this prevents overfitting risk.48

2.3. k-Nearest Neighbors (KNN). One type of algorithm
for supervised machine learning that can be applied to both
regression and classification issues is the k-nearest neighbor
(KNN) method. It is fairly straightforward and easy to
implement. In the early 1970s, the KNN was a well-liked non-
parametric technique in statistical applications.49 KNN looks for
a set of k samples that, when compared to an unknown sample
that is first selected at random, are closest. The k indicates how
many neighbors will be used by default and invariant datasets.
One of the distance units that can be used to determine how far
apart points on a graph are from one another is the Euclidean
distance, which is specified in eq 5. As a result, the label of these
unidentified samples is established as a typical class by
calculating the response variables’ average. The performance
of the KNN would undoubtedly be significantly impacted by
selecting the best value of “K”; thus, by adjusting this parameter
throughout a range of values and selecting the optimum value for
this hyperparameter, wemay determine the optimal value for the

Figure 3. Level-wise tree development in XGBoost.
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parameter “K”.50 The following is how Euclidean distance is
calculated (eq 5):

=

= =
=

D X Y x y

X x x x Y y y y

( , ) ( )

( , , ..., )and ( , , ..., )

i

n

i i

n n
n

1

2

1 2 1 2 (5)

2.4. Support Vector Regression (SVR). Support vector
regression (SVR), which has a well specified mathematical
model, is frequently utilized for soft calculations, even though
support vector machines are a collection of controlled machine
learning approaches that can be used for regression and
classification.51 Recently, SVR has aroused the interest of
researchers due to its consistency in simulating numerous
complex structures. The main theory of SVR has already been
published;52 hence, this paper will only briefly present it. For a
dataset [(x1, y1).... (xn, yn)] that is given, SVR tries to find a
regression function f(x) using the d-dimensional input space x∈
Rd and y ∈ R as the output vector, which depends on the data of
the input, to approximate the output as follows:

= · +f x w x b( ) ( )i (6)

where w represents the weight, b shows the bias vectors, and
ϕ(x) denotes the kernel function. The following minimization
technique from Vapnik et al.53 was described to obtain the
weight and bias vectors to the proper values:

l

m
ooooooo

n
ooooooo
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j j

i i j

i i j

j j

1

(7)

Here, T represents the transposed matrix of w, ε denotes the
error connivance, C shows the positive regularization parameter
representing the variation from ε, and ζ j

+ and ζ j
− show the

positive parameters representing the higher and lower extra
variances, respectively.
By using the Lagrange multipliers, the aforementioned

constrained optimization issue is transformed into a dual
function. The following is the ultimate solution that results from
this action:

= * +
=

f x a a K x x b( ) ( ) ( , )
j

n

k k k l
1 (8)

where the kernel function is indicated byK(xk , xl), ak and ak* are
the multipliers of Lagrange, and b is a bias.

2.5. Adaptive Boosting Decision Tree (AdaBoost-DT).
Adaptive boosting-DT is centered on the boosting method and
decision tree, one of the effective techniques for improving
learning quality. The boosting method developed by Schapire54

creates a model that is an ensemble method, and to make a high-
strength learner, it aims to combine various weak learners/
predictors. The process of training a weak learner into a strong
learner is done in such a way that emends the prior learners.
2.5.1. Adaptive Boosting (AdaBoost). AdaBoost is a very

popular boosting technique that is presented in 1995 by Freund
and Schapire55 for aims of classifying. All the weights are initially
set evenly, but the weights of samples that were erroneously
categorized are increased in each round such that the new
learner is obligated to focus more on the hard examples. The
algorithm takes the training data as {(xk, tk), k = 1,2, ... , n } for a
classification problem, and the AdaBoost method key steps are
represented in Algorithm 1.56

2.5.2. Decision Tree (DT). This technique is a non-parametric
supervised learning method, which can be used to solve both
regression and classification issues. The automatic interaction
detection (AID) decision tree was created in its initial form by
Morgan and Sonquist. The THAID algorithm was developed by
Messenger and Mandell as the first classification tree
approach.57 Internal nodes, branches, leaf nodes, and root

Figure 4. Examples of (a) classification and (b) regression problems where decision trees have been used.60 Reprinted in part with permission from
Nait Amar et al. (2019). Copyright 2019 Elsevier.
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nodes are all included in the hierarchical flow diagram that
represents this algorithm. The root neuron is the top neuron that
reflects the complete sample space and has no income branches.
The neuron having a single incoming branch and numerous
outgoing edges is known as the test or internal neuron. The
other nodes, known as terminal nodes or leaves, represent the
end outcomes. Making a decision tree involves three key steps:
splitting, stopping, and pruning.58 Splitting, which can also be
used with training instances, is the procedure of breaking the
data up into various subsets based on the most prominent
attribute. Different factors, such as classification error, Gini
index, gain ratio, information gain, and towing, could be taken
into account for standard deviation reduction, variance
reduction, and classification tree.59 Figure 4 illustrates a decision
tree as an example. As soon as the preset homogeneity is satisfied
or the stopping criteria are met, data splitting starts at the root
node and moves up to the internal node. By stating the stopping
conditions, the complexity of the problem is reduced. The
minimal records in a particular node or leaf prior to splitting and
the separation between each leaf and root node serve as
indicators of this. By adopting this method, overfitting is
prevented. Splitting would result in a complicated tree with
records that are 100% pure for each node if stopping conditions
are not used. In contrast to the test dataset, the training data
would be accurately fitted. The model would only be tuned for
the best value when stopping criteria are applied. Overfitting is
avoided by using the pruning procedure when stopping tactics
are ineffective. This approach results in the creation of an entire
tree. Then, nodes that contain a smaller validation dataset or
information gain are removed to create small trees.

2.6. Multilayer Perceptron (MLP). Artificial neural
networks (ANNs), within the field of computational intelli-

gence, are based on the human neuron system similar to the
human brain.61 This approach can determine complex relations
between input and output variables. Such networks consist of
numerous processing elements (neurons or nodes) that are
closely interconnected to one another and links or intercon-
nections (weights). To solve particular issues, nodes or neurons
are arranged in different layers, while the weights tie between
nodes.61,62 One of the most popular ANNs is multilayer
perceptron (MLP) and includes at least three layers of nodes: an
input layer, a hidden layer, and an output layer.63 The initial
layer is related to the input data, and the last one refers to model
outputs. Intermediate layers are between these layers, which are
named hidden layers, and form the relevance among the model
inputs and the eligible outputs.64 The quantity of input
parameters equals to the sum of nodes within the first layer,
whereas the neuron number in the last layer is usually equal to
one, which is the same as the predicted parameter or property.
The process of trial and error is used to match the number of
hidden layers and their contained neurons. In several issues, it is
acceptable to provide a single hidden layer in an MLP.65 In
general, however, two hidden layers are used for high-complexity
structures.22 The neurons in each hidden layer are linked in their
previous and next layers to all the neurons. The sum of the
magnitude for each former layer neuron is multiplied for that
neuron, at a particular weight, and then, this summation is
applied to a bias term to determine the value of each node within
the hidden layer or output layer. Afterward, this result is passed
through the activation functions. Hidden and output layers can
be applied to different activation functions, and some of which
are listed below:66

Figure 5. Schematic illustration of the MLP network performed in this work.
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In the present study, the most efficient choice was found in a
two-hidden-layerMLPwith the tansig activation function for the
first hidden layer, logsig for the second one, and purelin (linear)
transfer function for the layer of the output. Therefore, the
output of the model by considering this network can be
expressed as follows:62

= × × × +

+ +

w w w x b

b b

output purelin( log sig( tan sig( )

)
3 2 1 1

2 3 (12)

In this equation, w1 and w2 are the weight matrixes of the first
and second hidden layers, respectively, and w3 stands for the
weight matrix for the output layer. Furthermore, b1 and b2 show
the bias vectors for the first and second hidden layers,
respectively, as b3 is the output bias. In the performance of the
MLP network, choosing the optimization technique for training
model is one of the key steps. Instead of using just a single
optimization technique that is utilized for most MLP neural
network papers, in this paper, four various training algorithms
are used. namely, Levenberg−Marquardt (LM), resilient
backpropagation (RB), scaled conjugate gradient (SCG), and
Bayesian regularization (BR). The resultant MLP approaches
established on these algorithms are termed LM-MLP, RB-MLP,
SCG-MLP, and BR-MLP, respectively. Figure 5 displays a
framework of the MLP network used in this work schematically.
Biases and the weights are optimized in these models for the
sintered density to minimize the error value. MLP-based models
were found to have the best architecture: 14-8-2-1 in all designed
networks, in which the first and last numbers represent the
number of input and output data, respectively. Moreover, the
second and third values indicate how many neurons are present
in the first and second hidden layers of the network. Through
our modeling, about 80% of the 210 experimental data points
and the residual 20% were as the model development and
assessing the precision of the established model, respectively. To
evade the collection of itemized data points in the problem
possible region, randomization was utilized to divide the process
into training and testing sets. Table 2 represents the optimum
important hyperparameter values for the machine learning
approaches applied in the present study.
2.6.1. Resilient Backpropagation Algorithm. Sigmoid and

tansig typically utilize as the activation functions in MLP neural
networks in the hidden layer. These transfer functions are
generally entitled squatting since a finite output range is
compacted from an infinite input range. As the large input enters
in activation function like sigmoid and tansig, their gradient
approaches zero. These can create issues when training the
network with the steepest descent since the differential has a
small quantity and therefore makes minor adjustments in the
biases and weights. To omit the undesirable effects of greatness
belonging to partial derivatives, the RB algorithm was
proposed.62

2.6.2. Levenberg−Marquardt Algorithm. One of the most
commonly used methods to optimize the biases and weights in
the MLP technique is the algorithm of Levenberg−Marquardt
(LM). The most widespread used algorithm was created by

Kenneth Levenberg and Donald Marquardt, and it is called
Levenberg−Marquardt, presenting a numerical solution for the
problem to minimize a nonlinear function.67−69 Also, this
technique is examined on various function approximation
difficulties70 and renowned as the damped least-squares
(DLS) technique in which its application is used to resolve
nonlinear least-squares issues. In other words, this technique
acquires a local minimum that does not inevitably reflect the
absolute minimum. In several occasions, this approach can
detect the final solution even it is originated from an inaccurate
primary guess. The Hessian matrix is not calculated in this
technique, and gradient approximation and the Hessian matrix
are evaluated as follows if the performance function has the style
of sum squares:

=H J JT (13)

=g J eT (14)

where e is the network error vector and J is a Jacobian matrix
including the first-order derivatives of network errors pertaining
to biases and weights. The approximation of the above-
mentioned is applied by the LM algorithm in the following
Newton-like update:62

=+x x J J I J e( )k k
T T

1
1

(15)

In the above equations, x that stands for the linking η and
weights is a constant that lessens after every prosperous step and
only rises when the performance function is enlarged by a
tentative step. Thus, after each iteration of the algorithm, the
performance function value always decreases.

Table 2. Optimum Values of the Hyperparameters for the
Proposed Models

parameters value

XGBoost loss 0.6
max_depth 10
min_samples_split 2
min_samples_leaf 1
n_estimators 70
subsample 0.7
max_features 4

KNN n_neighbors 1
SVR kernel radial basis function

(rbf)
C 500
epsilon 0.001
gamma 0.3

AdaBoost-
DT

loss function square
n_estimators 100
max_depth 15
min_samples_split 3
min_samples_leaf 1
max_features 11

MLP training function RB, LM, BR, and
SCG

number of layers 3
neurons in the first hidden layer 8
transfer function of the first hidden
layer

tansig

neurons in the second hidden layer 2
transfer function of the second hidden
layer

logsig

transfer function of the output layer purelin
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2.6.3. Bayesian Regularization Algorithm. Bayesian regula-
rization (BR), the renowned training algorithm, will be applied
to acquire the weight and bias parameters based on the LM
algorithm. This optimization minimizes a grouping of weights
and squared errors, and the best arrangement is constructed,
which generalizes well. The network’s weights are defined as
follows for the objective function:71

= +F E E( ) D (16)

in which the objective function, the sum of model errors, and the
sum of squared model weights are, respectively, donated by
F(ω), ED, and, Eω. In the above equation, the coefficients of α
and β are objective function parameters that are defined
according to the theorem of the Bayes. It is worth noting that the
model’s weights are regarded as the random variable in BR
modeling. The training set and distributions of the weight
vectors are also built based on Gaussian distribution. The
calculations are transferred to the LM phase for the objective
function minimizing; accordingly, consequently, the weight
space will be updated. If the stop condition fails to satisfy, then
the procedure is repeated and the estimations of α and β are
continued.
2.6.4. Scaled Conjugate Gradient Algorithm. In this

approach, the weights are set in the sharpest decline direction,
which implies that the gradient is the most negative. The
performance function decreases more quickly in this direction,
but this does not certainly result in the fastest convergence.
Employing conjugate gradient leads to a more instant
convergence rate compared to the sharpest decline direction
and minimizes the deviation in all earlier steps.

=p g0 0 (17)

In eq 17, the steepest direction of descent for the first iteration
is indicated by the symbol −g0 and the search direction, known
as the conjugate direction, is indicated by P0. In this technique,
the ideal distance is calculated for optimizing the direction of the
current search, as described in eq 18

= ++x x gk k k k1 (18)

As shown in the following rule, the corresponding search line
direction will be defined in conjugating to the preceding search
line direction.66

= +P g Pk k k k 1 (19)

The conjugate gradient β-determination technique indicates
the amount of the conjugate gradient. Apart from the line search
technique, it is possible to apply the scaled conjugate gradient
(SCG) approach to this purpose that is a cheaper analytical
solution than the line search procedure.

3. RESULTS AND DISCUSSION
3.1. Statistical Assessment of the Models. Specific kinds

of statistical typicality measures can be computed to analyze the
reliability and exactness of each model. The average absolute
percent relative error (AAPRE), average percent relative error
(APRE), the standard deviation (SD), root mean square error
(RMSE), and correlation coefficient (R) are considered as
statical parameters for all of the suggested models, which are
presented in Table 3.
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3. SD:

Table 3. Statistical Error Evaluation of the Developed Models for Determination of Sintered Density Cu-9Al Alloy

MLP-RB MLP-LM MLP-BR MLP-SCG AdaBoost-DT XGBoost KNN SVR

Training set
AAPRE (%) 1.3760 1.249 1.287 1.335 0.864 2.267 2.849 3.130
APRE (%) −0.039 −0.054 −0.049 −0.049 −0.093 −1.083 1.656 −0.127
SD 0.020 0.020 0.020 0.021 0.015 0.039 0.048 0.052
RMSE 0.017 0.016 0.016 0.017 0.012 0.028 0.038 0.038
R 0.989 0.990 0.989 0.988 0.994 0.970 0.951 0.940
no. of data 168 168 168 168 168 168 168 168

Testing set
AAPRE (%) 1.882 1.463 1.582 1.797 1.864 2.286 2.902 3.266
APRE (%) 0.083 0.055 −0.080 0.037 0.653 0.328 1.660 1.361
SD 0.028 0.020 0.023 0.025 0.028 0.030 0.040 0.043
RMSE 0.022 0.017 0.019 0.020 0.023 0.025 0.033 0.035
R 0.974 0.984 0.983 0.982 0.978 0.971 0.962 0.952
no. of data 42 42 42 42 42 42 42 42

Total
AAPRE (%) 1.477 1.292 1.346 1.428 1.064 2.271 2.860 3.157
APRE (%) −0.014 −0.032 −0.055 −0.032 0.056 −0.801 1.657 0.171
SD 0.022 0.020 0.020 0.022 0.018 0.038 0.046 0.051
RMSE 0.018 0.016 0.017 0.018 0.015 0.028 0.037 0.037
R 0.987 0.989 0.988 0.987 0.991 0.970 0.954 0.942
no. of data 210 210 210 210 210 210 210 210
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4. RMSE:
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In eqs 20−24, d, d̅,N, and superscripts exp and pred show the
sintered density, the average of values, the dataset size, the
experimental values, and anticipated values by the published
models in this procedure, respectively.
The proposed model validation is confirmed in low values for

the RMSE, AAPRE, SD, and APRE parameters in training,
testing, and total data points. By taking a look at Table 3, it can
be inferred that for all developed models, there is no significant

Figure 6. Cross plot for predicted sintered density versus experimental sintered density of train and test sets.
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difference between the testing set and the training set except for
AdaBoost-DT. Consequently, besides AdaBoost-DT in the
present research, the overtraining problem did not happen to all
models, which may occur through modeling investigation.
Although comparing the statistical parameters of models in
Table 3 proves that the AdaBoost-DT strategy has the lowest
prediction error in terms of AAPRE, SD, and RMSE compared
to the other strategies in the total data points, the MLP-LM is
the most exact model as a result of lower values of AAPRE, SD,
and RMSE in the testing data points. In contrast, SVR denotes
the most prediction error values among the developed models.
The statical parameters of the models confirm that BR-MLP and
SCG-MLP are valid after LM-MLP. The LM-MLP strategy
predicts the sintered density as the output in which the statical

parameters consisting of RMSE, AAPRE, SD, APRE, and R are
0.016, 1.249%, 0.020, −0.054%, and 0.990, respectively, for the
training set, 0.017, 1.463%, 0.020, 0.055%, and 0.984 for the
testing set, and 0.016, 1.292%, 0.020,−0.032%, and 0.989 for the
total data points. In consequence, the exactness of the
established models in the present study can be ranked as
follows: MLP-LM > MLP-BR > MLP-SCG > MLP-RB >
AdaBoost-DT > XGBoost > KNN > SVR.

3.2. Graphical Evaluation of the Models. Figure 6 depicts
the analysis of graphical error for the developedmodels as a cross
plot of sintered density versus corresponding experimental
sintered density for train and test sets. As is evident, tight
accumulation of both test and train results around a 45° line
reveals that all of the models have perfect accommodation

Figure 7. APRE of the predicted sintered density versus experimental sintered density for test and train datasets.
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among predicted and experimental measured sintered density.
The predictions of the MLP-LM model are accumulated in the
closest surrounding area of the unit-slope line, whereas there are
no substantial distributed data for every developed approach. In
addition, there is no substantial underestimate or overestimate
as a result of the scattering pattern.
In Figure 7, the error distribution curves for MLP-LM and

other developedmodels in this study both in testing and training
data are plotted. For MLP-LM, most of the scattered data points
are gathered surrounding the error line of zero for the entire
variety of experimental sintered density. Between the predicted
values and the real data, the maximum relative error is 7.85%.
This scheme reveals the high consistency degree between the
MLP-LM model and the experimental and prediction data over
the other ones. In other words, the KNN and the SVR models
consist of numerous data that are scattered far from the zero
error line.
The other valuable graphical tool is the cumulative frequency

of errors in which the MLP-LM, MLP-BR, MLP-SCG, and
MLP-RB models as the four best models in this study are
represented in Figure 8. As demonstrated in this figure, the

MLP-LM model presents the highest cumulative frequency of
the prediction error. In these models, approximately more than
90% of the predicted sintered density have estimation errors
equivalent or fewer than 2.57, 3.52, 3.53, and 3.75% for the
MLP-LM, MLP-BR, MLP-SCG, and MLP-RB models,
respectively. These results reveal that the model of MLP-LM
can be exerted effectively for estimating.

3.3. Comparison between the Developed Models and
Models in Literature. Figure 9 exhibits the comparison R
values in the published literature with developed techniques in
this study. The prediction accuracy increases as the coefficient of
correlation approaches 1. The R values for AdaBoost-DT, MLP-
LM, MLP-BR, MLP-SCG, MLP-RB, XGBoost, KNN, and SVR
are 0.991, 0.989, 0.988, 0.987, 0.987, 0.970, 0.954, and 0.942,
respectively. Although the R value for AdaBoost-DT is the
maximum, theMLP-LM is the best approach in this work due to
the fact that the test data error is low in this model, and the
overfitting happened for AdaBoost-DT. The results of most
optimization techniques are much more accurate than existing
literature techniques of the published literature model6 in which
the coefficient of correlation values were 0.963 for MLP and
0.889 for SVR. Therefore, for both of these models, the
corresponding models presented in this study present better

results, whichmay be related to the issue of modeling design and
the algorithm used for modeling.

3.4. Developed MLP-LM Model’s Sensitivity Analysis.
Sensitivity analysis considers how changes in the input of a
model affect its output’s value. An accurate way to recognize
how the input of a model influences its output is using relevancy
factor analysis. For the developed MLP-LM intelligent model in
this work, sensitivity analysis was utilized. The relevancy factor
computes the influence of each input parameter on the output,
and a greater influence of an input on the output is indicated by a
higher value of the relevancy factor (r) for that input.72 Figure 10
represents the impact of input parameters on the relative
sintered density. It represents that liquid volume, SB/SA,
volume variation caused by the phase transformation, and
compaction pressure have the greatest effect on the relative
sintered density among the input parameters. Liquid volume and
volume variation caused by the phase transformation have a
negative effect on the relative sintered density, and increasing
these parameters leads to a decrease in relative density. In
contrast, SB/SA and compaction pressure have a positive effect
on the relative sintered density, and their increase heightens the
relative sintered density. Solidus temperature has the least effect
among the input parameters with a negative effect.

3.5. Proposed MLP-LM Model’s Outlier Detection and
Utility Domain. The outlier discovery technique plays an
important role to detect data that may be different from the
whole data in a dataset. The leverage method is a trustworthy
technique for detecting outlier data points. This approach
contains the standardized residual values as well as a matrix, the
Hat matrix, which is made up of the actual and anticipated values
obtained from the developed model.73

The Hat indexes are determined based on the Hat matrix (H)
with the following formula:

=H X X X X( )t t1 (25)

in which t denotes the transposematrix andX is described as a (n
× m) matrix with n data points and m model input parameters.
Following that, William’s plot is created for graphical

evaluation of the outliers based on the H matrix calculation. In
addition, warning leverage (H*) is calculated as +x

n
3 ( 1 ) , in

which both x and n indicate the number of model inputs and
data points, respectively. If the majority of the data points fall
within the ranges of 0 ≤ Hii ≤ H* and −3 ≤ R ≤ 3 (R is the
standardized residual), then the model and its predictions are
both statistically valid and reliable.72,73

Figure 8. Cumulative frequency curve of MLP-LM, MLP-BR, MLP-
SCG, and MLP-RB models.

Figure 9. Comparing coefficient of correlation for sintered density
models developed (MLP-LM, MLP-RB, MLP-BR, MLP-SCG, and
AdaBoost-DT) in this study and the published literature model.
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The result of the leverage approach is depicted in Figure 11.
Majority of the data points exist in the valid zone. Thirty-nine
data points (18% of all data) are out of the applicability domain
of the model. This confirms that the actual data are reliable, and
the model is statistically valid.

4. CONCLUSIONS

In the present paper, eightmodels were developed depending on
the literature data source to estimate the sintered density values
in Cu-9Al alloy. For this resolution, 210 data points in terms of
yield strength, Young’s modulus, volume variation caused by the
phase transformation, hardness, liquid volume, liquidus temper-
ature, the solubility ratio among the liquid phase and the solid
phase (SB/SA), sintered temperature, solidus temperature,
sintered atmosphere, holding time, compaction pressure,
particle size, and specific shape factor were collected. Based on
the findings of the present study, the following conclusions can
be obtained:

1. The models in this work can estimate the sintered density
accurately, andMLP-LM has been discovered as the most
reliable model.

2. The developed MLP-LM technique predicts the sintered
density with high accuracy, including AAPRE values of
1.249% for the training set and 1.463% for the testing set.

3. In the present study, the accuracy of the proposed models
is in the following order: MLP-LM > MLP-BR > MLP-
SCG > MLP-RB > AdaBoost-DT > XGBoost > KNN >
SVR.

4. The developed models based on the soft computing
approach were compared to predecessor approaches. The
results indicate that the established model’s precision was
superior to all of those models.

5. With the exception of few data points that were placed in
the out of leverage and upper and lower suspected data
zones, all of the data points appear to be valid, according
to the leverage approach.

6. Liquid volume as one of the input parameters had the
most negative influence on the relative sintered density.

Figure 10. Sensitivity analysis on sintered density behavior of the generated MLP-LM model.

Figure 11. William’s plot of the developed AdaBoost-DT model.
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Moreover, the results indicated that increasing the
solubility ratio among the liquid phase and the solid
phase (SB/SA) leads to a heightening in the relative
sintered density.
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