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Abstract
Knowledge of thermodynamics and phase equilibria of oxidicmaterials is crucial
for advancement in the field of ceramics and glass.With the development of com-
putational thermodynamics, predicting phase diagrams and chemical reactions
of multicomponent systems has become possible. However, there are still plenty
of oxides, the thermodynamic properties of which have not been identified due to
the challenges in conducting experiments. Therefore, a key to the advancement
in thermodynamic modeling would be to develop a universal model that can be
used to estimate the thermodynamic properties of oxides with reliable extrap-
olation capacity. Atomistic (or molecular) scale models are still insufficient in
predicting the thermodynamic properties of oxides at any scale. Alternatively,
among group contribution–basedmethods, the polyhedronmodel has presented
its potential in the estimation of the thermodynamic properties of ionic crys-
tals. However, this model still demands improvements that increase the model’s
accuracy and extrapolation capacity. In this paper, the background and the state-
of-the-art of polyhedron model will be presented together with its strengths and
shortcomings. Subsequently, it will be briefly discussed how the field of artificial
intelligence could be exploited to devise the next generation of the polyhedron
model, the modified polyhedron model.
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1 INTRODUCTION

Thermodynamic modeling of phase equilibria and chem-
ical reactions in multicomponent systems is an indis-
pensable part of the development of advanced materials
and processes. Oxide-based materials have many appli-
cations, such as glass,1 ceramics,2,3 reinforcements in
metallic matrix composites,4 thin films and coatings,5,6
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materials for magnetic recording,7 fuel cells,8,9 high-
temperature superconductors,10,11 health,12,13 cement,14,15
energy storage,16,17 water decontamination,18,19 and pro-
cess metallurgy.20,21 Despite the large volume of data avail-
able, there are numerous important oxide compoundswith
unknown thermodynamic properties. This is partly due to
the fact that the experimental determination of thermody-
namic properties is time-consuming and challenging (e.g.,
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hygroscopicity and impurities). Therefore, a universal
model with reliable extrapolation capacity that can be used
to estimate the thermodynamic properties of oxides would
be a key to the advancement in thermodynamic modeling.
Several theoretical models have been developed

to estimate the thermodynamic properties of the
compounds.22–24 These models can be categorized
into quantum mechanics and classical mechanics meth-
ods such as the density functional theory (DFT) and
molecular dynamic (MD) simulations, respectively. These
approaches are computationally expensive and ineffective
for estimating thermochemical properties at elevated
temperature. For example, incorporating temperature
effect in DFT calculations, which are typically restricted to
0 K temperature, is an active area of research. Moreover,
the calculations often take more time than doing actual
experiments. The interatomic potentials in MD simula-
tions, as another example, are not reliable in systems with
more than three elements. Although these techniques
could be ideal for the compounds that are difficult to
conduct experiments on (e.g., extremely hygroscopic
materials), they are still far to be considered practical and
general.
In addition, several empirical models were also devel-

oped using the group contribution–based methods to
predict the thermodynamic properties of compounds and
minerals.25–29 The Neumann–Kopp rule (NKR), although
developed as early as the 19th century, is still widely used
as a first approximation in the estimation of thermody-
namic properties of compounds.25 The NKR is employed
to calculate the unknown standard entropy and heat
capacity of a compound from its constituent oxides. Most
of the studies among the group contribution methods
were based on the simple additivity rules, modifications
of structural analogs, or regression-based correlations
between the thermodynamic properties and structural
data (e.g., atomic mass, molar volume, cation coordina-
tion, electronegativity, and lattice dilatation)25–27,30–52 to
estimate the enthalpy, entropy, or heat capacity of solids.
The thermodynamic properties of the constituents could
be obtained directly from experiments or indirectly from
regression analysis over the existing databases. These
methods are thought-provoking because they are com-
putationally less expensive, could be rather practical, and
be easily applied to the prediction of the thermodynamic
properties of new compounds.
Most of the group contribution models consider the

lattice vibrational mode as the major contributor to heat
capacity and entropy, and the lattice mode can be a
function of the mode of the cation-oxygen polyhedra (i.e.,
groups of cations surrounded by anions), which roots
back in the Pauling model of ionic solids.30 According
to Pauling, first-nearest neighbor (FNN) bonding plays a

crucial role in determining the structure and properties of
ionic crystals. Among several group contribution–based
models developed until now, the polyhedron model of
Holland31 is quite distinctive as it is based on the physical
structure of ionic compounds as demonstrated by Pauling
and has been applied to predict the thermodynamic
properties of large groups of oxides, hydroxides, carbon-
ates, and phosphates with uncertainties often reportedly
lower than those of other methods of estimation and
comparable with experimental uncertainties.27,31–35 The
polyhedron model assumes that polyhedra are the main
building blocks of an ionic crystal, as shown in Figure 1
for the TiSiO4 compound. The thermodynamic properties
of the compound can be therefore predicted from the
summation of the corresponding thermodynamic prop-
erties of its component polyhedra, Ti4+-octahedra, and
Si4+-tetrahedra as demonstrated in Figure 1.
In this study, we aim to trace the development of the

polyhedron model over the years and determine its state-
of-the-art, highlight its strengths and shortcomings, and
identify key avenues to propel further research and devel-
opment. In the end, some potential areas, overlooked so
far, are presented to improve the accuracy of the estimated
thermodynamic properties of oxides.

2 THEORY

If the Gibbs energies of all phases of a chemical system,
including stoichiometric compounds and solution phases,
are known, the phase equilibria, phase stability, and
chemical reactions among its many components can be
calculated under a set of conditions (e.g., X, T, P) via min-
imization of the Gibbs energy functions. Figure 2 shows
the stable phase assemblages obtained by minimizing
the Gibbs energies of multiple phases. If all stable phase
assemblages are calculated as a function of temperature
under atmospheric pressure, the thermal stability of
phases can be revealed.
The Gibbs energy of a compound can be obtained from

enthalpy and entropy of formation of the compound in
the standard state (298 K, 1 atm) and the heat capac-
ity as a function of temperature. The Gibbs energy of a
stoichiometric compound is expressed by

𝐺𝑜
𝑇
= 𝐻𝑜

𝑇
− 𝑇𝑆𝑜

𝑇
(1)

𝐻𝑜
𝑇
= Δ𝐻𝑜

298 K
+

𝑇

∫
298 K

𝐶𝑝 (𝑇) d𝑇 (2)

𝑆𝑜
𝑇
= 𝑆𝑜

298 K
+

𝑇

∫
298 K

(
𝐶𝑝 (𝑇)

𝑇

)
d𝑇 (3)

where Δ𝐻𝑜
298 K

is the standard enthalpy of formation of
a given stoichiometric compound from pure elements
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MOOSAVI-KOONSARI et al. 3

F IGURE 1 Schematic presentation of the polyhedron method and constituent polyhedra of TiSiO4 crystal structure, showing
Ti4+-octahedra and Si4+-tetrahedra.

F IGURE 2 Relation between Gibbs energy and phase stability for a constant temperature and pressure.

at 298 K and 1 atm, 𝑆𝑜
298 K

is the standard entropy
at 298 K and 1 atm, and 𝐶𝑝(𝑇) is the heat capac-
ity as a function of temperature. An ideal model will
be able to calculate the Δ𝐻𝑜

298 K
, 𝑆𝑜

298 K
, and 𝐶𝑝(𝑇) to

estimate the Gibbs energy within the experimental
uncertainty.
In the polyhedron model, an ionic compound is divided

into constituent polyhedra. The basic assumption is

that the thermodynamic properties of ionic compounds
(primarily silicate minerals) could be calculated from the
linear summation of the corresponding thermodynamic
properties of their constituent polyhedra as expressed in
the following equations:

Δ𝐻𝑜
𝑖,298 K

=
∑

𝑛𝑗Δℎ
𝑜
𝑗,298 K

(4)
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4 MOOSAVI-KOONSARI et al.

𝑆𝑜
𝑖,298 K

=
∑

𝑛𝑗𝑠
𝑜
𝑗,298 K

(5)

𝐶𝑝 (𝑇) =
∑

𝑛𝑗𝑐𝑝,𝑗 (𝑇) (6)

where i is the ionic crystal, the thermodynamic properties
of which are unknown, j is the constituent polyhedron,
and nj is the stoichiometry of the constituent polyhedron.
The letters 𝐻, 𝑆, and 𝐶𝑝(𝑇) stand for enthalpy, entropy,
and heat capacity, respectively, and ℎ, 𝑠, and 𝑐𝑝(𝑇) are the
molar properties of the constituent polyhedra.

3 REVIEWOF POLYHEDRON-BASED
MODELS

3.1 Estimation of 𝚫𝑯𝒐
𝟐𝟗𝟖 𝐊

Robinson and Haas27 estimated the standard enthalpy
of silicate minerals via the summation of the properties
of polyhedra. They used the weighted, simultaneous,
multiple, least-squares regression method to derive the
thermodynamic properties of polyhedra. Between 298 and
1500 K, the technique has higher precision for enthalpy
(2%–3% errors) than the NKR (up to 5% errors). Chermak
and Rimstidt36 calculated the enthalpy of silicate minerals
at 298 K from the polyhedron method, the continuation
of the polyhedron method of Robinson and Haas.27 They
derived the enthalpies of certain oxide and hydroxide poly-
hedra, used to estimate the thermodynamic properties
of complex or impure silicates such as clay minerals and
zeolite, challenging to be measured. The average residuals
for calculated and experimented Δ𝐻𝑜

298 K
were calculated

to be 0.24%. However, they mentioned that the enthalpy
of Ca–Al pyroxene, forsterite, cordierite, andradite, and
gehlenite could not be calculated with accuracy. La-Iglesia
and Felix33 applied the polyhedron method to derive the
enthalpy of 20 polyhedra at 298 K and 1 atm to predict the
enthalpy of carbonate minerals. The average calculated
relative error for the enthalpy was 0.25%. Van Hinsberg
et al.37 determined the enthalpy for 35 polyhedra using
weighted multiple linear regression (LR) analysis on pub-
lished mineral thermodynamic properties. As a result, the
enthalpy of a large number of phases could be calculated
at 298 K and 1 atm with an associated uncertainty of less
than 5%. Only reasonable results for silicate minerals and
double oxides were obtained, and the correlation could
not be used to predict the thermodynamic properties
of other minerals, simple oxides (AOx), and hydroxides
(A(OH)x). For the two latter, the calculated difference
between the experiments and prediction was more than
10%. For example, the thermodynamic properties of SiO2
polymorphs (quartz, tridymite, and cristobalite) could

not be well reproduced. In all three, Si is located in the
tetrahedral sites, but they have different thermodynamic
properties. It is possible that the cation sites are not the
same in the three polymorphs or that long-range ordering
in these minerals is more important than the phases
with multi-cations. La-Iglesia32 expanded the polyhedron
method using a method of least-squares to derive the
contribution of 15 polyhedra to estimate the enthalpies of
phosphates at 298 K and 1 atm. The calculated residual
errors for the enthalpy were less than 1%. Wu et al.35
expanded the polyhedron method to derive the enthalpy
of 18 polyhedra based on the weighted multiple LR of 48
silicates and 19 titanates, critically assessed and available
in the FactSage database.38 The standard deviation for
enthalpy at 298 K was 0.56%. The standard enthalpies of 6
ternary alkali–silicate–titanate phases were predicted.

3.2 Estimation of 𝑺𝒐
𝟐𝟗𝟖 𝐊

Fyfe et al.26 method of estimation of entropy, although not
a polyhedron-based model, deserves elaboration because
it inspired the work of Robinson and Haas27 pioneer-
ing the polyhedron method. Fyfe et al.26 reported some
deviations in the calculated entropy values based on the
Latimer39 table from the experimental values. Latimer40
estimated the entropies of solid compounds considering
the mass, size, and charge of cations and anions. For
example, for albite NaAlSi3O8 or jadeite NaAlSi2O6, the
estimated entropy values based on the constituent oxides’
summationwere 205.8 and 133.0 J/degmol, against the cal-
culated values of 187.0 and 145.2 J/deg mol, respectively.
That implied that additivity rules based on elemental or
oxide constituents would not always work. That is, there
are other parameters that may contribute to the entropy in
addition to the phase constituents. Therefore, Fyfe et al.26
demonstrated that the contribution of volume should be
considered in the entropy value. Entropy is associatedwith
short distances and bond tightness, reflected in low com-
pressibility values. They proposed that if the actual molar
volume and the standard molar volume (i.e., from the
summation of constituent oxides) agree with each other,
no entropy correction should be required. In the opposite
case, the volume effect should be considered in the entropy
value. If the molar volume of a compound is higher than
the standard molar volume, the actual entropy of the com-
pound should be higher than the value obtained from the
summation of oxides and vice versa. In general, higher
volumes correspond to higher entropy values. It might
be that high-temperature compounds have lower coordi-
nation than low-temperature compounds as an increase
in coordination needs a shorter distance between cation
and anion and higher density as a result.26 Fyfe et al.26
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MOOSAVI-KOONSARI et al. 5

proposed a volume-corrected model of entropy where
the difference between a compound entropy and its con-
stituent oxides is proportional to the difference between
the compound molar volume and the molar volumes of its
constituent oxides as the following:

𝑆𝑗 = Σ𝑛𝑖𝑆𝑖 + 𝑘(𝑉𝑗 − Σ𝑛𝑖𝑉𝑖) (7)

where k is the volume correction parameter to be derived
from experimental data. This technique was further
improved by Helgeson et al.,41 Robinson and Haas,27 and
Holland.31
Moreover, Fyfe et al.26 reported that the contribution of

order–disorder at low temperatures should be added to the
entropy value. The third law of thermodynamics assumes
that the entropy value of a pure crystal at 0 K is zero.
However, entropy values from calorimetric measurements
and spectroscopy do not always match, and sometimes the
entropy values from spectroscopy exceed the values from
low-temperature heat capacity measurements. This was
related to the existence of randomness down to the tem-
perature as low as 0 K (i.e., the residual entropy). Residual
entropy should exist in all crystal structures where there
is randomness in the distribution of two or more types of
cations on equivalent sites. For example, in silicates, Al can
replace Si in the fourfold tetrahedral site. For example, in
silicates, Al can replace Si in the fourfold tetrahedral site. If
the disorder related to the existence of randomness in the
distribution of cations in the sublattices happens at high
temperatures, it will be reflected in heat capacity data and
thus entropy value. However, if this disorder happens at a
low temperature, the residual entropy should be calculated
and added to the experimental value.
Robinson and Haas27 in a similar way to enthalpy

estimated the standard molar entropy of silicate miner-
als via summation of the properties of basic polyhedra.
Between 298 and 1500 K, the technique has a precision
better than 5% for entropy. This indicates that the cation
type and coordination number affect the mineral ther-
modynamic properties. They evaluated the coordination
numbers for cations in each mineral group. Although this
was a rather path-independent approach, where predicted
results are independent on the choice of reactants, in com-
parison to analogous mineral constituents of Helgeson
et al.,41 it neglected the effect of volume on entropy taken
into account by Fyfe et al.26 and Helgeson et al.41 They
derived an equation for calorimetric entropies of polyhedra
associated with the heat capacity function:

𝑆′ = 𝑎ln𝑇 + 2𝑏𝑇 −
𝑐

𝑇2
+ 𝑒 +

𝑓𝑇2

2
−

2𝑔

𝑇1∕2
(8)

The entropies of pyroxenes and amphiboles were not
well predicted (errors between 10 and 45 J/K were

obtained) and the components like MnO, TiO2, and Fe2O3
were also missing in the model.
Chermak and Rimstidt36 reported that the positive cor-

relation between entropy and volume presented by Fyfe
et al.26 can be justified by considering the role of lattice
vibrations in the heat capacity and entropy of crystalline
solids. They based the entropy of a crystalline compound
on the Einstein quantum model or the Debye model for
heat capacity. They found an average value for explaining
the relationship between the entropy andmolar volume as
1.0 J/K cm3 from low to high temperatures. The obtained
value is consistent with the k constant value obtained by
Fyfe et al.26 and is also in agreement with the Einstein and
Debye solid behavior.
Holland31 further improved the polyhedron model of

Robinson and Haas27 by allowing coordination changes
and incorporating the volume-corrected entropy and
non-lattice vibrational contributions (magnetic and site
order–disorder transitions). The dependency of entropy
on volume was taken into account by including the
volumetric contribution in the summation of different
polyhedra. The uncertainties of estimated entropy values
were about ±2–3 J/Kmol for silicates and double oxides.
The uncertainties were in the range of ±3–6 J/K mol
for phases containing transition metal oxides. These
uncertainties are lower than other methods of estimation
and comparable with experimental uncertainties.
Holland31 evaluated the effect of the molar volume of

cation polyhedra on the third law of entropy within the
framework of the lattice vibration theory of Einstein and
Debye. Via regression analysis of 60 measured entropies
and volumes of silicates and oxides, he found a value
of 1.0 J/K cm3 for (ΔS/ΔV)298 K similar to that obtained
from Einstein and Debye models and work of Fyfe et al.26
Holland reported that molar volume can represent the
average bonding and vibrational state of minerals, and the
entropy is the function of the average vibrational spec-
trum. Therefore, the molar volume can be used to predict
the entropies of crystals. Holland31 used 60 compounds
for the regression to derive the parameter S–V for each
polyhedron and its uncertainty. He also compared the
volume-corrected results with the model of Robinson and
Haas27 ignoring the volume effect. He reported that the
standard deviation of the residuals and the mean absolute
deviation of residuals were two times the values of the
volume-corrected model. For example, the difference
between octahedral and tetrahedral Al2O3 in the model of
Robinson and Haas was about 28.3 J/K mol in comparison
to 6.3 J/K-mol from the volume-corrected model.
Holland31 also removed two non-lattice vibrational

contributing factors to entropy (i.e., magnetic and site
order–disorder transitions). The following equation could
be used to ideally consider the contribution of magnetic
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6 MOOSAVI-KOONSARI et al.

transformation at T < 298 K to the entropy:

𝑆
magnetic
max = 𝑅

∑
𝑛 ln (2𝑠 + 1) (9)

where 𝑠 is the spin quantum number, 𝑅 is the gas constant,
and 𝑛 is the number of moles of Fe2+, Fe3+, and Mn2+
in the given oxide. Significant magnetic ordering can
happen below 15 K down to 1 K in some minerals. He
also considered the site-configurational entropy terms, for
example, as occurs because of the distribution of Al and
Si on the same sublattices. The maximum contribution of
site order–disorder transition at T < 298 K to entropy can
be calculated via the following equation:

𝑆𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑚𝑎𝑥 = −𝑚𝑅
∑

𝑋𝑖ln𝑋𝑖 (10)

where Xi is the mole fraction of species i in a certain
sublattice site, and m is the multiplicity of that lattice site
at which cations or anions mixing occurs.42 Subsequently,
the contribution of both magnetic and site order–disorder
transitions at T < 298 K to the enthalpy can be calculated
as follows:

Δ𝐻𝑒𝑥
𝑚𝑎𝑥 =

2

3
(𝑆𝑚𝑎𝑥𝑇𝑐) (11)

where 𝑇𝑐 is the temperature of magnetic and/or site
order–disorder transition, that is, Tmag and Tdis.
Some minerals such as hematite and magnetite show

magnetic transition above 298 K with a long tail to the
lambda anomalies down to below 298 K, which could lead
to a possible small contribution to the entropy below 298K.
The Landau theory can be used to calculate the contri-
bution of both magnetic and site order–disorder to the
entropy as explained by Carpenter43:

𝐶𝑒𝑥𝑝 =
𝑇𝑆𝑚𝑎𝑥

2
√
𝑇𝑐

(𝑇𝑐 − 𝑇)
−1∕2 (12)

𝑆𝑒𝑥
𝐿𝑎𝑛𝑑𝑎𝑢

= 𝑆𝑚𝑎𝑥
(
1 − 𝑄2

)
(13)

where 𝐶𝑒𝑥𝑝 is the excess heat capacity with respect to
the fully ordered phase, Smax is the maximum entropy of

transformation, and𝑄 = (1 −
𝑇

𝑇𝑐
)
1∕4
. Themagnetic order–

disorder is very common in minerals containing transition
metal oxides and leads to the Lambda peaks and heat
capacity anomalies. The contributions ofmagnetic and site
order–disorder transitions at T> 298 K to the enthalpy can
be obtained as the following equation42:

𝐻𝑒𝑥 = 2𝑆𝑚𝑎𝑥𝑇𝑐

(
𝑄6

6
−
𝑄2

2
−
1

3

)
(14)

La-Iglesia and Felix33 also utilized the polyhedron
model of Holland and derived the entropy of 20 polyhedra

at 298 K and 1 atm to predict the entropy of carbonate min-
erals. Van Hinsberg et al.37 also determined the entropy
and molar volume for 35 polyhedra using weighted mul-
tiple LR analysis on published mineral thermodynamic
properties. They described the OH-bearing minerals by
partial and total hydroxide coordinated components and
obtained better results than previous models. However,
they precluded the need for an S–V term to improve
estimates of entropy as suggested by Holland.31 Wu et al.35
also used the polyhedron method to derive the entropy,
and molar volume of 18 polyhedra based on the weighted
multiple LR of 48 silicates and 19 titanates. The reported
standard deviations for entropy and molar volume at
298 K were 3.5% and 4.2%, respectively.

3.3 Estimation of Cp

Robinson and Haas27 estimated the standard molar heat
capacity of silicateminerals via the summation of the prop-
erties of polyhedra. Between 298 and 1500 K, the technique
has a high precision (2%–3% errors) for heat capacity. They
used the following equation to fit the heat capacity of
constituent polyhedra of minerals:

𝐶′
𝑝,𝑖

= 𝑎𝑖 + 2𝑏𝑖𝑇 + 𝑐𝑖∕𝑇
2 + 𝑓𝑖𝑇

2 + 𝑔𝑖∕𝑇
1∕2 (15)

where T is the absolute temperature, and a–g are the coef-
ficients obtained from the least-square analysis (c and f
coefficients are often zero). The calculated heat capaci-
ties of olivines and high-symmetry silica (i.e., β-quartz and
β-cristobalite), having very rigid interconnection between
the polyhedra, showed errors of more than 2%. The phase
α-quartz was the worst case scenario where all polyhedra
are loosely interconnected. In the polyhedron model, the
volume changes with temperature are related to the varia-
tion in cation–anion bond lengths rather than the changes
in polyhedra linkage. Van-Hinsberg et al.34 estimated the
heat capacity of minerals between 200 and 1200 K using
the LR of constituent polyhedra within ±2% of the input
values better than the values obtained from the NKR. Leit-
ner et al.44,45 assessed the temperature dependency of the
heat capacity ofmixed oxides from theNKR. They revealed
that this method leads to accurate heat capacities at 298 K,
whereas the values largely deviate from the heat capacity
values at low and high temperatures. They listed several
parameters that contribute to the heat capacity of a solid
compound at constant pressure all of which cannot be
considered in the simple additivity method of NKR, such
as the lattice vibration (harmonic and anharmonic) and
lattice dilatation. Lattice dilatation and anharmonic vibra-
tion are important factors at high temperatures where the
harmonic lattice vibration reaches the Dulong–Petit limit.

 15512916, 0, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.19343 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [16/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MOOSAVI-KOONSARI et al. 7

At low temperatures, vibrational frequencies change in a
mixed oxide with respect to its binary oxides leading to a
nonzero value for heat capacity difference. At low temper-
atures, the acousticmode of amixed oxide is different from
its constituent oxides due to changes in the coordination
number and site symmetry of the large cation between the
binary oxides and theirmixed oxides. Recently, Zhu et al.46
used the polyhedron method to calculate the heat capacity
of five different sodium magnesium silicates.

4 DISCUSSION

The goal would be to estimate the three thermodynamic
properties, that is, Δ𝐻𝑜

298 K
, 𝑆𝑜

298 K
, and Cp(T), for a wide

range of oxides within experimental uncertainties. Sub-
sequently, the Gibbs energies of stoichiometric solids as
functions of temperature, G(T), could be calculated from
the three thermodynamic properties (see Equations 1–3).
The predicted Gibbs energies of stoichiometric com-
pounds can be stored in thermochemical software, such
as FactSage38 and Thermo-Calc.47 These Gibbs energies in
combination with the thermodynamic properties of solid
and liquid solutions will be employed to calculate phase
equilibria, phase stability, and complex chemical reactions
under a set of predefined conditions (T, X, P). According
to the analysis of the literature, the polyhedron method
of Holland31 could be a potential approach to predicting
the thermodynamic properties of a wide range of ionic
compounds such as oxides.

4.1 Strengths and shortcomings of the
polyhedron model

It has been already shown that the polyhedron method
was inspired by the physical structure of ionic compounds
demonstrated by Pauling,30 boosting its extrapolation
capacity and reliability. Considering the cation coordina-
tion, it became possible to estimate enthalpy, calorimetric
entropy, and heat capacity without data about represen-
tative minerals in similar structural classes, making this
model path-independent. That is, the thermodynamic
properties of a target compound do not change based
on the choice of constituents. The polyhedron model is
rather practical and can be used to estimate the properties
of several different families of ionic crystals (e.g., oxides,
hydroxides, carbonates, and phosphates). The residual
errors are often less than those calculated by other well-
established and widely used methods of summation based
on oxides or minerals such as NKR. For some compounds
and minerals, residual errors as low as the experimental
uncertainties were reported.

However, Hanzen48 specified that polyhedra have spe-
cific vibrational frequencies and amplitudes, and fictive
thermochemical properties assigned to each polyhedron,
vary by temperature and pressure. He also reported
that each cation polyhedron has certain predetermined
properties (i.e., compressibility, expansion, and volume),
which could vary by a few percentages from one structure
to another. For example, 2% variations in average bond
distance, 4% in polyhedron volume, and 15% in O–O edge
lengths are common for divalent polyhedra in minerals. In
general, cations with larger valence show less change in
the polyhedra geometry from structure to structure. The
variations are the largest in this order: Si tetrahedra < Al
octahedra <Mg octahedra < Be tetrahedra.
According to Hanzen,49 the limitations of the polyhe-

dron method can be listed as follows: (1) The polyhedron
method assumes that the properties of a polyhedron (e.g.,
size, shape, and fictive thermodynamic properties) are
constant from one structure to another, (2) the effect of
inter-polyhedra linkage (“linkage rigidity”) is missing,
(3) polyhedron distortions are not allowed from structure
to structure (i.e., the energies related to crystal field
effects, Jahn–Teller distortions, ion pairs), (4) it is simply
based on mechanical mixing of polyhedra (i.e., the excess
properties of mixing are not predicted), and (5) it is only
applicable to compounds that can be divided into different
polyhedra (i.e., it cannot be applied to covalent sulfides
and sulfosalts).
Hanzen introduced four different linkage topologies, a

“shared face” (three or more common anions), a “shared
edge” (two common anions), a “shared corner” (one
common anion), or van der Waals forces (intermolecular
forces and no shared elements). He classified the min-
erals’ structures based on the distribution of rigid versus
deformable polyhedra linkages in the structure. A rigid
linkage (e.g., AlO6 octahedra sharing faces in corundum)
does not go under a significant deformation as a result
of a change in the composition of adjacent polyhedra,
temperature, and pressure. However, a compliant linkage
(e.g., the shared corners between two SiO2 tetrahedra
in α-quartz) significantly changes with respect to tem-
perature and pressure. It can be said that ionic crystals
with a few flexible linkages fit well with a polyhedron
model but those with all flexible linkages like α-quartz
or olivine with no flexible linkages show lower or higher
thermodynamic properties. Figure 3 illustrates the four
different linkage topologies between different polyhedra
in BaCoO3 (“shared-face”), Na2Ti3O7 (“shared-edge”),
CaTiO3 (“shared-corner”), and Li4SiO4 (“van der Waals
forces”). The enthalpy and entropy of Na2Ti3O7 and
Li4SiO4 were calculated using the polyhedron model and
compared with the experimental data in Table 1. It is
seen that the calculated residual error for Li4SiO4 with
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8 MOOSAVI-KOONSARI et al.

F IGURE 3 Ionic compounds with different inter-polyhedra linkages; “shared face” in BaCoO3, “shared edge” in Na2Ti3O7, “shared
corner” in CaTiO3, and “van der Waals forces” in Li4SiO4.

TABLE 1 Predicted enthalpies of Na2Ti3O7 and Li4SiO4 using
the polyhedron model in comparison to experiments.

Na2Ti3O7 Li4SiO4

𝚫𝑯𝒐
𝟐𝟗𝟖 𝐊

(kJ/mol) 𝚫𝑯𝒐
𝟐𝟗𝟖 𝐊

(kJ/mol)
Polyhedron model −3474.41 −2328.80
Barin et al.55 −3490.47 –
Ihle et al.56 – −2328.90
Residual error 0.46% 0.0%

“van der Waals forces” is negligible in comparison to that
for Na2Ti3O7 with “shared edge” where the effect of poly-
hedra linkage on the thermodynamic properties might
be more important. However, this is subject to further
investigation.
Holland31 applied some modifications to the poly-

hedron model of Robinson and Haas27 such as the
volume-corrected entropy. However, this could only
account for the nonzero value of the interaction entropy
of constituent polyhedra for a specific compound at 298 K
(see Equation 7). Afterward, the polyhedron method was
utilized32,35,37 to estimate the thermodynamic properties
of silicate, binary oxides, hydroxides, titanate, titanate–
silicate, and carbonate minerals. Van Hinsberg et al.37
rejected the necessity of volume-corrected entropy, which
could be related to the choice of selected minerals for the
regression analysis. As explained before, only if the dif-
ference between the actual molar volume of a compound
and the standard molar volume from the summation of
its constituent polyhedra is important, the volume effect
can be reflected in the interaction entropy. However, Wu
et al.35 reported slightly better results considering the

volume-corrected entropy term. In our unpublished work,
we obtained significant improvements in the predicted
entropies of the compounds Li2Si2O5, Ca3Fe2Si3O12,
and Fe2TiO4 considering the volume-corrected
entropy.
It can be said that no further major developments were

performed on the polyhedron model after Holland,31 and
the model is still today based on the major assumption
that the enthalpy and heat capacity of polyhedra interac-
tion are equal to zero. This might provide a reasonable
first approximation, but it could be further improved by
incorporating physical structural data (e.g., electronega-
tivity and molar volume) representing the enthalpy and
heat capacity of reactions. You et al.24 recently demon-
strated that the calculated Cp values of Na2MgSiO4 from
the polyhedronmodel agreewellwith the differential scan-
ning calorimetry (DSC) results between 800 and 1200 K;
however, deviation as large as approximately 20% from the
DSC data was observed between 298 and 800 K. Although
the polyhedron model of Holland in general provides esti-
mates of thermodynamic properties better than previously
well-established methods such as NKR, the residual errors
in the thermodynamic properties propagate to the Gibbs
energy, which might lead to largely erroneous phase equi-
libria and phase stability data. In addition, the residual
Δ𝐻𝑜

298 K
, 𝑆𝑜

298 K
, 𝑉298 K, and 𝑆𝑜

298 K
− 𝑉298 K were calcu-

lated by Wu et al.35 to be 0.56%, 3.50%, 4.20%, and 6.51%,
respectively, versus 1.50%, 6.77%, 6.94%, and 9.28% by Van
Hinsberg et al.37 That is, in the present state, the enthalpy
of compound can be predicted rather more accurately
than the entropy and molar volume, which need further
improvement.
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MOOSAVI-KOONSARI et al. 9

4.2 Outlook on future research

The main problem of the polyhedron model is that it does
not distinguish the polyhedra linkages and the crystal
energy contributions by cation–cation second nearest
neighbor (SNN) and longer range interactions. That is, the
present polyhedron method averages out energies asso-
ciated with different inter-polyhedra linkages and SNN
and longer range ordering in the form of FNN interactions
among constituent polyhedra of a mineral. The SNN and
inter-polyhedron rigidity could particularly vary from one
compound to another. If this information is known, in
combination with polyhedra characteristics, the thermo-
dynamic properties of materials can be calculated. That is,
the assumption that each cation polyhedron has specific
properties that are constant from one structure to another,
and that the bulk properties of ionic compounds can be
predicted from the linear summation of the constituent
polyhedra are only a first approximation.48 Hence, the
main challenge could be the development of proper
summation methods for these different linkage topologies
and SNN interactions. For example, Hanzen48 proposed to
include a simple polyhedron linkage coefficient that rep-
resents the flexibility of corner-shared structural elements.
As mentioned before, the polyhedron method of

Holland31 focused on LR analysis of data. However, with
the advancements in the field of artificial intelligence,
nonlinear models can be used to improve the derived ther-
modynamic properties of polyhedra and the accuracy of
the estimated thermodynamic properties of compounds.
Machine learning (ML) or Deep Learning (DL) models
could be efficient in the estimation of thermodynamic
properties of compounds and enable calculations beyond
the capacity of mathematical functions. For example, they
can be used to estimate not only the FNN interactions (i.e.,
first-order interactions) but also the SNN interactions (i.e.,
the second-order interactions) and longer range ordering
(e.g., third-order and fourth-order interactions) between
constituent polyhedra of a crystalline phase. In addition,
the DL algorithms (e.g., neural network [NN], decision
tree) can be used to find complex correlations between the
thermodynamic properties of compounds and physical
structural data governing the thermodynamic proper-
ties of ionic solids. Subsequently, the related physical
structural data can be used as input parameters to the
polyhedron model to account for the nonzero values of
reaction thermodynamic properties. This approach can be
promising in studying and predicting the thermodynamic
properties of compounds while obtaining the balance
between computational time and accuracy.
Figure 4 shows the relationship between the three

pillars (database, descriptors, and algorithm) in ML and
the process of development of a modified polyhedron

model. The development of an ML model can be divided
into four steps: (1) creating a database of thermodynamic
properties, (2) selecting proper descriptors and algo-
rithms, (3) training the algorithm based on the dataset and
descriptors, and (4) utilizing the trained model to predict
the thermodynamic properties of unknown compounds
based on selected descriptors.
For creating ML algorithms, two sets of data (training

vs. prediction) are required. Known thermodynamic prop-
erties of ionic compounds can be used as the training set
to predict unknown thermodynamic properties of other
compounds. The reliability of training set data largely
influences the predictability of an ML model. Therefore,
rigorous attention should be paid to the soundness of
the available data. Thermochemical software and their
databases such as FactSage contain a large number of ther-
modynamic properties of ionic compounds that have been
critically evaluated, optimized, and amassed in the past
decades. These data can be used as inputs to the ML pro-
cess. These internally consistent databases and optimized
and cleaned data are favored over the experimental mea-
surements that are accurate within certain error ranges
and are measured independently from other components
of a chemical system. If thermodynamic properties of inter-
est are not available in an internally consistent database,
the data from original experimental values can be taken.
An algorithm is a mathematical model that is employed

to estimate a variable of a system (here, the unknown
thermodynamic properties of a compound) based on other
variables (properties of constituent polyhedra). The algo-
rithm connects inputs, descriptors, and outputs either
qualitatively or quantitatively. It might be not all the
algorithms are suitable for one specific objective (i.e., a
variable to be calculated). For example, algorithms that
suit only the interpolation and not extrapolationmight not
be suitable for themodified polyhedronmodel because the
estimated values cannot be outside the training set values
for the target compounds, the thermodynamic properties
of which can be very different from those of the training
set.
To performMLmodeling with the information available

in the dataset, it is necessary to use descriptors (often
called “features”) to characterize the compounds in the
algorithm. Descriptors are numerical representations
of the included properties used for training and can be
included into theML algorithm asmatrix (e.g., constituent
polyhedra of compounds) values (e.g., Δ𝐻𝑜

298 K
).50–52 For

example, Peng et al.53 predicted the thermal expansion
coefficients of La2(Zr2−2xCe2x)O7 using the polyhedron
approach, including descriptors such as constituent
polyhedral, temperature, and lattice parameters. They
demonstrated that a larger database may result in a
remarkable increase in the accuracy of nonlinear ML
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10 MOOSAVI-KOONSARI et al.

F IGURE 4 Process of developing a modified polyhedron model using machine learning.

TABLE 2 Comparison of predicted Δ𝐻𝑜
298 K

of stoichiometric
compounds in the PbO–SiO2 system to experimental measurements.

Compound
Polyhedron
(𝐤𝐉∕𝐦𝐨𝐥)

Kother
et al.54

(𝐤𝐉∕𝐦𝐨𝐥) Error (%)
PbO −219.43 – –
SiO2 −920.88 – –
Pb4SiO6 −1800.13 −1813.37 0.09
Pb2SiO4 −1360.51 −1378.53 0.46
PbSiO3 −1140.69 −1148.97 0.74

models (e.g., Support Vector Machine, and k-Nearest
Neighbors [k-NN]) outperforming linear models.
As an example, the enthalpy of three lead–silicate stoi-

chiometric compounds calculated from the hybridML–LR
polyhedron method is provided in Table 2. The resulted
errors are below 0.74% in comparison with the experimen-
tal data reported by Kother et al.54

5 CONCLUSION

The polyhedron method proposed by Holland could be
a promising approach for the estimation of the ther-
modynamic properties of compounds because (1) it is
rooted in the physical structure of ionic compounds,
(2) considering the cation coordination without a need
for data about representative minerals in similar struc-
tural classes makes this model path-independent, (3) it is
rather practical in comparison to atomistic (or molecu-
lar) methods and can be used to estimate the properties
of a wide range of ionic compounds, and (4) the cal-
culated errors are often less than those calculated by

other well-established and widely used methods such as
NKR.
The polyhedron model, however, only estimates the

thermodynamic properties of compounds with a first
approximation. It is based on the linear summation
of polyhedra’s thermodynamic properties taking into
account merely the first-nearest neighbor interactions and
ignoring the significance of second-nearest neighbor and
longer range interactions and the nonzero values of the
enthalpy, and heat capacity of polyhedra’s interactions.
The present polyhedron model also ignores the effect of
inter-polyhedra linkages on the thermodynamic proper-
ties, which could be important in some compounds and
minerals.
It could be possible to overcome some of the impor-

tant shortcomings of the polyhedron model by taking
advantage of the field of artificial intelligence and devise
the modified polyhedron model. For example, exploit-
ing ML algorithms, the SNN, and longer range ordering
can be calculated in ionic crystals. Possible correlations
between the physical structural data (e.g., molar volume
and electronegativity) and thermodynamic properties can
be revealed to account for the nonzero values of the ther-
modynamic properties of polyhedra’s interactions while
obtaining the balance between computational time and
accuracy.

ACKNOWLEDGMENTS
The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) for the
financial support of the project.

CONFL ICT OF INTEREST STATEMENT
The authors claim that there is no conflicts of interest.

 15512916, 0, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.19343 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [16/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MOOSAVI-KOONSARI et al. 11

ORC ID
ElmiraMoosavi-Khoonsari https://orcid.org/0000-
0001-7153-493X
SunYongKwon https://orcid.org/0000-0002-9212-8823

REFERENCES
1. Pchelkin G, Demidov V, Ter-Nersesyants E, Khokhlov A,

Bourdine A, Matrosova A, et al. Study of the characteristics
of few-mode microstructured optical fibers with 6 cores made
of highly doped GeO2 silica and induced chirality. In: 2022
International Conference onElectrical Engineering andPhoton-
ics (EExPolytech). St. Petersburg: Russian Federation; 2022. p.
354–7.

2. Sánchez-Rivera MJ, Orts MJ, Pérez-Herranz V, Mestre S. Effect
of type and amount of alumina as dopant over the densification
and the electrical properties of zinc oxide ceramic electrodes. Bol
Soc Esp Ceram Vidrio. 2021;60(1):8.

3. Zhao D, Haijun S, Liu Y, Shen Z, Liu H, Guo Y, et al. Ultrahigh-
strength porous ceramic composites via a simple directional
solidification process. Nano Lett. 2022;22(6):2405–11.

4. Gotagunaki S, Mudakappanavar VS, Suresh R. Investigation
on microstructure and tensile fractography of RE oxides
(CeO2/Y2O3) reinforced AZ91D magnesium matrix composites.
Frat Integrita Strutt. 2022;17(63):100–9.

5. Hiroli PK, Varun S, Mudhulu S, Kathik B, Mahendra-Kumar
B, Manjunatha C. ITO conductive ink: advances in materi-
als, preparation, and potential sensor applications. ECS Trans.
2022;107(1):20135–46.

6. Portilla-Nieto Y, Hernaiz M, Linder M, Aranzabe E, Doppiu S,
del Barrio EP. Development of active thermochemical barrier
coatings usingmetal oxides. Surf Coat Technol. 2023;458:129345.

7. Yoshikiyo M, Futakawa Y, Shimoharai R, Ikeda Y, MacDougall
J, Namai A, et al. Aluminum-titanium-cobalt substituted
epsilon iron oxide nanosize hard magnetic ferrite for magnetic
recording and millimeter wave absorption. Chem Phys Lett.
2022;803:139821.

8. Gao J, Liu Y, Gao Y, Yuan M, Wang Z, Lü Z, et al. Cobalt-
free fluorine doped Bi0.7Sr0.3FeO3-δ oxides for energetic cath-
odes of low-temperature solid oxide fuel cells. J Chem Eng.
2023;452:139584.

9. Ghorbani-Moghadam T, Kompany A, GolmohammadM. Study
of structural, electrical and electrochemical properties of
La0.7Sr1.3Co1−xFexO4 (x = 0, 0.1, 0.3, 0.5) Ruddlesden-Popper
oxides as promising cathode for intermediate solid oxide fuel
cells. J Alloys Compd. 2022;900:163382.

10. Rogacki K, Los A, Dabrowski B. Raising critical currents in
YBaCuO-type high-temperature superconductors by Mo substi-
tution. Low Temp Phys. 2023;49(3):364–74.

11. Pigalskiy KS, Vishnev AA, Efimov NN, Shabatin AV,
Trakhtenberg LI. Enhancement of pinning and the peak
effect in Y1–xFexBa2Cu3Oy high-temperature superconductors.
Curr Appl Phys. 2022;41:116–22.

12. Wang Y, Wu Z, Wang T, Tian J, Zhou Z, Guo D, et al. Antibac-
terial and physical properties of resin cements containing MgO
nanoparticles. J Mech Behav Biomed Mater. 2023;142:105815.

13. Dudek A. Microstructure and properties of the composites:
hydroxyapatite with addition of zirconia phase. J Eng Mater
Technol. 2011;133:021006.

14. Gardeh MG, Kistanov AA, Nguyen H, Manzano H, Cao W,
Kinnunen P. Exploring mechanisms of hydration and carbon-
ation of MgO and Mg(OH)2 in reactive magnesium oxide-based
cements. J Phys Chem C. 2022;126(14):6196–206.

15. Abdelmelek N, Lubloy E. The impact of metakaolin, silica fume
and fly ash on the temperature resistance of high strength
cement paste. J Therm Anal. 2022;147(4):2895–906.

16. He Q, Chen Z, Niu X, Han X, Kang T, Chen J, et al. Amorphous
vanadium oxides for electrochemical energy storage. Nano Res.
2023:1-19.

17. Noormohammadi E, Sanjabi S, Soavi F, Poli F. Electrodeposited
Cobalt–Copper mixed oxides for supercapacitor electrodes and
investigation of the Co/Cu ratio on the electrochemical perfor-
mance. Mater Renew Sustain Energy. 2023;12(1):53–61.

18. Zhang K, Ye C, Lou Y, Yu X, Feng M. Promoting selective
water decontamination via boosting activation of periodate by
nanostructured Ru-supported Co3O4 catalysts. J Hazard Mater.
2023;442:130058.

19. Wu G, Ma J, Li S, Li J, Wang X, Zhang Z, et al. Functional
metal–organic frameworks as adsorbents used for water decon-
tamination: design strategies and applications. J Mater ChemA.
2023;11(13):6747–71.

20. Lin C, Sheng N, Fan S, Sun S, Hou G, Yu J, et al. Effect of
rare earth oxides on desulfurization reaction at CaO ceramic
surface during smelting of Ni-based superalloy. Appl Surf Sci.
2023;620:156831.

21. Borra CR, Blanpain B, Pontikes Y, Binnemans K, Van-Gerven T.
Recovery of rare earths and other valuable metals from bauxite
residue (red mud): a review. J Sustain Metall. 2016;2(4):365–86.

22. Kim Y, Wolf AS, Becker U. Thermodynamic mixing properties
of alunite supergroup minerals: quantum-mechanical model-
ing and thermodynamic analysis of sulfate, chromate, selenate,
phosphate, and arsenate solid solutions, as well as uranyl
incorporation. Geochim Cosmochim Acta. 2019;248:138–60.

23. Takoukam-Takoundjou C, Bourasseau E, Lachet V. Study
of thermodynamic properties of U1-yPuyO2 MOX fuel using
classical molecular Monte Carlo simulations. J Nucl Mater.
2020;534:13.

24. You J, Wang J, Zhang S, Luo J, Peng Z, Rao M, et al. Ther-
modynamic properties of Na2MgSiO4: DFT calculation and
experimental validation. Calphad. 2022;79:102480.

25. KoppH. Investigations of the specific heat of solid bodies. Philos
Trans Royal Soc A. 1865;155:71–203.

26. Fyfe WS, Turner FJ, Verhoogen J. Effect of temperature on
equilibrium entropy of solids. Geol Soc Am Bull. 1958;73:25–67.

27. Robinson GR, Haas JL. Heat capacity, relative enthalpy, and
calorimetric entropy of silicate minerals: an empirical method
of prediction. AmMineral. 1983;68:12.

28. Helgeson H. Thermodynamic properties of hydrothermal sys-
tems at elevated temperatures and pressures. Am J Sci.
1969;267:75.

29. Powell R,HollandTJB.An internally consistent thermodynamic
dataset with uncertainties and correlations: 1. Methods and a
worked example. J Metamorph Geol. 1985;3:15.

30. Pauling L. The principles determining the structure of complex
ionic crystals. J Am Chem Soc. 1929;51:1010–26.

31. Holland TJB. Dependence of entropy on volume for silicate and
oxide minerals: a review and a predictive model. Am Mineral.
1989;74:5–13.

 15512916, 0, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.19343 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [16/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-7153-493X
https://orcid.org/0000-0001-7153-493X
https://orcid.org/0000-0001-7153-493X
https://orcid.org/0000-0002-9212-8823
https://orcid.org/0000-0002-9212-8823


12 MOOSAVI-KOONSARI et al.

32. La-Iglesia A. Estimating the thermodynamic properties of phos-
phate minerals at high and low temperature from the sum of
constituent units. Estud Geol. 2009;65(2):109–19.

33. La-Iglesia A, Felix J. Estimation of thermodynamic properties
of mineral carbonates at high and low temperatures from the
sum of polyhedral contributions. Geochim Cosmochim Acta.
1994;58(19):3983–91.

34. Van-Hinsberg VJ, Vriend SP, Schumacher JC. A new method
to calculate end-member thermodynamic properties ofminerals
from their constituent polyhedra II: Heat capacity, compressibil-
ity and thermal expansion. J Metamorph Geol. 2005;23(8):681–
93.

35. Wu T,Moosavi-Khoonsari E, Jung I-H. Estimation of thermody-
namic properties of oxide compounds from polyhedronmethod.
Calphad. 2017;57:107–17.

36. Chermak JA, Rimstidt JD. Estimating the thermodynamic
properties (ΔGfo and ΔHfo) of silicate minerals at 298 K
from the sum of polyhedral contributions. Am Mineral. 1989;
74:8.

37. Van Hinsberg VJ, Vriend SP, Schumacher JC. A new method
to calculate end-member thermodynamic properties of
minerals from their constituent polyhedra I: Enthalpy,
entropy and molar volume. J Metamorph Geol. 2005;23(3):
165–79.

38. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G,
Gheribi AE, et al. FactSage thermochemical software and
databases, 2010–2016. Calphad. 2016;54:35–53.

39. LatimerW.Methods of estimating thermodynamic properties of
compounds. J Am Chem Soc. 1951;73(4):1480–2.

40. LatimerWM. Reference book of inorganic chemistry. NewYork:
The Macmillan Co.; 1952.

41. Helgeson H, Delany JM, Nesbitt HW, Bird DK. Summary
and critique of rock forming minerals. Am J Sci. 1978;278A:
1–229.

42. Powell R, Holland TJB. An enlarged and updated inter-
nally consistent thermodynamic dataset with uncertainties
and correlations: the system K2O-NaO-CaO-MgO-MnO-FeO-
Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J Metamorph Geol. 1990;8:
89–124.

43. Carpenter MA. Thermochemistry of aluminium/silicon order-
ing in feldspar minerals. In: Physical properties and ther-
modynamic behaviour of minerals. Thermochemistry of Alu-
minium/Silicon Ordering in Feldspar Minerals Dordrecht:
Springer; 1988. p. 265–323.

44. Leitner J, Voňka P, Sedmidubský D, Svoboda P. Application
of Neumann–Kopp rule for the estimation of heat capacity of
mixed oxides. Thermochim Acta. 2010;497(1–2):7–13.

45. Leitner J, Chuchvalec P, Sedmidubsky D, Strejc A, Abrman P.
Estimation of heat capacities of solidmixed oxides. Thermochim
Acta. 2002;395:19.

46. Zhu Z, You J, Zhang X, Wang J, Duan J, Zhang T, et al.
Estimation of thermodynamic properties of sodium magne-
sium silicates by the polyhedron method. In: 11th International
Symposium on high-temperature metallurgical processing. The
minerals, metals & materials series. Cham: Springer; 2020. p.
215–26.

47. Andersson JO, Hellander T, Hoglund L, Shi P, Sundman B.
THERMO-CALC & DICTA, computational tools for materials
science. Calphad. 2002;26(2):39.

48. Hanzen RM. A useful fiction: polyhedron modelling of mineral
properties. Am J Sci. 1988;228-A:242–69.

49. Hanzen RM. Comparative chemical and polyhedron approach.
Rev Mineral. 1985;14:317–346.

50. Seko A, Togo A, Tanaka I. Descriptors for machine learning of
materials data. In: Nanoinformatics. Singapore: Springer; 2018.
p. 3–23.

51. Himanen L, Jäger MOJ, Morooka EV, Federici Canova F,
Ranawat YS, Gao DZ, et al. DScribe: library of descriptors for
machine learning in materials science. Comput Phys Commun.
2020;247:106949.

52. Zhao Z-W, Del-Cueto M, Geng Y, Troisi A. Effect of increas-
ing the descriptor set on machine learning prediction of
small molecule-based organic solar cells. Chem Mater.
2020;32(18):7777–87.

53. Peng B, Harsha-Gunda NS, Bridges CA, Lee S, Haynes JA, Shin
D. A machine learning approach to predict thermal expansion
of complex oxides. Comput Mater Sci. 2022;2010:7.

54. Kother W, Muller F. Zur Thermochemie des systems PbO-SiO2.
J Inorg Gen Chem. 1977;429(1):91–8.

55. Barin I, Knacke O, Kubaschewski O. Thermochemical proper-
ties of inorganic substances. New York: Springer-Verlag Berlin
Heidelberg; 1977.

56. IhleH, PenzhornR, Schuster P. The thermochemistry of lithium
silicates in view of their use as breeder materials. Fusion Eng
Des. 1989;8:4.

How to cite this article: Moosavi-Khoonsari E,
Arias-Hernandez JA, Kwon SY. Review and
perspective on polyhedron model for estimating
thermodynamic properties of oxides. J Am Ceram
Soc. 2023;1–12. https://doi.org/10.1111/jace.19343

 15512916, 0, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.19343 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [16/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/jace.19343

	Review and perspective on polyhedron model for estimating thermodynamic properties of oxides
	Abstract
	1 | INTRODUCTION
	2 | THEORY
	3 | REVIEW OF POLYHEDRON-BASED MODELS
	3.1 | Estimation of 
	3.2 | Estimation of 
	3.3 | Estimation of Cp

	4 | DISCUSSION
	4.1 | Strengths and shortcomings of the polyhedron model
	4.2 | Outlook on future research

	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	REFERENCES


