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A B S T R A C T   

To ensure better facilitation of vehicular services and improve driving safety in the Internet of Vehicles (IoV), 
context prediction among vehicles plays a very crucial role. However, as more malicious IoV devices get involved 
in the network, the context prediction accuracy shared among various servers may degrade severely. Existing 
schemes have used cryptographic mechanisms to securely and accurately identify malicious devices. However, 
time and the subsequent delay in identifying and rating the legitimate communicating IoV devices emerge as a 
crucial issue. Hence, to solve this critical problem, we put forth an efficient and reliable trust framework where 
trust and context prediction is achieved by Tidal Trust Mechanism (TTM) and Contract Theory (CT). TTM can 
successfully rate the degree of trust between the devices with a high level of accuracy, whereas CT can verify the 
context prediction reliably. The proposed mechanism based on TTM and CT ensures that trusted IoV devices are 
identified with high accuracy and verified reliably. The proposed framework is simulated over real-world data set 
in MATLAB for various performance metrics, such as altered records, accuracy prediction, response time, and 
utilities of IoV devices. Simulation results show that the proposed framework provides a significant improvement 
of approximately 87% in comparison to existing (baseline) approaches while analyzing the accuracy, record 
alteration, and resource utility among the devices in the network.   

1. Introduction 

Due to the rapid growth of autonomous vehicles and intelligent de
vices, the Internet of Vehicles (IoV) is expected to generate a diverse and 
large volume of information [1]. The Vehicular Ad-hoc Network 
(VANET) [2] integrated with the Internet of Things (IoT) forms IoV [3], 
where vehicles are embedded with various smart devices to gather and 
share information to improve the quality of the intelligent trans
portation system (ITS) services [4]. With the recent and continuous 
development in the urban population and expanding cities, autonomous 
computing machines are rapidly changing our lifestyles, and IoT plays a 

pivotal role in controlling and analyzing smart devices. 
As discussed in the literature, IoT-enabled vehicle automation tech

nologies are prone to various security threats [5]. Security and privacy 
issues are critical to the success of the IoV. Vehicles will not be willing to 
share their information over the IoV if the security issues are not suffi
ciently addressed [6]. Signal processing, machine learning, edge 
computing, and sensing technologies are used in autonomous naviga
tion, and there exist various safe driving, data collection, and informa
tion sharing schemes that improve system robustness and safety in IoV 
[7,8]. However, the consideration of the proactive behavior of the driver 
and various safety concerns for context (information) prediction 
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remains open. In addition, the various types of context (information) 
sent among the devices, such as textual, images, audio, and video, may 
further lead to inviting some intruders to make alterations in the 
network. Significantly, the involvement of intelligent malicious devices 
that generate false or modified contexts can slow data gathering and 
allow unauthorized information access [9–11]. Therefore, a secure 
context prediction scheme considering the behavioral patterns of vehi
cles is needed to provide a trusted IoV system. 

1.1. Contribution 

Many Artificial Intelligence (AI) based schemes have been proposed 
for accurately predicting behavior or context (information) from IoV 
[12,13]. However, the existing AI schemes lack interpretability, have 
high complexity, and are vulnerable to various known security attacks. 
Moreover, including malicious nodes in IoV adversely affects the 
network system’s accuracy, reliability, and robustness. Therefore, we 
propose a secure and trusted mechanism for IoV that can effectively 
detect the involvement of malicious IoV devices by analyzing the 
context information of the network.  

• In particular, we used a trust mechanism based on the tidal trust 
mechanism (TTM) [14] that can effectively determine the degree of 
trust of each communicating node and contract theory (CT) [15] that 
can verify the accuracy and prediction of trusted context prediction. 
Here, the trust values, varying depending on the communication 
behavior of IoV nodes, are computed using TTM. The TTM can 
accurately determine the reliability and security of each IoV device 
by assigning the trust values based on their communication behavior.  

• The nodes with high trust values and rates are included in the 
communication process. The trust values control the communication 
process, where the nodes with lower trust and rates do not partici
pate in the communication/opinion of context prediction or analysis 
process. The trust selector (TS) analyses the generated/collected 
reports from each IoV device and records the accuracy and reliability 
of the context prediction. Here, the CT mechanism is used to examine 
the reports in the network.  

• The proposed mechanism outperforms existing works in terms of 
utilities of IoV, accuracy, identification of altered records, and 
running/response time as compared to the existing schemes pro
posed by Kang et al. [16], Guo et al. [8], and Kazmi et al. [15]. 

The remaining paper is organized as follows. Section 2 describes 
several existing security approaches proposed by various researchers/ 
scientists. Section 3 presents the proposed framework based on TTM and 
CT, ensuring a secure and reliable context prediction. Section 4 analyses 
the result of a proposed framework in comparison with existing 
schemes. Finally, Section 5 concludes the paper and discusses the future 
scope of the paper. 

2. Related work 

2.1. General context prediction mechanisms in IoV 

Li et al. [17] proposed a detection algorithm for improving the 
detection of vehicles using three stages. The algorithm reduces the 
distortion of the vehicles separating images into various patches. The 
patches are combined with the original image to create a batch used for 
detection using a convolutional neural network (CNN). Also, an outlier- 
aware non-maximum suppression mechanism is proposed to reduce 
false alarms. 

Cebrian et al. [18] proposed a hierarchical scheme for predicting eye 
fixations. An encode-decoder network is created by merging the visual 
features through the global–local capsule definition. Also, a learning 
prediction contextual condition model is developed to estimate visual 
attention. Their experimental result shows the relationship between 

local and global contextual conditions and a 29% improvement in in
formation gain compared to existing works. 

Kanapram et al. [19] proposed an abnormality prediction/detection 
scheme based on collective awareness of intelligent agents in the 
network where the agents are analyzed using a data-driven dynamic 
Bayesian network. Also, a growing neural gas and Markov jump particle 
filter approaches are used to learn the conditional probabilities and es
timate the state possibilities. The performance analysis is provided in 
terms of accuracy and reliability. 

Liang et al. [20] proposed a scaling-based and feature fusion single 
shot detector by adding an extra scaling of de-convolution modules to 
form feature pyramids. Also, detection accuracy and context analysis are 
improved by incorporating the spatial relationship between objects. 

2.2. Secure context prediction methods 

Yen et al. [22] provide an analysis of misinformation threats in the 
network considering the back pressure traffic signal algorithm. Time 
spoofing and ghost vehicle threats are analyzed to identify the misin
formation that can further influence phases of signals. An adversary 
model was proposed to maximize the disruption among signal phases 
and formulated a 0–1 knapsack problem to determine the optimal 
approach. Additionally, hybrid-based and auction-based algorithms are 
proposed to detect threats or mitigate misinformation issues. 

Xia et al. [23] proposed a weighted Markov model and lightweight 
trust-aware multicast routing schemes. The mechanisms ensure reliable 
and secure routing paths during handoff processes. Routing metrics are 
examined against various malicious threats using SUMO, Netlogo, and 
NS-2 simulators. 

Li et al. [24] proposed a blockchain-based vehicular positioning 
accuracy scheme for ensuring credibility and security among sensors 
while analyzing the GPS error. Further, they used a deep learning neural 
network to analyze the error in positioning evolution. The scheme is 
analyzed for data sharing and error correction metrics to measure the 
accuracy of the network. Guo et al. [21,25] proposed an intelligent, 
trusted collaboration mechanism to gather data using unmanned aerial 
and mobile vehicles. A deadline-aware, trusted collaboration mecha
nism is proposed to ensure privacy and network security. Also, an AI- 
based optimization mechanism is proposed to collect the participants’ 
trust. Compared to the existing works, the cost and collection time is 
reduced by 35.08% and 58.32%, respectively. 

Kazmi et al. [15] proposed a contract theory-based incentive mech
anism that maximizes the social welfare of vehicular networks by 
motivating neighboring vehicles to share their resources. They have 
evaluated the performance of the proposed mechanism compared to the 
existing scheme against various security threats. 

Further, Kang et al. [26] proposed an optimized consensus mecha
nism using a blockchain network based on contract and reputation- 
based theory. They designed a secure communication process for 
vehicular systems. 

In comparison with the existing approaches, we propose a secure and 
trusted context prediction mechanism using TTM and CT where the 
behavior of the communicating device can be easily traced and identi
fied by computing their trust values. We will show that the proposed 
mechanism outperforms the three most relevant existing works Guo 
et al. [21], Kazmi et al. [15], and Kang et al.[26]) against various se
curity metrics. Summary of related work is presented in Table 1. Some 
existing works are proposed to ensure a secure and trusted communi
cation environment during the transmission of information in the 
network. However, the existing works may lead to further security 
concerns due to a decrease in accuracy, an increase in delays, and 
increased computation and communication overheads. The key man
agement and communication overheads increase the delays and 
decrease the accuracy of the system. As illustrated in Fig. 1, the proposed 
mechanism based on an artificial neural network (ANN) provides a 
secure and trusted communication network where the trust of each 
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device is computed regularly to reduce the delays in contextual trans
mission. The communications from devices having sufficiently high 
trusted values are trusted in the network. In addition, fast trust 
computation leads to higher accuracy and reliability in the network, 
which further improves the communication process. 

3. Proposed framework 

The TTM is used to determine the reliability and security of each IoV 
device by assigning the trust values based on their communication 
behavior. The trust values are used to control the communication pro
cess. The nodes with high trust values and rates are included in the 
communication process. The nodes with lower trust and rates do not 
participate in the communication/opinion of context prediction or 
analysis. As many abbreviations and symbols are used in the paper, they 
are listed and described in Table 2. 

3.1. Real time secure prediction of IoV 

There are a total of n IoT-enabled vehicular devices in the system, 
where a subset is assumed to be malicious. The proposed framework 
determines the nodes’ accuracy and behavior in three stages, as illus
trated in Fig. 1. Initially, while establishing the network, all the nodes 
are assumed to be legitimate. Compromised trusted nodes become ma
licious nodes that may degrade the network performance. Here, the 
degree of trust of each communicating node is determined using TTM 
consisting of two repeated phases. In the first phase, the level-wise rating 
and trust of all nodes are computed for the current level (level i), where 
the next level (level i + 1) is further computed using level i. Here, the 
level refers to the separation of devices depending upon their arrange
ment or establishment in the network, as shown in Fig. 2. In the second 
phase, each node computes the trust value of neighboring nodes and 
chooses the node with the highest trust value to transmit. The first stage 
involves communication among vehicles, representing the transmission 
process having storage, exchanging, and information sharing. The sec
ond stage, TTM [27] for trust computation, is used to compute and 
analyze the trust of each communicating device using the tidal trust 
model. Finally, stage 3 provides accurate decisions and predictions using 
context theory prediction. 

3.1.1. Secure communication using TTM 
The vehicular network is represented using a graph where the 

vertices are the IoV nodes connected using bidirectional edges. Initially, 
a uniformly distributed trust value (TV) ∈ [0, 1] is randomly chosen for 
each node. TV increases or decreases depending on their future 
communication behavior. TV of each node is recorded in a trust selector 
database by the IoV devices. Each node calculates the TV of neighboring 
nodes in each level. The TV calculation is updated after receiving the 
context information from other IoT devices. The TVs of nodes in the 
current level are calculated using the TVs from the previous level. If a 
node has more than one predecessor, the maximum of the TVs of its 
predecessors is chosen to be the TV. 

An example case is shown in Fig. 2.  

a) Level 0: The TV of node Q is 0.65 because the TV of node P, its only 
predecessor, is 0.65. Similarly, the TVs of nodes R and S are inherited 
from node P and are 0.60 and 0.70, respectively. After the TVs of all 
nodes in level 0 are computed, the TTM continues to level 1 to 
compute the TVs of all nodes in level 1. The trust values assigned to 
each node depend on the behavior or information transmission rate 
in the network. However, the ratings of each node determine the 
opinion of a node about its legitimacy and malicious behavior to
wards its neighboring nodes.  

b) Level 1: The TVs from level 0 will be used to compute TVs in level 1. 
The TV of node T is calculated using the TVs of its predecessors Q and 
R. R has rates T with the minimum ratings, such as (0.60), and its 
trust towards T (0.70), i.e., 0.60. Q rated T with the minimum rating 
(0.65), and its trust towards T (0.65) is 0.65. The final rating of T is 
the minimum between these two ratings, and its value is 0.65. 
Similarly, the ratings of Q, R, and S are (0.65), (0.60), and (0.70), 
respectively. Their trust towards U is (0.60), (0.70), and (0.65), 
respectively. Now, the final rating of U is the minimum among these 
three ratings, i.e. (0.60).  

c) Level 2: The TV towards node V will be 0.50, the minimum rating by 
node T (0.60) and node U (0.50). The remaining process continues 
recursively as Breadth-First Search (BFS) by dynamically establish
ing the threshold among source and destination. If a node acts ma
licious, its rating and TV would always be less and discarded during 
communication. 

Further, the contract theory is used to model context prediction 
during interactions between trusted and malicious IoV devices where 
accuracy and prediction are considered. The neighbor with the 

Table 1 
Summary of existing context prediction methods.  

Authors Proposed 
Framework 

Method Used Limitations 

Kazmi et al. 
[15] 

contract theory- 
based incentive 
mechanism 

maximizes the social 
welfare of the 
vehicular networks 
by motivating 
neighboring vehicles 
to participate in 
sharing their 
resources 

Increases storage 
overhead 

Li et al.  
[17] 

Distributed 
detection 
algorithm for 
improving the 
performance of 
vehicles detection 

Separates images into 
various patches by 
cropping to reduce 
the distortion of the 
vehicle 

Provides untrusted 
scenarios 

Cebrian 
et al.  
[18] 

Hierarchical 
scheme for 
predicting eye 
fixations 

Uses learning 
prediction contextual 
condition model to 
estimate visual 
attentions 

Increases 
communication 
overhead during 
transmission 

Kanapram 
et al.  
[19] 

Collective 
awareness of 
intelligent agents 

Uses data-driven 
dynamic Bayesian 
network to predict/ 
detect abnormalities 

Increases the key 
management, and 
communication 
overheads 

Liang et al.  
[20] 

Feature fusion and 
scaling-based 
single shot detector 

Uses spatial context 
analysis to improve 
detection accuracy 

Requires delay in 
analysis 

Guo et al.  
[21] 

Intelligent, trusted 
collaborative 
mechanism 

A deadline-aware 
trusted collaboration 
mechanism to ensure 
privacy in the 
network 

Increases the 
communication 
overhead 

Kazmi et al. 
[15] 

Contract theory- 
based incentive 
mechanism 

Maximizes the social 
welfare of the 
vehicular networks 

Increases 
computational 
overhead 

Yen et al.  
[22] 

Backpressure 
traffic signal 
algorithm 

Analyzes time 
spoofing threat and 
ghost vehicle threat 
using TSC algorithm 
to identify the 
misinformation that 
influences the phases 
of signals 

Incurs long delays 
in legitimate device 
identification 

Xia et al.  
[23] 

Trusted routing 
scheme 

Analyzes secure 
routing path using 
lightweight and 
Markov model 
schemes 

Incurs long delays 
while identifying 
the malicious 
threats 

Li et al.  
[24] 

Blockchain based 
Scheme 

Analyzes the 
accuracy while 
sharing the 
information 

Has large 
communication and 
storage overhead  
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minimum TV is chosen to transmit. 

3.1.2. Context prediction using contract theory 
After identifying the trusted nodes using TTM, verifying the accuracy 

and prediction of context is still needed. An incentive is given to the IoV 
devices to motivate them to take part in the context verification process. 
Participants are rewarded for accomplishing its task accurately and 
honestly. However, the availability of prior knowledge of devices that 
participate in the verification process is not always guaranteed. Also, 
there can be compromised nodes that share inaccurate information with 
others. Therefore, incentivizing the well-behaved nodes during the 
verification process can help to mitigate these problems. To design a 
reliable and accurate incentive mechanism, we adopt a CT-based 
mechanism that can verify the legitimacy of each communicating 
node in the network. 

To verify node n ∈ {1,…,N}, consider a Trust Selector (TS) that acts 
as context publisher and a set of trust verifiers defined as V = {V1,V2,… 
,VN} that include both legitimate and compromised nodes. The trust 
verifiers are willing to contribute various computational resources, such 
as processing time to execute node trust verification, defined as R = {r1

n ,

r2
n , …, rm

n }, where m represents a trust verifier. The transmitted and 
verified values of TV of node n are denoted as Tn and On, respectively. 
For a trust verifier m, the context of resource for the verification of node 
n denoted as contextm

n having n number of IoT devices. A three-tuple is 

Fig. 1. Overall process of the proposed framework to achieve high accuracy and reliability.  

Table 2 
List of symbols and abbreviations.  

Symbol Description 

CAm
n Context accuracy of node n computed by verifier m 

CMR Commutative Measure Rate 
Contextmn Context of resource for the verification of node n by verifier m 
CT Contract Theory 
IF Interaction Effects 
IoV Internet of Vehicles 
IT Interaction Timeless 
n Index of IoT device/node ∈ {1,…,N}

PA Predicted Accuracy 
PH Previous History 
ϕk Latency matrix of type-k nodes 
PMR Present Measured Rate 
Rmax

k ,L− 1
k Optimized profit and latency via verification 

TRd
n,TRu

n Downlink and uplink Shannon capacity 
TS Trust Selector 
TTM Tidal Trust Mechanism 
Tk Verification time of result broadcasting 
Tn Transmission time of unverified device 
TV Trust Value 
Ubn(k) Profit of TS using type- − k nodes 
Uk Utility Function  

Fig. 2. TTM Levels (a) Level 0, (b) Level 1, and (c) Level 2.  
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used for verifying the context accuracy, defined as 

CAm
n = (contextm

n , n,On). (1)  

The trust values are sorted in ascending order as K1 < K2 < … < Kk, 
where k represents various trust values of nodes in the network. The 
larger Kk implies a higher trust value. Different IoV devices have 
different trust values; the TS offers the trust a contract as (Rk(L− 1

k ), L− 1
k )

that defines a series of latency incentive bundle, where Lk is the latency 
of verification of trust of type-k node and L− 1

k is the reciprocal of Lk. The 
corresponding incentive is LkRk(L− 1

k ). 

3.1.3. Latency in trust verification 
To verify each IoV device’s trust value, each device executes the 

following four verification processes:  

• A list of unverified trust node transmission from TS to devices.  
• Verification of local trust.  
• Broadcasting of verification results and comparing between devices.  
• Transmission of verification feedback from devices to TS. 

For a trust verifier V, the latency consisting of corresponding delays 
of the steps above is calculated as: 

Lk(contextm
n ,Tn,On) =

Tn

TRd
n
+

contextm
n

rm
n

+ψTk|V| +
On

TRu
n
, (2)  

where TRd
n and TRu

n are the downlink (from TS to IoV devices) and uplink 
(from IoV devices to TS) transmission rates, respectively, Tn/TRd

n is the 
transmission time of unverified device from TS to IoV device, contextm

n /

rm
n is the local verification time. Here, Tk and V determine the verifica

tion time of the result from value broadcasting and comparison with a 
network size k and V IoV trust verifier, where ψ is the predetermined 
verification result calculated using the statistics of the previous verifi
cation process. On/TRu

n is the verification feedback time. The TRd
n and 

TRu
n are computed using the Shannon capacity for TDM operating on the 

same frequency channel as [26]: 

TRd
n = TRu

n = TBlog2

⎛

⎜
⎜
⎝

1 + Pn|Cn|
2

∑n

n∕∈V
Pn − |C−

n |
2
+ D0TB

⎞

⎟
⎟
⎠, (3)  

where TB is the transmission bandwidth and Pn is the transmission 
power to node n. Cn is the channel gain of peer-to-peer links among node 
n and TS. D0 is 1-sided spectral density level of Gaussian node and n- is 
the element of V excluding n. Further, according to the signed contract 
(Rk, Lk− 1 ) among TS and type-k− node, the profit of TS obtained from 
type-k− node is computed as: 

Ubn(k) = π[ϕk(Lk)] − lRk, (4)  

where l is predefined trust values determined using TTM for type-k 
nodes having an incentive value of Rk, π[ϕk(Lk)] is the TS benefit 
regarding latency matrix ϕk for type-k− nodes. The latency metric is used 
to balance the network scaling, and verification time is expressed as the 
below equation: 

ϕk =

⎧
⎪⎨

⎪⎩

e1(Kk|V|ρk)
z1
− e2(

Lk

Tmax
), if0 < Lk < A,

0, otherwise,
(5)  

where A =
Tmaxez2− 1

1 (Kk |V|ρk)
z1
z2

ez2− 1
2

,e1 > 0, and e2 > 0 are predefined coefficients 

network latency for ensuring the block verification, ρk is the prior 
probability of type-k device where 

∑
k=1KPk = 1, and Tmax is the 

maximum tolerable verification latency indicating the effects of 

verification latency and scale of trust verification. The objective of the 
TS is to maximize, through verification, the profit defined as: 

(Rmax
k , L− 1

k )Ubk(k) =
∑

k=1
K(|V|ρk)(π[ϕk(Lk)] = lRk), (6)  

where Rk is defined as the incentive value of the type-kdevice. On the 
other hand, the objective of the type-k device is to maximize the utility 
function of each trust verifier k defined as: 

(Rmax
k , L− 1

k ) = Uk = Kkη(Rk) − l′L− 1
k ,∀k ∈ {1,…,K}, (7)  

where η(Rk) is a monotonically increasing valuation function of type-k−

depending on the value of incentive Rk, and l′ is the cost of trust verifi
cation of each resource, including network resource and computation 
resource overhead. 

3.1.4. Designing of optimal contract 
To generate a feasible contract, each contract item for devices must 

satisfy the following three basic properties: 

1. Individual Rationality (IR): Each device joining the verification pro
cess receives a positive utility as: 

Kkη(Rk) − l Lk⩾0, ∀k ∈ {1,…,K}.

2. Individual Context (IC): type-k− device can only receive maximum 
utility when selecting the contract designed for themselves as (R′

k,

L− 1
k ) : 

Kkη(Rk) − l Lk⩾Kkη(Rk) − l′L− 1
k ,

∀K ∕∈ k, k′ ∈ {1,…,K},

where R′
k represents the maximum utility.  

3. Here, we have considered π[ϕk(Lk)] = g1

[
e1(Kk/V/Pk)

z1 − e2(
Lk

Tmax
)
z2
]

for the ease of presentation. z1 and z2 are the given factors for scaling 
and latency while verifying the block. 

Finally, the optimization problem as argmaxk∈KLk is formulated as 
follows: 

P1 : maximize
(
Rk,L− 1

k

)
Ubk

=
∑

k=1
K|V|ρk

[

g1e1(Kk|V|ρk)
z1 − g1e2

Lk

Tmax

z2
]

− lRk,
(8a) 

s.t. 

Kkη(Rk) − l′L− 1
k ⩾0, ∀k ∈ {1,…,K}, (8b)  

Kkη(Rk) − l′L− 1
k ⩾Kkη(Rk′) − l′L− 1

k′ ,

∀k ∈ {1,…,K}, k′ ∕∈ {1,…,K},
(8c)  

MaxLk⩽Tmax, ∀k ∈ {1,…,K}, (8d)  

∑K

k=1
ρkRk⩽Rmax, ∀k ∈ {1,…,K}. (8e)  

The condition specified in Eq. (8b) guarantees a positive utility function 
among all legitimate nodes in the network, Eq. (8c) maximizes the uti
lization of type-k− devices in the network and categorizes the devices, 
including the particular context in the network, Eq. (8d) categorizes all 
the devices having maximum latency while verifying the trust in the 
network, and Eq. (8e) categorizes the incentive values of all type-k de
vices in the network, where Rmax is the given transaction fee from ITS 
device. 

Algorithms 1–4 show the technical details of the proposed 
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framework. They show the details of different modules functioning 
together to provide a secure and efficient system (Algorithm 1: Identi
fication and Verification of Trust Computation, Algorithm 2: Tidal Trust 
Mechanism (TTM), Algorithm 3: Level Trust, Algorithm 4: Contract 
Theory). 

Algorithm 1. Identification and verification of trust computation   
Require: All stages/phases of nodes are represented in the graph network. 
Input: (1) Number of IoV devices d, (2) 2 states (trusted or malicious) 
Output: Device is either trusted or in the malicious state 
Step 1: Initially, assign a random trust value to all IoV devices ∈ [0,1]
Step 2: Execute Tidal Trust Mechanism (TTM) (Algorithm 2) 
Step 2: Execute Level Trust (Algorithm 3) 
Step 3: Execute Contract Theory (CT) (Algorithm 4)   

Algorithm 2. Tidal Trust Mechanism (TTM)   
Require: All stages/phases of nodes are represented in the graph network. 
Input: (1) Number of IoV devices d, (2) 2 states (trusted or malicious) 
Output: Device is either trusted or in the malicious state 
Step 1: Compute the TV of each IoV device based on the history of interactions 
Step 2: Update the trust of level i+1 from level i   

Algorithm 3. Level Trust   
Require: All stages/phases of nodes are represented in the graph network. 
Input: (1) Number of IoV devices d, (2) 2 states (trusted or malicious) 
Output: Device is either trusted or in the malicious state 
Step 1: Initially, assign rating and TV to node i at level i 
Step 2: If devicei has more than one input from level i, then trustdevicei (at level i + 1) 

is computed as: 
trustdevicei (at level i + 1) ← min(devicei(TV),devicei(rating)trustdevicei← 

max(TV(device1,device2,…,devicei))

Step 3: Compute the trust among each IoV devicei as:  

tni , devicei =
tni,j×tjdevicei ||tij>max

tnij |tij⩾max
.

Algorithm 4. Contract Theory (CT)   
Require: All stages/phases of nodes are represented in graph network 
Input: (1) Number of IoV devices d, (2) 2 states (trusted or malicious) 
Output: Device is either trusted or in the malicious state 
Step 1: Compute the contract accuracy as in Eq. (1) 
Step 2: Compute latency of trust verification as in Eq. (2) 
Step 3: Compute the profit of TS as in Eq. (4) 
Step 4: Compute the latency of security matrix as in Eq. (5) 
Step 5: Compute the maximized profit as in Eq. (6)  

All the algorithms mentioned above present the individual working 
of each security scheme, such as trust computation, TTM, and level trust 
that determines the complete description of the algorithms above. The 
formula mentioned in Algorithm 3, ”Level Trust,” is used to analyze the 
category of communicating device by comparing it with a maximum 
threshold that other entities will decide. 

4. Performance analysis 

Table 3 and Table 4 show the simulation parameters and the pre
defined values used for evaluation. The data set of real-world San 
Francisco Yellow Cabs [16] is used in our simulation. In the data set, the 
mobility of 536 taxis was recorded for a month. In our MATLAB simu
lation environment, 200 IoV devices in a 500 m × 500 m area change 
their decisions every 60 s. The mobility rate of each IoV device varies 
between 40–100 km/h based on weather and congestion conditions. 
Initially, each IoV device is assigned a random trust value that changes 
depending on TTM. Moreover, the context prediction accuracy of IoV 
devices is verified using a contract theory. 

As depicted in Table 4, the values g1, e1, e2, z1, z2, l, l′,Tmax, and Rmax, 
respectively, represents profit gain, network scaling, latency, factors 
affecting scaling, latency, weight gain, resource cost, transmission cost, 
maximum tolerance latency, and transaction fee. 

4.1. Evaluation metrics 

The detailed evaluation metrics such as interaction rate, interaction 
effect, and previous history are the factors that are considered while 
computing the trust of and prediction of each node. Along with TTM, the 
trust value depends on the number of devices communicated and 
affected while transmitting the information. So, the weight values in the 
simulation are used to compute and analyze the trust value during the 
establishment and communication process of the network. The unusu
ally more active devices are generally considered malicious devices 
whose records are simultaneously recorded and stored as the previous 
history. The system can directly check the database records and the ef
fect of interactions during the prediction and accuracy to reduce the 
communication among them. The evaluation metrics explain the factors 
that can be considered while directly predicting the nature or type of a 
device during the communication process. The following metrics are 
used by TTM to calculate the trust values of IoV, which change 
depending on the context prediction. 

Interaction Rate (Irate): The interaction rate among m malicious nodes 
over a total number of nodes n is defined as the amount of time the 
opinion of a node changes for its neighboring nodes as the ratio between 
the legitimate node and all the nodes computed as: 

Irate =
∑m

j=1

legitimate
legitimate + malicious

. (9)  

The trust value of a node, either legitimate or compromised, to its 
neighboring devices impacts the opinions of succeeding nodes. The term 
opinion is specifically relevant to the communication process where the 
nodes with lower trust and rates do not participate in the communica
tion/opinion of context prediction or analysis process. 

Interaction Effect (Ieffect): The number of positive and negative opin
ions by legitimate or malicious devices during the communication pro
cess, computed as: 

Ieffect =
positive opinion

positive opinion + negative opinion
. (10)  

The term opinion is specifically relevant to the communication process 
where the nodes with lower trust and rates do not participate in the 

Table 3 
Simulation parameters of framework.  

Parameter Value 

Observation area 500 m × 500 m 
Number of IoV devices 200 
IoV speed [40, 100] km/h 
Weight values α = 0.6,ρ = 0.4 
Rate of compromised IoV [5,50]% 
Trust values [0,1]
Transmission power [10, 23] dBm 
Receiver power 14 dBm 
Computational resources 103 CPU cycle/unit time  

Table 4 
Predefined values.  

Parameter Value 

Pre-defined metrics1 g1 = 1.02, e1 = 10, e2 = 8 
Pre-defined metrics2 z1 = 1.5,z2 = 1 
Pre-defined metrics3 l = 4.5, l′ = 1,Tmax = 250 s 
Pre-defined metrics4 Rmax = 1000,ϕ = 0.5  
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communication/opinion of context prediction or analysis process. 
Previous History (PH): The trust opinion of a neighboring node can be 

decided by checking its previous history record or trusts provided by its 
neighboring nodes, computed as: 

PH =
∑n

i=1
(EC+Fp +Rp +CT), (11)  

where EC, Fp, Rp, and CoT are defined as the energy consumed, for
warding packets, receiving packets, and constant time required by each 
node during information transmission, respectively. 

The communicative measure rate (CMR) is used to analyze the 
communication time while identifying the trust of each node using 
various predefined metrics. The CMR is mentioned as the metrics mi at 
time t that can be measured as the ratio of CMR at t − 1 over the number 
of rates measured by metrics mi as: 

CMRt
mi

=
CMRt− 1

mi
+ PMRt

mi

nt− 1/2
mi + 1

, (12)  

where PMRt
mi 

is the present measured rate of metric mi at time t and nt− 1
mi 

is the measured rates for metrics mi up to time t − 1. 

4.2. Baseline Schemes 

We have compared the performance of the proposed framework with 
the two baseline approaches. The performance of the proposed mecha
nism is compared with the works by Xing et al. (Baseline Scheme 1: IEEE 
TVT, 2022) [28] and Kumar et al. (Baseline Scheme 2: IEEE TVT, 2022) 
[29], where the trust opinion of each IoV device is computed using 
various security mechanisms. They use cryptographic primitives to 
ensure the security of IoV context prediction with additional security 
cost, time, and delay. In addition, we have added a recent paper in our 
comparison, Kazmi et al. (Baseline Scheme 3: IEEE TITS, 2021) [15]. 
They use a contract theory mechanism to determine the accuracy and 
security of Cooperative Task-Offloading in Electrical Vehicular Net
works. On the contrary, the proposed mechanism provides the accuracy 
and security of IoV context prediction using computation mechanisms. 
The TTM and the CT together ensure trust and accurate information 
transmission among nodes in the network while verifying the context 

and legitimacy of each node by computing the context accuracy of each 
information and device in the network. Fig. 3 depicts the overview of the 
proposed framework using TTM and CT. The context of each device n is 
predicted using TTM and verified by a number of verifiers m using CT. As 
a result of the proposed framework, based on the different degrees of 
trust represented by k, each IoV device is identified as trusted or mali
cious. The different layers represent the way communication process 
occurs among devices depending upon their behavior. The number of 
IoV devices depending upon their metrics (behavior) rated according to 
Tidal Trust Mechanism that is again marked as legitimate and malicious 
according to internal communication computations using contract the
ory and trust selector. The devices are typed into various types as type 1, 
type 2,…type n. 

4.3. Results and discussions 

The TS acts as a context accuracy publisher measured by various IoV 
devices. Each IoV selects a contract item (Rk,L− 1

k ) to sign and verify the 
recorded trust opinion. 

The resource cost unit of I′ = 1 corresponds to a relatively low 
vehicle speed of 40 km/h. the resource cost and the vehicular speeds are 
directly proportional to each other. The more vehicular speed corre
sponds to the high and continuous consumption of resources required to 
ensure a secure and efficient communication system. Fig. 4 shows the 
comparison of utilities between different IoV types: type-0 (legitimate), 
type-1 (malicious), type-2 (highly malicious), and type-3 (sensitive). 
Each IoV records its trust value using contract theory and submits it to 
TS to identify the accuracy of its context-sharing prediction. In addition, 
We can observe a larger utility at higher speeds and a smaller utility at 
slower speeds. This is because various trust rates are provided by the 
proposed mechanism schemes, such as TTM, CT, and TS, to each IoV 
device. The higher vehicular speed results in negative communication 
quality, interaction delay, frame loss, etc. The legitimate nodes have the 
lowest utility rate, and sensitive devices have the highest utility rate 
because the utility function is increased by intruders altering or modi
fying the transmitted information. The utility function of sensitive de
vices is higher as they are more active in the network and can be easily 
traced in the environment. 

Fig. 5 compares utilities for different vehicular speeds. We can 
observe a larger utility at higher speeds and a smaller utility at slower 

Fig. 3. Overview of the proposed framework using TTM and CT.  
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speeds. This is because various trust rates are provided by the proposed 
mechanism schemes, such as TTM, CT, and TS, to each IoV device. The 
higher vehicular speed results in negative communication quality, 
interaction delay, frame loss, etc. 

Fig. 6 shows the prediction of context accuracy by TS recorded from 
various IoV devices. The context accuracy of highly trusted devices is 
accurate and correct compared to less trusted values. The reason is that 
TTM distributes and changes the trust value and rating of each IoV de
vice before applying the contract theory to measure the reliability of the 
network efficiently. 

Fig. 7 shows the effect of transmitted information by altering the IoV 
devices from legitimate to malicious. During the network establishment 
where intruders may compromise or alter the devices to degrade the 
accuracy of the system. In addition, high-speed IoV devices can be easily 
traced and altered by intruders as it is critical to record their accurate 
information by the system. The proposed mechanism significantly out
performs the existing mechanisms by using the trust values and rating 
evaluations and selecting accurate information among the network 
nodes. 

Finally, Fig. 8 shows the running time of the proposed framework for 

various IoV devices. We can observe that the running time increases 
linearly with the number of devices. Therefore, the proposed framework 
is scalable and can be applied to large networks. 

4.4. Confidence model 

The proposed mechanism is further analyzed and validated against 
false positive and false negative rates against two more recent existing 
approaches. Xing et al. [28] considered as Baseline Scheme 1 have 
proposed a secure delivery service for the content based on the forma
tion of the game. Authors have proposed a secure, private content de
livery mechanism protecting sensitive information. In addition, the 
authors have proposed an incentive-based connected and autonomous 
vehicular approach by conducting extensive demonstrations and simu
lations against various metrics. Kumar et al. [29] considered as Baseline 
Scheme 2 have designed a deep learning and blockchain-based security 
model by registering and verifying all the communicating entities. The 
proposed mechanism uses a contract-based byzantine fault tolerance 
scheme to authenticate the data. In addition, the deep learning scheme is 
used to analyze the behavior of intruders using various simulation 
models. 

Fig. 4. Utilities of IoV.  

Fig. 5. Utility comparison among various schemes.  

Fig. 6. Comparison of predicted accuracy.  

Fig. 7. Comparison of altered records.  
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The confidence model determines the reliability and vulnerability of 
the communicating network while transmitting the information from 
source to destination. In this paper, the false positive and false negative 
rates are used to validate and verify the proposed mechanism against 
recent existing security approaches. False positive rates represent the 
percentage of devices the intruders alter while the system identifies 
them as legitimate. However, a false negative rate occurs when the 
system identifies them as legitimate devices, where these devices are 
malicious and altered by intruders. Both approaches are analyzed over 
false positive and false negative rates. 

Fig. 9 depicts the false positive result that shows the outperformance 
of the proposed system against Xing et al. [28] and Kumar et al. [29] as 
the proposed mechanism used tidal trust approach to surveillance and 
analyze the communicating behavior of each device in the network. 

In addition, Fig. 10 represents the false negative scenario where the 
legitimacy of each communicating device is further recognized using a 
context theory scheme that identifies the malicious behavior of any 
device before starting the information transmission process in the 
network. The proposed mechanism provides significant results as 
compared to both the existing schemes. 

The proposed mechanism successfully outperforms the baseline ap
proaches, providing better accuracy, higher confidence, and preventing 
records from alteration. The tidal trust mechanism and contract theory 
are the two prediction approaches while identifying the legitimacy of 
communicated device. The complexity of the proposed phenomenon is 
O(n) as n+n2 number of legitimate devices are allowed to communicate 
among each other. All the devices can’t be trusted at the same time as we 
are validating the proposed phenomenon. 

4.5. Complexity analysis 

To identify the user (either legitimate or malicious) when the device 
analyzes a node’s activity, the TTM will communicate with (n − 1) de
vices, i.e., it will conduct (n − 1) trials to verify the legitimacy of a node. 
The time complexity of the proposed algorithm is, therefore, 
O(log(n − 1)). However, the context analysis and trust evaluation are 
repeated at least n times in the existing approach. There is also associ
ated communication cost. Therefore, the minimum complexity of the 
existing approaches give O(n× (log(n − 1))). 

4.6. Summary 

The proposed framework illustrates a secure communication envi
ronment for autonomous vehicles where devices can intelligently 
communicate with a higher trust rate. The tidal trust mechanism and 
context theory are used to compute the accuracy and verify the record 
alteration by the intruders while transmitting the information in the 
network. The device having a higher trust value can transmit the in
formation and ensure reliability in the context of the records. In all the 
predicted results, the proposed mechanism outperforms baseline 
schemes. This is because a highly trusted environment is maintained 
with low computational delays. After all, only the devices with higher 
trust values are involved in the communication process. Further, the 
systems increase accuracy and reliability because contract theory 
continuously verifies the measured parameters. 

5. Conclusion 

The proposed mechanism introduced an efficient and reliable 
context prediction framework using the tidal trust mechanism and 
contract theory. The proposed framework assigns the trust values to 
each IoV device, which is further used to analyze the accuracy of context 
prediction among several devices. The proposed framework validated 

Fig. 8. Running time of proposed approach.  

Fig. 9. False positive rate.  

Fig. 10. False negative rate.  
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the effectiveness and accuracy of existing schemes against various 
measuring metrics. The proposed mechanism outperforms identifying 
the altered record shared by compromised devices in the network. In 
addition, the proposed mechanism achieves better utility, accuracy, and 
response time. The number of the dynamic behavior of the IoV network 
can be further analyzed by computing more weights considering several 
intrinsic mechanisms in future considerations. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research was supported by the MSIT Korea under the NRF Korea 
(NRF-2022R1A2C4001270) and the Innovative Human Resource 
Development for Local Intellectualization support program (IITP-2023- 
RS-2022–00156360) supervised by the IITP. This work was also sup
ported by the King Saud University, Riyadh, Saudi Arabia, through the 
Researchers Supporting Project under Grant RSP2023R18. 

References 

[1] M.A. Khan, K. Salah, IoT security: review, blockchain solutions, and open 
challenges, Future Gener. Comput. Syst. 82 (2018) 395–411. 

[2] H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti, VANET security challenges and 
solutions: a survey, Vehic. Commun. 7 (2017) 7–20. 

[3] A. Ghasempour, ”Internet of things in smart grid: Architecture, applications, 
services, key technologies, and challenges,” Inventions, vol. 4, no. 1, 2019, article 
22. 

[4] G. Rathee, F. Ahmad, F. Kurugollu, M.A. Azad, R. Iqbal, M. Imran, CRT-BIoV: A 
cognitive radio technique for blockchain-enabled internet of vehicles, IEEE Trans. 
Intell. Transp. Syst. 22 (7) (2020) 4005–4015. 

[5] A.U. Makarfi, K.M. Rabie, O. Kaiwartya, K. Adhikari, G. Nauryzbayev, X. Li, 
R. Kharel, Towards physical layer security for internet of vehicles: Interference 
aware modelling, IEEE Internet Things J. 8 (1) (2020) 443–457. 

[6] R. Elhabob, Y. Zhao, I. Sella, H. Xiong, Efficient certificateless public key 
cryptography with equality test for internet of vehicles, IEEE Access 7 (2019) 68 
957–68 969. 

[7] W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong, X. Kong, W. Wei, Vehicle trajectory 
clustering based on dynamic representation learning of internet of vehicles, IEEE 
Trans. Intell. Transp. Syst. 22 (6) (2020) 3567–3576. 

[8] J. Guo, S. Kim, H. Wymeersch, W. Saad, W. Chen, Guest editorial: introduction to 
the special section on machine learning-based internet of vehicles: theory, 
methodology, and applications, IEEE Trans. Veh. Technol. 68 (5) (2019) 
4105–4109. 

[9] T.A. Butt, R. Iqbal, S.C. Shah, T. Umar, Social internet of vehicles: Architecture and 
enabling technologies, Comput. Electr. Eng. 69 (2018) 68–84. 

[10] G. Rathee, A. Sharma, R. Iqbal, M. Aloqaily, N. Jaglan, and R. Kumar, ”A 
blockchain framework for securing connected and autonomous vehicles,” Sensors, 
vol. 19, no. 14, 2019, article 3165. 

[11] D. Gupta, S. Rani, B. Tiwari, T.R. Gadekallu, An edge communication based 
probabilistic caching for transient content distribution in vehicular networks, 
Scientific Reports 13 (1) (2023) 3614. 

[12] G. Rathee, R. Sandhu, H. Saini, M. Sivaram, V. Dhasarathan, A trust computed 
framework for iot devices and fog computing environment, Wireless Netw. 26 (4) 
(2020) 2339–2351. 

[13] Z. Ning, Y. Feng, M. Collotta, X. Kong, X. Wang, L. Guo, X. Hu, B. Hu, Deep learning 
in edge of vehicles: Exploring trirelationship for data transmission, IEEE Trans. 
Industr. Inf. 15 (10) (2019) 5737–5746. 

[14] J.A. Golbeck, Computing and applying trust in web-based social networks, 
University of Maryland, College Park, 2005. 

[15] S.A. Kazmi, T.N. Dang, I. Yaqoob, A. Manzoor, R. Hussain, A. Khan, C.S. Hong, 
K. Salah, A novel contract theory-based incentive mechanism for cooperative task- 
offloading in electrical vehicular networks, IEEE Trans. Intell. Transp. Syst. 23 (7) 
(2021) 8380–8395. 

[16] J. Kang, Z. Xiong, D. Niyato, D. Ye, D.I. Kim, J. Zhao, Toward secure blockchain- 
enabled internet of vehicles: Optimizing consensus management using reputation 
and contract theory, IEEE Trans. Veh. Technol. 68 (3) (2019) 2906–2920. 

[17] X. Li, X. Li, H. Pan, ”Multi-scale vehicle detection in high-resolution aerial images 
with context information,” IEEE, Access 8 (2020) 208 643–208 657. 
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