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ABSTRACT: Devolatilization kinetics of coal, poplar wood, and
blends containing 10 and 20 wt % of biomass were characterized.
Measurements were carried out under inert atmosphere with
heating rates between 10 K min−1 and ∼106 K s−1 using a
thermogravimetric analyzer (TGA) and a flat flame reactor (FFR).
Measured data were simulated using the chemical percolation
devolatilization (CPD) model and a global kinetic scheme based
on two competitive reactions integrating a refined differential
reaction model. The CPD model failed to simulate TGA results but
reproduced FFR data relatively well. As for the global model,
selecting kinetic parameters from the literature turned out to lead
to unsuitable predictions. Fitted values of the activation energies
Ea,i, pre-exponential factors Ai, mass stoichiometric coefficients Yi,
and the reaction model factor n were therefore inferred using a genetic algorithm-based optimization procedure, leading to obtain an
excellent agreement between simulated and measured data. The assessed Ea,i values were found to be lower for wood than for coal,
which is consistent with the higher energy required to break the strong C−C bonds holding the highly cross-linked aromatic
structures of coal. Besides, blending coal with 20 wt % of wood induced a decrease of Ea,i values, which went from 99.79 to 86.1 kJ
mol−1 and from 186.72 to 171.57 kJ mol−1 for the first and second reactions prevailing at low and high temperatures, respectively.
Finally, the fact that the activation energy of the first devolatilization reaction was found to be lower with the blend containing 20%
of wood than for wood illustrated the probable existence of synergies, as also exemplified by the characteristic devolatilization times
for blended samples, which were found to be relatively similar to and even lower than that of wood.

1. INTRODUCTION
Demand for energy keeps increasing due to economic growth,
and therefore, energy carriers such as coal will continue to play
a key role in the coming decades, especially in Asian
countries,1 despite the major concerns regarding global
warming. In an attempt to tackle even more stringent
regulations aimed at limiting CO2 emissions, considerable
work still needs to be done to develop and/or improve the
efficiency of current thermochemical conversion processes
(e.g., combustion, pyrolysis, or gasification, as reviewed in ref
2, among others), which allow converting fossil fuels,
renewable resources, or wastes into heat, electricity, and
chemicals. Within this context, the co-combustion of coal with
woody biomass (a carbon-neutral fuel) has attracted growing
attention.3−8 Cofiring indeed represents an interesting route to
gradually decrease the consumption of fossil fuels, mitigate net
greenhouse gas emissions, and extend the operating life of
existing coal-based power plants, with reasonable retrofitting
costs.6−8 In expanding the application of co-combustion, a key
challenge is to develop the computational codes required to

design and/or optimize the functioning of boilers operating
with coal/biomass blends. Doing so implies gaining a
fundamental knowledge of the mechanisms underlying the
conversion of solid fuels in the conditions typically
encountered in industrial facilities. Such complex thermochem-
ical processes comprise successive steps, including devolatiliza-
tion, which is highly critical as it initiates fuel thermal
degradation in most industrial applications such as pulverized
fuel boilers, gasifiers, carbonizers, and so forth. It thus directly
impacts fuel conversion rates and kinetics as well as the nature
and distribution of emitted products (i.e., char, tar, and gas).
Furthermore, properly apprehending the devolatilization
behavior of blends made up of coal and wood is all the
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more critical since different works have reported more or less
significant synergistic effects likely to promote the yields of
volatiles emitted when both feedstocks are co-processed (see
ref 9 and references therein). All these observations explain
why, for more than five decades, particular attention has been
devoted to the formulation of global and network models
allowing to simulate the devolatilization behavior of different
feedstocks, including coal and biomass (see refs 10−16 and
references therein).
Apart from the reference isoconversional method,17 which is

commonly used to predict kinetic parameters based on the
processing of thermogravimetric measurements,12−14 the main
models implemented to simulate devolatilization can be
roughly classified into two categories. A distinction can indeed
be made between global (or empirical) and network (or
phenomenological) models, depending on whether they aim at
simulating the rate of mass loss of the fuel and/or the
distribution of pyrolytic products. As for global kinetic models,
they include one-step,18 two-competing rate,19 and distributed
activation energy (DAE)20 approaches, which account for the
devolatilization phenomenon by means of one, two, and an
infinity of first-order reactions, respectively. Among the most
used phenomenological models, one can cite the functional
group−devolatilization-vaporization-cross-linking (FG-
DVC),21 the chemical percolation devolatilization (CPD),22

and the flashchain23 models. These comprehensive simulation
tools consider the detailed structure changes undergone by
thermally treated fuels through multiple mechanisms compris-
ing depolymerization, vaporization, cross-linking, bridge-break-
ing and rearranging, side-chain cracking, and so forth.
Although initially developed for coal, the different models
listed above have been adapted and extensively used to
simulate biomass devolatilization.12−14,16 This is notably the
case for the above network models for which specific versions
have been proposed (e.g., Bio-FG-DVC,24 Bio-CPD,25 and
Bio-flashchain26).
Major progress has thus been achieved in the modeling of

the devolatilization kinetics. The predictive ability of global
and network models still needs to be further validated and
improved, however. These simulation tools indeed cannot fully
capture the complexity and heterogeneity of coal and wood,
whose decomposition is significantly influenced by numerous
operating factors, including the temperature range and heating
rate (HR). Phenomenological models which integrate such
parameters to some extent have proven to provide relatively
accurate predictions, as exemplified in the case of the CPD
code.27 Their intrinsic complexity, however, partly prevents
them from being used for the simulation of full-scale boilers
and gasifiers.28 Continuous effort is therefore ongoing to
evaluate and develop simpler global kinetic models,28,29 even
though their parametrization against trusted data prompts the
need for additional experimental investigations conducted
under widely varying thermal conditions.
As for the study of devolatilization at the laboratory scale,

thermogravimetric analysis (TGA) remains the most imple-
mented non-isothermal measurement approach.9,11,12,14,16 It
allows increasing the temperature of the tested sample with a
constant heating rate while measuring the mass of the residual
solid. Although this technique allows obtaining accurate mass
loss curves with a high time resolution, only low heating rates
(typically less than 50 K min−1) can be set, which is
significantly different from the conditions involved in industrial
combustors. To tackle this issue, more realistic experimental

devices, including flat flame reactors (FFR)30−32 and drop tube
furnaces (DTF),18,19,29,33 are also used. Fast heating rates
between 104 and 106 K s−1 can then be reached, which allows
the assessment of kinetic parameters that are more relevant for
industrial applications. The characterization of the thermal
history of the fuel in FFR and DTF is, however, far more
difficult than during TGA experiments. It indeed requires
implementing sophisticated diagnostics31,32 and/or solving
theoretical energy balances,29,33 thus explaining why simpler
thermogravimetric analyses are often preferred. Nevertheless,
since the fuel heating rate directly influences the devolatiliza-
tion process, as mentioned above, kinetic data derived from
slow heating rate TGA measurements are not applicable to
conditions associated with fast heating devices, and vice
versa.16 This has been exemplified in numerous works which
show that the fractions of volatile matters emitted during high
HR tests can reach values much higher than their counterparts
issued from thermogravimetric or proximate analyses.19,29,32

Deriving kinetic parameters suitable for simulating the
devolatilization behavior of solid fuels such as coal or wood
over an extended range of thermal conditions, therefore,
implies parametrizing global modeling tools based on
comprehensive sets of data, combining both low and high
HR measurements.29

Within this context, the present work aims at experimentally
characterizing and modeling the devolatilization behavior of
fuels of specific interest for cofiring and co-pyrolysis
applications (i.e., high volatile bituminous coal, poplar wood,
and their blends). The pyrolysis of coal and wood blends has
been recently studied in ref 34. This preliminary analysis,
however, solely focused on low heating rate measurements
(<30 K min−1), noting that obtained data were modeled using
basic isoconversional approaches. In the present work, new
measurements were carried out with similar samples but using
two complementary analytical devices (TGA and FFR) in
order to assess devolatilization profiles, with HR comprised
between 10 K min−1 (TGA) and ∼106 K s−1 (FFR). To the
best of the authors’ knowledge, modeling studies of coal/
biomass devolatilization conducted based on data acquired by
coupling TGA and FFR are relatively rare (if at all existing),
which thus represents an original feature of this study.
Obtained data were simulated by means of a reference
network model (i.e., the CPD) and a two-competing rate
scheme integrating a refined differential reaction model
proposed by Authier et al.29 Proceeding as such allowed the
comparison of the predictive ability of both these widely
implemented, albeit quite different, modeling approaches.
Furthermore, and according to ref 29, the selection and
parametrization of a two-competing rate model is particularly
relevant due to the overall simplicity of such an approach
which can be implemented easily and numerically solved in the
devolatilization sub-models of commonly used CFD softwares.
Regarding the calculations achieved with the two-step model,
different sets of kinetic parameters from the literature were first
tested. Optimized constants were then inferred by means of a
fitting procedure involving a genetic algorithm-based opti-
mizer. Obtained results were finally analyzed to characterize
the devolatilization behavior of the tested fuels as well as the
possible synergies encompassing the devolatilization of coal/
biomass blends.
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2. METHODOLOGY
2.1. Fuels. A high volatile bituminous coal was selected to

be blended with a woody biomass (i.e., poplar wood). For
simplicity, these feedstocks will be referred to as ‘coal’ and
‘wood’ herein. Their proximate and ultimate analyses are
provided in Table 1.
Each fuel was ground in an industrial grinder similar to the

one used in refs 32,34−36 and then sieved into a size fraction
of 40−63 μm as in ref 32 . Wood was then blended with coal at
mass fractions of 10 and 20% to obtain samples referred to as
‘coal + 10% wood’ and ‘coal + 20% wood’, respectively. These
blending ratios were notably selected to evaluate the minimum
amount of biomass required to initiate synergies between the
blended fuels. In doing so, this work contributes to fill a gap
identified when reviewing past studies undertaken to evidence
synergistic effects, as most of the works were conducted using
biomass contents exceeding 25 wt % (see refs 9,34 and
references therein) despite the issues that could arise from the
use of high mixing ratios in terms of biomass supply limitations
and retrofitting costs of coal-based industrial scale boilers, for
instance. All samples were dried in an oven with a constant
temperature of 378 K for at least 24 h to remove excess
moisture content. Samples were then stored in a desiccator to
prevent moisture absorption from the atmosphere before being
analyzed with the experimental facilities described in Section
2.2.
2.2. Experiments. 2.2.1. Thermogravimetric Analyzer.

Low heating rate measurements were performed at atmos-
pheric pressure by means of a SETARAM SETSYS Evolution
thermogravimetric analyzer as in refs 34,37,38. 10 mg of
samples was placed into alumina crucibles before being
submitted to dynamic runs at three different HRs (i.e., 10,
15, and 30 K min−1). A constant 100 mL min−1 flow of
nitrogen was set during all of the experiments to eliminate air
and continuously ensure an inert environment. Samples were
heated from room temperature up to 378 K to ensure the
complete removal of free water. The temperature was then
continuously increased at rates of 10, 15, or 30 K min−1 before
plateauing at 1223 K. Three tests were performed for each fuel
and each operating condition to obtain averaged profiles and
hence mitigate possible slight deviations from test to test due
to uncertainties and measurement noise. Mean uncertainties of
±0.63, ±0.75, ±0.65, and ±0.73% were then estimated based
on a 95% confidence level for the coal, wood, coal + 10%
wood, and coal + 20% wood samples, respectively.

2.2.2. Flat Flame Reactor. High heating rate measurements
were carried out in a flat flame reactor previously used to study
coal devolatilization and oxidation under various atmos-
pheres.32,35,36,39,40 This facility will only be briefly presented
herein since it has already been fully described and
characterized by both experimental and CFD approaches in
ref 39, where diagrams of the whole experimental arrangement
can be found. It consists of an atmospheric Holthuis flat flame
burner composed of a 60 mm diameter bronze porous plate on

which three stoichiometric premixed propane−air flat flames
(FF1, FF2, and FF3) were stabilized. These latter were
produced by premixing 0.65 (FF1), 0.94 (FF2), and 1.26
(FF3) L min−1 of propane with 15.4, 22.4, and 30 L min−1 of
air, respectively.32 This resulted in different heating conditions
being generated. For pulverized fuels (i.e., coal, wood, and
their blends), they were introduced into an acoustic sower with
a mass flow rate of 12 g h−1. They were then fluidized by a 1 L
min−1 nitrogen flow to be pneumatically transported to a 1.5
mm internal diameter injector placed at the center of the
burner. This experimental arrangement enables heating the fuel
particles driven by the central nitrogen flow with an HR of
∼106 K s−1.32,39 As such, the tested fuels rapidly devolatilize in
an oxygen-deprived environment, as verified through measure-
ments and CFD calculations.39 The FFR is, moreover, isolated
from the external environment by means of a 40 cm high
quartz chimney sheltered by an insulation cover with optical
accesses built in for optical measurements. Partially devolatil-
ized fuel particles were sampled at different heights above the
burner (i.e., at different residence times) by means of a 51 cm
high quartz collector equipped with nitrogen injectors,
ensuring an immediate quenching of the samples.40 Particles
were driven to a heated cyclone (Dekati SAC-65) to be
recovered. They were then analyzed to derive devolatilization
rates using the ash tracer, following the procedure described in
refs 33 and 41 . To that end, 50 μm silica particles were heated
at 1073 K in a muffle furnace for 4 h before being mixed with
the studied fuels with a 0.1/0.9 mass ratio (see ref 41 for more
details on this procedure). Finally, the thermal history of the
fuel particles was systematically characterized by particle image
velocimetry and two-color infrared pyrometry measure-
ments.32,39 This especially led to the estimation of peak fuel
temperatures of ∼1020, ∼ 1109, and ∼1206 K for FF1, FF2,
and FF3, respectively. Three samples were collected for each
measurement point (as was the case for TGA measurements)
in order to obtain the averaged results reported in Section 3.
Mean uncertainties of ±3.63, ±5.89, ±4.54, and ±3.28% were
thus estimated based on a 95% confidence level for the coal,
wood, coal + 10% wood, and coal + 20% wood samples,
respectively. Although being greater than the uncertainties
related to the TGA measurements, such values remain
consistent with the errors commonly reported in DTF
experiments29 as well as with the uncertainty ranges reported
in previous studies conducted with the same FFR.32,35,36

2.3. Kinetic Modeling and Optimization Procedure.
2.3.1. CPD Model. The CPD model was proposed by Grant et
al.22,42,43 to simulate the devolatilization behavior of coal. It is
based on the percolation theory and uses a lattice model to
account for the fuel chemical structure which is represented as
a polymer-like network of fused aromatic clusters connected by
nonaromatic chemical bridges. During the devolatilization
process, labile bridges become unstable as a result of fuel
heating and may undergo breakage following a reaction
sequence depicted as follows:

Table 1. Proximate and Ultimate Analyses of Coal and Wood Samples

sample
proximate analysis ultimate analysis

volatile
matters (wt %, dba) ash (wt %, db) fixed carbon (wt %, db) C (wt %, db) H (wt %, db) Ob (wt %, db) N (wt %, db) S (wt %, db)

coal 34.0 4.1 61.9 77.79 4.98 11.74 1.17 0.27
poplar wood 79.3 2.4 18.3 49.21 5.78 42.33 0.24 0.04

adb, dry basis. bCalculated by difference.
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where £ is a labile bridge, £* represents a reactive bridge
intermediate, δ is a side chain, c stands for a char bridge, and
g1and g2 denote light gases, while kb, kδ, kg, and kc stand for the
Arrhenius-type rate constants of the different reactions
reported in eq 1. The bridge-breaking process thus begins
with the decomposition of a labile bridge £ to form an
activated complex £* which rapidly reacts to generate either a
side chain δ or char c and gas g2. The so-formed side chain can
eventually undergo a cracking process to be converted into
light gases g1. To estimate the quantity of gaseous species
emitted during the devolatilization process, the CPD model
requires setting the values of five input parameters, including
the number of attachments per cluster (also called the
coordination number (σ + 1)), the initial fraction of intact
bridges between clusters (p0), the initial fraction of stable
bridges (c0), and the average molecular weights of aromatic
clusters (Mcluster) and side chains (Mδ). These structural
parameters can be experimentally assessed through 13C nuclear
magnetic resonance (NMR) measurements and data fitting or
by using correlations based on the fuel ultimate and proximate
analyses,44 as was done in the present work. As for the rate
coefficients (see Table 2), their values were proposed by Grant
et al.22 to account for the high HR pyrolysis of coal.
As mentioned in Section 1, the CPD model was also

extended by Fletcher et al. to apply to biomass.25 To that end,
separate rate coefficients and structural parameters were
proposed for the three main biopolymers comprising woody
biomass (i.e., cellulose, hemicellulose, and lignin), as shown in
Table 2. One calculation is thus operated for each of these
components, considering similar operating conditions (i.e.,
identical thermal histories). The devolatilized fraction of the
whole biomass can then be computed by merging the results of
the three calculations on the basis of the mass percent of each
component comprising the studied feedstock.
As for the calculation procedure, the code proposed by Perry

et al.46,47 was used as in our previous studies focusing on coal
devolatilization and oxidation.32,40 As mentioned above, the
structural parameters for coal were calculated based on the

correlations proposed by Genetti et al.,44 while for the wood
components, they were obtained from the work of Lewis and
Fletcher.45 The mass percentages of each biopolymer
comprising the poplar wood were estimated by averaging 27
lignocellulosic compositions provided in a series of works48−53

focusing on such a feedstock (i.e., 23.24 wt % hemicellulose,
51.02 wt % cellulose, and 25.73 wt % lignin). Finally, the mass
loss profiles related to blended samples were calculated based
on the weighted sum of the devolatilization curves obtained for
coal and wood.

2.3.2. Two-Competing Rate Model. The global kinetic
model implemented in this work consists of two competitive
parallel reactions19,54 (see eq 2) occurring at low and high
temperatures, respectively:

+

+

F Y V Y R

Y V Y R

(1 )

(1 )

k

k
1 1 1 C1

2 2 2 C2

1

2
(2)

where F denotes the fuel, V1 and V2 represent the volatile
matters resulting from the first and second reactions,
respectively, RC1 and RC2 stand for the residual char issued
from both devolatilization steps, while Y1 and Y2 are mass
stoichiometric coefficients. As for k1 and k2, they denote the
rate constants which follow an Arrhenius equation of type:

i
k
jjjj

y
{
zzzz= ×

×
k A

E

R T
expi i

ia,

(3)

in which the subscript i stands for either 1 or 2, Ai is the pre-
exponential factor (s−1), Ea,i is the activation energy (J mol−1),
R is the universal gas constant (J mol−1 K−1), and T stands for
the temperature (K). Regarding the evolution of the fuel
conversion fraction (αF) and sample mass fraction (ys) as a
function of time (t), they are expressed following eqs 4 and 5
(see ref 55)

= + ×
t

k k f
d
d

( )F
1 2 ( )F (4)

= + ×
y

t
Y k Y k f

d

d
( )s

1 1 2 2 ( )F (5)

where f(α dF) is the differential reaction model. The use of a
simple first-order reaction model (i.e., f(αdF) = 1 − αF) has often

Table 2. Rate Coefficients and Fuel Structural Parameters Used in the CPD Model

rate coefficients coal22 cellulose45 hemicellulose45 lignin45

Eb (kcal mol−1)�bridge scission activation energy 55.4 55.4 51.5 55.4
Ab (s−1)�bridge scission pre-exponential factor 2.6 × 1015 2.0 × 1016 1.2 × 1020 7.0 × 1016

σb (kcal mol−1)�bridge scission standard deviation 1.8 4.1 0.1 0.5
Eg (kcal mol−1)�gas release activation energy 69.0 61.2 38.2 69.0
Ag (s−1)�gas release pre-exponential factor 3.0 × 1015 3.0 × 1015 3.0 × 1015 2.3 × 1019

σg (kcal mol−1)�gas release standard deviation 8.1 8.1 5.0 2.6
kδ/kc − composite rate constant 0.9 100 1.35 1.7

Ecross (kcal mol−1)�cross-linking activation energy 65.0 65.0 65.0 65.0
Across (s−1)�cross-linking pre-exponential factor 3.0 × 1015 3.0 × 1015 3.0 × 1015 3.0 × 1015

structural parameters coal cellulose45 hemicellulose45 lignin45

Mcluster�average molecular weight per cluster 266.6a 81 77.5 208
Mδ�average molecular weight per side chain 27.4a 22.7 21.5 39

p0�initial fraction of intact bridges between clusters 0.594a 1.0 1.0 0.71
σ + 1�coordination number 4.83a 3.0 3.0 3.5

c0�initial fraction of stable bridges 0.0a 0.0 0.0 0.0
aCalculated based on the correlations from Genetti et al.44 using the results of the proximate and ultimate analyses reported in Table 1.
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been considered suitable for simulating data collected for a
narrow range of operating conditions. Authier et al.,29 however,
demonstrated in a detailed kinetic modeling study that this
type of basic formulation was not adapted to reproducing
devolatilization profiles measured through both TGA and DTF
analyses. The authors, therefore, proposed a refined differential
reaction model integrating an empirical fitting factor n (see eq
6) to improve the quality of curve fitting. This formulation of
f(αdF) was therefore selected herein to allow predicting data
measured with heating rates extending from a few tens of
Kelvin per minute up to ∼106 K s−1.

= + ×f (1 ) n
( ) F

1
F

F
2

(6)

2.3.3. Model Parametrization and Resolution Approach.
Parametrizing the above-described two-step devolatilization
model fundamentally requires defining seven parameters,
including two couples of Arrhenius parameters (i.e., Ai and
Ea,i), two stoichiometric coefficients Yi, in addition to the
reaction order factor n. To this end, one can first test different
sets of parameters proposed in the literature, as will be realized
in Section 3.2.1. Since these parameters are, however, derived
from experiments conducted with different fuels and under
widely varying operating conditions, their use often leads to
unsatisfactory results.32 Consequently, one can alternatively
parametrize global kinetic models through an optimization
procedure, allowing to estimate the values that Ai, Ea,i, Yi, and n
must take in order to obtain the best fit between measured and
simulated data. This second approach, whose application will
be shown in Section 3.2.2, aims to minimize a standard least-
squares objective function (lsq) based on the relative
difference between measured (ysexp) and simulated (ysnum)
sample mass fractions (see refs 29, 32, and 55 for instance):

Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅÅ
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= ×
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y y

y
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1 1 1

1i i j

s
exp

s
num

s
exp

2

(7)

where i denotes a series of TGA and FFR runs, Ni stands for
the number of experimental runs for each series, and j
represents the number of discretized and equally spaced points
used to calculate the least-squares difference for each series. As
far as the numerical setup is concerned, the differential
equations eqs 4 and 5 were solved using the MATLAB ode15s
function. The solutions obtained were then integrated into a
genetic algorithm-based optimizer (i.e., the MATLAB ga solver
previously used to parametrize refined laser-induced incandes-
cence models56−59), which allowed to define the parameter
values minimizing the lsq objective function. Following Authier
et al.,29 lower and upper boundaries (listed in Table 3) were
set to downsize the research area. Finally, and due to the high

number of unknown parameters, a population size of 5000
individuals and a maximum of 150 generations were set for the
calculations. This proved to be sufficient, since less than 132
generations were ultimately required for optimization con-
vergence.

3. RESULTS AND DISCUSSION
3.1. Comparison of Measured Data with Predictions

Issued from the CPD Model. Following the formalism
adopted in ref 29, we plotted devolatilization profiles measured
during both TGA and FFR experiments in Figure 1, together
with the predictions issued from the CPD model. This network
simulation tool was tested as a first step, as it considers the
detailed structure of thermally treated fuels (see Sections 1 and
2.3.1). It is thus more likely to properly mimic the general
devolatilization behavior of a wide variety of feedstocks as
compared to global models integrating non-fitted kinetic
parameters. Besides, and since one of the main objectives of
this work is to rule on the ability of a parametrized two-step
kinetic scheme to lead to predictions at least as good as those
issued from a more comprehensive phenomenological model,
weighing the predictive ability of the CPD model was thus a
must.
Looking at the experimental results reported in Figure 1, it

can first be seen that the higher the peak fuel temperature, the
higher the final devolatilized fraction during the FFR
experiments. This is clearly exemplified by the mass losses
for which the devolatilization profiles plateau, which increase
when passing from FF1 to FF3, regardless of the considered
fuel. The final devolatilized fractions assessed with the FFR are,
moreover, higher than those issued from the proximate and
thermogravimetric analyses despite the lower temperatures
reached during FFR experiments (between 1020 and 1206 K
for FF1 and FF3, respectively (see Section 2.2.2) against 1223
K during the TGA tests (see Section 2.2.1)). The ratios
between the maximum volatile matter yields derived from the
FFR experiments and the proximate volatile matter contents
are thus ∼1.2 and ∼1.3 on a dry ash-free basis for wood and
coal, respectively. This trend is actually in line with the
observations from numerous works covering the devolatiliza-
tion of solid fuels such as coal under high HR con-
ditions.19,20,29,32,54,55 In fact, the rapid formation of most
volatiles during high HR devolatilization occurs after the fuel
has reached high temperatures. As a consequence, more
hydrogenation and stabilization of reactive species are likely to
occur through the interchange of hydrogen atoms among the
volatiles inside the fuel particles. This in turn may reduce
polymerization and char formation, thus explaining the higher
volatile matter yields observed during FFR measurements. As
such, obtained results clearly show why slow TGA-derived
kinetic data are intrinsically unsuitable for simulating measure-
ments performed under fast thermal conditions, as explained in
Section 1. This, moreover, illustrates the importance of
coupling analyses conducted at low and high HR to derive
kinetic parameters valid over an extended range of thermal
conditions, as proposed hereafter. To conclude, it is note-
worthy that in accordance with the results of the proximate
analyses (see Table 1), devolatilized fractions measured for
wood are much higher than those related to coal (see Figure
1). Peak mass loss fractions of 0.81 and 0.94 are indeed
assessed for the biomass under TGA and FFR conditions,
respectively, versus values of 0.35 and 0.47 for coal. As for
blended samples, measured mass loss fractions quite logically

Table 3. Constraints Set during the Optimization Procedure
(With A Expressed in s−1 and Ea in kJ mol−1)

parameter lower boundary upper boundary

ln(A1) 4.6 13.85
Ea1 60 × 103 120 × 103

ln(A2) 11.5 27.63
Ea2 120 × 103 230 × 103

y1 0 y2
y2 y1 1
n 2 12
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fall between those of wood and coal (i.e., from 0.39 to 0.43 for
the blends containing 10 and 20 wt % of wood under low HR
conditions versus 0.52 to 0.59 during high HR measurements).
It should, however, be noted that such results do not allow
evidencing any synergy at this stage. Ruling on this specific
aspect will indeed require a more precise analysis of the kinetic
parameters accounting for the devolatilization behavior of each
sample, as proposed in Section 3.3.
Concerning CPD simulations, the procedure described in

Section 2.3.1 was applied to obtain the theoretical profiles
plotted with the full lines in Figure 1. As can be seen, the
model globally reproduces well the devolatilization profiles
issued from the FFR experiments for the three coal-containing
samples (see Figure 1a,c,d). In addition to qualitatively
capturing the overall shape of the devolatilization curves, the
maximum volatile matter yields predicted by the model only
differ from their experimental counterparts by 2.9% on average
(3.0% for coal, 1.1% for coal + 10% wood, and 4.7% for coal +
20% wood). On the other hand, the model tends to
significantly overpredict the rate of emission of volatile matters
in the case of wood (see Figure 1b) although it reproduces
relatively well the final mass loss fractions with a mean relative
deviation of 3.8%. As far as the TGA results are concerned, the
CPD model fails to properly simulate the measured data. It
indeed overestimates the devolatilization yields, especially for
coal-containing samples. The final mass loss fractions are
indeed overpredicted by 45.3, 40.3, and 33.7% (on average,
considering the three HR) for the coal, coal + 10% wood, and
coal + 20% wood samples, respectively, against 11.2% for the

wood sample whose devolatilization behavior at low HR is
much more effectively predicted. For completeness, additional
CPD calculations were performed by differentiating between
the contributions of xylan and glucomannan, as initially
proposed by Fletcher et al.25 To that end, the mass percentages
of both these polysaccharides in poplar wood were assessed by
averaging some lignocellulosic compositions available in the
literature.48,49 The rate coefficients and structural parameters
proposed by Fletcher et al.25 were then selected to be
integrated within the CPD code. Despite a slightly improved
agreement between experimental and simulated data for wood
(see the final devolatilized fractions measured by TGA in
Figure 1b), the obtained profiles, plotted with gray dashed
lines, are almost superimposed with the devolatilization curves
issued from the use of the parameters proposed by Lewis and
Fletcher45 for hemicellulose. Such a refinement of the
calculation procedure does not thus allow reducing the
abovementioned discrepancies between the measured and
modeled profiles.
To conclude, it is noteworthy that the overall ability of the

CPD model to reproduce mass loss profiles issued from high
HR measurements is consistent with the conclusions drawn in
different works,45,60 including a previous FFR-based study in
which the devolatilization of seven coals was satisfactorily
simulated by the CPD model.32 Similarly, the fact that this
modeling tool tends to overestimate the total volatile yields
measured during the low HR pyrolysis of biomass was
previously reported by Hameed et al.14 In an attempt to
ensure that the overestimation observed during low HR

Figure 1.Mass loss fractions of (a) coal, (b) wood, (c) coal + 10% wood, and (d) coal + 20% wood as a function of time. Comparison of measured
profiles (symbols) with predictions issued from the CPD model (lines). Note that only a limited number of points are represented on each TGA
curve to avoid overloading the graphs.
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measurements was not specific to the experimental data
gathered herein, we performed complementary simulations to
reproduce the TGA results issued from a series of kinetic
works conducted with a wide variety of coal, biomass, and
biomass components.61−68 The so-obtained correlation
between the measured and predicted devolatilized fractions is
depicted in Figure 2. As can be seen, the modeled data quite

systematically overpredict the experimentally assessed ones,
which is consistent with the observation made herein. This is
particularly highlighted in Figure 2 by the fact that all plotted
points, except one, are located above the identity line, which is
represented by a dashed line. It can also be noted that the
points related to the coal and wood samples analyzed in this
work clearly fall within the point cloud reported in Figure 2.
This therefore tends to corroborate the relative inability of the
CPD model to satisfactorily simulate the data obtained at very
low heating rates. This observation especially motivated the
realization of additional works aimed at improving the
predictive ability of the CPD code by defining kinetic
parameters adapted to account for the devolatilization of
solid fuels under low HR conditions (see ref 27 and references
therein). These alternative model formulations were, however,
not considered, as they fall outside of the scope of the present
work, which covers the prediction of the devolatilization
behavior of coal and wood over an extended range of thermal
conditions.
3.2. Comparison of Measured Data with Predictions

Issued from a Two-Competing Rate Model. 3.2.1. Simu-
lations Based on Kinetic Parameters from the Literature. As
mentioned in Section 2.3.3, kinetic parameters issued from the
literature (see Table 4) were tested as a first step in order to
rule on their suitability to simulate the mass loss profiles
reported in this work. To this end, values of pre-exponential
factors and activation energies proposed by Authier et al.29

(sets 1 and 2) and Ubhayakar et al.54 (set 3) were considered.

These data were selected since they are issued from analyses
conducted with fuels having properties relatively similar to
those of the bituminous coal studied herein. Regarding poplar
wood, kinetic parameters proposed in the literature for two-
step kinetic schemes are quite rare (if at all existing), to the
best of the authors’ knowledge. Kinetic factors proposed by Li
et al.69 (originally fitted to simulate the high-temperature and
rapid devolatilization of palm kernel shell) were therefore
considered (set 4) due to the lack of more adapted parameters.
Using the calculation procedure described in Section 2.3.2,

the theoretical devolatilization profiles plotted in Figure 3 were
obtained. As can be seen, none of the tested parameter sets
allow to reproduce the measured data. The mass loss fractions
issued from FFR experiments are indeed significantly under-
estimated, regardless of the sets of Ai, Ea,i, Yi, and n values
integrated in the model. As for the simulation of the
devolatilization process at low HR, the two-competing rate
scheme overpromotes the reactions occurring at low temper-
atures, thus leading to computed profiles reaching the final
mass losses too early. That being said, and despite these
discrepancies, it can still be noted that the parameters
proposed by Ubhayakar et al.54 (set 3) are those that provide
the best agreement with FFR measurements, which is in line
with the observations made in a previous work.32 Concerning
the parameter sets 1 and 2, they allow one to obtain a relatively
good fit with TGA results although they fail to reproduce the
data collected using the FFR. Finally, the use of parameter set
4 is shown to be clearly unsuitable for simulating the
devolatilization of poplar wood under both low and high HR
conditions. While this result may have been expected (the
kinetic factors from Li et al.69 being indeed optimized for
another type of biomass), it is noteworthy that parameter sets
1−3 also fail to properly reproduce the experimental results
collected herein, notwithstanding the use of a relatively similar
fuel than those analyzed in the studies of Authier et al.29 and
Ubhayakar et al.54 Different factors are essentially prone to
influencing the validity domain of kinetic parameters derived
from experimental measurements. These include a wide
variability in existing fuels whose physical−chemical properties
vary significantly (even within the same rank for coal).
Furthermore, the measurement and calculation procedures
implemented to derive the rate constants are also likely to
drastically influence the results obtained. As an example,
parameter sets 1 and 2 are issued from measurements
conducted in a DTF with a maximum HR of the order of 4
× 104 K s−1, which is lower than the HR related to the FFR
used in the present work. Furthermore, the thermal histories of
the fuel particles during the DTF experiments from Authier et
al.29 were assessed by solving an energy balance equation,
whereas they were directly measured herein. Although these
differences do not challenge the consistency of the very
rigorous work carried out by Authier et al.,29 these are some

Figure 2. Correlation between the final mass loss fractions measured
by TGA in refs 61−68 and those predicted herein using the CPD
model.

Table 4. Kinetic Parameters Proposed in the Literature to Simulate the Devolatilization of Coal and Biomass by Means of
Two-Competing Rate Models

parameter set A1 (s−1) Ea,1 (kJ mol−1) Y1 A2 (s−1) Ea,2 (kJ mol−1) Y2 n

set 1�coal29 1.50 × 1003 79.7 VM0
a 1.60 × 1008 170.5 0.61 3.3

set 2�coal29 8.10 × 1005 116.2 VM0
a 3.00 × 1011 221.1 0.63 5.3

set 3�coal54 3.70 × 1005 73.6 VM0
a 1.46 × 1013 251.0 0.80 0

set 4�biomass69 6.20 × 1002 42.5 0.86 8.00 × 1004 130.0 0.96 0

aVM0, volatile matter content of the fuel issued from the proximate analysis (on dry and ash-free basis).
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factors which can explain why the parameters listed in Table 4
did not allow to satisfactorily simulate the devolatilization
profiles measured herein. This therefore prompts the need for
alternative model parametrizations, as proposed in Section
3.2.2.

3.2.2. Simulations Based on Optimized Kinetic Parame-
ters. The implementation of the optimization procedure
described in Section 2.3.3 led to inferring the kinetic
parameters summarized in Table 5. The simulated devolatiliza-
tion profiles obtained by using the parameters are plotted in

Figure 3. Mass loss fractions of (a) coal and (b) wood as a function of time. Comparison of measured (symbols) and simulated (lines) profiles
integrating the kinetic parameters reported in Table 4.

Table 5. Optimized Kinetic Parameters Derived for the Two-Competing Rate Model

sample A1 (s−1) Ea,1 (kJ mol−1) Y1 A2 (s−1) Ea,2 (kJ·mol−1) Y2 n

coal 2.94 × 1003 99.79 0.162 6.56 × 1011 186.72 0.609 6.5
wood 3.91 × 1005 91.29 0.677 4.22 × 1011 164.89 0.972 2.2

coal +10% wood 7.86 × 1004 87.94 0.239 4.98 × 1011 179.21 0.665 5.9
coal +20% wood 1.89 × 1005 86.10 0.299 7.82 × 1011 171.57 0.685 5.7

Figure 4.Mass loss fractions of (a) coal, (b) wood, (c) coal + 10% wood, and (d) coal + 20% wood as a function of time. Comparison of measured
(symbols) and simulated (lines) profiles integrating the optimized kinetic parameters reported in Table 5.
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Figure 4, together with their experimental counterparts. As can
be seen, modeled data qualitatively and quantitatively agree
with measured ones. In addition to faithfully reproducing the
overall shape of the devolatilization curves, the mean relative
deviation between predicted and measured final mass losses
falls below 1.70%, considering both TGA and FFR analyses
(with values ranging from 0.87% for wood to 2.8% for coal).
The good ability of the parametrized model to reproduce
measured data is further illustrated in Figure 5, which depicts

the correlation existing between the calculated and measured
mass losses for each point comprising the profiles plotted in
Figure 4. It is then of interest to note that the obtained
coefficient of determination, which denotes the dispersion of
data around the identity line (represented by a dotted line), is
very high (R2 = 0.9746). This therefore illustrates the excellent
agreement obtained between simulated and measured results
(all points being indeed almost superimposed on the identity
line). In an attempt to potentially refine the solution obtained,
additional calculations based on a generalized reduced gradient
solver (used in a previous work32) were carried out. For that,
intervals of ±20% around the optimized values listed in Table
5 were set (except for y2, whose upper bound was set to 1 in
the case of wood). Doing so, however, did not allow the
reduction of the values of the least-squares objective function
defined in eq 7. This complementary validation therefore
demonstrates that the optimization procedure proposed in
Section 2.3.3 is adequate to infer kinetic parameters suitable to
account for the devolatilization of different feedstocks over a
large range of thermal conditions.
Looking at the rate constant parameters listed in Table 5, it

can first be noted that in accordance with the results of the
proximate analyses and with the feedstock mixing ratios set for
blended samples, the values of the stoichiometric coefficients y1
and y2 follow the sequence: coal < coal + 10% wood < coal +
20% wood < wood. This trend is actually in line with the
increasing devolatilized fractions experimentally monitored
when passing from coal to wood (see Section 3.1 as well as
Figure 1 or 4). Furthermore, it is noteworthy that the Ea,i
values inferred for wood are lower than those related to coal,
which, here again, is consistent with the higher energy required
to break the strong C−C bonds which hold the highly cross-
linked aromatic structures of coal, as compared to the inter-
and intra-molecular links in biomass, which break more easily
under heating. It can further be noted that the values of the

empirical reaction model factor n estimated herein (i.e.,
between 2.2 and 6.5) are globally in line with the range of
values estimated by Authier et al. (i.e., between 3.3 and 5.3) in
their study on the devolatilization of three different coals.29 All
of these observations thus contribute to corroborate the
consistency of the kinetic parameters assessed in the present
work, whose values are physically valid, while agreeing with the
data issued from other studies.
3.3. Analysis of Synergistic Effects. When analyzing in

more detail the parameters gathered in Table 5, it can be seen
that the activation energy of the first devolatilization reaction
decreases when adding wood to coal. It indeed passes from
99.79 kJ mol−1 for pure coal to 87.94 and 86.10 kJ mol−1 for
coal + 10% wood and coal + 20% wood, respectively. While
such a decrease is consistent with the fact that the activation
energy of wood is lower than that of coal, it is noteworthy that
the Ea,1 values inferred for the blends become even lower than
that related to pure wood (i.e., 91.29 kJ mol−1). This trend is
all the more remarkable given the relatively low blending ratios
(≤20 wt %) considered in the present study. All these
observations, therefore, suggest the presence of synergistic
effects prone to shifting the thermal degradation of the blended
samples toward lower temperatures as compared to those
governing the devolatilization of raw wood. Synergistic effects
are indeed known to decrease the activation energy of
devolatilization reactions while enhancing the yields of volatile
matters and gaseous species (see refs 9 and 70 and references
therein). On the other hand, it can still be noted that the Ea,2
values estimated for coal + 10% wood and coal + 20% wood
(i.e., 179.21 and 171.57 kJ mol−1, respectively) fall between
those related to coal (186.72 kJ mol−1) and wood (164.89 kJ
mol−1). This suggests that synergies decrease with increasing
temperature, which is once again consistent with the trends
reported in the literature.9,70 It is believed that synergies are
mainly traced to hydrogen donors from biomass, which
prevent recombination reactions of coal radicals. When the
temperature increases, the amount of hydrogen released from
coal tends to increase as well, thus limiting the extent of
synergistic effects. To better appreciate whether or not
synergies truly act during the tests performed herein, we
estimated the deviation Δys between the mass losses calculated
for blended samples (referred to as “blend” in eq 8 below) and
the weighted sum of the mass losses estimated for individual
components of the blends:
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where W denotes the mass fraction of wood in the blend.
Positive deviations logically suggest that the blending of wood
and coal enhances the decomposition process, thus leading to a
quantity of emitted volatile matters exceeding that expected by
summing the mass losses related to the individual devolatiliza-
tion of both feedstocks. Using the kinetic parameters of Table
5, one obtains the curves depicted in Figure 6 for the blend
containing 20% of biomass as an example. The fact that the
calculated Δys values are positive confirms the probable

Figure 5. Correlation between measured and predicted devolatilized
fractions.
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presence of synergies. It should be noted that a similar
behavior was also observed with the blend containing 10% of
wood (results not reported herein for brevity). Furthermore, it
is interesting to note that Δys values rise from low to
intermediate residence times before decreasing, regardless of
the experimental configurations considered (i.e., TGA and
FFR). The fact that the temperatures encountered in these
specific regions of the devolatilization curves are relatively low
(i.e., below 650 K during TGA tests, for instance) tends to
corroborate the above statement that the lower the temper-
ature, the higher the synergies.
To further validate the conclusions drawn based on Figure 6,

the evolution of the rate constants k1 and k2 (see eqs 4 and 5),
as well as the variation of the characteristic time of
devolatilization, was plotted as a function of temperature in
Figure 7 a,b. As can be seen, for temperatures below ∼700 K,
the values of k1 for the coal + 20% wood sample are higher
than those related to wood. As a consequence, the character-
istic time of devolatilization of this blend is lower than that of
wood for temperatures up to ∼650 K, which confirms the
existence of synergies under low heating conditions. Besides,
and since the higher the activation energy, the lower the rate
constant, the values of k2 quite logically follow a sequence that
is the opposite of that depicted in Table 5 for Ea,2 (i.e., k2,coal <
k2,coal+10% wood < k2,coal+20% wood < k2,wood, with k2,coal+20% wood quite
close to k2,wood above 900 K). Finally, it is noteworthy that the
characteristic times related to the blend containing 10% of

wood (see Figure 7b) are relatively similar to those of coal at
high temperatures, while they are significantly lower below 600
K, despite the low blending ratio related to this sample. All
these observations, therefore, corroborate that synergies occur
during the low-temperature devolatilization of coal/wood
mixtures, thus enhancing the release of volatile matters. This
trend is, moreover, consistent with the conclusions drawn in
ref 34 where preliminary analyses achieved solely at low
heating rates with similar coal/wood mixtures were carried out.
These results should, however, be considered with caution, as
they are issued from calculations based on the parameters
listed in Table 5. Although there are good reasons to believe
that these kinetic constants are consistent, as discussed above,
any imprecision in the estimation of Ai and Ea,i may have a
significant effect on the conclusions drawn in this section. The
present work would therefore benefit from being comple-
mented by additional studies considering other feedstocks and
mixing ratios, allowing to better elucidate the impact of
synergistic effects on the devolatilization of coal/wood
mixtures.

4. CONCLUSIONS
This work dealt with the analysis of the devolatilization
behavior of two solid fuels of interest for co-pyrolysis and co-
combustion applications (i.e., bituminous coal and poplar
wood). TGA analyses conducted with HR of 10, 15, and 30 K
min−1 were coupled with measurements performed using an
FFR which allows to reach an HR of ∼106 K s−1. Experimental
data collected with coal, wood, and their blends confirmed that
the greater the HR, the greater the quantity of volatile matters
emitted (devolatilization yields exceeding the proximate
volatile matter contents being quite systematically measured
during FFR experiments). Furthermore, the higher the biomass
fraction in the blended samples, the higher the devolatilized
fractions, in accordance with the higher volatile content of
poplar wood. Two different modeling approaches were then
implemented, including a network model (i.e., CPD), and a
two-competing rate scheme, including a refined differential
reaction model. In terms of highlights, the CPD model proved
to be a very effective modeling tool to qualitatively capture the
overall shape of devolatilization profiles, regardless of the
considered fuel, while leading to final mass losses quite close to
those experimentally assessed during high HR experiments. It,
however, failed to properly predict the devolatilization yields

Figure 6. Evolution of Δys as a function of time for coal + 20% wood
as a function of time.

Figure 7. Variation of (a) rate constants k1 and k2 and (b) characteristic time of devolatilization (defined as 1/(k1 + k2)) as a function of
temperature.
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obtained from TGA experiments. As for the two-competing
rate kinetic scheme, different parameter sets from the literature
were tested, providing unsatisfactory predictions. A para-
metrization procedure using a genetic algorithm-based
optimizer was thus implemented to infer Ai, Ea,i, ys, and n
values, allowing obtaining simulated devolatilization profiles
merging on a single curve with their experimental counterparts.
Ea,i values estimated for wood were found to be lower than
those related to coal, which is consistent with the lower energy
required to break the inter- and intra-molecular links of
lignocellulosic biomass. Furthermore, the addition of wood to
coal was shown to significantly decrease the activation energies
of the two devolatilization reactions. The Ea value of the first
reaction occurring at low temperatures was even found to be
lower for blended samples than for pure wood, despite the
relatively low mixing ratios considered in this work (≤20 wt
%). This trend was related to the existence of synergistic
effects, the extent of which was demonstrated to be mainly
significant for low temperatures, in agreement with the trends
previously reported in the literature.
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