
INTELLIGENT PROACTIVE FAULT TOLERANCE AT THE EDGE THROUGH RESOURCE USAGE
PREDICTION

Theodoros Theodoropoulos1, John Violos2, Stylianos Tsanakas2, Aris Leivadeas3, Konstantinos Tserpes1,
Theodora Varvarigou2

1Department of Informatics and Telematics, Harokopio University of Athens, Tavros, Greece, 2School of Electrical and
Computer Engineering, National Technical University of Athens, Zografou, Greece, 3Department of Software and IT

Engineering, E cole de technologie supérieure, Montreal, Canada

NOTE: Corresponding author: John Violos, violos@mail.ntua.gr

Abstract – The proliferation of demanding applications and edge computing establishes the need for ef icient management
of the underlying computing infrastructures, urging the providers to rethink their operational methods. In this paper, we
propose an Intelligent Proactive Fault Tolerance (IPFT) method that leverages the edge resource usage predictions through
Recurrent Neural Networks (RNNs). More speci ically, we focus on the process faults, which are related with the inability of
the infrastructure to provide Quality of Service (QoS) in acceptable ranges due to the lack of processing power. In order to
tackle this challenge we propose a composite deep learning architecture that predicts the resource usage metrics of the edge
nodes and triggers proactive node replications and taskmigration. Taking also into consideration that the edge computing in‑
frastructure is also highly dynamic and heterogeneous, we propose an innovative Hybrid Bayesian Evolution Strategy (HBES)
algorithm for automated adaptation of the resource usage models. The proposed resource usage prediction mechanism has
been experimentally evaluated and compared with other state of the art methods with signi icant improvements in terms
of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Additionally, the IPFT mechanism that leverages the
resource usage predictions has been evaluated in an extensive simulation in CloudSim Plus and the results show signi icant
improvement compared to the reactive fault tolerance method in terms of reliability and maintainability.

Keywords – Edge computing, evolution strategy, hyper‑tuning, fault tolerance, recurrent neural networks

1. INTRODUCTION

During the last decade, the scienti ic community wit‑
nessed the emergence of applications that are inter‑
twined with a set of demanding QoS requirements. Ex‑
tended Reality (XR) applications is one instance of this
type of application. XR applications are associated with
various QoS requirements [1] that are based on the abi-
lity to provide an immersive end‑user experience.
These requirements may include aspects such as
latency and bandwidth. Studies have shown that for an
end‑user experience to be acceptable in terms of
immersion, the end‑ to‑end latency shall not surpass the
15ms mark, and the bandwidth should be able to reach
up to 30 Gbps [2]. On top of that, the desired integrity
of the aforementioned immersive experiences may be
jeopardized by faults in task processing, due to
potential disruptions in service delivery. Therefore, it
is of paramount importance for this class of
applications to be able to exhibit fault tolerance
capabilities. Furthermore, this class of applications
presents various demanding requirements in terms of
computational resources, since they incorporate the
rendering of 3D models and detailed graphics. Because
of these computational requirements, monolithic deve-
lopment architectures would result in prohibitively
bulky and expensive end‑user equipment in order to
facilitate the required computational resources.

Cloud computing is able to partially alleviate the burden
that is imposed on the end‑user devices by providing
computational resources that these applications may run
on via the Internet. Cloud computing is based on the use
of shared computational resources that may span multi‑
ple locations. Therefore, part of the computational bur‑
den is transferred to these shared resources. Unfortu‑
nately, the distance between the end‑user devices and the
cloud servers may result in high latency and low available
bandwidth. Thus, the need to bring processing and data
closer to the devices where it’s being generated [3] was
created. In the case of XR applications, these devices may
include smart objects, mobile phones, network gateways,
sensors and a plethora of immersion devices. This dis‑
tributed computing paradigm, de ined as edge comput‑
ing aims to establish decentralized topologies and allow
the relocation of various computational and storage re‑
sources closer to the edge of the network. By doing so, it is
expected to provide service delivery and content caching
in better response times and transfer rates. The afore‑
mentioned devices may vary wildly in terms of computa‑
tional prowess. As a result, it is necessary to make sure
that the computations that take place at the edge are not
demanding and do not exceed the computational capabil‑
ities of the involved devices.
When contemplating the nature and requirements of
modern‑day applications it is of major importance for

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

©International Telecommunication Union, 2022
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

the workload execution to be resilient and meet the
QoS standards set by the industry. The devices at the
edge of the network are subjected to signi icant
luctuations in the amount of of loaded tasks over time
[4]. Hence, it is of paramount importance that these
luctuations do not affect the performance of the system
and cause process faults [5]. In addition to that, edge
computing environments are characterized by extreme
heterogeneity and dynamicity in regards to the tasks and
the processing nodes involved. This unprecedented
situation gave birth to the need for an IPFT method
which should be robust to infrastructure and workload
changes.
Monitoring and predicting the capacity under which the
edge nodes are operating in terms of resource metrics
such as CPU, RAM, bandwidth and disk can be a valu‑
able piece of information with regards to implementing
fault tolerance policies. Resource metrics have high se‑
rial and cross‑correlation values making the use of time
series methods rational [6]. Regression‑based RNN [7],
which leverage time series characteristics through Gated
Recurrent Units (GRUs) [8] or Long Short‑Term Memory
(LSTM) [9], can be used in order to accurately predict the
resource metrics.
In order to handle the extreme heterogeneity and dyna-
micity of the edge environments, we provide a
systematic methodology for building deep learning
models in an automatic way using historical data.
Common approaches that are based on manual trial and
error methodologies in regards to creating acceptable
deep learning architectures require many working
hours to be spent by deep learning experts every time
the deployed applications, user behaviour or the edge
infrastructure change. On the other hand, the available
deep learning automation methods still have signi icant
shortcomings such as low ef i‑ ciency and high
computational requirements [10]. A potential solution to
these drawbacks could be the extension of evolutionary
algorithms, as well as their combination with other
models for hyper‑tuning.
The facts mentioned above motivated us to propose an
IPFT method that focuses on processing faults; faults re‑
lated with resource shortage and the resulting incompe‑
tence in regards to processing capabilities that impede
the underlying infrastructure to execute tasks within ac‑
ceptable QoS ranges. Our research goals are to propose
a composite deep learning architecture suitable for pre‑
dicting in a uni ied way the ability of the edge nodes to
execute the incoming workload and an appropriate ope-
rational pipeline that guarantees advanced fault
tolerance. The cornerstone of this pipeline is the ability
to operate in a proactive manner. Whenever a
bottleneck in task execution is expected to occur,
proactive measures like task migration and node
replication should be triggered. A composite deep
learning architecture should leverage the time series
characteristics of the edge resources and the involved
tasks which can be provided by monitoring systems (i.e.
Prometheus) [11]. Finally, we propose the HBES
optimization algorithm in order to provide a composite

• The proposal of the IPFT method that achieves high
reliability andmaintainabilitywith very goodperfor‑
mance in terms of timely fault detection and repair.

• A discussion of how a speci ic category of faults, the
process faults are related and can be predicted by
the resource utilization metrics of processing edge
nodes

• The proposal and analysis of the theoretical princi‑
ples of a composite deep learning model for edge re‑
source usage prediction that includes two channels.
One with feedforward and one based on RNN layers.

• The proposal of an innovative hybrid hyper‑
parameter optimization model that combines the
evolution strategy with the Bayesian optimization
algorithms in order to gauge a close to optimal
composite deep learning architecture.

The rest of the paper is structured as follows: Section 2
highlights the related work in fault tolerance, resource
usage prediction, time series, deep learning and hyper‑
parameter optimisation techniques. Section 3 explains
how a proactive fault tolerance mechanism can lever‑
age resource usage predictions. Section 4 provides an
analysis of the RNN multi‑output regression approaches,
the composite deep learning architectures and the HBES
method. Section 5 describes the experimental setup in
a real edge computing dataset, the simulation of IPFT in
CloudSim Plus and the evaluation results. Section 6 con‑
cludes the paper, reports the current limitations and sug‑
gests future directions.

2. RELATED WORK
Fault tolerance mechanisms are mainly divided in two
categories; reactive and proactive. The reactive approach
decreases the in luence of failures in the edge infrastruc‑
ture after a failure has actually occurred. The main re‑
active fault tolerance methodologies are reactive replica‑
tion, resubmission, retry and use of checkpoints. For in‑
stance, a state of the art replication‑based fault tolerance
mechanism in large‑scale graph‑parallel systems was pro‑
posed in [12], which works by supporting cheap mainte‑
nance of the vertex states. This mechanism replicates the
vertices with normal message exchanges, and provides
fast in‑memory reconstruction of the failed vertices from
replicas in other machines. The replication increases the
reliability of the system and the chance that the task will
inish correctly, at the expense of additional resources for
redundancy.
A retry approach that uses idempotent HTTP methods has
been proposed in [13] for of loading and execution fail‑
ures. This retry strategy has the advantage that it utilizes
the least resources of the computing environment and
minimizes the user time, but at the expense of increasing
the response time, since HTTP methods may be retried
multiple times until they complete successfully. In terms
of checkpoints, a reactive fault tolerance approach for the

deep learning model which is nearly optimal. The four
major contributions of our research are:

©International Telecommunication Union, 2022762

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

serverless paradigm was investigated in [14]. Speci i‑
cally, the authors, through checkpoints and live container
migration, have succeeded in saving resources in con‑
strained devices. Unfortunately, also in this case, the
execution time is increased since it includes the
recovery time of the failed servers.
In the proactive fault tolerance approach a potential fault
is predicted in order to avoid its in luence on the task exe‑
cution. Tian et al. [15] use the tree‑based model which is
a statistical analysis technique to diagnose the high risk
cloud tasks and apply virtual machine migration tech‑
niques. This approach even if it signi icantly improves the
reliability and ef iciency, has generalization limitations,
since it cannot automatically adapt to new computing en‑
vironments. Machine learning and online learning me-
thods have also been used in combination with
microservices architecture and IoT systems to detect fault
patterns and pre‑emptively mitigate the faults [16].
Another ad‑ vanced proactive model has recently been
proposed in [17]. This model performs multi‑step
predictions in or‑ der to estimate the process faults and
the QoS degrada‑ tion in different time granularities.
This approach utilizes an encoder‑decoder model and
gauges the ability of the infrastructure to process the
incoming tasks at different production rates.
From the above it is evident that the limited computa‑
tional capacity of processing nodes sets barriers to the
edge computing and IoT applications [18]. We can over‑
come these barriers through ef icient resource manage‑
ment [19]. This process includes the guarantee of well‑
de ined QoS metrics and an accurate workload prediction
[20]. Some of the workload prediction models leverage
RNN and speci ically LSTM, formulating the resource
usage metrics as data sequences. But none of them focus
on how a proactive fault tolerance method can leverage
the resource usage predictions.
For instance, the authors in[6] have used an Autoregres‑
sive Integrated Moving Average (ARIMA) to avoid re‑
source under‑provisioning or over‑provisioning in data
centers. ARIMA has the limitation that it models linear de‑
pendencies and it is based on the stationarity assumption.
However, as noticed in [21] the workload to be processed
at the edge has trend, seasonality and nonlinearities in the
execution behaviours, which limit the application of sta‑
tistical linear models. These limitations are overcome by
machine learning models such as K‑Means, decision tree
and K‑nearest neighbors [22]. While there is a lot of clas‑
sical machine learning models publicly available, for our
experiments we selected XGBoost [23] because it is po-
pular for winning Kaggle and other prestigious
machine learning competitions [24]. XGBoost mostly uses
gradient boosted decision trees and is available as an
open‑source software library.
The limitation of the machine learning approaches is that
every time the edge‑cloud infrastructure, the user be‑
haviour, or the application changes, new models should
be trained from scratch with human assistance. Auto‑
mated machine learning achieves an automatic way to

guide the learning process of models, maximizing the
performance, and minimizing the computational budget
without human involvement. In the domain of cloud
computing, the Application and User Context Resource
Predictor (AUCROP) [25] has been proposed for auto‑
mated usage of classical machine learning algorithms. In
addition, a general‑purpose automated machine lear-
ning meta‑model for data preprocessing, regression
and hyper‑parameter tuning through the Bayesian
optimization is the auto‑sklearn [26].
Keras‑Tuner [27] is the approach from Keras to automate
the hyper‑parameter tuning, also named hyper‑tuning.
Keras is one of the most popular frameworks in the deep
learning community. Keras‑Tuner has the advantage that
the hyper‑models, the range of hyper‑parameters and the
tuning process is smoothly integrated in Keras but it sup‑
ports only the optimizers: (a) random search, (b) hyper‑
band which is a random search with early stopping, and
the (c) Bayesian optimization. In our experimental evalu‑
ation we used Keras‑Tuner, AUCROP and auto‑sklearn. In
this work we also extend the research in the hyper‑tuning
combining evolution strategy with the Bayesian optimiza‑
tion. Thus, we propose the innovative HBES method as a
prominent automated deep learning solution that tackles
the heterogeneity and the dynamicity of edge computing
environments.
More speci ically, our work aims to extend the resource
usage prediction method by proposing a proactive fault
tolerance method that leverages the resource usage pre‑
dictions and tackles the above‑mentioned limitations as
follows: Firstly, the IPFT mechanism requires a mini‑
mum number of replicas of the execution nodes since it
requests a replication only after a fault prediction. Se-
condly, the IFPT does not include the time overhead
of task rescheduling after a fault since the replication
and rescheduling of the task will take place proactively
and in a timely manner. Thirdly, the IPFT leverages
deep learning RNN models in order to overcome the
limitations of statistical models and adapts to
non‑linear and non‑stationary resource metrics. Lastly,
the introduced HBES quali ies the generality of the
whole process which is a common limitation of many
methods in the pertinent lit‑ erature.

3. LEVERAGING RESOURCE USAGE PREDIC‑
TIONS FOR PROACTIVE FAULT
TOLERANCE

3.1 Resource usage prediction in edge com‑
puting

The management and orchestration of edge computing
infrastructures can be improved by leveraging various re‑
source utilizationmetrics. Themost notable of thesemet‑
rics are CPU, RAM, bandwidth, and disk I/O. At the same
time, the edge computing paradigm is characterized by
the dynamic behaviour and the heterogeneity of the pro‑
cessing edge nodes, which are obliged to operate within

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

763

some speci ic constraints dictated by the QoS require‑
ments.
As the decision‑making in a dynamic and heterogeneous
environment is a rather complex process, it requires
every available source of information to be used.
Prediction of the resource consumption metrics, by
leveraging time series characteristics of historical data,
constitutes one of the most valuable pieces of
information. It serves as a strong indicator for the
availability of the processing nodes in order to receive
additional workload or to predict potential QoS
degradation in future time steps. Accordingly, the
publicly‑available monitoring tools like Prometheus,
OpenTSDB, Nagios and InfuxDB can provide the resource
metrics in a stream format or in a time series database
like PromQL. These time series databases can be used to
produce datasets which are suitable for the RNN model
training.
The dynamic behaviour of edge nodes is attributed to the
luctuation of application requests and their workload.
The number of requests per time interval changes within
various time‑frames and is affected by many periodic phe‑
nomena. Furthermore, the edge is characterized by a
high heterogeneity, since the edge nodes can have diffe-
rent hardware and software characteristics, such as
memory, computing power, etc. This heterogeneity
becomes more apparent when taking into
consideration the var‑ ious lavours of Raspberry Pis,
Arduinos, sensor motes, and other microcontrollers
that coexist and collaborate within the same edge
infrastructure.
At the same time, application owners can set strict perfor‑
mance requirements for the edge nodes in terms of avail‑
ability, throughput and different types of potential delays.
Thus, edge providers are struggling to get the QoS metrics
within the acceptable ranges speci ied. Consequently, in
order to guarantee that the infrastructure will have suf i‑
cient computational capacities to handle luctuating de‑
mands, a fault tolerance mechanism should proactively
take decisions considering the amount of resources and
the availability of the processing nodes.
In the scienti ic literature there are different categories of
faults that correspond to speci ic fault tolerance mecha‑
nisms. The major categories of the faults are: (a) network
faults, (b) physical faults, (c) process faults and (d) service
expiry faults [28]. Among these faults, process faults can
be very severe. In more detail, process faults occur in pro‑
cesses because of resource shortages which lead to longer
task execution delays or even execution stoppages. This
type of fault can eventually lead to performance degra‑
dation that is not acceptable for real‑time and/or time‑
sensitive applications.
Thus, it becomes evident that the execution of the tasks
has a solid impact on resource utilization and vice versa.
This fact has led us to examine the resource utilization
metrics in order to take proactive fault tolerance deci‑
sions to reduce the adverse effects of process faults.

3.2 Proactive fault tolerance
Given that the modus operandi of the edge computing
paradigm relies on a vast number of compute nodes
operating simultaneously, it is extremely important to
consider component failures as an inevitability. By doing
so, it is important to ensure that the infrastructure will
continue operating without interruptions and QoS
deteriora‑ tion. The main way of ensuring this service
continuity, is by triggering migration policies and by
utilizing backup components, which automatically
replace the failed ones in a manner which guarantees the
QoS.
The replication process of a node, such as a virtual ma‑
chine, requires a certain waiting period, which would pro‑
voke QoS degradation. Thus, fault tolerance should be
achieved by following a proactive approach. At any given
time, the network should contain a speci ic number of
computational nodes, which can remain idle until one of
the already working components ceases to function pro-
perly. Given that redundant computational nodes may
be requested, it is important to keep this redundancy
to a minimum. However, by utilizing machine learning
algorithms, it is possible to extract information
regarding the behaviour patterns of the services and the
process faults that occur. Hence, this enables the fault
tolerance functionality to manifest in a manner which
will ensure that the operations will continue to take
place uninterrupted and that the overall redundancy cost
will be kept to a minimum.
The proposed IPFT model provides fault predictions by
using data features which are associated with the re‑
source usage in distributed edge environments. The IPFT
monitors the resource consumption that takes place on
each processing node in order to reveal, at run‑time, in‑
suf icient processing capabilities that may result in poten‑
tial QoS degradations. In case that the deployed resources
cannot satisfy the increasing amount of demands within
a speci ied time‑frame, the IPFT will then trigger mitiga‑
tion policies such as proactive node replication and task
execution migration.
The multichannel neural network part of the IPFT mech‑
anism of a node takes into consideration the state of the
other available nodes when predicting its future state.
This way, in case of a predicted fault, it can perform
task migration to the nodes that are already up and run‑
ning, provided that there is enough computational capa-
city available. By doing so, we avoid immediately
resorting to node replication which could lead to a cost
and time deployment increase for setting up a new node.
As mentioned before, the replication of a node requires
a certain waiting period, which can have grave rami ica‑
tions on the performance of the edge environment. The
IPFT can predict the future needs for node replication in
a time horizon longer than the replication time. Thus, the
timely triggering of node replication processes and the
corresponding task migration prevents the occurrence of
the process faults. As illustrated in Fig. 1.1, when a spe‑
ci ic processing node is predicted to present high resource

©International Telecommunication Union, 2022764

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

Fig. 1 – The IPFT triggers virtualmachine replication and taskmigration
based on resource utilization predictions.

utilisation, then a node replication process will be trig‑
gered (Fig. 1.2). This way, the future tasks to come will
be accommodated by the new node, avoiding tasks rejec‑
tions and long execution times.
The IPFT operates in a manner which consists of four
main stages, as one can see in Fig. 2. In stage1, itmonitors
the resourcemetrics of the processing nodes. In stage 2, it
predicts the maximum resource usage that is expected to
take place within a speci ied time‑frame. With regards to
the stage 3, there are three distinct scenarios which dic‑
tate how the rest of the operation shall be carried out. The
stage 3 processes are carried out independently for each
of the processing nodes. The three distinct scenarios and
their interactionswith the corresponding actions taken at
stage 4 can be summarized as follows:

• Stage 3A. If the resource usage prediction is lower
than a speci ic lower‑bound threshold, then the pro‑
cessing node is considered under‑utilized and thus
a decommission request for this speci ic node is is‑
sued. During stage 4A, the tasks that were assigned
to this node are redirected to alternative locations
and the decommission process is completed.

• Stage 3B. If the resource usage prediction is be‑
tween the lower‑bound threshold and the upper‑
bound threshold, then the resource consumption
rate is considered ideal and thus there is no need to
perform any additional actions.

• Stage 3C. If the resource usage prediction is higher
than a speci ic upper‑bound threshold, then the pro‑
cessing node is considered over‑utilized and thus a
replication request is issued. Stage 4C takes place af‑
ter the creation of the new processing node. During
stage 4C, a fraction of the tasks that were assigned to
the over‑utilized processing node are redirected to
the newly created one.

The IPFT works jointly with a workload balancing me-
chanism that gives higher priority to the nodes with low
resource utilization predictions and lower priority to
the nodes with higher resource utilization predictions.
This is a common practice to many task of loading
mechanisms that use different criteria to balance the
workload [29]. As an example the MinMin task
of loading method prioritizes the smaller tasks to be
executed in the nodes that will be available sooner.
While the MaxMin task of loading method prioritizes
the larger tasks to be executed in the processing nodes
that will be available sooner. The size of the tasks is
estimated based on the number of its million
instructions or their estimated completion time. In this
way, IPFT modi ies the behaviour of the task of loading
mechanisms taking into consideration the resource
usage predictions for the migration of the tasks.

3.3 Threshold‑based decision making
Task migration and node replication occur when a re‑
source usage prediction metric is higher than a speci‑
ied threshold value. This type of threshold‑based ap‑
proach is used in many decision‑making mechanisms
in cloud/edge computing [30]. The IPFT involves two
thresholds. If the value of the resource utilization predic‑
tion is higher than the upper‑bound threshold, the IPFT
invokes a node replication process. If the prediction value
which corresponds to a speci ic processing node is lower
than lower‑bound threshold, then this particular proces-
sing node is turned off (e.g. for reducing the total
energy consumption [31]).
The appropriate selection of these two thresholds is inte‑
gral to the performance of the IPFT. A high value in the
upper‑bound threshold will result in a system which is
not sensitive and reactive enough to the workload luc‑
tuations. While a low value in the upper‑bound thre-
shold will make the system to react and trigger
unnecessary node replications. Similarly, the
lower‑bound threshold should be appropriately ine‑
tuned. A low value will make the infrastructure to
continue using under‑utilized processing nodes. A
high lower‑bound threshold will also turn off
processing nodes that are necessary to the smooth
operation of the edge infrastructure [32].
In order to identify the optimal threshold values, we pro‑
pose the use of a grid‑search approach that iteratively
tries sequential thresholds in order to converge close to
the optimal values. These values maximize the fault to-
lerance evaluation metrics of reliability and maintainabi-
lity, which will be extensively discussed in the
upcoming experimental section. The selection of the
threshold values is heavily dependant on the
characteristics of each application and the underlying
physical infrastructure. The literature provides
recommendations in similar problems and mechanisms
which, despite providing suboptimal results, serve as
valuable guidelines towards establishing some
standards regarding how these bounds are chosen [33].

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

765

Fig. 2 – The four stages of the IPFT pipeline which span over three distinct scenarios.

Given that the predictions are quite accurate and the
threshold values are chosen optimally, the resulting sys‑
tem is expected to be highly robust and able to pro‑
vide satisfying availability. For the best results, the re‑
source utilization predictions should derive from the re‑
source consumption behaviour of each individual pro‑
cessing node, while taking into consideration the overall
resource consumption behaviour of the entire edge com‑
puting infrastructure. In the next section we will describe
the deep learning model that predicts the resource utiliza‑
tion, as well as the way it simultaneously leverages the re‑
source consumption metrics of each individual node and
the entire edge infrastructure.
4. A COMPOSITE DEEP LEARNING ARCHI‑

TECTURE FOR RESOURCE USAGE PRE‑
DICTION

A composite deep learning network with the HBES model
is proposed to provide accurate resource utilization pre‑
dictions for the IPFT method. The composite deep lear-
ning network is designed to satisfy the particularities of
the edge infrastructure and the resource usage metrics.
Since resource metrics like CPU, RAM, disk, and
bandwidth have sequential dependence, RNN can
provide an appropriate type of neural layers. RNN
combines the advantages of deep learning with the
characteristics of time series forecasting. There are
different types of RNN architectures and the two most
prominent are the GRU and LSTM. Each individual
processing node is examined separately for future
possible process faults. However, in order to trigger
the node replication, the deep learning model of each
node should be aware of its own status and the whole

Fig. 3 – A pipeline from task production to advanced fault tolerance.

edge infrastructure status. In this paper, the edge node
which is examined is also called local and the whole edge
infrastructure is called global. Because the local and the
global status affect each other we propose the use of a
composite deep learning model that combines the two in
order to provide the local resource utilization predictions.
The way that these two different sources of information
are combined will be explained in the next subsection.

The work low of the resource usage prediction in an edge
computing environment is depicted in Fig. 3. In the be‑
ginning, the edge devices generate tasks which are par‑
tially or fully executed to the edge computing nodes. Du-
ring the task execution the nodes are monitored in
order to keep the resource utilization metrics. The
resource utilization metrics are provided to the composite
deep learning model in order to predict the resource
utilization in the next time horizon. Next, the resource

©International Telecommunication Union, 2022766

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

usage predictions can be used by a thresholding
method in order to trigger node replication and task
migration. In the following subsections, we will describe
the theory behind the key parts of composite neural
networks, the RNN and the HBES for the resource usage
prediction.

4.1 Two channel architecture for resource us‑
age prediction

The most commonly used architecture, when it comes to
neural networks, comprises of layers that are stacked one
after the other in a serial manner. Input data is fed to the
irst layer, and one by one each of the layers transform
the data and feed it to the next one. When building a neu‑
ral network however, we have the option of putting layers
or even a series of layers in parallel, to take advantage of
complex input structural properties. These parallel sec‑
tions of the network are processing different parts of the
data independently and subsequently concatenate their
output to send it to the inal section of the network. We
decided to use an architecture, such as the one described
above, utilizing two separate parallel series of layers (two
channels) [34]. This allows us to better handle the local
and global data metrics that are available.
The main advantage of using a multichannel neural net‑
work architecture is the ability to use different kinds of
layers in the input stage of the model. As an example,
many use cases from the literature use a convolutional
network and a feedforward network at the input stage
to accommodate data having both numerical and image
properties. Multiple channel neural network architec‑
tures have the advantage that they can group together the
data whose properties present high correlation [35]. This
happens by having different sequences of layers handling
different kind of data.
A multichannel neural network can be more time and
resource‑consuming to train and infer compared to a
vanilla serial neural network, because of its more com‑
plicated structure. We also cannot properly evaluate the
channels, or understand their individual effect when it
comes to the inal output of the model, since training is
performed start‑to‑ inish without giving us more details
about the process.
RNNs are a type of neural network that do particularly
well when facing problems with sequential data. They are
used to solve problems such as text prediction or voice
recognition, and they are deemed effective when dealing
with time series‑based problems as well. Consequently,
we chose to include an RNN in our model as the irst input
channel, since it is going to handle the sequential data of a
single node (i.e. the one that the model is actively trying to
predict). The input is the monitoring measurements with
an interval record of one minute. The channel consists of
one or two RNN layers followed by a feedforward layer,
and sends the results to the output part of the network.
For the second channel of the model, we chose to im‑
plement a feedforward network. This part is being fed
with the global monitoring state, as well as a transformed
timestamp feature that refers to the day of the week and

the part of the day. It is obvious that the chance that a
particular node to be overloaded in the immediate future
is tied closely to the state of the other nodes that are col‑
laborating with it to handle the requests. The channel of
the feedforward network includes dense layers, that also
have dropout layers in between. This architectural de‑
cision works as a regularization measure that stops our
model from over itting during training.
Once the channels handle the input part of the model,
their concatenated results are given to the output section
of the network. The goal of this combination is to take
into account the processed data and output a prediction
for the resource utilization of a particular node, in a suf‑
icient time horizon after the state/last input we fed to
the model. This is a feedforward neural network as well,
with dense and dropout layers until the output layer. The
choices regarding the merging of the two channels and the
concatenation size of the input section, are handled by the
hyper‑parameter selection algorithm.
In order to train itself on a dataset, the model tries to
predict the future state of a particular node based on the
complex input referring to both the local node in ques‑
tion and the global overall state. Once the model out‑
puts a prediction, it compares the prediction to the ac‑
tual output value utilizing a loss function. Loss functions
such as MAE or RMSE, are a way to tell how good or
bad a regressive model is at predicting the correct values.
Based on the error calculated, the model shifts its weights
and parameters using a variant of gradient descent, back‑
propagating through the network affecting all layers. A
function called optimizer is describing how the procedure
of weight‑shifting/network‑optimizing takes place. Both
the architecture, and the training of a neural network
provide us with many options and hyper‑parameters to
tweak. In order to ensure a quick and optimal choice
of hyper‑parameters for our model we implemented the
HBES algorithm that will ef iciently make these decisions.

4.2 Recurrent neural networks for time series
data

Arti icial neural networks can be de ined as function ap‑
proximators, mapping lower level data representations to
higher and disentangled data representations. RNN [7]
is a type of arti icial neural network, which facilitates dy‑
namic temporal behaviour, captures data sequences, and
maintains the previous input states.
The RNN architectural paradigm is based on vari‑
ous neuron‑like nodes organized into successive layers,
where each node is connected with nodes of the next suc‑
cessive layer and also has recurrent connections. Utili-
zing this particular concept, information regarding
previous data inputs is allowed to affect future outputs,
thus making RNN a solid option for time series modelling
while taking into account contextual information. By
monitoring edge computing infrastructures, we gather
sequential data and predict the future resource usage
metrics with RNN, based on their current and previous
values.

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

767

The main problem that RNN encounters is the vani-
shing gradient problem. This problem emerges during
the training stage of the RNN, when the gradients
become vanishing small preventing the weight
updates of the RNN. Various gate‑related architectures
have been introduced in order to tackle the vanishing
gradient problem. Through the use of gates, the network
is able to properly maintain relevant information and to
successfully pass it down to the next time steps. The
two most notable ones are the LSTM networks and the
GRU [8] networks.

4.3 Long short‑term memory
The LSTM network architecture was created to tackle the
problem of vanishing gradients in RNN. The importance
of using this complicated architecture can be highlighted
by pointing out how much context can be offered in in-
ding a solution. When dealing with a time series data
problem, such as predicting resource usage, we can get
much more useful information if we look at historical data
of our machines’ usage, rather than just glancing at their
current state. This way, we can better understand
concepts like trend, which can only be explained over
time. LSTMs, just like regular RNNs, utilize the hidden
state to connect the consequent nodes so as to enable
better understanding of temporal data. However, they
also use a cell state, which is another connection
between the nodes. Each LSTM cell can read from the
cell state, write to it or reset it via the use of gates.
There are three gates in total, each activated by a sigmoid
function. This ensures that the model remains differen‑
tiable, since sigmoid offers smooth curves in the range of
0 to 1. Each one of the gates takes as inputs the actual in‑
put as well as the hidden state of the previous time step.
In addition to the gates, a vector called C is responsible for
carrying the candidate information that can be added to
the cell state. C utilizes a tanh layer, which is in charge of
limiting the vanishing gradient phenomenon. To this ex‑
tent, the cell information can be kept longer without van‑
ishing. The way this is achieved is by keeping the gradi‑
ents zero‑centred, between the values of ‑1 and 1.
The input gate is handling incoming data, and controlling
whether the memory cell should be updated. It is applied
to C, and the result is then added to the cell state. The
sigmoid activation of the gate is used to either mitigate or
enhance the effect that the new information should have
on the cell state.
The forget gate is the entity that is responsible for selec-
ting the information that is deemed less important, and
it removes it from the cell state by soft‑resetting its
values. Additionally, by utilizing the sigmoid function, it
produces a scaled output for every value that is saved
in the cell state.
Finally, the output gate is the inal layer before the new
hidden state is produced. It uses the sigmoid function as
a ilter to be applied to the cell state after it goes through
a tanh layer irst. After this process is completed, both the

Fig. 4 – Integrated RNN in the resource usage prediction.

hidden state and the cell state compose the output of the
LSTM cell which will be inputted to the next time step.

4.4 Gated recurrent units
GRU and LSTM are similar as both of them manage to
prevent the vanishing gradient problem by utilizing gate
structures. What sets them apart is the fact that GRU com‑
bines the forget gate and input gate to form a single up‑
date gate. By reducing the number of gates involved, GRU
is able to provide less complex structures and thus, be
more computationally ef icient when compared to LSTM.
At the same time, GRU manages to perform equally well.
GRU networks also facilitate the hidden state mecha‑
nism which connects one unit of the network to the next,
thus allowing the manifestation of dynamic temporal be‑
haviour in a similar manner. Each GRU unit is indicative of
a speci ic time step that facilitates the transfer of impor‑
tant information through the time continuum. Further‑
more, it contains two distinct gate structures. The irst
one is referred to as the reset gate while the second one
is referred to as the update gate. They both bear sigmoid
layers which provide smooth curves in the 0 to 1 zone,
thus ensuring that the model will remain differentiable.
By squishing the values between 0 and 1, the sigmoid ac‑
tivation also helps the network learn which data is impor‑
tant or not and then accordingly keep it or forget it.
In order to contextualize the GRU paradigm in accordance
to edge computing, we input vectorized representations
with information such as the perspective timestamps, the
resource utilization of CPU, RAM, bandwidth, and disk
through the data preprocessing as illustrated in Fig. 4.
The functionality of GRU networks is carried out in the
form of the following steps. As explained before each GRU
uses a reset gate and an update gate. Each of these gates
has two weight matrices. The irst one corresponds to
the input while the second one corresponds to the hid‑
den state. The reset gate of GRU is responsible for deci-
ding how much of the past information shall be
forgotten. Much like in the case of LSTMs, the irst step
is to multiply the input and the hidden state by their
corresponding weights. The sum of the multiplication
results is then passed through a sigmoid layer.
The update gate is in charge of determining how much
of the information gathered over the previous time steps
needs to be passed along for future use. In this regard,
its behaviour is quite similar to the one of the reset gate.
The irst step requires the multiplication of the input and

©International Telecommunication Union, 2022768

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

the hidden state by their perspective weights. The
hidden state entails information derived from the
previous 𝑡 − 1 units. Then, the multiplication results are
added together and passed through a sigmoid layer. The
output of the up‑ date gate will be referred to as 𝑢.
The next step is to create a candidate new hidden state.
Similarly, to the reset and update gates, there are also
two weight matrices involved. The irst one corresponds
to the input and the second one corresponds to the
hidden state. The irst step towards creating a candidate
new hidden state is to multiply the input by its
correspond‑ ing weights. The second step is to calculate
the Hadamard product in an element‑wise manner
between the hidden state and the output of the reset
gate. This process is es‑ sential for deciding how much of
the information gathe‑ red during the previous time
steps will be removed. The Hadamard product is then
multiplied by the weights of the hidden state. The results
of the two multiplications are then added together. The
sum is passed through a tanh layer, which minimizes the
effects of the vanishing gradient phenomenon. This is
performed by distributing the gradients in a suf icient
manner, within a zero‑centred range. Thus, it enables the
information to low longer without vanishing. The
product of the operations so far is the candidate new
hidden state will be referred to as ℎ′.
In order to get the updated hidden state, the irst step re‑
quired is to perform element‑wise multiplication to the
output of the update gate and the hidden state. The se-
cond one is to perform element‑wise multiplication to
the ℎ′ and the product of 1 − 𝑢. The updated hidden
state is the sum of the two multiplication products.
The updated hidden state is then carried over to the
next GRU unit, which corresponds to the next time step.

4.5 Evolutionary strategy
Evolutionary strategy [36] belongs to the category of
evolutionary algorithms that are population‑based meta‑
heuristic optimization approaches inspired by the prin‑
ciples of biological evolution. The formulation of evolu‑
tion strategy is based on successive iterations of muta‑
tion and selection over a population of candidate solu‑
tions. The candidate solutions, also named individuals,
are initialised in random positions in an n‑dimensional
space and move toward positions that minimize an objec‑
tive function. These dimensions are the numerical GRU‑
RNN hyper‑paramaters that should be optimized.
For the needs of hyper‑tuning GRU‑RNN, we used its nu‑
merical hyper‑parameters as the search space of the evo‑
lution strategy and the mean squared error of the can‑
didate RNN as the itness function. In each iteration, a
number of RNNs are trained and evaluated with the mean
squared error, whereas the most accurate of them are mu‑
tated to the next iteration. The mutation is a stochastic
process based on a normal distribution that introduces
variations in the best it individuals of each iteration. In
the beginning, the exploration for different candidate so‑

lutions is intensive, making stronger mutations towards
new areas of the search space. In each iteration the explo‑
ration decreases and the exploitation of the best it indi‑
viduals increase using a self‑adaptation control variable.
This means that the mutation introduces strong varia‑
tions in the irst iterations and the variations decay as the
evolution progresses in order to converge to a close to op‑
timal RNN architecture.

Hyper‑tuning deep learning models with an evolution
strategy in contrast with other evolution algorithms, like
genetic algorithms, has the advantage of not recombining
different neural network topologies that may have signi i‑
cant discrepancies in their phenotypes. This happens be‑
cause the crossover of the genetic algorithm has the dif‑
iculty that the parents may have different architectures
that cannot be uni ied in their offspring. A typical exam‑
ple is if the one parent is a 2 layered LSTM‑RNN followed
with 6 dense layers and the second parent is a 2 layered
GRU‑RNN followed with 4 dense layers. Thus, the pheno‑
types of LSTM and GRU cannot be smoothly recombined.
On the other hand, evolution strategy is based only in the
selection and the mutation which smoothly lead the evo‑
lution process. Speci ically, the mutation operations in‑
troduce variations into the survived candidates providing
the opportunity to test neighbour solutions that may lead
to an improved itness value.

4.6 Bayesian optimization
Bayesian optimization [37] is widely used to estimate
hyper‑parameters in machine learning and deep lear-
ning models. It was an obvious option for the
searching process in the categorical dimensional space,
in order to ind the close to optimal nominal
hyper‑parameters of the RNN. Bayesian optimization
iteratively requests new observations of the search
space with an acquisition function and estimates the
objective function with a surrogate function. The
increase of the Bayesian optimization observations gives
a higher probability for the global optimum location.
Nonetheless, we should take into consideration that the
number of observations are inite and computationally
expensive so the smart search process should select
points that maximize the probability to ind a new
optimal following an exploration vs exploitation
trade‑off.
The surrogate function approximates the objective one
and is updated every time the objective function is evalu‑
ated in the new candidate points. The acquisition function
decides where to sample next in the iterative process of
Bayesian optimization, inding the points that maximize
the expected improvement. The expected improvement
is a function of two components. The irst estimates the
regions that the surrogate function has optimal points and
the second estimates the regions with high prediction un‑
certainty that have not explored ef iciently yet.

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

769

Fig. 5 – The four main steps of the HBES process for close to optimal RNN optimization.

4.7 Hybrid evolution strategy with Bayesian
optimization

The hyper‑parameter optimization for a composite neural
network is a prominent challenge as it includes the impor‑
tant architectural decisions for a close to optimal topo-
logy. The HBES constitutes an innovative, holistic and
uni ied approach for hyper‑tuning by merging the
evolution strategy and Bayesian optimization
methodologies. The evolution strategy is responsible for
evolving a population of candidate deep learning models
based on their numerical hyper‑parameters and each
individual candidate solution estimates its nominal
hyper‑parameters with the Bayesian optimization as it is
described in Algorithm 1. The numerical
hyper‑parameters are the number of recurrent layers
and feedforward layers, the number of neurons for each
layer, the lookback, epochs, the batch size, and the
percentage of dropout and learning rate. The nominal
hyper‑parameters are the type of neural layers, the
activation functions and the optimizers. The gained
knowledge of the nominal hyper‑parameters is universal
through the population and updated by all the indivi-
duals over the generations. The ultimate goal of HBES
is through the Bayesian evolution process to converge
to a close to optimal solution and to train deep learning
mod‑ els that can predict timely and accurately the
resource utilization of the next time steps. The four
main HBES steps for one iteration of the individuals
evolution are illustrated in Fig. 5.

5. EXPERIMENTAL EVALUATION
To evaluate the IPFT methodology, we make two types
of experiments. First, we experimentally evaluate and
compare the applicability of RNN with the HBES against
state‑of‑the‑art methods using a real dataset. This dataset
is constructed by monitoring Raspberry Pi’s in an edge
computing infrastructure. Next, we leverage the resource
utilization prediction model in order to develop an IPFT
mechanism that takes intelligent replication and migra‑
tion decisions in a suf icient time before the process faults
occur. The suf icient time in the context of intelligent

Algorithm 1 Hybrid Bayesian and evolution strategy
Step 1: Initialization of evolution strategy

Set the starting search point of the algorithm.
Usually 𝑎1=[0.5, 0.5, ..., 0.5] since we have
already scaled our hyper‑parameter options
down to [0,1]

Step 2: for i = 1, 2, ..., 𝑛𝑝𝑜𝑝:
i) add some random noise to the search point
ii) Scale back from [0,1] to the hyper‑parameter
search space to create the ordinal
hyper‑parameter values for the network to be
trained
iii) Bayesian optimization with GP
1) Apply a Gaussian process prior on 𝑓
2) Observe 𝑓 at 𝑛0 points according to an
initial experimental design

3) Initialize 𝑛 = 𝑛0
4) Repeat while 𝑛 ≤ 𝑁
a) Update the posterior probability
distribution on 𝑓 using all available
data
b) Let 𝑥𝑛 be a maximizer of the
acquisition function over x.
c) Observe 𝑦𝑛 = 𝑓(𝑥𝑛, 𝑥𝑖(𝑡 + 1), 𝑣𝑖(𝑡 + 1))
d) 𝑛 ← (𝑛 + 1)

Step 3: Sort the results and its corresponding
hyper‑parameters

Step 4: Calculate the new search point by
averaging the points of the 𝑡𝑜𝑝𝑛 networks

Step 5: Go to Step 2 until desired number of
iterations is completed

©International Telecommunication Union, 2022770

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

replication and migration involves the service deploy‑
ment time of the processing nodes and the scheduling of
the new tasks on that node. The experimental evaluation
of IPFT took place in a seven day edge computing simula‑
tion using the CloudSim Plus framework [38]

5.1 Experimental evaluation in resourceusage
prediction

The edge infrastructure we used includes Raspberry Pi3
as processing nodes with a 64‑bit quad‑core ARM Cortex‑
A53 at 1.4GHz, loaded with Raspbian operating system
which is a version of Debian Linux. The dataset con‑
structed by a monitoring tool implemented in Python 3
using the libraries psutil [39] and GPUtil [40]. We mo-
nitored the real‑time usage of CPU, RAM, disk and
bandwidth in one second time interval.
The deployed application was a natural language proces-
sing text classi ication. The use case was to make the
text classi ication on an edge computing environment,
locally, close to the text owners and not in cloud
computing infrastructures for privacy issues. The reason
for this choice is that the text owners did not agree for
their texts to be transferred and processed in remote
servers. In order to control the application remotely and
take the resource us‑ age datasets we used the SSH
protocol, but we did not have the privileges to access
the processed texts.

5.1.1 Model implementation and frameworks
for comparison

The HBES model and the RNN multi‑output regression
model are implemented in Python 3 using the frame‑
works NumPy, pandas, statistics, Scikit‑learn, SciPy,
Scikit‑Optimize, TensorFlow 2 and Keras. The environ‑
ment we used for the training and the evaluation of the
model was the Jupyter notebook of the Google Colabora‑
tory. The experiments’ source code is available for any
kind of reproduction and re‑examination in our GitHub
repository [41]. In this experimental setup we used the
HBES with GRU as RNN and compared the results with
a time series baseline approach, the machine learning
meta‑model for resource usage prediction AUCROP, the
uto‑sklearn, the XGBoost, our previous LSTM with genetic
algorithm model (GA‑LSTM) [9] and the Keras‑Tuner.

5.1.2 Evaluation results and discussion
Our initial time‑series analysis provided results which in‑
dicate positive correlations for lags in a value range from
1 to 22. This inding con irms the strong self‑similarity
property that the sequences of resource usage metrics
have. Afterwards, using the ARIMA forecasting model we
evaluated the resource metrics predictions. For instance,
the CPU RMSE was 18.474. After comparing the results of
the statistical models with the ones of the machine lear-
ning and deep learning approaches we found that the
latter had an improvement that surpasses the 20% RMSE

Fig. 6 – GRU‑RNN with HBES prediction errors of resource usage met‑
rics.

in most cases. Because of that, we decided to focus our
research on the machine learning and deep learning
models. Table 1 summarizes the experimental results.
The irst two columns provide the aggregated RMSE
and MAE including all testing values of the devices, and
the resource metrics. For RMSE, which gives an extra
penalty to predictions with signi icant errors, we can
see that HBES‑ GRU had the best performance. In the
column entitled MAE, we see that the two best models are
the auto‑sklearn and HBES‑GRU. Their prediction errors
are very close and they have a signi icantly better
performance compared to other models.
CPU‑1 and RAM‑1 columns represent the RMSE and MAE
for the processing edge node which had the least accurate
predictions in the infrastructure. In addition, Fig. 6 illus‑
trates the 25th and 75th percentile, the median, the min
and the max of the error value metrics. These metrics in‑
clude CPU, RAM, disk usage, and bandwidth in terms of
the bytes sent and received. Regarding the disk usage and
the bandwidth the prediction errors were insigni icant.
This is not only due to the ability of the HBES‑GRU to pro‑
vide accurate predictions, but due to the small luctuation
in these two resource metrics as well. The luctuation in
CPU is much greater than in RAM and HBES‑GRU captures
in a better way the various changes when compared to
the other models. XGBoost has better performance than
HBES‑GRU in RAM. This may be justi ied by the ensemble
structure that XGBoost has. XGBoost can build speci ic de‑
cision trees for the residuals of RAM and target on its slow
change behaviour.
Lastly, we see the inference times of the models which are
required in order to provide a single prediction or a batch
with one hundred predictions. All time measurements
are in seconds. All the inference times, except from auto‑
sklearn, are within a range from 11 to 60 msec. These in‑
ference times indicate that resource usage prediction is
a rather fast process which can be incorporated in time
sensitive applications. In this research we did not com‑
pare the training times because we wanted to make an ex‑
haustive smart search in the hypothesis space and see the
limits of accuracy that the different models can achieve.
It is worth noting that we have made experiments using a
wide range of time‑frames. However, the measurements
in Table 1 are produced using a 10 minute time‑frame. We
chose to illustrate this time‑frame because it is close to the
actual time which is required for the deployment time of
a node. From the results we see that even if GRUs are sim‑
pler in their structure compared to LSTMs, due to their

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

771

Table 1 – Comparison of single‑output & multi‑output prediction methods of resource usage metrics.

Method RMSE MAE CPU‑1 (%)
RMSE MAE

RAM‑1 (%)
RMSE MAE

Infer. Time
Single Batch

HBES‑GRU 0.0641 0.0276 15.918 12.815 1.694 0.580 0.033 0.038
GA‑LSTM 0.0674 0.0338 16.099 12.838 1.746 0.917 0.020 0.024
Keras‑Tuner 0.0785 0.0377 16.291 13.290 2.631 0.818 0.042 0.042
AUCROP 0.0814 0.0414 17.235 14.009 2.480 1.482 0.004 0.011
XGBoost 0.1139 0.0599 16.457 13.569 1.515 0.472 0.060 0.010
Auto‑sklearn 0.1055 0.0243 52.659 17.856 1.546 0.526 0.263 0.572

lack of a dedicated output gate, they had slightly better
performance.
Furthermore, the conducted experiments enabled us to
reach the following conclusions:

• In most metrics the deep learning models (HBES‑
GRU, GA‑LSTM, Keras‑Tuner) have better perfor‑
mance than machine learning models (AUCROP, XG‑
Boost, auto‑sklearn).

• The evolutionary algorithms for hyper‑tuning
(HBES‑GRU and GA‑LSTM) have better performance
compared with the simple Bayesian optimization
(Keras‑Tuner).

• One can witness a signi icant improvement when
using the hybrid Bayesian and evolution strategy
approach instead of simple genetic algorithms.

5.1.3 Convergence of hybrid Bayesian evolution
strategy

The convergence and the location of the global optimum
are two of the most important topics in the domain of evo‑
lutionary algorithms. The convergence means that as the
population evolves, the individuals go closer to the op‑
timal solution shrinking their divergence. However, we
cannot be sure if the convergence points in the genotype
space constitute a global or local minimum. For this rea‑
son, the HBES algorithm in the beginning of the evolu‑
tion process expresses a strong variance in the mutation
which decays over iterations. Concurrently, we keep the
best genotype found over all the iterations.
The convergence of HBES is illustrated in Fig. 7. We ob‑
serve that in the beginning the average population error
per iteration luctuated strongly. In some iterations it is
trapped in local minima as an example between the
iterations six to eleven. In some other iterations it
lays in plateau regions, such as between iterations
twenty to twenty ive. Yet, using the mutation the
individuals eventually escape from the plateau regions
and the local minima and move towards close to optimal
regions.
These close to optimal regions in the genotype space are
decoded to the close to optimal GRU‑RNN architectures
in the phenotype space. These GRU‑RNN architectures
provide the most accurate resource usage predictions for
CPU, RAM, disk, and bandwidth usage in an edge compu-
ting infrastructure.

Fig. 7 – The convergence of HBES for close to optimal RNN.

5.2 Experimental evaluation in proactive fault
tolerance

The promising experimental results of the HBES with
RNN in regards to resource usage prediction, motivated
us to continue the experiments in order to evaluate its
applicability as a proactive fault tolerance mechanism.
Speci ically, we used the HBES to make a smart search in
candidate two‑channel deep learning models and applied
the thresholding method as described in Section 4.

5.2.1 Experimental simulation

The composite deep learning model was integrated in an
edge simulation of CloudSim Plus. We simulated an edge
infrastructure that consists of a set of nodes, ive avail‑
able to us by default, and another 15 that can be acti‑
vated for intelligent replication when needed. We si‑
mulated the local and global resource monitoring
process, measuring CPU, RAM and bandwidth values,
and saving those values every 60 seconds (time step).
The task of loader of the infrastructure was receiving
incoming traf ic and was assigning each task on a node,
based on the following scheduling algorithms:
RoundRobin, MinMin, and MaxMin.
The local and global resource usage metrics are being
monitored and then fed to the IPFT mechanisms of each
processing node. During every single time step we use
the monitoring data in order to formulate the appropriate
data representations, featuring the past time‑series mea‑
surements of a single node, as well as the state of the in‑

©International Telecommunication Union, 2022772

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

frastructure as a whole. The input is then fed to the com‑
posite deep learning model, enabling it to make predic‑
tions of resource usage for every node in a time horizon
of 10 minutes. In this experimental setup we made the
assumption that the preparation time for the infrastruc‑
ture to assure its availability and robustness to faults is
10 minutes.
The simulation lasted for seven days and the tasks were
generated by a mixture of Gaussian probability distribu‑
tions that simulate a realistic application workload be‑
haviour [42]. The processing nodes simulated the pro‑
cessing capabilities of Raspberry Pi’s. We de ined a pro‑
cess fault if the time execution of a task lasts more than
one second. The selection of one second is a reasonably
acceptable latency for several data analytic applications
[43]. Trying different latency times for the process faults,
we noticed that the IPFT performance was better than
the reactive approach. In the reactive fault tolerance ap‑
proach, a node replication is triggered in case of a fault is
taking place. In Table 2, as we will thoroughly discuss in
the next section, we compare the IPFT mechanism to the
reactive fault tolerance approach.

5.2.2 Fault tolerance evaluation metrics
In order to evaluate the performance of the IPFT mecha‑
nisms, we used a set of fault tolerance evaluation metrics
[44]. Mean Time To Failure (MTTF) is de ined as the ex‑
pected time for a failure to occur given that the system
functions properly. MTTF is an evaluation metric which
corresponds to the overall inability of the edge infrastruc‑
ture to operate properly and thus, it is calculated by taking
into consideration the number of faults regardless of the
actual processing node that failed. Mean Time To Repair
(MTTR) is de ined as the expected time required to repair
the system after a failure occurs. For the MTTF the higher
values are better and for MTTR the lower values are bet‑
ter. These evaluation metrics are calculated in terms of
seconds.
Two additional fault tolerance evaluation metrics are reli‑
ability and maintainability. Reliability refers to the ability
of an edge infrastructure to run continuously without any
failure. Maintainability refers to how easily a failed sys‑
tem can be repaired. Both reliability and maintainability
are numbers with no units and higher values mean better
performance.

5.2.3 Evaluation results and discussion
The experimental results are summarized in Table 2. We
compared the IPFT mechanism to the Reactive Fault To‑
lerance (RFT) approach. The RFT approach
performs node replications after a fault occurs.
Regarding the task of loading algorithm we used the
Round Robin (RR) [45], the MinMin and MaxMin [46].
The experimental results show the superiority of IPFT
compared to the RFT in all evaluation metrics. In
addition we see that the outcomes are signi icantly
affected from the task of loading mechanism.

This happens because the task of loading algorithms
also integrate a workload balancing methodology with
different criteria as we will discuss in the following
paragraphs.
The number of generated tasks in all experimental se‑
tups was close to 1,500,000 with some parts of the day
having an intensive task generation (i.e., 11:00 ‑13:00),
while some other parts of the day a small number of
tasks (i.e., 02:00 ‑ 04:00). We simulated this task genera‑
tion behaviour because it is close to the activity of many
user applications during a day. In this way, we observed
that the infrastructure made intelligent replications du-
ring the parts of the day with an increased task
generation. Respectively, the infrastructure turned off the
edge nodes when the IPFT mechanism predicted an
under‑utilization of the processing nodes. Sometimes
there were some sudden spikes or drops in task
generation and resource utilization, but the
infrastructure using the IPFT mechanism could
dynamically and timely adapt.
In Table 2, we can see that in RR, MaxMin and MinMin the
MTTF in IPFT has been increased compared to the RFT.
This means that leveraging the resource usage predic‑
tions, faults occur more sparsely and rarely. We can see
from the MTTR metric that in the event of a fault, the in‑
frastructure will recover very quickly, scheduling the new
tasks in processing nodes with low resource utilization.
The reliability metric shows that by using the IPFT, the
edge infrastructure can provide the expected results up
to 93% of the simulation length, even during the stress‑
ing time periods of the simulated days. The signi icant
improvement noticed for the maintainability metric, de‑
clares that even if a fault occurs, the IPFT will increase
the robustness of the edge infrastructure. In other words,
the IPFT will take timely the right measures by triggering
node replication and task migration, in order to reduce
the likelihood of subsequent fault occurrence.
A fault is recorded taking into consideration all the edge
nodes that are currently active. This means that the MTTF
value of 13.309 seconds in IPFT MaxMin includes the
faults of different edge nodes. In addition to that, some
generated tasks had a large number of million instruc‑
tions that would have provoked a fault because of the
CPU unavailability in the processing nodes. In this case,
we wanted to know how these tasks affect the MTTF and
MTTR. From the analysis of the results we saw that the
variance of the task size is the reason that we see that the
three different task of loading mechanisms have different
performance. In particular, the MaxMin algorithm gives
higher priority in big tasks, thus we see a signi icantly bet‑
ter MTTF metric.
During the simulation we examined the IPFT decisions
and how the edge environment operates. The simula‑
tion con irmed that the infrastructure takes advantage
of the timely decision to trigger proactive actions, such
as intelligent node replication and task migration before
the amount of tasks overwhelms the processing nodes.
This can be particularly important for the infrastructure
provider as it can save costs and energy, by shutting down

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

773

Table 2 – Evaluation of reactive and intelligent proactive fault tolerance
methods

MTTF MTTR Reliab Maint
RFT RR 2.864 19.657 0.741 0.048
IPFT RR 9.506 3.343 0.904 0.230
RFT MinMin 8.733 36.169 0.897 0.026
IPFT MinMin 8.919 5.656 0.899 0.150
RFT MaxMin 3.721 24.239 0.788 0.039
IPFT MaxMin 13.309 7.425 0.930 0.118

nodes when they are no longer needed. Additionally, the
provider can achieve a smoother low of on‑time com‑
pleted tasks, avoiding crashes and minimizing QoS dete‑
rioration.
In regards to the actual cost of implementing the pro‑
posed IPFT paradigm, the consumption of computational
resources was 3.2% greater when compared to the reac‑
tive approach. Furthermore, the burden imposed on the
network infrastructure was about 10 bytes per second,
due to the information low that derived from the need
of the prediction model to have access to the ongoing re‑
source usage. Finally, the incorporation of the prediction
mechanism used around 125MB of RAM and increased
CPU consumption by around 47% for an average of 2250
ms on an Intel Xeon E312xx CPU. When contemplating the
substantial bene its provided by the IPFT approach, we
believe that the overall implementation cost is justi ied
and quite reasonable.

6. CONCLUSION
In this paper, we proposed a proactive fault tolerance
mechanism in an edge computing infrastructure based
on the resource usage predictions. In the beginning we
discussed and experimentally evaluated the use of RNN
for resource usage modelling. We developed a com‑
posite deep learning model that leverages in two chan‑
nels the resource usage metrics of the local processing
nodes and the infrastructure as a whole. We also de‑
signed a hyper‑tuning algorithm that combines an evolu‑
tion strategy with Bayesian optimization and surpasses
commonly‑used hyper‑tuners like Keras‑Tuner and other
state‑of‑the‑art machine learning models. Last but not
least, we presented how a proactive fault tolerance me-
chanism can leverage the resource usage predictions
trig‑ gering node replication and task migration.
Our experiments and results corroborated the ef iciency
of our proactive fault tolerance methodology, the appli‑
cability of RNN and the two‑channel architecture for the
resource usage prediction. The limitation of our work is
that we have not yet holistically worked with other types
of faults like network faults, physical faults and service ex‑
piry faults. Our future work is to make data analysis and
ind the execution patterns in the edge resources that are
related with these types of faults. In addition, we want to
see how different threshold values affect the performance
of the IPFT. Speci ically, we plan to further investigate the
resource usage metric threshold for triggering the node

replication and task migration and the time intervals for
monitoring the time series metrics.

ACKNOWLEDGEMENT
This work is part of the ACCORDION and CHARITY
projects that have received funding from the European
Union’s Horizon 2020 research and innovation pro‑
gramme under grant agreements No 871793” and No
101016509”.

REFERENCES
[1] Theodoros Theodoropoulos, Antonios Makris, Ab‑

derrahmane Boudi, Tarik Taleb, Uwe Herzog, Luis
Rosa, Luis Cordeiro, Konstantinos Tserpes, Elena
Spatafora, Alessandro Romussi, Enrico Zschau,
Manos Kamarianakis, Antonis Protopsaltis, George
Papagiannakis, and Patrizio Dazzi. “Cloud‑based
XR Services: A Survey on Relevant Challenges
and Enabling Technologies”. en. In: Journal of Net‑
working and Network Applications 2.1 (Feb. 2022).
Publisher: Institute of Electronics and Computer,
pp. 1–22. ISSN: 2689‑7997. DOI: 10 . 33969 / J -
NaNA.2022.020101. URL: https://iecscience.
org / jpapers / 100 # abstract (visited on
07/09/2022).

[2] Kevin Boos, David Chu, and Eduardo Cuervo.
“Demo: FlashBack: Immersive Virtual Reality on
Mobile Devices via Rendering Memoization”. In:
Proceedings of the 14th Annual International Con‑
ference on Mobile Systems, Applications, and Ser‑
vices Companion. MobiSys ’16 Companion. New
York, NY, USA: Association for Computing Machi‑
nery, June 2016, p. 94. ISBN:
978‑1‑4503‑4416‑6. DOI: 10 . 1145 / 2938559 .
2938583. URL: https : //
doi.org/10.1145/2938559.2938583 (visited on
07/09/2022).

[3] Claudia Campolo, Gianmarco Lia, Marica Amadeo,
Giuseppe Ruggeri, Antonio Iera, and Antonella
Molinaro. “Towards Named AI Networking: Unvei‑
ling the Potential of NDN for Edge AI”. en. In:
Ad‑Hoc, Mobile, and Wireless Networks. Ed. by Luigi
Alfredo Grieco, Gennaro Boggia, Giuseppe Piro,
Yaser Jarar‑ weh, and Claudia Campolo. Lecture
Notes in Com‑ puter Science. Cham: Springer
International Pub‑ lishing, 2020, pp. 16–22. ISBN:
978‑3‑030‑61746‑2. DOI:
10.1007/978-3-030-61746-2_2.

[4] Aroosa Hameed, John Violos, Nina Santi, Aris
Leivadeas, and Nathalie Mitton. “A Machine Lear‑
ning Regression Approach for Throughput
Esti‑ mation in an IoT Environment”. In: 2021
IEEE International Conferences on Internet of
Things (iThings) and IEEE Green Computing
Communica‑ tions (GreenCom) and IEEE Cyber,
Physical Social Computing (CPSCom) and IEEE

©International Telecommunication Union, 2022774

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

https://doi.org/10.33969/J-NaNA.2022.020101
https://doi.org/10.33969/J-NaNA.2022.020101
https://iecscience.org/jpapers/100#abstract
https://iecscience.org/jpapers/100#abstract
https://doi.org/10.1145/2938559.2938583
https://doi.org/10.1145/2938559.2938583
https://doi.org/10.1145/2938559.2938583
https://doi.org/10.1007/978-3-030-61746-2_2

Smart Data (Smart-Data) and IEEE Congress on
Cybermatics (Cyber‑ matics). Dec. 2021, pp. 29–
36. DOI: 10 . 1109 /iThings - GreenCom -
CPSCom - SmartData -
Cybermatics53846.2021.00020.

[5] Antonio Petrosino, Giancarlo Sciddurlo, Giovanni
Grieco, Awais Aziz Shah, Giuseppe Piro, Luigi Al‑
fredo Grieco, and Gennaro Boggia. “Dynamic Ma‑
nagement of Forwarding Rules in a T‑SDN
Architecture with Energy and Bandwidth
Constraints”. en. In: Ad‑Hoc, Mobile, and Wireless
Networks. Ed. by Luigi Alfredo Grieco, Gennaro
Boggia, Giuseppe Piro, Yaser Jararweh, and Claudia
Campolo. Lecture Notes in Computer Science.
Cham: Springer Inter‑ national Publishing, 2020,
pp. 3–15. ISBN: 978‑3‑ 030‑61746‑2. DOI:
10.1007/978-3-030-61746-2_1.

[6] Farhan Nisar and Bilal Ahmed. “Resource Utiliza‑
tion in Data Center by Applying ARIMA Approach”.
en. In: Intelligent Technologies and Applications.
Ed. by Imran Sarwar Bajwa, Tatjana Sibalija, and
Dayang Norhayati Abang Jawawi. Communications
in Computer and Information Science. Singapore:
Springer, 2020. ISBN: 9789811552328. DOI: 10 .
1007/978-981-15-5232-8_64.

[7] B. Shiva Prakash, K. V. Sanjeev, Ramesh Prakash,
and K. Chandrasekaran. “A Survey on Recur‑
rent Neural Network Architectures for Sequential
Learning”. en. In: Soft Computing for Problem Sol-
ving. Ed. by Jagdish Chand Bansal, Kedar Nath
Das, Atulya Nagar, Kusum Deep, and Akshay
Kumar Ojha. Advances in Intelligent Systems and
Computing. Singapore: Springer, 2019, pp. 57–
66. ISBN: 9789811315954. DOI: 10 . 1007 / 978 -
981 - 13 -1595-4_5.

[8] Guizhu Shen, Qingping Tan, Haoyu Zhang, Ping
Zeng, and Jianjun Xu. “Deep Learning with Gated
Recurrent Unit Networks for Financial Sequence
Predictions”. en. In: Procedia Computer Science. Re‑
cent Advancement in Information and Communi‑
cation Technology: 131 (Jan. 2018), pp. 895–903.
ISSN: 1877‑0509. DOI: 10.1016/j.procs.2018.
04.298. URL: https://www.sciencedirect.com/
science / article / pii / S1877050918306781
(visited on 02/21/2021).

[9] John Violos, Evangelos Psomakelis, Dimitrios
Danopoulos, Stylianos Tsanakas, and Theodora
Varvarigou. “Using LSTM Neural Networks as
Resource Utilization Predictors: The Case of
Training Deep Learning Models on the Edge”. en.
In: Economics of Grids, Clouds, Systems, and Ser‑
vices. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 67–
74. ISBN: 978‑3‑030‑63058‑4. DOI: 10.1007/978-
3-030-63058-4_6.

[10] Tong Yu and Hong Zhu. “Hyper‑Parameter Opti‑
mization: A Review of Algorithms and Applica‑
tions”. In: arXiv:2003.05689 [cs, stat] (Mar. 2020).
arXiv: 2003.05689. URL: http://arxiv.org/abs/
2003.05689 (visited on 02/21/2021).

[11] Seong Yeol An, Yoon Seok Cha, Eun Jin Jeon, Gwi
Yeong Gwon, Byeong Chun Shin, and Byeong Rae
Cha. “A Pre‑Study on the Open Source Prometheus
Monitoring System”. kor. In: Smart Media Journal
10.2 (2021). Publisher: THE KOREAN INSTITUTE
OF SMART MEDIA, pp. 110–118. ISSN: 2287‑1322.
DOI: 10 . 30693 / SMJ . 2021 . 10 . 2 . 110.
URL: https : / / www . koreascience . or . kr /
article/JAKO202130053181362.view?orgId=
anpor&hide=breadcrumb, journalinfo (visited
on 01/25/2022).

[12] Rong Chen, Youyang Yao, Peng Wang, Kaiyuan
Zhang, Zhaoguo Wang, Haibing Guan, Binyu
Zang, and Haibo Chen. “Replication‑Based Fault‑
Tolerance for Large‑Scale Graph Processing”. In:
IEEE Transactions on Parallel and Distributed
Systems 29.7 (July 2018). Conference Name:
IEEE Transactions on Parallel and Distributed
Systems, pp. 1621–1635. ISSN: 1558‑2183. DOI:
10.1109/TPDS.2017.2703904.

[13] Transient fault aware application partitioning com‑
putational of loading algorithm in microservices
based mobile cloudlet networks | SpringerLink. URL:
https : / / link . springer . com / article /
10 . 1007 / s00607 - 019 - 00733 - 4 (visited on
01/25/2022).

[14] Pekka Karhula, Jan Janak, and Henning
Schulzrinne. “Checkpointing and Migration of
IoT Edge Functions”. In: Proceedings of the 2nd
International Workshop on Edge Systems, Ana‑
lytics and Networking. EdgeSys ’19. New York,
NY, USA: Association for Computing Machinery,
Mar. 2019, pp. 60–65. ISBN: 978‑1‑4503‑6275‑7.
DOI: 10 . 1145 / 3301418 . 3313947. URL: https :
//doi.org/10.1145/3301418.3313947 (visited
on 01/25/2022).

[15] Yuli Tian, Jeff Tian, and Ning Li. “Cloud reliability
and ef iciency improvement via failure risk based
proactive actions”. en. In: Journal of Systems and
Software 163 (May 2020), p. 110524. ISSN: 0164‑
1212. DOI: 10.1016/j.jss.2020.110524. URL:
https://www.sciencedirect.com/science/
article / pii / S0164121220300078 (visited on
01/25/2022).

[16] Alexander Power and Gerald Kotonya. “AMicroser‑
vices Architecture for Reactive and Proactive Fault
Tolerance in IoT Systems”. In: 2018 IEEE 19th In‑
ternational Symposium on ”AWorld of Wireless, Mo‑
bile and Multimedia Networks” (WoWMoM). June
2018, pp. 588–599. DOI: 10.1109/WoWMoM.2018.
8449789.

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

775

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00020
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00020
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00020
https://doi.org/10.1007/978-3-030-61746-2_1
https://doi.org/10.1007/978-3-030-61746-2_1
https://doi.org/10.1007/978-981-15-5232-8_64
https://doi.org/10.1007/978-981-15-5232-8_64
https://doi.org/10.1007/978-981-13-1595-4_5
https://doi.org/10.1007/978-981-13-1595-4_5
https://doi.org/10.1016/j.procs.2018.04.298
https://doi.org/10.1016/j.procs.2018.04.298
https://www.sciencedirect.com/science/article/pii/S1877050918306781
https://www.sciencedirect.com/science/article/pii/S1877050918306781
https://doi.org/10.1007/978-3-030-63058-4_6
https://doi.org/10.1007/978-3-030-63058-4_6
http://arxiv.org/abs/2003.05689
http://arxiv.org/abs/2003.05689
https://doi.org/10.30693/SMJ.2021.10.2.110
https://www.koreascience.or.kr/article/JAKO202130053181362.view?orgId=anpor&hide=breadcrumb,journalinfo
https://www.koreascience.or.kr/article/JAKO202130053181362.view?orgId=anpor&hide=breadcrumb,journalinfo
https://www.koreascience.or.kr/article/JAKO202130053181362.view?orgId=anpor&hide=breadcrumb,journalinfo
https://doi.org/10.1109/TPDS.2017.2703904
https://link.springer.com/article/10.1007/s00607-019-00733-4
https://link.springer.com/article/10.1007/s00607-019-00733-4
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1016/j.jss.2020.110524
https://www.sciencedirect.com/science/article/pii/S0164121220300078
https://www.sciencedirect.com/science/article/pii/S0164121220300078
https://doi.org/10.1109/WoWMoM.2018.8449789
https://doi.org/10.1109/WoWMoM.2018.8449789

[17] Theodoros Theodoropoulos, Antonios Makris,
John Violos, and Konstantinos Tserpes. “An au‑
tomated pipeline for advanced fault tolerance in
edge computing infrastructures”. In: Proceedings
of the 2nd Workshop on Flexible Resource and
Application Management on the Edge. Minneapolis
MN USA: ACM, July 2022.

[18] Firdose Saeik et al. “Task of loading in Edge and
Cloud Computing: A survey on mathematical, arti‑
icial intelligence and control theory solutions”. In:
Computer Networks 195 (2021), p. 108177. ISSN:
1389‑1286. DOI: https : / / doi . org / 10 . 1016 /
j . comnet . 2021 . 108177. URL: https : / / www .
sciencedirect . com / science / article / pii /
S1389128621002322.

[19] Dimitrios Dechouniotis, Nikolaos Athanasopoulos,
Aris Leivadeas, Nathalie Mitton, Raphael Jungers,
and Symeon Papavassiliou. “Edge Computing Re‑
source Allocation for Dynamic Networks: The
DRUID‑NET Vision and Perspective”. In: Sensors
20.8 (2020). ISSN: 1424‑8220. DOI: 10 . 3390 /
s20082191. URL: https://
www.mdpi.com/1424-8220/20/8/2191.

[20] Mohammad Masdari and Afsane Khoshnevis. “A
survey and classi ication of the workload forecas‑
ting methods in cloud computing”. en. In:
Cluster Computing 23.4 (Dec. 2020), pp. 2399–
2424. ISSN: 1573‑7543. DOI: 10.1007/
s10586-019-03010-3. URL: https://
doi.org/10.1007/s10586-019-03010-3 (visited
on 02/23/2021).

[21] Theodoros Theodoropoulos, Angelos‑Christos
Maroudis, John Violos, and Konstantinos Tserpes.
“An Encoder‑Decoder Deep Learning Approach
for Multistep Service Traf ic Prediction”. In:
2021 IEEE Seventh International Conference on
Big Data Computing Service and Applications
(BigDataService). Aug. 2021, pp. 33–40. DOI:
10.1109/BigDataService52369.2021.00010.

[22] Soma Prathibha. “Investigating the Performance of
Machine Learning Algorithms for Improving Fault
Tolerance for Large Scale Work low Applications
in Cloud Computing”. In: 2019 International Con‑
ference on Computational Intelligence and Knowl‑
edge Economy (ICCIKE). Dec. 2019, pp. 187–190.
DOI: 10.1109/ICCIKE47802.2019.9004379.

[23] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scal‑
able Tree Boosting System”. In: Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (Aug. 2016).
arXiv: 1603.02754, pp. 785–794. DOI: 10 . 1145 /
2939672.2939785. URL: http://arxiv.org/abs/
1603.02754 (visited on 05/28/2020).

[24] Didrik Nielsen. “Tree Boosting With XGBoost ‑
Why Does XGBoost Win ”Every” Machine Learn‑
ing Competition?” eng. In: (2016). Accepted: 2017‑
03‑13T07:58:50Z Publisher: NTNU. URL: https :

/ / ntnuopen . ntnu . no / ntnu - xmlui / handle /
11250/2433761 (visited on 02/24/2021).

[25] John Violos, Evangelos Psomakelis, Konstantinos
Tserpes, Fotis Aisopos, and Theodora Varvarigou.
“Leveraging User Mobility and Mobile App Ser‑
vices Behavior for Optimal Edge Resource Utiliza‑
tion”. In: Proceedings of the International Confe‑
rence on Omni‑Layer Intelligent Systems. COINS
’19. New York, NY, USA: Association for Computing
Ma‑ chinery, May 2019, pp. 7–12. ISBN:
978‑1‑4503‑ 6640‑3. DOI: 10 . 1145 / 3312614 .
3312620. URL: https://
doi.org/10.1145/3312614.3312620 (visited on
02/20/2021).

[26] Matthias Feurer, Aaron Klein, Katharina
Eggensperger, Jost Tobias Springenberg, Manuel
Blum, and Frank Hutter. “Auto‑sklearn: Ef icient
and Robust Automated Machine Learning”. en. In:
Automated Machine Learning: Methods, Systems,
Challenges. The Springer Series on Challenges in
Machine Learning. Cham: Springer International
Publishing, 2019. ISBN: 978‑3‑030‑05318‑5. DOI:
10.1007/978- 3- 030- 05318- 5_6. URL:
https: //doi.org/10.1007/978- 3- 030-
05318- 5_6 (visited on 02/20/2021).

[27] Elie Bursztein. Cutting Edge TensorFlow ‑ Keras
Tuner: hypertuning for humans. en. Conference
Name: Google IO. May 2019. URL: https://www.
elie . net / talk / cutting - edge - tensorflow -
keras - tuner - hypertuning - for - humans (vi‑
sited on 02/20/2021).

[28] Priti Kumari and Parmeet Kaur. “A survey of fault
tolerance in cloud computing”. en. In: Journal of
King Saud University ‑ Computer and Information
Sciences 33.10 (Dec. 2021), pp. 1159–1176. ISSN:
1319‑1578. DOI: 10.1016/j.jksuci.2018.09.
21. URL: https : / / www . sciencedirect . com /

science / article / pii / S1319157818306438
(visited on 01/26/2022).

[29] Ashkan Yousefpour, Genya Ishigaki, and Jason P.
Jue. “Fog Computing: Towards Minimizing Delay
in the Internet of Things”. In: 2017 IEEE Interna‑
tional Conference on Edge Computing (EDGE). 2017,
pp. 17–24. DOI: 10.1109/IEEE.EDGE.2017.12.

[30] Weiwei Lin, James Z. Wang, Chen Liang, and Deyu
Qi. “A Threshold‑based Dynamic Resource Allo‑
cation Scheme for Cloud Computing”. en. In: Pro‑
cedia Engineering. PEEA 2011 23 (Jan. 2011),
pp. 695–703. ISSN: 1877‑7058. DOI: 10.1016/j.
proeng . 2011 . 11 . 2568. URL: https : / / www .
sciencedirect . com / science / article / pii /
S1877705811054117 (visited on 01/30/2022).

[31] Marios Avgeris, Dimitrios Spatharakis, Dimitrios
Dechouniotis, Aris Leivadeas, Vasileios Kary‑
otis, and Symeon Papavassiliou. “ENERDGE:
Distributed Energy‑Aware Resource Alloca‑
tion at the Edge”. In: Sensors 22.2 (2022). ISSN:

©International Telecommunication Union, 2022776

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

https://doi.org/https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108177
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://doi.org/10.3390/s20082191
https://doi.org/10.3390/s20082191
https://www.mdpi.com/1424-8220/20/8/2191
https://www.mdpi.com/1424-8220/20/8/2191
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1109/BigDataService52369.2021.00010
https://doi.org/10.1109/ICCIKE47802.2019.9004379
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2433761
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2433761
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2433761
https://doi.org/10.1145/3312614.3312620
https://doi.org/10.1145/3312614.3312620
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://www.elie.net/talk/cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans
https://www.elie.net/talk/cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans
https://www.elie.net/talk/cutting-edge-tensorflow-keras-tuner-hypertuning-for-humans
https://doi.org/10.1016/j.jksuci.2018.09.021
https://doi.org/10.1016/j.jksuci.2018.09.021
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://doi.org/10.1109/IEEE.EDGE.2017.12
https://doi.org/10.1016/j.proeng.2011.11.2568
https://doi.org/10.1016/j.proeng.2011.11.2568
https://www.sciencedirect.com/science/article/pii/S1877705811054117
https://www.sciencedirect.com/science/article/pii/S1877705811054117
https://www.sciencedirect.com/science/article/pii/S1877705811054117

1424‑8220. DOI: 10 . 3390 / s22020660. URL:
https://www.mdpi.com/1424-8220/22/2/660.

[32] Automatically scaling pods with the horizontal pod
autoscaler ‑ Working with pods | Nodes | OpenShift
Container Platform 4.7. URL: https : / / docs .
openshift . com / container - platform / 4 . 7 /
nodes/pods/nodes- pods- autoscaling.html
(visited on 01/30/2022).

[33] Fahd Al‑Haidari, Mohammed Sqalli, and Khaled
Salah. “Impact of CPU Utilization Thresholds and
Scaling Size on Autoscaling Cloud Resources”. In:
vol. 2. Dec. 2013, pp. 256–261. DOI: 10 . 1109 /
CloudCom.2013.142.

[34] Jyostna Devi Bodapati, Nagur Shareef Shaik,
Veeranjaneyulu Naralasetti, and Nirupama Bhat
Mundukur. “Joint training of two‑channel deep
neural network for brain tumor classi ication”.
en. In: Signal, Image and Video Processing 15.4
(June 2021), pp. 753–760. ISSN: 1863‑1711. DOI:
10 . 1007 / s11760 - 020 - 01793 - 2. URL: https :
/ / doi . org / 10 . 1007 / s11760 - 020 - 01793 - 2
(visited on 01/26/2022).

[35] HuiWang, Jiang Lu, LucyNwosu, and IshaqUnwala.
“Two‑channel convolutional neural network for fa‑
cial expression recognition using facial parts”. In:
International Journal of Big Data Intelligence 6.3‑
4 (Jan. 2019). Publisher: Inderscience Publishers,
pp. 259–268. ISSN: 2053‑1389. DOI: 10 . 1504 /
IJBDI . 2019 . 100897. URL: https : / / www .
inderscienceonline.com/doi/abs/10.1504/
IJBDI.2019.100897 (visited on 01/27/2022).

[36] Nikolaus Hansen, Dirk Arnold, and Anne Auger.
Evolution Strategies. Jan. 2015. DOI: 10.1007/978-
3-662-43505-2_44.

[37] Peter I. Frazier. “A Tutorial on Bayesian Optimiza‑
tion”. In: arXiv:1807.02811 [cs, math, stat] (July
2018). arXiv: 1807.02811. URL: http : / / arxiv .
org/abs/1807.02811 (visited on 02/24/2021).

[38] Manoel C. Silva Filho, Raysa L. Oliveira, Claudio
C. Monteiro, Pedro R. M. Inácio, and Mário M.
Freire. “CloudSim Plus: A cloud computing simu‑
lation framework pursuing software engineering
principles for improved modularity, extensibility
and correctness”. In: 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM).
May 2017, pp. 400–406. DOI: 10 . 23919 / INM .
2017.7987304.

[39] Giampaolo Rodola. giampaolo/psutil,
https://github.com/giampaolo/psutil. June 2020.
URL: https://github.com/giampaolo/psutil
(visited on 06/05/2020).

[40] Anders Krogh Mortensen. anderskm/gputil,
https://github.com/anderskm/gputil. June 2020.
URL: https://github.com/anderskm/gputil
(visited on 06/05/2020).

[41] STsanakas. STsanakas/Hybrid‑Bayesian‑Evolution‑
Strategy‑GRU‑RNN. Feb. 2021. URL: https : / /
github . com / STsanakas / Hybrid - Bayesian -
Evolution - Strategy - GRU - RNN (visited on
02/24/2021).

[42] Tran Ngoc Minh, Lex Wolters, and Dick Epema.
“A Realistic Integrated Model of Parallel System
Workloads”. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing.
May 2010, pp. 464–473. DOI: 10.1109/CCGRID.
2010.32.

[43] Stephen Cohen and William Money. “Data Systems
Fault Coping for Real‑time Big Data Analytics Re‑
quired Architectural Crucibles”. In: Jan. 2017. DOI:
10.24251/HICSS.2017.121.

[44] Salma M. A. Ataallah, Salwa M. Nassar, and Elsayed
E. Hemayed. “Fault tolerance in cloud computing ‑
survey”. In: 2015 11th International Computer Engi‑
neering Conference (ICENCO). Dec. 2015, pp. 241–
245. DOI: 10.1109/ICENCO.2015.7416355.

[45] Fahd Alhaidari and Taghreed Zayed Balharith. “En‑
hanced Round‑Robin Algorithm in the Cloud Com‑
puting Environment for Optimal Task Scheduling”.
en. In: Computers 10.5 (May 2021). Number: 5 Pub‑
lisher: Multidisciplinary Digital Publishing Insti‑
tute, p. 63. DOI: 10 . 3390 / computers10050063.
URL: https://www.mdpi.com/2073- 431X/10/
5/63 (visited on 01/09/2022).

[46] Majid Derakhshan and Zohreh Bateni. “Optimiza‑
tion of tasks in cloud computing based on MAX‑
MIN, MIN‑MIN and priority”. In: 2018 4th Inter‑
national Conference on Web Research (ICWR). Apr.
2018, pp. 45–50. DOI: 10 . 1109 / ICWR . 2018 .
8387236.

AUTHORS
Theodoros Theodoropoulos
received his Electrical and Com‑
puter Engineering Integrated
Master Degree in 2022, gradu‑
ating from National Technical
University of Athens. Currently
he is Ph.d. student and re‑
searcher in the Department of
Informatics and Telematics at

Harokopio University of Athens. He has a total of nine
publications on top‑tier conferences and journals. He is
involved in several Eu‑funded research projects such as
Charity, Teaching and Accordion. His research interests
include Deep Learning, Graph Neural Networks, Deep
Reinforcement Learning, Cloud and Edge Computing.

©International Telecommunication Union, 2022

Theodoropoulos et al.: Intelligent proactive fault tolerance at the edge through resource usage prediction

777

https://doi.org/10.3390/s22020660
https://www.mdpi.com/1424-8220/22/2/660
https://docs.openshift.com/container-platform/4.7/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/4.7/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/4.7/nodes/pods/nodes-pods-autoscaling.html
https://doi.org/10.1109/CloudCom.2013.142
https://doi.org/10.1109/CloudCom.2013.142
https://doi.org/10.1007/s11760-020-01793-2
https://doi.org/10.1007/s11760-020-01793-2
https://doi.org/10.1007/s11760-020-01793-2
https://doi.org/10.1504/IJBDI.2019.100897
https://doi.org/10.1504/IJBDI.2019.100897
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2019.100897
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2019.100897
https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2019.100897
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-662-43505-2_44
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
https://doi.org/10.23919/INM.2017.7987304
https://doi.org/10.23919/INM.2017.7987304
https://github.com/giampaolo/psutil
https://github.com/anderskm/gputil
https://github.com/STsanakas/Hybrid-Bayesian-Evolution-Strategy-GRU-RNN
https://github.com/STsanakas/Hybrid-Bayesian-Evolution-Strategy-GRU-RNN
https://github.com/STsanakas/Hybrid-Bayesian-Evolution-Strategy-GRU-RNN
https://doi.org/10.1109/CCGRID.2010.32
https://doi.org/10.1109/CCGRID.2010.32
https://doi.org/10.24251/HICSS.2017.121
https://doi.org/10.1109/ICENCO.2015.7416355
https://doi.org/10.3390/computers10050063
https://www.mdpi.com/2073-431X/10/5/63
https://www.mdpi.com/2073-431X/10/5/63
https://doi.org/10.1109/ICWR.2018.8387236
https://doi.org/10.1109/ICWR.2018.8387236

John Violos received the
Diploma Degree in Electrical
and Computer Engineering
and the Dr. Engineering De‑
gree from National Technical
University of Athens (NTUA)
in 2014 and in 2018. He was
a member of the European

Commission’s Digital Single Market working group on
the code of conduct for switching and porting data
between cloud service providers. He has been involved
in eight EU co‑funded research projects. He ha more than
thirty ive publications and has served as guest editor,
technical program committee member and reviewer in
several conferences and research journals. His research
interests include Deep Learning, Machine Learning, Edge
Computing. He received the best paper award in IEEE
iThings ’21.

Stylianos Tsanakas received
his Electrical and Computer
Engineering Integrated Master
Degree in June 2021, graduating
from National Technical Uni‑
versity of Athens. He currently
works as a researcher for the
Institute of Communication and
Computer Systems (ICCS). He

has a total of seven publications on top‑tier conferences
and journals. His professional interests include Deep
Learning, Machine Learning, Edge Computing, Data
Science.

Aris Leivadeas is currently an
Associate Professor with the
Dept. of Software and Informa‑
tion Technology Engineering
at the Ecole de technologie
Supérieure (ETS), Montreal,
Canada. From 2015 to 2018
he was a postdoc in the Dept.
of Systems and Computer En‑

gineering, at Carleton University, Ottawa Canada. In
parallel, Aris worked as an intern at Ericsson and then
at Cisco in Ottawa, Canada. He received his diploma in
Electrical and Computer Engineering from the University
of Patras in 2008, the M.Sc. degree in Engineering from
King’s College London in 2009, and the Ph.D degree in
Electrical and Computer Engineering from the National
Technical University of Athens in 2015. His research
interests include Edge Computing, IoT, and network
automation andmanagement. He received the best paper
award in ACM ICPE’18 and IEEE iThings ’21 and the best
presentation award in IEEE HPSR’20.

Konstantinos Tserpes re‑
ceived the Ph.D. degree in the
area of distributed systems
from the School of Electrical
and Computer Engineering,
National Technical University of
Athens, in 2008. He is currently
an Assistant Professor with the

Department of Informatics and Telematics, Harokopio
University of Athens. He has been involved in several
EU and National funded projects leading research for
solving issues related to scalability, interoperability, fault
tolerance, and extensibility in application domains, such
as multimedia, e‑governance, post‑production, inance,
and e‑health. His research interests include distributed
systems, software and service engineering, big data
analytics, and social systems. He is a member of the
Editorial Board of Future Generation Computer Systems.

Theodora Varvarigou is a pro‑
fessor at the School of Elec‑
trical and Computer Engineer‑
ing of the National Technical
University of Athens (NTUA).
She received the B. Tech degree
in Electrical Engineering from
NTUA in 1988, the MS degrees
in Electrical Engineering (1989)

and in Computer Science (1991) from Stanford Univer‑
sity, California. She received her Ph.D. degree from Stan‑
ford University as well in 1991. She has worked as a
researcher at AT&T Bell Labs, USA and as an Assistant
Professor at the Technical University of Crete, Chania,
Greece. Prof. Varvarigou has great experience in cut‑
ting edge technologies, such as Cloud computing, multi‑
media content processing, semantic web, social network‑
ing technologies etc. She has published more than 200
papers in leading international journals, conferences and
books. She has participated and co‑ordinated numerous
EC projects. From 2008‑2012, she held the chair of the
postgraduate program “Engineering Economic Systems”
of NTUA.

©International Telecommunication Union, 2022778

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 3, December 2022

	INTELLIGENT PROACTIVE FAULT TOLERANCE AT THE EDGE THROUGH RESOURCE USAGE PREDICTION
	1. INTRODUCTION
	2. RELATED WORK
	3. LEVERAGING RESOURCE USAGE PREDICTIONS FOR PROACTIVE FAULT
	3.1 Resource usage prediction in edge computing
	3.2 Proactive fault tolerance
	3.3 Threshold‑based decision making

	4. A COMPOSITE DEEP LEARNING ARCHITECTURE FOR RESOURCE USAGE PREDICTION
	4.1 Two channel architecture for resource usage prediction
	4.2 Recurrent neural networks for time series data
	4.3 Long short‑term memory
	4.4 Gated recurrent units
	4.6 Bayesian optimization
	4.5 Evolutionary strategy
	4.7 Hybrid evolution strategy with Bayesian optimization

	5. EXPERIMENTAL EVALUATION
	5.1 Experimental evaluation in resource usage prediction
	5.1.1 Model implementation and frameworks for comparison
	5.1.2 Evaluation results and discussion
	5.1.3 Convergence of hybrid Bayesian evolution strategy

	5.2 Experimental evaluation in proactive fault tolerance
	5.2.1 Experimental simulation
	5.2.2 Fault tolerance evaluation metrics
	5.2.3 Evaluation results and discussion

	6. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS

