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Abstract – The proliferation of demanding applications and edge computing establishes the need for ef icient management
of the underlying computing infrastructures, urging the providers to rethink their operational methods. In this paper, we
propose an Intelligent Proactive Fault Tolerance (IPFT) method that leverages the edge resource usage predictions through
Recurrent Neural Networks (RNNs). More speci ically, we focus on the process faults, which are related with the inability of
the infrastructure to provide Quality of Service (QoS) in acceptable ranges due to the lack of processing power. In order to
tackle this challenge we propose a composite deep learning architecture that predicts the resource usage metrics of the edge
nodes and triggers proactive node replications and taskmigration. Taking also into consideration that the edge computing in‑
frastructure is also highly dynamic and heterogeneous, we propose an innovative Hybrid Bayesian Evolution Strategy (HBES)
algorithm for automated adaptation of the resource usage models. The proposed resource usage prediction mechanism has
been experimentally evaluated and compared with other state of the art methods with signi icant improvements in terms
of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Additionally, the IPFT mechanism that leverages the
resource usage predictions has been evaluated in an extensive simulation in CloudSim Plus and the results show signi icant
improvement compared to the reactive fault tolerance method in terms of reliability and maintainability.
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1. INTRODUCTION

During the last decade, the scienti ic community wit‑ 
nessed the emergence of applications that are inter‑ 
twined with a set of demanding QoS requirements. Ex‑ 
tended Reality (XR) applications is one instance of this 
type of application. XR applications are associated with 
various QoS requirements [1] that are based on the abi-
lity to provide an immersive end‑user experience. 
These requirements may include aspects such as 
latency and bandwidth. Studies have shown that for an 
end‑user experience to be acceptable in terms of 
immersion, the end‑ to‑end latency shall not surpass the 
15ms mark, and the bandwidth should be able to reach 
up to 30 Gbps [2]. On top of that, the desired integrity 
of the aforementioned immersive experiences may be 
jeopardized by faults in task processing, due to 
potential disruptions in service delivery. Therefore, it 
is of paramount importance for this class of 
applications to be able to exhibit fault tolerance 
capabilities. Furthermore, this class of applications 
presents various demanding requirements in terms of 
computational resources, since they incorporate the 
rendering of 3D models and detailed graphics. Because 
of these computational requirements, monolithic deve-
lopment architectures would result in prohibitively 
bulky and expensive end‑user equipment in order to 
facilitate the required computational resources.

Cloud computing is able to partially alleviate the burden 
that is imposed on the end‑user devices by providing 
computational resources that these applications may run 
on via the Internet. Cloud computing is based on the use 
of shared computational resources that may span multi‑ 
ple locations. Therefore, part of the computational bur‑ 
den is transferred to these shared resources. Unfortu‑ 
nately, the distance between the end‑user devices and the 
cloud servers may result in high latency and low available 
bandwidth. Thus, the need to bring processing and data 
closer to the devices where it’s being generated [3] was 
created. In the case of XR applications, these devices may 
include smart objects, mobile phones, network gateways, 
sensors and a plethora of immersion devices. This dis‑ 
tributed computing paradigm, de ined as edge comput‑ 
ing aims to establish decentralized topologies and allow 
the relocation of various computational and storage re‑ 
sources closer to the edge of the network. By doing so, it is 
expected to provide service delivery and content caching 
in better response times and transfer rates. The afore‑ 
mentioned devices may vary wildly in terms of computa‑ 
tional prowess. As a result, it is necessary to make sure 
that the computations that take place at the edge are not 
demanding and do not exceed the computational capabil‑ 
ities of the involved devices.
When contemplating the nature and requirements of 
modern‑day applications it is of major importance for 
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the workload execution to be resilient and meet the 
QoS standards set by the industry. The devices at the 
edge of the network are subjected to signi icant 
luctuations in the amount of of loaded tasks over time 
[4]. Hence, it is of paramount importance that these 
luctuations do not affect the performance of the system 
and cause process faults [5]. In addition to that, edge 
computing environments are characterized by extreme 
heterogeneity and dynamicity in regards to the tasks and 
the processing nodes involved. This unprecedented 
situation gave birth to the need for an IPFT method 
which should be robust to infrastructure and workload 
changes.
Monitoring and predicting the capacity under which the 
edge nodes are operating in terms of resource metrics 
such as CPU, RAM, bandwidth and disk can be a valu‑ 
able piece of information with regards to implementing 
fault tolerance policies. Resource metrics have high se‑ 
rial and cross‑correlation values making the use of time 
series methods rational [6]. Regression‑based RNN [7], 
which leverage time series characteristics through Gated 
Recurrent Units (GRUs) [8] or Long Short‑Term Memory 
(LSTM) [9], can be used in order to accurately predict the 
resource metrics.
In order to handle the extreme heterogeneity and dyna-
micity of the edge environments, we provide a 
systematic methodology for building deep learning 
models in an automatic way using historical data. 
Common approaches that are based on manual trial and 
error methodologies in regards to creating acceptable 
deep learning architectures require many working 
hours to be spent by deep learning experts every time 
the deployed applications, user behaviour or the edge 
infrastructure change. On the other hand, the available 
deep learning automation methods still have signi icant 
shortcomings such as low ef i‑ ciency and high 
computational requirements [10]. A potential solution to 
these drawbacks could be the extension of evolutionary 
algorithms, as well as their combination with other 
models for hyper‑tuning.
The facts mentioned above motivated us to propose an 
IPFT method that focuses on processing faults; faults re‑ 
lated with resource shortage and the resulting incompe‑ 
tence in regards to processing capabilities that impede 
the underlying infrastructure to execute tasks within ac‑ 
ceptable QoS ranges. Our research goals are to propose 
a composite deep learning architecture suitable for pre‑ 
dicting in a uni ied way the ability of the edge nodes to 
execute the incoming workload and an appropriate ope-
rational pipeline that guarantees advanced fault 
tolerance. The cornerstone of this pipeline is the ability 
to operate in a proactive manner. Whenever a 
bottleneck in task execution is expected to occur, 
proactive measures like task migration and node 
replication should be triggered. A composite deep 
learning architecture should leverage the time series 
characteristics of the edge resources and the involved 
tasks which can be provided by monitoring systems (i.e. 
Prometheus) [11]. Finally, we propose the HBES 
optimization algorithm in order to provide a composite 

• The proposal of the IPFT method that achieves high
reliability andmaintainabilitywith very goodperfor‑
mance in terms of timely fault detection and repair.

• A discussion of how a speci ic category of faults, the
process faults are related and can be predicted by
the resource utilization metrics of processing edge
nodes

• The proposal and analysis of the theoretical princi‑
ples of a composite deep learning model for edge re‑
source usage prediction that includes two channels.
One with feedforward and one based on RNN layers.

• The proposal of an innovative hybrid hyper‑
parameter optimization model that combines the
evolution strategy with the Bayesian optimization
algorithms in order to gauge a close to optimal
composite deep learning architecture.

The rest of the paper is structured as follows: Section 2 
highlights the related work in fault tolerance, resource 
usage prediction, time series, deep learning and hyper‑ 
parameter optimisation techniques. Section 3 explains 
how a proactive fault tolerance mechanism can lever‑ 
age resource usage predictions. Section 4 provides an 
analysis of the RNN multi‑output regression approaches, 
the composite deep learning architectures and the HBES 
method. Section 5 describes the experimental setup in 
a real edge computing dataset, the simulation of IPFT in 
CloudSim Plus and the evaluation results. Section 6 con‑ 
cludes the paper, reports the current limitations and sug‑ 
gests future directions.

2. RELATED WORK
Fault tolerance mechanisms are mainly divided in two 
categories; reactive and proactive. The reactive approach 
decreases the in luence of failures in the edge infrastruc‑ 
ture after a failure has actually occurred. The main re‑ 
active fault tolerance methodologies are reactive replica‑ 
tion, resubmission, retry and use of checkpoints. For in‑ 
stance, a state of the art replication‑based fault tolerance 
mechanism in large‑scale graph‑parallel systems was pro‑ 
posed in [12], which works by supporting cheap mainte‑ 
nance of the vertex states. This mechanism replicates the 
vertices with normal message exchanges, and provides 
fast in‑memory reconstruction of the failed vertices from 
replicas in other machines. The replication increases the 
reliability of the system and the chance that the task will 
inish correctly, at the expense of additional resources for 
redundancy.
A retry approach that uses idempotent HTTP methods has 
been proposed in [13] for of loading and execution fail‑ 
ures. This retry strategy has the advantage that it utilizes 
the least resources of the computing environment and 
minimizes the user time, but at the expense of increasing 
the response time, since HTTP methods may be retried 
multiple times until they complete successfully. In terms 
of checkpoints, a reactive fault tolerance approach for the

deep learning model which is nearly optimal. The four 
major contributions of our research are:
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serverless paradigm was investigated in [14]. Speci i‑ 
cally, the authors, through checkpoints and live container 
migration, have succeeded in saving resources in con‑ 
strained devices. Unfortunately, also in this case, the 
execution time is increased since it includes the 
recovery time of the failed servers.
In the proactive fault tolerance approach a potential fault 
is predicted in order to avoid its in luence on the task exe‑ 
cution. Tian et al. [15] use the tree‑based model which is 
a statistical analysis technique to diagnose the high risk 
cloud tasks and apply virtual machine migration tech‑ 
niques. This approach even if it signi icantly improves the 
reliability and ef iciency, has generalization limitations, 
since it cannot automatically adapt to new computing en‑ 
vironments. Machine learning and online learning me-
thods have also been used in combination with 
microservices architecture and IoT systems to detect fault 
patterns and pre‑emptively mitigate the faults [16]. 
Another ad‑ vanced proactive model has recently been 
proposed in [17]. This model performs multi‑step 
predictions in or‑ der to estimate the process faults and 
the QoS degrada‑ tion in different time granularities. 
This approach utilizes an encoder‑decoder model and 
gauges the ability of the infrastructure to process the 
incoming tasks at different production rates.
From the above it is evident that the limited computa‑ 
tional capacity of processing nodes sets barriers to the 
edge computing and IoT applications [18]. We can over‑ 
come these barriers through ef icient resource manage‑ 
ment [19]. This process includes the guarantee of well‑ 
de ined QoS metrics and an accurate workload prediction 
[20]. Some of the workload prediction models leverage 
RNN and speci ically LSTM, formulating the resource 
usage metrics as data sequences. But none of them focus 
on how a proactive fault tolerance method can leverage 
the resource usage predictions.
For instance, the authors in[6] have used an Autoregres‑ 
sive Integrated Moving Average (ARIMA) to avoid re‑ 
source under‑provisioning or over‑provisioning in data 
centers. ARIMA has the limitation that it models linear de‑ 
pendencies and it is based on the stationarity assumption. 
However, as noticed in [21] the workload to be processed 
at the edge has trend, seasonality and nonlinearities in the 
execution behaviours, which limit the application of sta‑ 
tistical linear models. These limitations are overcome by 
machine learning models such as K‑Means, decision tree 
and K‑nearest neighbors [22]. While there is a lot of clas‑ 
sical machine learning models publicly available, for our 
experiments we selected XGBoost [23] because it is po-
pular for winning Kaggle and other prestigious 
machine learning competitions [24]. XGBoost mostly uses 
gradient boosted decision trees and is available as an 
open‑source software library.
The limitation of the machine learning approaches is that 
every time the edge‑cloud infrastructure, the user be‑ 
haviour, or the application changes, new models should 
be trained from scratch with human assistance. Auto‑ 
mated machine learning achieves an automatic way to

guide the learning process of models, maximizing the 
performance, and minimizing the computational budget 
without human involvement. In the domain of cloud 
computing, the Application and User Context Resource 
Predictor (AUCROP) [25] has been proposed for auto‑ 
mated usage of classical machine learning algorithms. In 
addition, a general‑purpose automated machine lear-
ning meta‑model for data preprocessing, regression 
and hyper‑parameter tuning through the Bayesian 
optimization is the auto‑sklearn [26].
Keras‑Tuner [27] is the approach from Keras to automate 
the hyper‑parameter tuning, also named hyper‑tuning. 
Keras is one of the most popular frameworks in the deep 
learning community. Keras‑Tuner has the advantage that 
the hyper‑models, the range of hyper‑parameters and the 
tuning process is smoothly integrated in Keras but it sup‑ 
ports only the optimizers: (a) random search, (b) hyper‑ 
band which is a random search with early stopping, and 
the (c) Bayesian optimization. In our experimental evalu‑ 
ation we used Keras‑Tuner, AUCROP and auto‑sklearn. In 
this work we also extend the research in the hyper‑tuning 
combining evolution strategy with the Bayesian optimiza‑ 
tion. Thus, we propose the innovative HBES method as a 
prominent automated deep learning solution that tackles 
the heterogeneity and the dynamicity of edge computing 
environments.
More speci ically, our work aims to extend the resource 
usage prediction method by proposing a proactive fault 
tolerance method that leverages the resource usage pre‑ 
dictions and tackles the above‑mentioned limitations as 
follows: Firstly, the IPFT mechanism requires a mini‑ 
mum number of replicas of the execution nodes since it 
requests a replication only after a fault prediction. Se-
condly, the IFPT does not include the time overhead 
of task rescheduling after a fault since the replication 
and rescheduling of the task will take place proactively 
and in a timely manner. Thirdly, the IPFT leverages 
deep learning RNN models in order to overcome the 
limitations of statistical models and adapts to 
non‑linear and non‑stationary resource metrics. Lastly, 
the introduced HBES quali ies the generality of the 
whole process which is a common limitation of many 
methods in the pertinent lit‑ erature.

3. LEVERAGING RESOURCE USAGE PREDIC‑
TIONS FOR PROACTIVE FAULT
TOLERANCE

3.1 Resource usage prediction in edge com‑
puting

The management and orchestration of edge computing
infrastructures can be improved by leveraging various re‑
source utilizationmetrics. Themost notable of thesemet‑
rics are CPU, RAM, bandwidth, and disk I/O. At the same
time, the edge computing paradigm is characterized by
the dynamic behaviour and the heterogeneity of the pro‑
cessing edge nodes, which are obliged to operate within
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some speci ic constraints dictated by the QoS require‑ 
ments.
As the decision‑making in a dynamic and heterogeneous 
environment is a rather complex process, it requires 
every available source of information to be used. 
Prediction of the resource consumption metrics, by 
leveraging time series characteristics of historical data, 
constitutes one of the most valuable pieces of 
information. It serves as a strong indicator for the 
availability of the processing nodes in order to receive 
additional workload or to predict potential QoS 
degradation in future time steps. Accordingly, the 
publicly‑available monitoring tools like Prometheus, 
OpenTSDB, Nagios and InfuxDB can provide the resource 
metrics in a stream format or in a time series database 
like PromQL. These time series databases can be used to 
produce datasets which are suitable for the RNN model 
training.
The dynamic behaviour of edge nodes is attributed to the 
luctuation of application requests and their workload. 
The number of requests per time interval changes within 
various time‑frames and is affected by many periodic phe‑ 
nomena. Furthermore, the edge is characterized by a 
high heterogeneity, since the edge nodes can have diffe-
rent hardware and software characteristics, such as 
memory, computing power, etc. This heterogeneity 
becomes more apparent when taking into 
consideration the var‑ ious lavours of Raspberry Pis, 
Arduinos, sensor motes, and other microcontrollers 
that coexist and collaborate within the same edge 
infrastructure.
At the same time, application owners can set strict perfor‑ 
mance requirements for the edge nodes in terms of avail‑ 
ability, throughput and different types of potential delays. 
Thus, edge providers are struggling to get the QoS metrics 
within the acceptable ranges speci ied. Consequently, in 
order to guarantee that the infrastructure will have suf i‑ 
cient computational capacities to handle luctuating de‑ 
mands, a fault tolerance mechanism should proactively 
take decisions considering the amount of resources and 
the availability of the processing nodes.
In the scienti ic literature there are different categories of 
faults that correspond to speci ic fault tolerance mecha‑ 
nisms. The major categories of the faults are: (a) network 
faults, (b) physical faults, (c) process faults and (d) service 
expiry faults [28]. Among these faults, process faults can 
be very severe. In more detail, process faults occur in pro‑ 
cesses because of resource shortages which lead to longer 
task execution delays or even execution stoppages. This 
type of fault can eventually lead to performance degra‑ 
dation that is not acceptable for real‑time and/or time‑ 
sensitive applications.
Thus, it becomes evident that the execution of the tasks 
has a solid impact on resource utilization and vice versa. 
This fact has led us to examine the resource utilization 
metrics in order to take proactive fault tolerance deci‑ 
sions to reduce the adverse effects of process faults.

3.2 Proactive fault tolerance
Given that the modus operandi of the edge computing 
paradigm relies on a vast number of compute nodes 
operating simultaneously, it is extremely important to 
consider component failures as an inevitability. By doing 
so, it is important to ensure that the infrastructure will 
continue operating without interruptions and QoS 
deteriora‑ tion. The main way of ensuring this service 
continuity, is by triggering migration policies and by 
utilizing backup components, which automatically 
replace the failed ones in a manner which guarantees the 
QoS.
The replication process of a node, such as a virtual ma‑ 
chine, requires a certain waiting period, which would pro‑ 
voke QoS degradation. Thus, fault tolerance should be 
achieved by following a proactive approach. At any given 
time, the network should contain a speci ic number of 
computational nodes, which can remain idle until one of 
the already working components ceases to function pro-
perly. Given that redundant computational nodes may 
be requested, it is important to keep this redundancy 
to a minimum. However, by utilizing machine learning 
algorithms, it is possible to extract information 
regarding the behaviour patterns of the services and the 
process faults that occur. Hence, this enables the fault 
tolerance functionality to manifest in a manner which 
will ensure that the operations will continue to take 
place uninterrupted and that the overall redundancy cost 
will be kept to a minimum.
The proposed IPFT model provides fault predictions by 
using data features which are associated with the re‑ 
source usage in distributed edge environments. The IPFT 
monitors the resource consumption that takes place on 
each processing node in order to reveal, at run‑time, in‑ 
suf icient processing capabilities that may result in poten‑ 
tial QoS degradations. In case that the deployed resources 
cannot satisfy the increasing amount of demands within 
a speci ied time‑frame, the IPFT will then trigger mitiga‑ 
tion policies such as proactive node replication and task 
execution migration.
The multichannel neural network part of the IPFT mech‑ 
anism of a node takes into consideration the state of the 
other available nodes when predicting its future state. 
This way, in case of a predicted fault, it can perform 
task migration to the nodes that are already up and run‑ 
ning, provided that there is enough computational capa-
city available. By doing so, we avoid immediately 
resorting to node replication which could lead to a cost 
and time deployment increase for setting up a new node.
As mentioned before, the replication of a node requires 
a certain waiting period, which can have grave rami ica‑ 
tions on the performance of the edge environment. The 
IPFT can predict the future needs for node replication in 
a time horizon longer than the replication time. Thus, the 
timely triggering of node replication processes and the 
corresponding task migration prevents the occurrence of 
the process faults. As illustrated in Fig. 1.1, when a spe‑ 
ci ic processing node is predicted to present high resource
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Fig. 1 – The IPFT triggers virtualmachine replication and taskmigration
based on resource utilization predictions.

utilisation, then a node replication process will be trig‑
gered (Fig. 1.2). This way, the future tasks to come will
be accommodated by the new node, avoiding tasks rejec‑
tions and long execution times.
The IPFT operates in a manner which consists of four
main stages, as one can see in Fig. 2. In stage1, itmonitors
the resourcemetrics of the processing nodes. In stage 2, it
predicts the maximum resource usage that is expected to
take place within a speci ied time‑frame. With regards to
the stage 3, there are three distinct scenarios which dic‑
tate how the rest of the operation shall be carried out. The
stage 3 processes are carried out independently for each
of the processing nodes. The three distinct scenarios and
their interactionswith the corresponding actions taken at
stage 4 can be summarized as follows:

• Stage 3A. If the resource usage prediction is lower
than a speci ic lower‑bound threshold, then the pro‑
cessing node is considered under‑utilized and thus
a decommission request for this speci ic node is is‑
sued. During stage 4A, the tasks that were assigned
to this node are redirected to alternative locations
and the decommission process is completed.

• Stage 3B. If the resource usage prediction is be‑
tween the lower‑bound threshold and the upper‑
bound threshold, then the resource consumption
rate is considered ideal and thus there is no need to
perform any additional actions.

• Stage 3C. If the resource usage prediction is higher
than a speci ic upper‑bound threshold, then the pro‑
cessing node is considered over‑utilized and thus a
replication request is issued. Stage 4C takes place af‑
ter the creation of the new processing node. During
stage 4C, a fraction of the tasks that were assigned to
the over‑utilized processing node are redirected to
the newly created one.

The IPFT works jointly with a workload balancing me-
chanism that gives higher priority to the nodes with low 
resource utilization predictions and lower priority to 
the nodes with higher resource utilization predictions. 
This is a common practice to many task of loading 
mechanisms that use different criteria to balance the 
workload [29]. As an example the MinMin task 
of loading method prioritizes the smaller tasks to be 
executed in the nodes that will be available sooner. 
While the MaxMin task of loading method prioritizes 
the larger tasks to be executed in the processing nodes 
that will be available sooner. The size of the tasks is 
estimated based on the number of its million 
instructions or their estimated completion time. In this 
way, IPFT modi ies the behaviour of the task of loading 
mechanisms taking into consideration the resource 
usage predictions for the migration of the tasks.

3.3 Threshold‑based decision making
Task migration and node replication occur when a re‑ 
source usage prediction metric is higher than a speci‑ 
ied threshold value. This type of threshold‑based ap‑ 
proach is used in many decision‑making mechanisms 
in cloud/edge computing [30]. The IPFT involves two 
thresholds. If the value of the resource utilization predic‑ 
tion is higher than the upper‑bound threshold, the IPFT 
invokes a node replication process. If the prediction value 
which corresponds to a speci ic processing node is lower 
than lower‑bound threshold, then this particular proces-
sing node is turned off (e.g. for reducing the total 
energy consumption [31]).
The appropriate selection of these two thresholds is inte‑ 
gral to the performance of the IPFT. A high value in the 
upper‑bound threshold will result in a system which is 
not sensitive and reactive enough to the workload luc‑ 
tuations. While a low value in the upper‑bound thre-
shold will make the system to react and trigger 
unnecessary node replications. Similarly, the 
lower‑bound threshold should be appropriately ine‑
tuned. A low value will make the infrastructure to 
continue using under‑utilized processing nodes. A 
high lower‑bound threshold will also turn off 
processing nodes that are necessary to the smooth 
operation of the edge infrastructure [32].
In order to identify the optimal threshold values, we pro‑ 
pose the use of a grid‑search approach that iteratively 
tries sequential thresholds in order to converge close to 
the optimal values. These values maximize the fault to-
lerance evaluation metrics of reliability and maintainabi-
lity, which will be extensively discussed in the 
upcoming experimental section. The selection of the 
threshold values is heavily dependant on the 
characteristics of each application and the underlying 
physical infrastructure. The literature provides 
recommendations in similar problems and mechanisms 
which, despite providing suboptimal results, serve as 
valuable guidelines towards establishing some 
standards regarding how these bounds are chosen [33].
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Fig. 2 – The four stages of the IPFT pipeline which span over three distinct scenarios.

Given that the predictions are quite accurate and the
threshold values are chosen optimally, the resulting sys‑ 
tem is expected to be highly robust and able to pro‑ 
vide satisfying availability. For the best results, the re‑ 
source utilization predictions should derive from the re‑ 
source consumption behaviour of each individual pro‑ 
cessing node, while taking into consideration the overall 
resource consumption behaviour of the entire edge com‑ 
puting infrastructure. In the next section we will describe 
the deep learning model that predicts the resource utiliza‑ 
tion, as well as the way it simultaneously leverages the re‑ 
source consumption metrics of each individual node and 
the entire edge infrastructure.
4. A COMPOSITE DEEP LEARNING ARCHI‑

TECTURE FOR RESOURCE USAGE PRE‑
DICTION

A composite deep learning network with the HBES model 
is proposed to provide accurate resource utilization pre‑ 
dictions for the IPFT method. The composite deep lear-
ning network is designed to satisfy the particularities of 
the edge infrastructure and the resource usage metrics. 
Since resource metrics like CPU, RAM, disk, and 
bandwidth have sequential dependence, RNN can 
provide an appropriate type of neural layers. RNN 
combines the advantages of deep learning with the 
characteristics of time series forecasting. There are 
different types of RNN architectures and the two most 
prominent are the GRU and LSTM. Each individual 
processing node is examined separately for future 
possible process faults. However, in order to trigger 
the node replication, the deep learning model of each 
node should be aware of its own status and the whole

Fig. 3 – A pipeline from task production to advanced fault tolerance.

edge infrastructure status. In this paper, the edge node 
which is examined is also called local and the whole edge 
infrastructure is called global. Because the local and the 
global status affect each other we propose the use of a 
composite deep learning model that combines the two in 
order to provide the local resource utilization predictions. 
The way that these two different sources of information 
are combined will be explained in the next subsection.

The work low of the resource usage prediction in an edge 
computing environment is depicted in Fig. 3. In the be‑ 
ginning, the edge devices generate tasks which are par‑ 
tially or fully executed to the edge computing nodes. Du-
ring the task execution the nodes are monitored in 
order to keep the resource utilization metrics. The 
resource utilization metrics are provided to the composite 
deep learning model in order to predict the resource 
utilization in the next time horizon. Next, the resource 
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usage predictions can be used by a thresholding 
method in order to trigger node replication and task 
migration. In the following subsections, we will describe 
the theory behind the key parts of composite neural 
networks, the RNN and the HBES for the resource usage 
prediction.

4.1 Two channel architecture for resource us‑
age prediction

The most commonly used architecture, when it comes to 
neural networks, comprises of layers that are stacked one 
after the other in a serial manner. Input data is fed to the 
irst layer, and one by one each of the layers transform 
the data and feed it to the next one. When building a neu‑ 
ral network however, we have the option of putting layers 
or even a series of layers in parallel, to take advantage of 
complex input structural properties. These parallel sec‑ 
tions of the network are processing different parts of the 
data independently and subsequently concatenate their 
output to send it to the inal section of the network. We 
decided to use an architecture, such as the one described 
above, utilizing two separate parallel series of layers (two 
channels) [34]. This allows us to better handle the local 
and global data metrics that are available.
The main advantage of using a multichannel neural net‑ 
work architecture is the ability to use different kinds of 
layers in the input stage of the model. As an example, 
many use cases from the literature use a convolutional 
network and a feedforward network at the input stage 
to accommodate data having both numerical and image 
properties. Multiple channel neural network architec‑ 
tures have the advantage that they can group together the 
data whose properties present high correlation [35]. This 
happens by having different sequences of layers handling 
different kind of data.
A multichannel neural network can be more time and 
resource‑consuming to train and infer compared to a 
vanilla serial neural network, because of its more com‑ 
plicated structure. We also cannot properly evaluate the 
channels, or understand their individual effect when it 
comes to the inal output of the model, since training is 
performed start‑to‑ inish without giving us more details 
about the process.
RNNs are a type of neural network that do particularly 
well when facing problems with sequential data. They are 
used to solve problems such as text prediction or voice 
recognition, and they are deemed effective when dealing 
with time series‑based problems as well. Consequently, 
we chose to include an RNN in our model as the irst input 
channel, since it is going to handle the sequential data of a 
single node (i.e. the one that the model is actively trying to 
predict). The input is the monitoring measurements with 
an interval record of one minute. The channel consists of 
one or two RNN layers followed by a feedforward layer, 
and sends the results to the output part of the network. 
For the second channel of the model, we chose to im‑ 
plement a feedforward network. This part is being fed 
with the global monitoring state, as well as a transformed
timestamp feature that refers to the day of the week and

the part of the day. It is obvious that the chance that a 
particular node to be overloaded in the immediate future 
is tied closely to the state of the other nodes that are col‑ 
laborating with it to handle the requests. The channel of 
the feedforward network includes dense layers, that also 
have dropout layers in between. This architectural de‑ 
cision works as a regularization measure that stops our 
model from over itting during training. 
Once the channels handle the input part of the model, 
their concatenated results are given to the output section 
of the network. The goal of this combination is to take 
into account the processed data and output a prediction 
for the resource utilization of a particular node, in a suf‑ 
icient time horizon after the state/last input we fed to 
the model. This is a feedforward neural network as well, 
with dense and dropout layers until the output layer. The 
choices regarding the merging of the two channels and the 
concatenation size of the input section, are handled by the 
hyper‑parameter selection algorithm.
In order to train itself on a dataset, the model tries to 
predict the future state of a particular node based on the 
complex input referring to both the local node in ques‑ 
tion and the global overall state. Once the model out‑ 
puts a prediction, it compares the prediction to the ac‑ 
tual output value utilizing a loss function. Loss functions 
such as MAE or RMSE, are a way to tell how good or 
bad a regressive model is at predicting the correct values. 
Based on the error calculated, the model shifts its weights 
and parameters using a variant of gradient descent, back‑ 
propagating through the network affecting all layers. A 
function called optimizer is describing how the procedure 
of weight‑shifting/network‑optimizing takes place. Both 
the architecture, and the training of a neural network 
provide us with many options and hyper‑parameters to 
tweak. In order to ensure a quick and optimal choice 
of hyper‑parameters for our model we implemented the 
HBES algorithm that will ef iciently make these decisions.

4.2 Recurrent neural networks for time series
data

Arti icial neural networks can be de ined as function ap‑ 
proximators, mapping lower level data representations to 
higher and disentangled data representations. RNN [7] 
is a type of arti icial neural network, which facilitates dy‑ 
namic temporal behaviour, captures data sequences, and 
maintains the previous input states.
The RNN architectural paradigm is based on vari‑ 
ous neuron‑like nodes organized into successive layers, 
where each node is connected with nodes of the next suc‑ 
cessive layer and also has recurrent connections. Utili-
zing this particular concept, information regarding 
previous data inputs is allowed to affect future outputs, 
thus making RNN a solid option for time series modelling 
while taking into account contextual information. By 
monitoring edge computing infrastructures, we gather 
sequential data and predict the future resource usage 
metrics with RNN, based on their current and previous 
values.
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The main problem that RNN encounters is the vani-
shing gradient problem. This problem emerges during 
the training stage of the RNN, when the gradients 
become vanishing small preventing the weight 
updates of the RNN. Various gate‑related architectures 
have been introduced in order to tackle the vanishing 
gradient problem. Through the use of gates, the network 
is able to properly maintain relevant information and to 
successfully pass it down to the next time steps. The 
two most notable ones are the LSTM networks and the 
GRU [8] networks.

4.3 Long short‑term memory
The LSTM network architecture was created to tackle the 
problem of vanishing gradients in RNN. The importance 
of using this complicated architecture can be highlighted 
by pointing out how much context can be offered in in-
ding a solution. When dealing with a time series data 
problem, such as predicting resource usage, we can get 
much more useful information if we look at historical data 
of our machines’ usage, rather than just glancing at their 
current state. This way, we can better understand 
concepts like trend, which can only be explained over 
time. LSTMs, just like regular RNNs, utilize the hidden 
state to connect the consequent nodes so as to enable 
better understanding of temporal data. However, they 
also use a cell state, which is another connection 
between the nodes. Each LSTM cell can read from the 
cell state, write to it or reset it via the use of gates.
There are three gates in total, each activated by a sigmoid 
function. This ensures that the model remains differen‑ 
tiable, since sigmoid offers smooth curves in the range of 
0 to 1. Each one of the gates takes as inputs the actual in‑ 
put as well as the hidden state of the previous time step. 
In addition to the gates, a vector called C is responsible for 
carrying the candidate information that can be added to 
the cell state. C utilizes a tanh layer, which is in charge of 
limiting the vanishing gradient phenomenon. To this ex‑ 
tent, the cell information can be kept longer without van‑ 
ishing. The way this is achieved is by keeping the gradi‑ 
ents zero‑centred, between the values of ‑1 and 1.
The input gate is handling incoming data, and controlling 
whether the memory cell should be updated. It is applied 
to C, and the result is then added to the cell state. The 
sigmoid activation of the gate is used to either mitigate or 
enhance the effect that the new information should have 
on the cell state.
The forget gate is the entity that is responsible for selec-
ting the information that is deemed less important, and 
it removes it from the cell state by soft‑resetting its 
values. Additionally, by utilizing the sigmoid function, it 
produces a scaled output for every value that is saved 
in the cell state.
Finally, the output gate is the inal layer before the new 
hidden state is produced. It uses the sigmoid function as 
a ilter to be applied to the cell state after it goes through 
a tanh layer irst. After this process is completed, both the

Fig. 4 – Integrated RNN in the resource usage prediction.

hidden state and the cell state compose the output of the 
LSTM cell which will be inputted to the next time step.

4.4 Gated recurrent units
GRU and LSTM are similar as both of them manage to 
prevent the vanishing gradient problem by utilizing gate 
structures. What sets them apart is the fact that GRU com‑ 
bines the forget gate and input gate to form a single up‑ 
date gate. By reducing the number of gates involved, GRU 
is able to provide less complex structures and thus, be 
more computationally ef icient when compared to LSTM. 
At the same time, GRU manages to perform equally well. 
GRU networks also facilitate the hidden state mecha‑ 
nism which connects one unit of the network to the next, 
thus allowing the manifestation of dynamic temporal be‑ 
haviour in a similar manner. Each GRU unit is indicative of 
a speci ic time step that facilitates the transfer of impor‑ 
tant information through the time continuum. Further‑ 
more, it contains two distinct gate structures. The irst 
one is referred to as the reset gate while the second one 
is referred to as the update gate. They both bear sigmoid 
layers which provide smooth curves in the 0 to 1 zone, 
thus ensuring that the model will remain differentiable. 
By squishing the values between 0 and 1, the sigmoid ac‑ 
tivation also helps the network learn which data is impor‑ 
tant or not and then accordingly keep it or forget it.
In order to contextualize the GRU paradigm in accordance 
to edge computing, we input vectorized representations 
with information such as the perspective timestamps, the 
resource utilization of CPU, RAM, bandwidth, and disk 
through the data preprocessing as illustrated in Fig. 4. 
The functionality of GRU networks is carried out in the 
form of the following steps. As explained before each GRU 
uses a reset gate and an update gate. Each of these gates 
has two weight matrices. The irst one corresponds to 
the input while the second one corresponds to the hid‑ 
den state. The reset gate of GRU is responsible for deci-
ding how much of the past information shall be 
forgotten. Much like in the case of LSTMs, the irst step 
is to multiply the input and the hidden state by their 
corresponding weights. The sum of the multiplication 
results is then passed through a sigmoid layer.
The update gate is in charge of determining how much 
of the information gathered over the previous time steps 
needs to be passed along for future use. In this regard, 
its behaviour is quite similar to the one of the reset gate. 
The irst step requires the multiplication of the input and
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the hidden state by their perspective weights. The 
hidden state entails information derived from the 
previous 𝑡 − 1 units. Then, the multiplication results are 
added together and passed through a sigmoid layer. The 
output of the up‑ date gate will be referred to as 𝑢.
The next step is to create a candidate new hidden state. 
Similarly, to the reset and update gates, there are also 
two weight matrices involved. The irst one corresponds 
to the input and the second one corresponds to the 
hidden state. The irst step towards creating a candidate 
new hidden state is to multiply the input by its 
correspond‑ ing weights. The second step is to calculate 
the Hadamard product in an element‑wise manner 
between the hidden state and the output of the reset 
gate. This process is es‑ sential for deciding how much of 
the information gathe‑ red during the previous time 
steps will be removed. The Hadamard product is then 
multiplied by the weights of the hidden state. The results 
of the two multiplications are then added together. The 
sum is passed through a tanh layer, which minimizes the 
effects of the vanishing gradient phenomenon. This is 
performed by distributing the gradients in a suf icient 
manner, within a zero‑centred range. Thus, it enables the 
information to low longer without vanishing. The 
product of the operations so far is the candidate new 
hidden state will be referred to as ℎ′.
In order to get the updated hidden state, the irst step re‑ 
quired is to perform element‑wise multiplication to the 
output of the update gate and the hidden state. The se-
cond one is to perform element‑wise multiplication to 
the ℎ′ and the product of 1 − 𝑢.  The updated hidden 
state is the sum of the two multiplication products. 
The updated hidden state is then carried over to the 
next GRU unit, which corresponds to the next time step.

4.5 Evolutionary strategy
Evolutionary strategy [36] belongs to the category of 
evolutionary algorithms that are population‑based meta‑ 
heuristic optimization approaches inspired by the prin‑ 
ciples of biological evolution. The formulation of evolu‑ 
tion strategy is based on successive iterations of muta‑ 
tion and selection over a population of candidate solu‑ 
tions. The candidate solutions, also named individuals, 
are initialised in random positions in an n‑dimensional 
space and move toward positions that minimize an objec‑ 
tive function. These dimensions are the numerical GRU‑ 
RNN hyper‑paramaters that should be optimized.
For the needs of hyper‑tuning GRU‑RNN, we used its nu‑ 
merical hyper‑parameters as the search space of the evo‑ 
lution strategy and the mean squared error of the can‑ 
didate RNN as the itness function. In each iteration, a 
number of RNNs are trained and evaluated with the mean 
squared error, whereas the most accurate of them are mu‑ 
tated to the next iteration. The mutation is a stochastic 
process based on a normal distribution that introduces 
variations in the best it individuals of each iteration. In 
the beginning, the exploration for different candidate so‑

lutions is intensive, making stronger mutations towards 
new areas of the search space. In each iteration the explo‑ 
ration decreases and the exploitation of the best it indi‑ 
viduals increase using a self‑adaptation control variable. 
This means that the mutation introduces strong varia‑ 
tions in the irst iterations and the variations decay as the 
evolution progresses in order to converge to a close to op‑ 
timal RNN architecture.

Hyper‑tuning deep learning models with an evolution 
strategy in contrast with other evolution algorithms, like 
genetic algorithms, has the advantage of not recombining 
different neural network topologies that may have signi i‑ 
cant discrepancies in their phenotypes. This happens be‑ 
cause the crossover of the genetic algorithm has the dif‑ 
iculty that the parents may have different architectures 
that cannot be uni ied in their offspring. A typical exam‑ 
ple is if the one parent is a 2 layered LSTM‑RNN followed 
with 6 dense layers and the second parent is a 2 layered 
GRU‑RNN followed with 4 dense layers. Thus, the pheno‑ 
types of LSTM and GRU cannot be smoothly recombined. 
On the other hand, evolution strategy is based only in the 
selection and the mutation which smoothly lead the evo‑ 
lution process. Speci ically, the mutation operations in‑ 
troduce variations into the survived candidates providing 
the opportunity to test neighbour solutions that may lead 
to an improved itness value.

4.6 Bayesian optimization
Bayesian optimization [37] is widely used to estimate 
hyper‑parameters in machine learning and deep lear-
ning models. It was an obvious option for the 
searching process in the categorical dimensional space, 
in order to ind the close to optimal nominal 
hyper‑parameters of the RNN. Bayesian optimization 
iteratively requests new observations of the search 
space with an acquisition function and estimates the 
objective function with a surrogate function. The 
increase of the Bayesian optimization observations gives 
a higher probability for the global optimum location. 
Nonetheless, we should take into consideration that the 
number of observations are inite and computationally 
expensive so the smart search process should select 
points that maximize the probability to ind a new 
optimal following an exploration vs exploitation 
trade‑off.
The surrogate function approximates the objective one 
and is updated every time the objective function is evalu‑ 
ated in the new candidate points. The acquisition function 
decides where to sample next in the iterative process of 
Bayesian optimization, inding the points that maximize 
the expected improvement. The expected improvement 
is a function of two components. The irst estimates the 
regions that the surrogate function has optimal points and 
the second estimates the regions with high prediction un‑ 
certainty that have not explored ef iciently yet.
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Fig. 5 – The four main steps of the HBES process for close to optimal RNN optimization.

4.7 Hybrid evolution strategy with Bayesian
optimization

The hyper‑parameter optimization for a composite neural 
network is a prominent challenge as it includes the impor‑ 
tant architectural decisions for a close to optimal topo-
logy. The HBES constitutes an innovative, holistic and 
uni ied approach for hyper‑tuning by merging the 
evolution strategy and Bayesian optimization 
methodologies. The evolution strategy is responsible for 
evolving a population of candidate deep learning models 
based on their numerical hyper‑parameters and each 
individual candidate solution estimates its nominal 
hyper‑parameters with the Bayesian optimization as it is 
described in Algorithm 1. The numerical 
hyper‑parameters are the number of recurrent layers 
and feedforward layers, the number of neurons for each 
layer, the lookback, epochs, the batch size, and the 
percentage of dropout and learning rate. The nominal 
hyper‑parameters are the type of neural layers, the 
activation functions and the optimizers. The gained 
knowledge of the nominal hyper‑parameters is universal 
through the population and updated by all the indivi-
duals over the generations. The ultimate goal of HBES 
is through the Bayesian evolution process to converge 
to a close to optimal solution and to train deep learning 
mod‑ els that can predict timely and accurately the 
resource utilization of the next time steps. The four 
main HBES steps for one iteration of the individuals 
evolution are illustrated in Fig. 5.

5. EXPERIMENTAL EVALUATION
To evaluate the IPFT methodology, we make two types 
of experiments. First, we experimentally evaluate and 
compare the applicability of RNN with the HBES against 
state‑of‑the‑art methods using a real dataset. This dataset 
is constructed by monitoring Raspberry Pi’s in an edge 
computing infrastructure. Next, we leverage the resource 
utilization prediction model in order to develop an IPFT 
mechanism that takes intelligent replication and migra‑ 
tion decisions in a suf icient time before the process faults 
occur. The suf icient time in the context of intelligent

Algorithm 1 Hybrid Bayesian and evolution strategy
Step 1: Initialization of evolution strategy

Set the starting search point of the algorithm.
Usually 𝑎1=[0.5, 0.5, ..., 0.5] since we have
already scaled our hyper‑parameter options
down to [0,1]

Step 2: for i = 1, 2, ..., 𝑛𝑝𝑜𝑝:
i) add some random noise to the search point
ii) Scale back from [0,1] to the hyper‑parameter
search space to create the ordinal
hyper‑parameter values for the network to be
trained
iii) Bayesian optimization with GP
1) Apply a Gaussian process prior on 𝑓
2) Observe 𝑓 at 𝑛0 points according to an
initial experimental design

3) Initialize 𝑛 = 𝑛0
4) Repeat while 𝑛 ≤ 𝑁
a) Update the posterior probability
distribution on 𝑓 using all available
data
b) Let 𝑥𝑛 be a maximizer of the
acquisition function over x.
c) Observe 𝑦𝑛 = 𝑓(𝑥𝑛, 𝑥𝑖(𝑡 + 1), 𝑣𝑖(𝑡 + 1))
d) 𝑛 ← (𝑛 + 1)

Step 3: Sort the results and its corresponding
hyper‑parameters

Step 4: Calculate the new search point by
averaging the points of the 𝑡𝑜𝑝𝑛 networks

Step 5: Go to Step 2 until desired number of
iterations is completed
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replication and migration involves the service deploy‑
ment time of the processing nodes and the scheduling of
the new tasks on that node. The experimental evaluation
of IPFT took place in a seven day edge computing simula‑
tion using the CloudSim Plus framework [38]

5.1 Experimental evaluation in resourceusage
prediction

The edge infrastructure we used includes Raspberry Pi3 
as processing nodes with a 64‑bit quad‑core ARM Cortex‑ 
A53 at 1.4GHz, loaded with Raspbian operating system 
which is a version of Debian Linux. The dataset con‑ 
structed by a monitoring tool implemented in Python 3 
using the libraries psutil [39] and GPUtil [40]. We mo-
nitored the real‑time usage of CPU, RAM, disk and 
bandwidth in one second time interval.
The deployed application was a natural language proces-
sing text classi ication. The use case was to make the 
text classi ication on an edge computing environment, 
locally, close to the text owners and not in cloud 
computing infrastructures for privacy issues. The reason 
for this choice is that the text owners did not agree for 
their texts to be transferred and processed in remote 
servers. In order to control the application remotely and 
take the resource us‑ age datasets we used the SSH 
protocol, but we did not have the privileges to access 
the processed texts.

5.1.1 Model implementation and frameworks
for comparison

The HBES model and the RNN multi‑output regression 
model are implemented in Python 3 using the frame‑ 
works NumPy, pandas, statistics, Scikit‑learn, SciPy, 
Scikit‑Optimize, TensorFlow 2 and Keras. The environ‑ 
ment we used for the training and the evaluation of the 
model was the Jupyter notebook of the Google Colabora‑ 
tory. The experiments’ source code is available for any 
kind of reproduction and re‑examination in our GitHub 
repository [41]. In this experimental setup we used the 
HBES with GRU as RNN and compared the results with 
a time series baseline approach, the machine learning 
meta‑model for resource usage prediction AUCROP, the 
uto‑sklearn, the XGBoost, our previous LSTM with genetic 
algorithm model (GA‑LSTM) [9] and the Keras‑Tuner.

5.1.2 Evaluation results and discussion
Our initial time‑series analysis provided results which in‑ 
dicate positive correlations for lags in a value range from 
1 to 22. This inding con irms the strong self‑similarity 
property that the sequences of resource usage metrics 
have. Afterwards, using the ARIMA forecasting model we 
evaluated the resource metrics predictions. For instance, 
the CPU RMSE was 18.474. After comparing the results of 
the statistical models with the ones of the machine lear-
ning and deep learning approaches we found that the 
latter had an improvement that surpasses the 20% RMSE 

Fig. 6 – GRU‑RNN with HBES prediction errors of resource usage met‑ 
rics.

in most cases. Because of that, we decided to focus our 
research on the machine learning and deep learning 
models. Table 1 summarizes the experimental results. 
The irst two columns provide the aggregated RMSE 
and MAE including all testing values of the devices, and 
the resource metrics. For RMSE, which gives an extra 
penalty to predictions with signi icant errors, we can 
see that HBES‑ GRU had the best performance. In the 
column entitled MAE, we see that the two best models are 
the auto‑sklearn and HBES‑GRU. Their prediction errors 
are very close and they have a signi icantly better 
performance compared to other models.
CPU‑1 and RAM‑1 columns represent the RMSE and MAE 
for the processing edge node which had the least accurate 
predictions in the infrastructure. In addition, Fig. 6 illus‑ 
trates the 25th and 75th percentile, the median, the min 
and the max of the error value metrics. These metrics in‑ 
clude CPU, RAM, disk usage, and bandwidth in terms of 
the bytes sent and received. Regarding the disk usage and 
the bandwidth the prediction errors were insigni icant. 
This is not only due to the ability of the HBES‑GRU to pro‑ 
vide accurate predictions, but due to the small luctuation 
in these two resource metrics as well. The luctuation in 
CPU is much greater than in RAM and HBES‑GRU captures 
in a better way the various changes when compared to 
the other models. XGBoost has better performance than 
HBES‑GRU in RAM. This may be justi ied by the ensemble 
structure that XGBoost has. XGBoost can build speci ic de‑ 
cision trees for the residuals of RAM and target on its slow 
change behaviour.
Lastly, we see the inference times of the models which are 
required in order to provide a single prediction or a batch 
with one hundred predictions. All time measurements 
are in seconds. All the inference times, except from auto‑ 
sklearn, are within a range from 11 to 60 msec. These in‑ 
ference times indicate that resource usage prediction is 
a rather fast process which can be incorporated in time 
sensitive applications. In this research we did not com‑ 
pare the training times because we wanted to make an ex‑ 
haustive smart search in the hypothesis space and see the 
limits of accuracy that the different models can achieve. 
It is worth noting that we have made experiments using a 
wide range of time‑frames. However, the measurements 
in Table 1 are produced using a 10 minute time‑frame. We 
chose to illustrate this time‑frame because it is close to the 
actual time which is required for the deployment time of 
a node. From the results we see that even if GRUs are sim‑ 
pler in their structure compared to LSTMs, due to their
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Table 1 – Comparison of single‑output & multi‑output prediction methods of resource usage metrics.

Method RMSE MAE CPU‑1 (%)
RMSE MAE

RAM‑1 (%)
RMSE MAE

Infer. Time
Single Batch

HBES‑GRU 0.0641 0.0276 15.918 12.815 1.694 0.580 0.033 0.038
GA‑LSTM 0.0674 0.0338 16.099 12.838 1.746 0.917 0.020 0.024
Keras‑Tuner 0.0785 0.0377 16.291 13.290 2.631 0.818 0.042 0.042
AUCROP 0.0814 0.0414 17.235 14.009 2.480 1.482 0.004 0.011
XGBoost 0.1139 0.0599 16.457 13.569 1.515 0.472 0.060 0.010
Auto‑sklearn 0.1055 0.0243 52.659 17.856 1.546 0.526 0.263 0.572

lack of a dedicated output gate, they had slightly better
performance.
Furthermore, the conducted experiments enabled us to
reach the following conclusions:

• In most metrics the deep learning models (HBES‑ 
GRU, GA‑LSTM, Keras‑Tuner) have better perfor‑ 
mance than machine learning models (AUCROP, XG‑ 
Boost, auto‑sklearn).

• The evolutionary algorithms for hyper‑tuning
(HBES‑GRU and GA‑LSTM) have better performance
compared with the simple Bayesian optimization
(Keras‑Tuner).

• One can witness a signi icant improvement when
using the hybrid Bayesian and evolution strategy
approach instead of simple genetic algorithms.

5.1.3 Convergence of hybrid Bayesian evolution
strategy

The convergence and the location of the global optimum 
are two of the most important topics in the domain of evo‑ 
lutionary algorithms. The convergence means that as the 
population evolves, the individuals go closer to the op‑ 
timal solution shrinking their divergence. However, we 
cannot be sure if the convergence points in the genotype 
space constitute a global or local minimum. For this rea‑ 
son, the HBES algorithm in the beginning of the evolu‑ 
tion process expresses a strong variance in the mutation 
which decays over iterations. Concurrently, we keep the 
best genotype found over all the iterations.
The convergence of HBES is illustrated in Fig. 7. We ob‑ 
serve that in the beginning the average population error 
per iteration luctuated strongly. In some iterations it is 
trapped in local minima as an example between the 
iterations six to eleven. In some other iterations it 
lays in plateau regions, such as between iterations 
twenty to twenty ive. Yet, using the mutation the 
individuals eventually escape from the plateau regions 
and the local minima and move towards close to optimal 
regions.
These close to optimal regions in the genotype space are 
decoded to the close to optimal GRU‑RNN architectures 
in the phenotype space. These GRU‑RNN architectures 
provide the most accurate resource usage predictions for 
CPU, RAM, disk, and bandwidth usage in an edge compu-
ting infrastructure.

Fig. 7 – The convergence of HBES for close to optimal RNN.

5.2 Experimental evaluation in proactive fault
tolerance

The promising experimental results of the HBES with 
RNN in regards to resource usage prediction, motivated 
us to continue the experiments in order to evaluate its 
applicability as a proactive fault tolerance mechanism. 
Speci ically, we used the HBES to make a smart search in 
candidate two‑channel deep learning models and applied 
the thresholding method as described in Section 4.

5.2.1 Experimental simulation

The composite deep learning model was integrated in an 
edge simulation of CloudSim Plus. We simulated an edge 
infrastructure that consists of a set of nodes, ive avail‑ 
able to us by default, and another 15 that can be acti‑ 
vated for intelligent replication when needed. We si‑ 
mulated the local and global resource monitoring 
process, measuring CPU, RAM and bandwidth values, 
and saving those values every 60 seconds (time step). 
The task of loader of the infrastructure was receiving 
incoming traf ic and was assigning each task on a node, 
based on the following scheduling algorithms: 
RoundRobin, MinMin, and MaxMin.
The local and global resource usage metrics are being 
monitored and then fed to the IPFT mechanisms of each 
processing node. During every single time step we use 
the monitoring data in order to formulate the appropriate 
data representations, featuring the past time‑series mea‑ 
surements of a single node, as well as the state of the in‑
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frastructure as a whole. The input is then fed to the com‑ 
posite deep learning model, enabling it to make predic‑ 
tions of resource usage for every node in a time horizon 
of 10 minutes. In this experimental setup we made the 
assumption that the preparation time for the infrastruc‑ 
ture to assure its availability and robustness to faults is 
10 minutes.
The simulation lasted for seven days and the tasks were 
generated by a mixture of Gaussian probability distribu‑ 
tions that simulate a realistic application workload be‑ 
haviour [42]. The processing nodes simulated the pro‑ 
cessing capabilities of Raspberry Pi’s. We de ined a pro‑ 
cess fault if the time execution of a task lasts more than 
one second. The selection of one second is a reasonably 
acceptable latency for several data analytic applications 
[43]. Trying different latency times for the process faults, 
we noticed that the IPFT performance was better than 
the reactive approach. In the reactive fault tolerance ap‑ 
proach, a node replication is triggered in case of a fault is 
taking place. In Table 2, as we will thoroughly discuss in 
the next section, we compare the IPFT mechanism to the 
reactive fault tolerance approach.

5.2.2 Fault tolerance evaluation metrics
In order to evaluate the performance of the IPFT mecha‑ 
nisms, we used a set of fault tolerance evaluation metrics 
[44]. Mean Time To Failure (MTTF) is de ined as the ex‑ 
pected time for a failure to occur given that the system 
functions properly. MTTF is an evaluation metric which 
corresponds to the overall inability of the edge infrastruc‑ 
ture to operate properly and thus, it is calculated by taking 
into consideration the number of faults regardless of the 
actual processing node that failed. Mean Time To Repair 
(MTTR) is de ined as the expected time required to repair 
the system after a failure occurs. For the MTTF the higher 
values are better and for MTTR the lower values are bet‑ 
ter. These evaluation metrics are calculated in terms of 
seconds.
Two additional fault tolerance evaluation metrics are reli‑ 
ability and maintainability. Reliability refers to the ability 
of an edge infrastructure to run continuously without any 
failure. Maintainability refers to how easily a failed sys‑ 
tem can be repaired. Both reliability and maintainability 
are numbers with no units and higher values mean better 
performance.

5.2.3 Evaluation results and discussion
The experimental results are summarized in Table 2. We 
compared the IPFT mechanism to the Reactive Fault To‑ 
lerance (RFT) approach. The RFT approach 
performs node replications after a fault occurs. 
Regarding the task of loading algorithm we used the 
Round Robin (RR) [45], the MinMin and MaxMin [46]. 
The experimental results show the superiority of IPFT 
compared to the RFT in all evaluation metrics. In 
addition we see that the outcomes are signi icantly 
affected from the task of loading mechanism. 

This happens because the task of loading algorithms 
also integrate a workload balancing methodology with 
different criteria as we will discuss in the following 
paragraphs.
The number of generated tasks in all experimental se‑ 
tups was close to 1,500,000 with some parts of the day 
having an intensive task generation (i.e., 11:00 ‑13:00), 
while some other parts of the day a small number of 
tasks (i.e., 02:00 ‑ 04:00). We simulated this task genera‑ 
tion behaviour because it is close to the activity of many 
user applications during a day. In this way, we observed 
that the infrastructure made intelligent replications du-
ring the parts of the day with an increased task 
generation. Respectively, the infrastructure turned off the 
edge nodes when the IPFT mechanism predicted an 
under‑utilization of the processing nodes. Sometimes 
there were some sudden spikes or drops in task 
generation and resource utilization, but the 
infrastructure using the IPFT mechanism could 
dynamically and timely adapt.
In Table 2, we can see that in RR, MaxMin and MinMin the 
MTTF in IPFT has been increased compared to the RFT. 
This means that leveraging the resource usage predic‑ 
tions, faults occur more sparsely and rarely. We can see 
from the MTTR metric that in the event of a fault, the in‑ 
frastructure will recover very quickly, scheduling the new 
tasks in processing nodes with low resource utilization. 
The reliability metric shows that by using the IPFT, the 
edge infrastructure can provide the expected results up 
to 93% of the simulation length, even during the stress‑ 
ing time periods of the simulated days. The signi icant 
improvement noticed for the maintainability metric, de‑ 
clares that even if a fault occurs, the IPFT will increase 
the robustness of the edge infrastructure. In other words, 
the IPFT will take timely the right measures by triggering 
node replication and task migration, in order to reduce 
the likelihood of subsequent fault occurrence.
A fault is recorded taking into consideration all the edge 
nodes that are currently active. This means that the MTTF 
value of 13.309 seconds in IPFT MaxMin includes the 
faults of different edge nodes. In addition to that, some 
generated tasks had a large number of million instruc‑ 
tions that would have provoked a fault because of the 
CPU unavailability in the processing nodes. In this case, 
we wanted to know how these tasks affect the MTTF and 
MTTR. From the analysis of the results we saw that the 
variance of the task size is the reason that we see that the 
three different task of loading mechanisms have different 
performance. In particular, the MaxMin algorithm gives 
higher priority in big tasks, thus we see a signi icantly bet‑ 
ter MTTF metric.
During the simulation we examined the IPFT decisions 
and how the edge environment operates. The simula‑ 
tion con irmed that the infrastructure takes advantage 
of the timely decision to trigger proactive actions, such 
as intelligent node replication and task migration before 
the amount of tasks overwhelms the processing nodes. 
This can be particularly important for the infrastructure 
provider as it can save costs and energy, by shutting down
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Table 2 – Evaluation of reactive and intelligent proactive fault tolerance
methods

MTTF MTTR Reliab Maint
RFT RR 2.864 19.657 0.741 0.048
IPFT RR 9.506 3.343 0.904 0.230
RFT MinMin 8.733 36.169 0.897 0.026
IPFT MinMin 8.919 5.656 0.899 0.150
RFT MaxMin 3.721 24.239 0.788 0.039
IPFT MaxMin 13.309 7.425 0.930 0.118

nodes when they are no longer needed. Additionally, the 
provider can achieve a smoother low of on‑time com‑ 
pleted tasks, avoiding crashes and minimizing QoS dete‑ 
rioration.
In regards to the actual cost of implementing the pro‑ 
posed IPFT paradigm, the consumption of computational 
resources was 3.2% greater when compared to the reac‑ 
tive approach. Furthermore, the burden imposed on the 
network infrastructure was about 10 bytes per second, 
due to the information low that derived from the need 
of the prediction model to have access to the ongoing re‑ 
source usage. Finally, the incorporation of the prediction 
mechanism used around 125MB of RAM and increased 
CPU consumption by around 47% for an average of 2250 
ms on an Intel Xeon E312xx CPU. When contemplating the 
substantial bene its provided by the IPFT approach, we 
believe that the overall implementation cost is justi ied 
and quite reasonable.

6. CONCLUSION
In this paper, we proposed a proactive fault tolerance 
mechanism in an edge computing infrastructure based 
on the resource usage predictions. In the beginning we 
discussed and experimentally evaluated the use of RNN 
for resource usage modelling. We developed a com‑ 
posite deep learning model that leverages in two chan‑ 
nels the resource usage metrics of the local processing 
nodes and the infrastructure as a whole. We also de‑ 
signed a hyper‑tuning algorithm that combines an evolu‑ 
tion strategy with Bayesian optimization and surpasses 
commonly‑used hyper‑tuners like Keras‑Tuner and other 
state‑of‑the‑art machine learning models. Last but not 
least, we presented how a proactive fault tolerance me-
chanism can leverage the resource usage predictions 
trig‑ gering node replication and task migration.
Our experiments and results corroborated the ef iciency 
of our proactive fault tolerance methodology, the appli‑ 
cability of RNN and the two‑channel architecture for the 
resource usage prediction. The limitation of our work is 
that we have not yet holistically worked with other types 
of faults like network faults, physical faults and service ex‑ 
piry faults. Our future work is to make data analysis and 
ind the execution patterns in the edge resources that are 
related with these types of faults. In addition, we want to 
see how different threshold values affect the performance 
of the IPFT. Speci ically, we plan to further investigate the 
resource usage metric threshold for triggering the node

replication and task migration and the time intervals for 
monitoring the time series metrics.
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