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Abstract
Magnetic resonance imaging is currently the gold standard for the evaluation
of spinal cord injuries. Automatic analysis of these injuries is however challeng-
ing, as MRI resolutions vary for different planes of analysis and physiological
features are often distorted around these injuries. This study proposes a new
CNN-based segmentation method in which information is exchanged between
two networks analyzing the scans from different planes.Our aim was to develop
a robust method for automatic segmentation of the spinal cord in patients having
suffered traumatic injuries. The database consisted of 106 sagittal MRI scans
from 94 patients with traumatic spinal cord injuries. Our method used an inno-
vative approach where the scans were analyzed in series under the axial and
sagittal plane by two different convolutional networks. The results were com-
pared with those of Deepseg 2D from the Spinal Cord Toolbox (SCT), which
was taken as state-of -the-art.Comparisons were evaluated using K-Fold cross-
validation combined with statistical t-test results on separate test data. Our
method achieved significantly better results than Deepseg 2D, with an average
Dice coefficient of 0.95 against 0.88 for Deepseg 2D (p < 0.001). Other metrics
were also used to compare the segmentations,all of which showed significantly
better results for our approach. In this study, we introduce a robust method for
spinal cord segmentation which is capable of adequately segmenting spinal
cords affected by traumatic injuries, improving upon the methods contained in
SCT.

KEYWORDS
convolutional neural networks (CNN), deep learning, medical image segmentation, spinal cord

1 INTRODUCTION

The spinal cord is a highly complex anatomical struc-
ture that is, part of the central nervous system. Its
main function is to ensure the conduction of motor
signals from the brain to the peripheral nervous sys-
tem and the conduction of sensory signals from the
peripheral nervous system to the brain. The degener-
ation of the spinal cord due to various diseases as
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well as the damage caused by traumatic accidents can
therefore drastically alter the functioning of the human
body.[1] Magnetic resonance imaging is the modern tool
of choice for evaluating spinal cord injuries.[2–6] Seg-
mentation of the spinal cord by MRI is most often used
to measure its cross-sectional area at various levels,
which allows quantitative analyzes to be carried out in
order to characterize lesions.[7,8] Automatic segmenta-
tion of the spinal cord is also used to build standardized
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atlases such as in the Spinal Cord Toolbox[9] (SCT)
and can facilitate longitudinal studies where manual
segmentation is too time-consuming to accomplish.

Several approaches exist for the automatic segmen-
tation of the spinal cord from MRI. Some methods, such
as Propseg,[10] use algorithmic approaches without neu-
ral networks, while more recent approaches such as
Deepseg 2D (SCT), Deepseg 3D[11] or BASICseg[12]

use deep learning methods based on U-Net type
architectures.[13,14] According to the authors presenting
Deepseg 3D, their approach is able to segment healthy
spinal cords or those with non-traumatic lesions with
high precision on T2-weighted scans (Dice coefficient
> 0.92).[11] However, the quality of segmentations in
patients with traumatic spinal cord injury (SCI) is con-
siderably lower, with Dice coefficients of 0.70 for spinal
cord areas affected by traumatic lesions and 0.90 for
whole spinal cord segmentations.[12] This is because the
normal features of the structures surrounding the spinal
cord in the injured areas are lost or distorted. Deepseg
approaches also have difficulty segmenting the spinal
cord of some older subjects, since the demarcations
surrounding it may be less clear.

The objective of this study is to develop an approach
for injured spinal cord segmentation that is, versatile
enough to be used in a clinical setting. This method
uses T2-weighted sagittal scans of injured spinal cords
to train two convolutional networks placed in cascade.
The scans are first sent to one network, which analyzes
them in the axial plane and produces a primary segmen-
tation. This segmentation along with the original scan is
then fed to the second network, which analyzes them in
the sagittal plane and produces the final segmentation.
Thus, we have developed a robust method capable of
segmenting not only healthy spinal cords,but also those
with traumatic injuries or degraded by age. To this end,
an automatic method incorporating the standardization
of MRI data as well as the training of convolutional net-
works has been developed. The networks are evaluated
using several metrics, including overlap,statistic and dis-
tance metrics. The results are compared to those of the
Deepseg 2D network from SCT (version 5.6),which rep-
resents the state of the art for our data, as testing our
data with other available approaches from SCT such as
Deepseg 3D rendered significantly inferior results.

2 MATERIALS AND METHODS

2.1 Data

The study population consisted of patients admitted to
the Sacré-Coeur Hospital of Montreal after having suf-
fered traumatic spinal cord injuries.A total of 106 sagittal
T2 weighted scans were used,sourced from 94 patients.
Most scans were cervical (94), with some patients also
having dorsal (8) or lumbar (4) scans. Most scans were

taken on Siemens machines, with 59 scans from the
MAGNETOM Avanto model (1.5 T), 27 scans from the
MAGNETOM Symphony model (1.5 T) and 19 scans
from the MAGNETOM Skyra model (3 T). One scan
from was from the Philips Achieva model (3 T). Table 1
shows the detailed scan parameters for the entirety of
our dataset.

For manual segmentation of the whole spinal cord,
the segmentations from Deepseg 2D were used to
create preliminary templates. These templates where
then annotated manually by a trained rater. A fellow in
neurosurgery (S.F.J.)subsequently reviewed the man-
ual segmentations and also produced segmentations of
the spinal cord injuries themselves. In addition to the
T2 scans being segmented, most patients possessed
axial scans as well as T1 and STIR scans which were
sometimes used to clarify ambiguous areas.

The data was randomly separated into training and
test data. The data from 19 patients, or 20 scans,
were reserved for testing, while data from the remain-
ing 75 patients, or 86 scans, were dedicated to training.
We thus obtained a training/test separation of approxi-
mately 80/20. Since many patients had more than one
scan, it was important to ensure that all scans for the
same patient were in only one of the two categories in
order to avoid biasing the results in a favorable way.

For manual segmentation of the whole spinal cord,
the segmentations from Deepseg 2D were used to cre-
ate preliminary templates. These templates where then
annotated manually by a trained rater. A fellow in neuro-
surgery [name deleted] subsequently reviewed the man-
ual segmentations and also produced segmentations of
the spinal cord injuries themselves.

The data was randomly separated into training and
test data. The data from 19 patients, or 20 scans,
were reserved for testing, while data from the remain-
ing 75 patients, or 86 scans, were dedicated to training.
We thus obtained a training/test separation of approxi-
mately 80/20. Since many patients had more than one
scan, it was important to ensure that all scans for the
same patient were in only one of the two categories in
order to avoid biasing the results in a favorable way.

2.2 Segmentation framework

In our approach, one convolutional network first seg-
mented all of the axial slices of a scan.Following this,the
axial segmentations produced were rearranged to form
sagittal slices and forwarded,along with the sagittal MRI
slices, to another convolutional network to be analyzed
sagittally. Our approach, which targeted the segmenta-
tion of the entire spinal cord, was therefore divided into
two stages, as can be seen on Figure 1. The first stage
consisted in training a convolutional network using axial
slices in order to produce a preliminary segmentation
of the spinal cord. This step mirrored the approach of

 15269914, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/acm
2.14123 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MASSE-GIGNAC ET AL. 3 of 10

TABLE 1 Overview of scan parameters.

Parameters MAGNETOM Avanto MAGNETOM Symphony MAGNETOM Skyra

Sagittal resolution (mm) 0.488 [0.528, 0.684] 0.656 [0.586, 0.703] 0.651 [0.488, 0.684]

Slice gap (mm) 3.4 [3.3, 4.8] 3.4 [3.3, 4.8] 3.5 [3.3, 5.0]

Slice thickness (mm) 3.03 [3.0, 4.0] 3.04 [3.0, 4.0] 3.05 [3.0, 4.0]

Repetition time (s) 3.78 [2.97, 4.99] 3.52 [2.80, 4.71] 3.38 [2.74, 4.00]

Echo time (s) 0.111 [0.104, 0.158] 0.125 [0.118, 0.132] 0.100 [0.081, 0.103]

SAR (W/kg) 0.993 [0.644, 2.359] 2.026 [1.372, 3.284] 0.704 [0.393, 1.441]

Flip angle (◦) 155.7 [150.0, 180.0] 170.4 [153.0, 180.0] 159.5 [150.0, 160.0]

FOV (%) 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0]

Echo train length 18.0 [15.0, 29.0] 21.2 [15.0, 23.0] 18.0 [11.0, 19.0]

Phase encoding steps 601.5 [451.0, 648.0] 486.8 [437.0, 615.0] 497.05 [361.0, 717.0]

Acquisition matrix PE 300.0 [246.0, 326.0] 256.8 [238.0, 307.0] 281.4 [250.0, 358.0]

Number of scans (field) 59 (1.5T) 27 (1.5T) 19 (3T)

F IGURE 1 Overview of our approach during training. The first step consisted in training the axial network. Following this, the segmentations
produced were reconstructed sagittally and used in pair to train the sagittal network. When using this method for inference on a given scan, all
axial slices of the scan are first segmented and then rearranged to form a sagittal segmentation, which is fed to the sagittal network along with
the sagittal centerline to produce the final segmentation.

BASICseg[12] in the sense that it only used axial slices.
However, the BASICseg approach used only axial type
scans and analysed these in the axial plane only, while
our approach used sagittal scans and analyzed these in
the axial as well as the sagittal planes.

The second step of this approach used as input data
the sagittal slices of the scans as well as the rear-
ranged axial segmentations obtained during the first
step. Its objective was to train a second convolutional

network using this data, this one to segment the sagittal
slices.This combination of axial and sagittal information
afforded the second network a more complete con-
textual representation of the information contained in
the scans.

The same architecture was used for both the axial
and sagittal networks. This architecture, which is illus-
trated on Figure 2, is based on the original U-Net[15] and
preserves the contracting and expanding paths principle
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4 of 10 MASSE-GIGNAC ET AL.

F IGURE 2 Architecture of our axial network. Note that the sagittal network used the same basic configuration, but with two input channels
instead of one and larger feature map sizes.

as well as the skip connections between the two paths.
However, several adaptations to the original architecture
have been made.

The number of feature maps produced in the initial
convolution was reduced from 64 to 32. This speeds up
the network considerably, reducing by half the number
of feature maps in the entire network while maintaining
performance for our task. We also reduced the contract-
ing/expanding layers from four to three, again improving
efficacy. In our case, the extra layer not only slowed
down the network,but had a detrimental effect on perfor-
mance.This was probably due to excessive deterioration
of feature map resolution in the lower layers,[16] espe-
cially for our axial network, since initial slice resolution
was low. We also added a zero-padding of 1 × 1 to all
convolutions, thus keeping feature map sizes constant
in each layer and eliminating the need for cropping prior
to concatenation of the skip connections.

Another change made to the original U-Net archi-
tecture was to add dropout layers[17] with a coefficient
of 0.4 following each ReLU layer. This improved per-
formance considerably by reducing overfitting and thus
allowed training to be prolonged. A sigmoïd layer was
also added as the final layer in our network in order to
bring the output values between 0 and 1.

The final change from U-Net was to add attention
gates[18,19] preceding the concatenation of skip connec-
tions. These attention gates help to transmit the more
global but lower resolution information from the deeper
layers to the higher layers. Our preliminary experiments
showed an improvement in performance when these
gates were used, and since they did not add consider-

able weight to the network, we choose to include them
in our final network.

Upsampling in the expansive path was achieved using
unpadded 2 × 2 transposed convolutions with a stride of
two. This restored all feature maps to the exact size of
the next layer in the expansive path,preventing the need
for any cropping or superfluous operations.

The axial and sagittal networks differ in only two
respects. First, the sizes of the feature maps differ
at each layer. For the axial network, they are succes-
sively 642, 322, 162, and 82 in the contracting path,
while for the sagittal network, they are 3842, 1922,
962, and 482. Additionally, in the case of our sagit-
tal network, there are two input channels rather than
one, as this network takes as simultaneous input
sagittal centerlines and segmentations from the axial
network.

2.2.1 Preprocessing

All scans were firstly re-orientated and re-sampled to 0.5
mm in the axial plane.Following this,we used the Optic C
algorithm[20] from SCT in order to isolate a 32 mm × 32
mm area around the spinal cord centerline, which was
equivalent to 64 × 64 voxels. Subsequently, an intensity
normalization was applied to the axial slices by limiting
the maximum and minimum intensities to correspond
with the 98th and 2nd intensity percentiles of the original
image.The range of values for the voxels was also stan-
dardized through linear interpolation to values between
0 and 1.The axial slices obtained were then forwarded to

 15269914, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/acm
2.14123 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MASSE-GIGNAC ET AL. 5 of 10

F IGURE 3 Preprocessing overview of our approach. Steps common to the preprocessing of both networks are represented horizontally
while steps specific to each network are represented vertically.

the axial network for training or inference.For the sagittal
network, the axial centerlines were used along with spa-
tial information stored during their cropping to construct
sagittal centerlines over a black background. Finally, the
sagittal centerlines were re-sampled to dimensions 384
× 384 voxels and normalized using the same process as
the axial centerlines before being forwarded to the sagit-
tal network. An overview of the preprocessing steps is
illustrated on Figure 3.

2.2.2 Augmentation

Elastic transformations and rotations were used in order
to prevent overfitting and increase the capacity of the
networks to analyze new data.Because subjects are not
always scanned in exactly the same position, there are
slight variations as to the angle of their spinal cord in
relation to the image borders. The rotations therefore
simulate situations where the subjects’ positions would
have been slightly different from their actual position,
thereby increasing the variety of the data set. As for the
elastic transformations, these simulate scenarios where
the patients would have different spinal curvatures. The
use of these augmentations was established by com-
paring preliminary results using different augmentation
types and coefficients, and then finally selecting the
most promising values.

These augmentations were realized by applying iden-
tical operations to the MRI slices and their correspond-
ing masks. The augmentation was reapplied at certain
epochs of training, using random coefficients over a
specified range to generate new transformations. In this
way, novel information was fed to the networks peri-
odically. The unmodified slices were also included in
the training data, so that at any given moment during
training, half of the training data consisted of the origi-
nal slices, while the other half consisted of augmented
data. In this way, the size of the original training set
was doubled.

2.2.3 Postprocessing

No postprocessing was applied to the segmentations
during training. At inference-time, a simple postprocess-
ing was applied to the segmentation mask to ensure that
it contained a minimum of 20 voxels.

3 EVALUATION AND RESULTS

3.1 Evaluation

This approach was realized using the Python program-
ming language (version 3.6.9) in conjunction with the
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6 of 10 MASSE-GIGNAC ET AL.

deep learning library PyTorch (version 1.9.0). The net-
works were trained on the Colaboratory platform using
a NVDIA Tesla P100 GPU.

3.1.1 Cross-validation

Training was performed following the K-Fold cross-
validation process, with K = 10. During this process, the
training database was randomly divided into 10 distinct
validation subsets.Each of these validation subsets had
its own scans,which were not shared with any other sub-
set.Out of a total of 86 scans reserved for training,eight
or nine of them were therefore allocated to each valida-
tion subset,while the remaining scans were used to train
the networks themselves. Out of 10 subsets, there were
therefore six subsets which had nine scans reserved for
validation and four subsets which had eight.

Statistical analysis was performed for each of the 10
networks in order to produce p-values comparing them
to Deepseg 2D. In this process, each network was first
used to segment the scans in our test database (n=20).
Deepseg 2D was also used to segment these scans. At
this stage, an Agostino-Pearson test was used to estab-
lish the normality of each result population. Next, an
error matrix was produced for each of our 10 networks
by subtracting their result matrices with that of Deepseg
2D. From these error matrices, we used a paired t-test
with 19◦ of freedom in order to obtain a t-value for each
of our 10 cross-validation networks.

p-values were then calculated from these t-values
using a two-tailed hypothesis. The null hypothesis
implied by this process was that the mean error values
for each network and Deepseg 2D were equal. The p-
values produced therefore represented the probability
of our networks and Deepseg 2D having the same mean
error on the test data, so that smaller p-values indicated
a more significant difference in network performance.

This way of proceeding was statistically valid,[21,22]

since our networks and Deepseg 2D were trained with
independent data. It is however important to keep in
mind that data from our clinical site was used for training
our networks as well as for these comparisons.

3.1.2 Axial training

There were a total of 39,728 axial slices contained in
the 86 training scans. We therefore obtained an aver-
age training/validation separation of 35,755/3973 slices
across the 10 cross-validation subsets. As all scans did
not have the same dimensions, and as the validation
subsets did not contain the same number of scans, the
proportion of axial slices dedicated to validation and
training for each subset varied slightly.

During training, each axial slice was augmented with
an elastic coefficient chosen randomly between −10◦

and 10◦ as well as a rotation coefficient between −5◦

and 5◦. Unmodified slices were also kept in the training
set,so as to double the quantity of axial slices dedicated
to training. In addition, augmented slices were renewed
at each epoch so as to maintain a constant supply of
new data to the network, as discussed previously.

Following the augmentation, the training subsets
ended up with an average of 71,510 axial slices. The
networks were then trained for 50 epochs or 893,900
iterations, which was sufficient for the validation loss
curves of the subsets to flatten out. This is usually
when networks begin to overfit, especially when training
losses continue to decline. This flattening phenomenon
is clearly visible in Figure 4, which shows the average
of the validation losses for all the subsets.

Training parameters were selected by using a process
based on genetic selection, and included a batch size
of 4, a dropout rate of 0.4 and a learning rate of 5e-5.
We used Dice Loss[23] and the Adam optimizer[24] with
betas equal to (0.5, 0.999) for backpropagation.

3.1.3 Sagittal training

Once the axial networks were fully trained, they were
used in turn to segment all of the training and validation
scans. The segmentations produced were then recon-
structed sagittally and matched with their corresponding
sagittal centerlines in preparation for training the sagittal
network. Note that the same training/validation separa-
tions that were used for each cross-validation iteration
of the axial training were maintained. The various
parameters used during the training process were again
selected following an optimization process based on
genetic selection. The values retained included a batch
size of 2, a dropout rate of 0.4 and a learning rate of
5e-5. The same loss function and optimizer were used
as in the axial training.

There were a total of 1177 sagittal slices contained
in the 86 training/validation scans. However, only slices
whose segmentations by the axial network contained
segmented voxels were kept for training.This way of pro-
ceeding was found experimentally and greatly reduced
the number of sagittal slices used. In effect, by eliminat-
ing slices that did not contain spinal cord voxels, each
scan was reduced to 4 or 5 slices rather than 13 or 15.
This allowed the network to focus only on relevant slices,
thus avoiding wasting resources at attempting to identify
the characteristics of slices that did not contain spinal
cord voxels.It should however be noted that following the
training, during the inference on the test data, all of the
slices were sent to the network. As we will see later, the
sagittal networks therefore had the ability to recognize
empty slices even if these were not used during training.

Following this slice reduction,we obtained an average
training/validation separation of 348/39 sagittal slices
for the 10 cross-validation subsets. As was the case
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MASSE-GIGNAC ET AL. 7 of 10

F IGURE 4 Validation loss curves for each of the 10 cross-validation subsets (left) and average training and validation losses for all subsets
(right). Average validation losses reach minimum value at epoch 49.

during axial training, since the scans did not all have
the same dimensions and the validation subsets did not
all have the same number of scans, the proportion of
sagittal slices dedicated to validation and training for
each subset varied slightly.

During training, each sagittal slice was augmented
with a randomly chosen elastic coefficient between
−50◦ and 50◦, and a random rotation coefficient
between −15◦ and 15◦.The unmodified slices were also
kept in the training set, doubling the number of sagit-
tal slices dedicated to training. The augmented slices
were renewed at an interval of 10 epochs, in contrast
with the axial training, which renewed the augmented
slices at each epoch. This way of proceeding was found
experimentally. Following this augmentation, the train-
ing subsets ended up with an average of 696 sagittal
slices.The networks were then trained for 125 epochs or
43,500 iterations,which once again corresponded to the
moment when the validation losses flattened out while
the training losses continued to decline.

3.2 Results

The Dice coefficient is well suited for evaluating
segmentations where the classes of an image are
imbalanced,[23,25–27] which is frequently the case for
medical images. Since the volume of the spinal cord in
our scans was very small relative to the total volume
of the scans, our images were no exception. Table 2
shows that the mean Dice coefficient for our 10 cross-
validation networks is 95.3, while the Deepseg mean
is 87.9 (p < 0.001). Additionally, all 10 networks taken

TABLE 2 Final results for our approach. The scores for each
metric represent the values obtained by comparing the
segmentations of each network with the manual ground truth
segmentations. The results represent the average of the 10 axial and
combined networks over the test set. Bold values represent the best
result for each metric.

Axial Combined Deepseg

Dice coefficient 89.9 95.3 87.9

True positive rate 0.92 0.94 0.89

Mean surface distance 0.39 0.13 0.26

Hausdorff distance 1.53 1.51 2.01

individually had Dice coefficients higher than Deepseg
with p-values smaller than 0.001. It can therefore be
concluded that our networks showed a significant
improvement in regards to this metric.

The combined approach, in which the results from the
axial networks were used to train the sagittal networks,
also shows a marked improvement in comparison with
results from the axial networks.

The true positive rate (TPR) is a statistical met-
ric indicating the proportion of voxels segmented by
the network that are also segmented on the mask.
This metric is often used to measure the precision of
segmentations.[28,29] All of our networks had a signifi-
cantly higher TPR than Deepseg,with an average rate of
0.94,while Deepseg 2D had an average rate of 0.89 (p=
0.002).The axial networks’ result for this metric are poor,
indicating that the precision of these networks could be
a point of weakness for them.This confirms the superior-
ity of the combined approach, which improves upon the
axial networks to render markedly superior TPR results.
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The mean surface distance (MSD) measures the
average Euclidean distance between pixels located on
the contours of two sets. This metric is often used to
evaluate the similarity between segmentations and their
ground truth.[16,29] All of our networks had a signifi-
cantly lower MSD than Deepseg 2D, with an average of
0.1319 against 0.2641 for Deepseg 2D (p < 0.001). The
axial networks do not perform well in regards to this dis-
tance metric, obtaining an average MSD of 0.39, which
demonstrates that the sagittal networks of the combined
approach are instrumental in reducing this value.

The final metric used is the maximal Hausdorff
distance (MHD),measures the maximum Euclidean dis-
tance from any point in a set to the closest point in
another set. When calculating this metric, the two sets
are evaluated in turn one against the other and only the
higher of the two maximal distances found is retained.
The MHD is frequently used to assess the quality of
segmentations.[16,25,29] All of our networks had a signif-
icantly lower MHD than Deepseg 2D, with an average of
1.51 against 2.01 for Deepseg 2D (p < 0.001). The axial
networks perform well in regards to this metric,achieving
an average MHD of 1.53. The sagittal step of the com-
bined approach therefore does not seem to improve this
metric, contratry to the three previous metrics.

As can be seen in Figure 5, the majority of our
segmentations appeared more uniform than those of
Deepseg 2D, particularly in areas affected by spinal
cord injuries. These areas are usually characterized
by spinal cord discoloration, and areas of traumatic
injury frequently lose their contrasting cerebrospinal
fluid boundaries, making them even more difficult to
segment. In these areas, the spinal cord often appears
unrecognizable when viewing individual axial slices,
because of the lack of information regarding the sur-
rounding context. Likewise, it is also difficult ascertain
spinal cord voxels in injured areas of sagittal scan due
to lack of axial context.

By relaying the incomplete axial segmentations of
the injured areas to the sagittal network, additional
context is provided, helping the sagittal network iden-
tify spinal cord voxels that would previously have
been impossible to categorize adequately due to lack
of axial context. Combining the axial and sagittal is
therefore the main strength of our approach, allowing
for precise segmentation of spinal cords affected by
traumatic injuries.

Another strength of our approach was its ability to
segment sagittal slices that border the spinal cord. On
these sections, the spinal cord most often appears only
partially. The characteristic shape of the spinal cord is
therefore lost, which makes sagittal segmentation more
difficult. Axial slice, however, are not affected by this
lack of context at the borders of the spinal cord. Our
approach therefore here again takes advantage of con-
textual information sharing to improve segmentation of
ambiguous areas.

Our approach thus appears to be significantly supe-
rior to Deepseg 2D for all metrics used as well as in
visual comparisons. However, it is important to accom-
pany these results with a few important points, which
are discussed in the next section.

4 DISCUSSION

One consideration concerning the comparison of our
approach with Deepseg 2D is the fact that the latter has
not been exposed to data from our site while training.
If we assume that data coming from one site is more
homogeneous than data from multiple sites, this could
put Deepseg 2D at a disadvantage during inference on
data from our site. However, this disadvantage is difficult
to quantify without data external to both approaches.

In terms of acquisition protocols, Deepseg 2D and
our approach are equivalent, that is, both are designed
to segment only T2-weighted scans (the Deepseg 2D
approach however contains other networks to segment
T1 and T2* scans). Deepseg 2D and our networks are
also both able to segment cervical and dorsal scans
without discrimination and without loss of precision.The
detection of the spinal cord centerline by the Optic C
algorithm[10] can be problematic for lumbar scans, how-
ever, since Deepseg 2D and our approach both use this
algorithm, this fact does not prejudice the comparison.

Manual segmentations were adapted from Deepseg
2D segmentations.This may favor Deepseg 2D,as there
are large sections of its segmentations that did not need
to be touched up. In the study presenting the Deepseg
3D network,[11] the authors employed the same method-
ology, using segmentations produced by Propseg as
a basis to produce their manual segmentations. The
authors of this article describe this as an advantage
for Propseg when comparing it with their approach,
which would reflect an advantage for Deepseg 2D during
our approach.

As mentioned above, a simple postprocessing was
applied to the segmentations at inference-time, which
consisted of erasing all of the segmented voxels on a
given sagittal slice if these voxels numbered less than
20. Deepseg 2D uses more an extensive and complex
postprocessing method,which includes filling of holes in
the segmentations and preservation of only the largest
object on each axial slice.

4.1 Future work

In the context of this study, our approach was limited
to the analysis of sagittal scans. However, it would be
interesting to develop an approach for axial scans using
the same two-plane technique. In this case, one possi-
ble approach would be to preserve the current structure,
segmenting first axially and then sagittally. This way
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F IGURE 5 Visual comparison of our approach with Deepseg 2D. The images shown were chosen to represent typical differences between
our segmentations and Deepseg’s.

of proceeding would have the benefit of maintaining
the sagittal network as the final output, allowing it to
use its more global view of the spinal cord to provide
longitudinal consistency.

Another possible approach for axial scans would be
to first segment sagittal slices with lower resolution and
then use the high resolution axial images for the final
output. In this scenario, the final segmentations would
benefit from the initial, lower-quality sagittal segmenta-
tions while having sufficient high-resolution information
to produce precise final segmentations.

It is likely that a pair of combined axial/sagittal net-
works for each type of scan would perform better
than a single pair combining axial and sagittal scans.
Moreover, since it is possible to automatically detect
the type of scan using information contained in their
headers, it would be possible to create an automatic
tool that would route the scans to the appropriate
networks during inference. Such an approach would
therefore have no foreseeable disadvantages com-
pared to a mixed approach and would probably offer
superior performance given the increased specificity of
the networks.

5 CONCLUSION

The main objective of this study was to develop a tool
capable of segmenting spinal cords affected by trau-
matic lesions. Our research led to a new approach
using two attention-gated U-Net type networks in series
to analyze MRI scans in the axial and sagittal planes
conjointly. This approach was found to be significantly
superior to the SCT’s best approach for our data,
Deepseg 2D, which was taken as the state-of -the-art.
The main contribution of this study is therefore the
development of this strategy of combined networks,
which is able to segment healthy spinal cords as well
as instances with diseased or traumatic lesions.

Our method is therefore a promising lead not only
for producing a spinal cord or spinal lesion segmenta-
tion tool which would be robust enough to be useful in
a clinical setting, contrary to the tools currently avail-
able,but also for the analysis and segmentation of other
anatomical structures captured by MRI.

This study built upon the work of the SCT, which is
very effective for spinal cord segmentation in healthy
patients. Traumatically injured spinal cords are however
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10 of 10 MASSE-GIGNAC ET AL.

highly challenging and require a more robust segmenta-
tion method, with proper clinical annotation by experts.
A method specifically tailed for the analysis of injured
spinal cords,as proposed in this study, is therefore highly
relevant for the clinical follow-up.

AUTHOR CONTRIBUT IONS
Nicolas Masse-Gignac and Luc Duong designed and
implemented the automatic segmentation technique.
Jean-Marc Mac-Thiong provided feedback on clini-
cal requirements including MRI caracteristics. Salomón
Flórez-Jiménez produced and reviewed the segmen-
tation masks. All authors provided critical feedback,
contributed to the research study design and contributed
to the final manuscript.

ACKNOWLEDGMENTS
Nicolas Masse-Gignac received grants from the Centre
de recherche de l’Hôpital du Sacré-Coeur de Montréal
and from the École de technologie supérieure.

CONFL ICT OF INTEREST STATEMENT
The authors have no relevant conflicts of interest
to disclose.

REFERENCES
1. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury.

Nat Rev Dis Primers. 2017;3:17018.
2. Gupta R, Mittal P, Sandhu P, Saggar K, Gupta K. Correlation of

qualitative and quantitative MRI parameters with neurological sta-
tus: a prospective study on patients with spinal trauma. J Clin
Diagn Res. 2014;8:RC13-RC17.

3. Magu S, Singh D, Yadav RK, Bala M. Evaluation of traumatic
spine by magnetic resonance imaging and correlation with
neurological recovery. Asian Spine J. 2015;9:748–756.

4. Martineau J, Goulet J, Richard-Denis A, Mac-Thiong JM. The
relevance of mri for predicting neurological recovery following
cervical traumatic spinal cord injury. Spinal Cord. 2019;57:866-
873.

5. Miyanji F,Furlan JC,Aarabi B,Arnold PM,Fehlings MG.Acute cer-
vical traumatic spinal cord injury: MR imaging findings correlated
with neurologic outcome–prospective study with 100 consecutive
patients. Radiology. 2007;243:820-827.

6. Al-Habib AF, Attabib N, Ball J, Bajammal S, Casha S, Hurlbert
RJ. Clinical predictors of recovery after blunt spinal cord trauma:
systematic review. J Neurotrauma. 2009;28:1431-1443.

7. De Leener B, Taso M, Cohen-Adad J, Callot V. Segmentation
of the human spinal cord. Magn Reson Mater Phys, Biol Med.
2016;29:125-153.

8. Skeers P, Battistuzzo CR, Clark JM, Bernard S, Freeman BJC,
Batchelor PE. Acute thoracolumbar spinal cord injury: relation-
ship of cord compression to neurological outcome. J Bone Joint
Surg Am. 2018;100:305-315.

9. De Leener B, Lévy S, Dupont SM, et al. SCT: spinal cord toolbox,
an open-source software for processing spinal cord MRI data.
Neuroimage. 2017;145:24-43.

10. De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and
fast automatic segmentation of the spinal cord. Neuroimage.
2014;98:528-536.

11. Gros C, De Leener B, Badji A, et al. Automatic segmentation of
the spinal cord and intramedullary multiple sclerosis lesions with
convolutional neural networks. Neuroimage. 2019;184:901-915.

12. McCoy DB, Dupont SM, Gros C, et al. Convolutional neural
network-based automated segmentation of the spinal cord and

contusion injury: deep learning biomarker correlates of motor
impairment in acute spinal cord injury. AJNR Am J Neuroradiol.
2019;40:737-744.

13. Lundervold AS, Lundervold A. An overview of deep learning in
medical imaging focusing on MRI. Z Med Phys. 2019;29:102-127.

14. Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-net and its
variants for medical image segmentation: a review of theory and
applications. IEEE Access. 2021;9:82 031-82 057.

15. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks
for biomedical image segmentation. In: Navab N, Horneg-
ger J, Wells WM, Frangi AF, eds. Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. Springer
International Publishing; 2015:234-241.

16. Paugam F,Lefeuvre J,Perone CS,et al.Open-source pipeline for
multi-class segmentation of the spinal cord with deep learning.
Magn Reson Imaging. 2019;64:21-27.

17. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res. 2014;15:1929-1958.

18. Oktay O, Schlemper J, Folgoc L, et al. Attention U-Net: learning
Where to Look for the Pancreas. ArXiv.2018. n.pag.

19. Schlemper J, Oktay O, Schaap M, et al. Attention gated net-
works: Learning to leverage salient regions in medical images.
Med Image Anal. 2019;53:197-207.

20. Gros C, De Leener B, Dupont SM, et al. Automatic spinal
cord localization, robust to MRI contrasts using global curve
optimization. Med Image Anal. 2018;44:215-227.

21. Salzberg SL. On comparing classifiers: pitfalls to avoid and a
recommended approach. Data Min Knowl Discov. 1997;1:317-
328.

22. Dietterich TG. Approximate statistical tests for comparing
supervised classification learning algorithms. Neural Comput.
1998;10:1895-1923.

23. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M.
Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. In: Cardoso M., et al., Deep
Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support. Springer International Publishing,
2017; 240-248.

24. Kingma D, Ba J. Adam: a method for stochastic optimization.
International Conference on Learning Representations. 2014.
n.pag.

25. Taha AA, Hanbury A. Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Med Imaging.
2015;15:29.

26. Drozdzal M,Chartrand G,Vorontsov E,et al.Learning normalized
inputs for iterative estimation in medical image segmentation.
Med Image Anal. 2018;44:1-13.

27. Perone CS, Calabrese E, Cohen-Adad J. Spinal cord gray mat-
ter segmentation using deep dilated convolutions. Sci Rep.
2018;8:5966.

28. Lemay A, Gros C, Zhuo Z, et al. Automatic multiclass
intramedullary spinal cord tumor segmentation on MRI with deep
learning. NeuroImage: Clinical. 2021;31:102766.

29. Prados F, Ashburner J, Blaiotta C, et al. Spinal cord grey matter
segmentation challenge. NeuroImage. 2017;152:312-329.

How to cite this article: Masse-Gignac N,
Flórez-Jiménez S, Mac-Thiong J-M, Duong L.
Attention-gated U-Net networks for simultaneous
axial/sagittal planes segmentation of injured
spinal cords. J Appl Clin Med Phys.
2023;24:e14123.
https://doi.org/10.1002/acm2.14123

 15269914, 2023, 10, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/acm
2.14123 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/acm2.14123

	Attention-gated U-Net networks for simultaneous axial/sagittal planes segmentation of injured spinal cords
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Data
	2.2 | Segmentation framework
	2.2.1 | Preprocessing
	2.2.2 | Augmentation
	2.2.3 | Postprocessing


	3 | EVALUATION AND RESULTS
	3.1 | Evaluation
	3.1.1 | Cross-validation
	3.1.2 | Axial training
	3.1.3 | Sagittal training

	3.2 | Results

	4 | DISCUSSION
	4.1 | Future work

	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	REFERENCES


