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Abstract: This paper introduces an innovative consensus algorithm for managing Unmanned Aircraft
System Traffic (UTM) through blockchain technology, a highly secure consensus protocol, to allocate
airspace. A smart contract was developed on the Ethereum blockchain for allocating airspace.
This technique enables the division of the swarm flight zone into smaller sectors to decrease the
computational complexity of the algorithm. A decentralized voting system was established within
these segmented flight zones, utilizing two primary methodologies: Proof of Work (PoW) and Proof of
Stake (PoS). By employing 1000 UAS-S4s across various locations and heading angles, a swarm flight
zone was generated. The efficiency of the devised decentralized consensus system was assessed based
on error rate and validation time. Despite PoS displaying greater efficiency in cumulative probability
for block execution, the comparative analysis indicated PoW outperformed PoS concerning the
potential for conflicts among UASs.

Keywords: blockchain; airspace management; consensus protocols; conflict probability

1. Introduction

Air traffic management (ATM) involves the coordination of various tasks to allocate
airspaces, control traffic flows, and manage aircraft navigation capacity in a manner that
is both secure and efficient while also being cost-effective [1]. This framework can be
adapted for swarm-style Unmanned Aerial Systems (UASs) that operate at lower altitudes,
particularly in congested and high-risk environments.

One of the most pronounced risks is the potential collision with structures such as
tall buildings, towers, and power lines. They are at risk of colliding with other aircraft,
which can range from other UAVs to manned aircraft. This risk is particularly heightened
in congested airspaces [2]. Complicating the matter further, drones at low altitudes in
urban environments can experience disruptions in navigation due to the loss of GPS signals
caused by tall structures. The communication between the drone and its operator can
also be jeopardized by radio frequency interference. Technical malfunctions are always a
possibility, which becomes a significant risk in populated areas. On the technology side,
drones can also be susceptible to cybersecurity threats, like hacking.

The Federal Aviation Administration (FAA) has established guidelines and rules for
the management of Unmanned Aerial Systems Traffic (UTM) [3]. As the utilization of UASs
continues to expand, it becomes imperative to advance UTM algorithms to guarantee the
safety of flights while also adhering to budget and timeline constraints [4]. Consequently,
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the allocation of safe airspace for UASs emerges as a pivotal undertaking that necessitates
the reliability of a well-defined algorithm [5].

Many strategies for allocating airspace in UTM have been designed and used [6].
Airspace allocation can be framed as an optimization challenge with the aim of minimiz-
ing a cost function that takes into account safety, energy consumption, and time-related
aspects [7]. The significance attributed to each factor within the cost function reflects the
priorities for the ecosystem. This study concretely concerns safety in scenarios involv-
ing multiple aircraft sharing the same airspace, especially in the context of swarm flight
zones [8]. In response to these safety considerations, the UTM problem has been reconfig-
ured using Swarm Dynamic Agents (SDAs) as the foundational framework for the most
secure management methodology [9].

The management of Swarm Dynamic Agents involves coordinating a group of au-
tonomous agents (vehicles) towards a common goal. Key aspects include agent com-
munication [10], local decision-making [11], proper movements [12], task allocation [13],
adaptability, and optimization. Agents communicate and make decisions based on their
perception of the environment and interact to move properly. Tasks are assigned based on
agent capabilities, and the system must adapt and recover from changes. Optimization
and control ensure efficient performance. This approach revolutionized unmanned vehicle
movement management, enabling the decentralized accomplishment of complex tasks.

Management methodologies employed for SDAs have been successfully utilized
for allocating spaces to various moving vehicles [14]. These methodologies have found
application across Unmanned Underwater Systems (UUS) [15], Unmanned Aerial Systems
(UAS) [16], Byzantine robots [17], and unmanned cars [18], and their remarkable ability to
ensure safety in dynamic environments has been revealed.

With respect to predetermined trajectories for each UAV, dynamic path planning [19]
is needed to solve the SDA problem, as the trajectory of each vehicle can affect the trajectory
of the others due to uncertainties. Consequently, there is a need for a consensus algorithm
to analyze trajectory for path planning, all the while minimizing the probabilities of con-
flicts [20] among vehicles. The consensus algorithms that have achieved the greatest success
have been established through deterministic, randomized, leader-free, and leader-based
methodologies [21]. Consensus algorithms are widespread and used for various purposes.
They are frequently applied for data aggregation, clock synchronization, leader election,
etc. [22,23]. In cases of asynchronous environments, deterministic strategies [24] might
prove inadequate in resolving consensus challenges, particularly when faced with a solitary
communication breakdown (link failures between communicating entities). Randomized
methodologies are risky for critical tasks such as traffic management due to their association
with significant safety concerns [25,26]. A leader-based methodology is more vulnerable
to cybersecurity attacks than other methodologies but outperforms other methodologies
when security is the main concern. Blockchain provides the most secure framework for the
execution of a leader-free consensus algorithm [27].

The P2P blockchain topology is the most reliable coordination methodology that makes
decisions based on its decentralized architecture [28]. As the UTM ecosystem requires
a consensus mechanism for the reliable allocation of airspaces, the P2P blockchain can
perform this task proficiently.

The Linear Consensus Protocol (LCP) is a simple algorithm used in distributed sys-
tems [29]. The LCP aims to achieve agreement among participants by progressing through
proposal rounds with different phases. It involves the preparation, promise, acceptance,
and acknowledgment phases. Participants exchange their messages to gather information,
make proposals, and reach a consensus on a value. The challenges of achieving consensus
in distributed systems are captured by the famous CAP theorem [30], which states that
it’s impossible for a distributed system to simultaneously provide consistency (all nodes
see the same data), availability (every request receives a response), and partition tolerance
(the system continues to operate despite arbitrary message loss or failure of part of the
system). The LCP ensures that all participants eventually agree on the same value, even
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in the presence of failures or delays. It provides security and availability while simpli-
fying complexity. The LCP, rooted in L1 approximation, balanced asymmetry, absolute
infinite flow, and unbounded interaction graphs, has been the most renowned approach for
managing SDAs [31]. Nonetheless, the introduction of blockchain technology has exposed
vulnerabilities in the LCP, particularly when confronted with soft attacks and hardware
failures [32,33].

Utilizing blockchain technology can effectively resolve challenges in managing Swarm
Dynamic Agents (SDA), addressing issues such as miscommunications, Sybil, and adver-
sarial attacks [34]. Therefore, we implemented blockchain for UAS management, and the
outcomes provided evidence of its enhanced safety compared to the LCP approach [35].
A survey study on safe space allocation in transportation problems using blockchain
was performed [36]. Another survey study (focusing on airspace allocation) investigated
blockchain methodologies for UTM [37]. Ethereum blockchain was used for Automatic
Dependent Surveillance–Broadcast (ADS-B) Air Traffic Management relying on satellite
navigation [38]. This approach was able to provide situational awareness, allocate safe
airspace, and eventually reduce potential conflicts while overcoming cyber threats. Each
of these proposed methodologies used a smart contract, which was based on the Proof of
Work (PoW) consensus protocol.

In addition to the PoW consensus protocol, blockchain can be set up based on Proof of
History (PoH), Proof of Stake (PoS), Proof of Authority (PoA), and Proof of Time (PoT) for
appropriate decision making [39,40]. Each of these techniques has its unique advantages.
Indeed, PoW is a consensus algorithm employed in multi-agent systems, necessitating every
agent node to validate the accurate completion of the undertaken task [41]. However, the
PoW has two major drawbacks: its computational complexity and the lengthy confirmation
time. To overcome these drawbacks, the Proof of Stake (PoS) consensus mechanism, which
relies on validators that confirm blocks on the blockchain according to their credits, was
suggested [42].

In this study, we utilized the blockchain sharding concept for partitioning UAVs. In
our previous study, [43] the superiority of the blockchain over the partitioned running of
UAVs was proven. We started this study regarding our previous proof and discussed it
from different consensus mechanism aspects (PoW and PoS).

The present study has two main objectives. The first objective is to design a reli-
able smart contract for airspace allocation, and the second is to reconfigure that smart
contract with the aim of reducing energy consumption, computational complexity, and
validation time. The reliable smart contract is initially designed using the PoW con-
sensus method and is then reconfigured using the PoS consensus method to reduce its
computational complexity.

Some of the initial results obtained from error rate and validation time analysis were
published as a conference paper in the AIAA Aviation Forum 2023 [44], where a consensus
system was developed using Ethereum’s blockchain for managing traffic in Unmanned
Aircraft Systems (UASs), and to assign safe flying zones for UASs. The airspace was
divided into multiple shards, enhancing the efficiency through simpler components. Results
indicated that this division method decreased errors and sped up validation. Notably,
increasing these shards further enhanced the system’s performance. While PoW was found
to be more reliable for airspace allocation, PoS offered quicker validation. This article is
the developed version of that conference paper. It introduces a novel consensus algorithm
and a new partitioning approach and analyses blockchain performance from different
points of view.

This paper is organized as follows. Section 2 elaborates on the problem statement and
introduces the issues of airspace allocation for Air Traffic Management (ATM). The PoW
and PoS consensus methodologies for the airspace allocation are detailed in Section 3, and
the simulation results that show the performance of the two methodologies are detailed in
Section 4. Finally, Section 5 discusses the benefits and drawbacks of the designed consensus
mechanism for airspace allocation and offers some recommendations for future work.
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2. Problem Statement

Air Traffic Management (ATM) has traditionally been anchored on centralized systems
for the sake of safety and efficiency. However, the advent of technological progress has
begun to reshape discussions, putting the feasibility of a distributed ATM ecosystem
into focus. Both centralized and distributed models come with their sets of merits and
shortcomings. In both approaches, ground stations play a key role in ATM operations. The
Air Traffic Management (ATM) ecosystem has three components: Advancement of Air
Traffic Services (ATS), Air Traffic Flow Management (ATFM), and Airspace Management
(ASM) [45]. Figure 1 shows the ATM ecosystem and the focus of this study.

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 16 
 

consensus mechanism for airspace allocation and offers some recommendations for future 
work. 

2. Problem Statement 
Air Traffic Management (ATM) has traditionally been anchored on centralized sys-

tems for the sake of safety and efficiency. However, the advent of technological progress 
has begun to reshape discussions, putting the feasibility of a distributed ATM ecosystem 
into focus. Both centralized and distributed models come with their sets of merits and 
shortcomings. In both approaches, ground stations play a key role in ATM operations. 
The Air Traffic Management (ATM) ecosystem has three components: Advancement of 
Air Traffic Services (ATS), Air Traffic Flow Management (ATFM), and Airspace Manage-
ment (ASM) [45]. Figure 1 shows the ATM ecosystem and the focus of this study. 

 
Figure 1. The ATM ecosystem. 

The ATS refers to the flight information, air traffic control, and alerting services that 
prevent collisions between aircraft [46]. The ATFM optimizes the air traffic flow and man-
ages its capacities when demand increases in routes and airdromes, and the ASM is con-
cerned with the allocation of airspaces to aircraft with the aim of reducing the risk of their 
conflicts [47]. The study presented in this paper focuses on improving the ASM system, 
and our main objective is to design and develop a reliable and efficient algorithm for air-
space allocation and management. 

2.1. Airspace Allocation 
It is assumed that a flight area is composed of cubic airspaces in which several UASs 

are flying through their determined trajectories. Figure 2 shows the flight area divided in 
cubic airspaces 𝐶( , , ), where 𝑢, 𝑣, and 𝑤 denote their number of cubes along the 𝑥, 𝑦, 𝑧 
axes, respectively. 

 
Figure 2. Flight area divided into cubic airspaces [43]. 

The flight area 3D size is defined by the product 𝑢 𝑣 𝑤, where 𝑢, 𝑣, and 𝑤 are 
positive integers. UASs are located in cubes according to their GPS coordinates (i.e., lati-
tude, longitude, and altitude), and they fly through these cubes following desired trajec-
tories. To avoid conflicts, UASs should never be located in the same cube. Therefore, the 

Figure 1. The ATM ecosystem.

The ATS refers to the flight information, air traffic control, and alerting services that
prevent collisions between aircraft [46]. The ATFM optimizes the air traffic flow and
manages its capacities when demand increases in routes and airdromes, and the ASM is
concerned with the allocation of airspaces to aircraft with the aim of reducing the risk
of their conflicts [47]. The study presented in this paper focuses on improving the ASM
system, and our main objective is to design and develop a reliable and efficient algorithm
for airspace allocation and management.

2.1. Airspace Allocation

It is assumed that a flight area is composed of cubic airspaces in which several UASs
are flying through their determined trajectories. Figure 2 shows the flight area divided in
cubic airspaces C(x,y,z), where u, v, and w denote their number of cubes along the x, y, z
axes, respectively.
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The flight area 3D size is defined by the product u × v × w, where u, v, and w are
positive integers. UASs are located in cubes according to their GPS coordinates (i.e.,
latitude, longitude, and altitude), and they fly through these cubes following desired
trajectories. To avoid conflicts, UASs should never be located in the same cube. Therefore,
the supposed ASM must assign a safe cube C(x,y,z) coordinates to each UAS. In our case
study, each cube size was considered 100 m × 100 m × 100 m in the cubic airspace. The
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cubic airspace was constructed by a 16 km2 squared area and 6 km height (regarding the
UAS-S4 operating range).

Relying on the latitude and longitudes of the Earth, the airspaces can be mapped
to cubes, and then the cube’s coordinates are normalized. We first convert the spherical
coordinates (latitude α and longitude β) to Cartesian coordinates for a unit sphere:

x = cos α.cos β
y = cos α.sin β

z = sin α
(1)

In order to project these coordinates onto a cube, our approach is a direct mapping
wherein you multiply the coordinates based on the furthest point from the origin on the
unit sphere to the cube’s sides. The method described will project points from the sphere
directly outwards to the enclosing cube. Given a point (x́, ý, ź) on the unit sphere, the
corresponding point on the enclosing cube can be found by

I. Find the axis with the maximum absolute coordinate value:

m = max (|x́|, |ý|, |ź|) (2)

II. Scale the point by the inverse of this value to project it onto the cube:
x = x́/m
y = ý/m
z = ź/m

(3)

Cubic airspace considers population and obstacle information that are stored on the
blockchain. The verification logic is based on the consensus protocol explained as Algorithm 1,
which relies on the conflict probability analyses explained as the conflict solution.

Algorithm 1 Consensus procedure

1: Input: Application for propagation of blocks to all UASs
2: Output: Application is accepted/refused
3: Confirmation process of consensus algorithm ()
4: h = 0
5: waiting time ≥ 2 ∗ T
6: while h ≤ hmax do
7: Send agreement to neighbor UASs
8: if confirmed by more than 51% nodes then
9: execute the new block on the chain
10: break
11: else
12: h = h + 1
13: Choose R ∈

[
0, 2h − 1

]
randomly and wait for R ∗ T

14: end if
15: end while
16: if h > hmax then
17: airspace rejection, and block execution is refused
18: end if
19: end process

2.2. Communication for a Reliable ASM

Reliable communication is required for effective data sharing among aircraft, and it
allows them to make decisions for airspace allocation accordingly. P2P topology is the most
efficient communication architecture in terms of reliability [48]. Figure 3 shows the P2P
communication between an aircraft and a ground station.
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Figure 3 illustrates a ground station and a k number of UAVs in a flight zone. Each
aircraft sends its GPS data directly to all other aircraft, and each receives the GPS data from
the others. Therefore, all aircraft are informed of the GPS data corresponding to all of them.

In this methodology, the ground station acts as a supervisor, and each aircraft is
considered a local node on the blockchain, which provides a distributed protocol for
airspace allocation. Blockchain can serve a large number of local nodes (UAVs), while the
limitation arises from other factors (e.g., regulations, size of the flight zone, the purpose of
the UAVs, etc.) in advance. Although several ground stations can be involved, relying on
the support of the blockchain, one grand station is enough for supervision.

The ground station is the third party in a conventional ASM, which is considered the
supervisor. In other words, UAVs perform the full propagation of data sharing by relying
on the P2P topology, and the ground station is a redundant validator used to improve
reliability and ground supervision. An algorithm (a smart contract), using shared GPS data,
evaluates the aircraft trajectories, makes decisions, and then allocates safe airspaces. This
process is shown in Figure 4.
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Figure 4 shows the locations and trajectories for the k number of UAVs collected by
a smart contract. An imaginary mesh was used to create sectors along the x and y axes
at a specific altitude. Aircraft are flying through predetermined trajectories while safe
sectors are allocated to them. The smart contract collects data containing allocated sectors
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to all UAVs. Its algorithm detects potential conflicts and allocates safer sectors to UAVs
such that the risk of conflict is minimized. Allocated airspaces conduct a safe path for
each UAS at each timestamp. A timestamp is a digital record that indicates the date and
time at which a specific event (airspace allocation) was created, modified, or recorded. It
serves as a chronological reference point, often represented in a standardized format, to
establish the sequence and timing of events. Then, the conduct-safe trajectories are stored
in a blockchain and are used to compute airspaces in further steps. The smart contract
algorithm and the associated blockchain for ASM are explained in the following section.

3. Methodology

It is assumed that a ground station is in charge of controlling n UASs. Raising the quan-
tity of UASs within a designated airspace increases the probability of encountering conflicts
and collisions [49]. Better airspace management is needed to allow UASs to fly safely. A
smart contract was developed for this airspace management, implemented by incorporating
sharding, with the flight zone composed of m districts, as depicted in Figure 5.

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 16 
 

Figure 4 shows the locations and trajectories for the k number of UAVs collected by 
a smart contract. An imaginary mesh was used to create sectors along the x and y axes at 
a specific altitude. Aircraft are flying through predetermined trajectories while safe sec-
tors are allocated to them. The smart contract collects data containing allocated sectors to 
all UAVs. Its algorithm detects potential conflicts and allocates safer sectors to UAVs such 
that the risk of conflict is minimized. Allocated airspaces conduct a safe path for each UAS 
at each timestamp. A timestamp is a digital record that indicates the date and time at 
which a specific event (airspace allocation) was created, modified, or recorded. It serves 
as a chronological reference point, often represented in a standardized format, to establish 
the sequence and timing of events. Then, the conduct-safe trajectories are stored in a block-
chain and are used to compute airspaces in further steps. The smart contract algorithm 
and the associated blockchain for ASM are explained in the following section. 

3. Methodology 
It is assumed that a ground station is in charge of controlling 𝑛 UASs. Raising the 

quantity of UASs within a designated airspace increases the probability of encountering 
conflicts and collisions [49]. Better airspace management is needed to allow UASs to fly 
safely. A smart contract was developed for this airspace management, implemented by 
incorporating sharding, with the flight zone composed of 𝑚 districts, as depicted in Fig-
ure 5. 

 
Figure 5. A sharded flight zone set up for the Unmanned Traffic Management (UTM) system. 

Figure 5 depicts a P2P communication structure among UASs. The flight area is par-
titioned into m districts, with each district forming a sub-flight zone hosting 𝑙  number 
of UASs (where l number of UASs are flying in a district m). Relying on the sharding 
concept [50], which involves scaling the blockchain network, a smart contract can catego-
rize aircraft flights into various sub-flight zones (districts) based on their respective loca-
tions. The districts are considered to be the same size. A flight zone sharding can reduce 
the computational complexity raised by the smart contract. Moreover, the ground station 
does not need to communicate directly with aircraft; instead, it relies on the smart contract 
obtained from each individual district for its required data. 

A smart contract on the blockchain is a self-executing digital agreement where the 
conditions and terms are embedded within lines of code. These contracts automatically 

Figure 5. A sharded flight zone set up for the Unmanned Traffic Management (UTM) system.

Figure 5 depicts a P2P communication structure among UASs. The flight area is
partitioned into m districts, with each district forming a sub-flight zone hosting lm number
of UASs (where l number of UASs are flying in a district m). Relying on the sharding
concept [50], which involves scaling the blockchain network, a smart contract can categorize
aircraft flights into various sub-flight zones (districts) based on their respective locations.
The districts are considered to be the same size. A flight zone sharding can reduce the
computational complexity raised by the smart contract. Moreover, the ground station does
not need to communicate directly with aircraft; instead, it relies on the smart contract
obtained from each individual district for its required data.

A smart contract on the blockchain is a self-executing digital agreement where the condi-
tions and terms are embedded within lines of code. These contracts automatically enforce and
trigger actions when predefined criteria are satisfied, eliminating the need for intermediaries and
ensuring a transparent, tamper-proof process. In the realm of space allocation, smart contracts
can be harnessed to manage and allocate spaces based on specific rules [51].

In the context of a sharding flight zone, the utilization of a smart contract is pivotal for
establishing a consensus framework. Consequently, a voting platform was devised utilizing
the Ethereum blockchain [52] to ensure the secure allocation of airspace to Unmanned
Aerial Systems (UASs) and to prevent conflicts. Figure 6 illustrates the process validating
the secure allocation of airspaces to UASs.
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Figure 6 shows a decentralized process for airspace allocation and validation. Within
this process, the voting platform gathers votes from UASs, which include feasible airspaces
for projected flight paths. Subsequently, these collected votes [53] are transmitted to the
decentralized JavaScript voting code, which relies on the smart contract. The allocated
airspace is then sent to the local full node associated with the chosen district. The confirmed
votes for airspace allocation are distributed to the peer full node linked to the corresponding
district. The peer full node performs an identical validation process, followed by the
submission of votes to PoW or PoS validators, contingent upon the chosen PoW/PoS
strategy. The PoW/PoS protocol node generates a new block and transmits it to the peer
full node. The local full node accepts the verified block from the peer full node and forwards
it back to the decentralized voting code. Ultimately, the consensus framework ensures the
safety of the allocated airspaces to all UASs.

A UAV flight may encounter various uncertainties [54] that require resolution advice
and lead to trajectory modifications, which, directly and indirectly, may affect other UAVs’
trajectories. The consensus mechanism should, therefore, update agreements and allocate
safe airspaces accordingly.

The most notable feature of the blockchain methodology is its priority level considera-
tion, which allows blockchain-based consensus protocols to perform agents’ agreements
while considering their corresponding priority levels. Figure 7 illustrates the confirmation
process for airspace allocation for trajectory execution.
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It is assumed that UASs are considered in a flight zone while, simultaneously, their
trajectory data [55] are recorded on the blockchain. During the timestamp for submitting
updated trajectories, any node associated with a UAS may report a conflict with another
UAS. If an encounter situation is claimed, a vote collection is needed; otherwise, UASs
are not in encounter situations. When a conflict is reported, all nodes check the stored
trajectory data (on the blockchain) corresponding to the UASs. If more than 51% of nodes
confirm the conflict, then the smart contract must rearrange allocated airspaces. Otherwise,
the report is assumed to be invalid due to an adversarial attack [56]. Algorithm 1 explains
the consensus procedure in detail.

The blockchain propagates blocks containing the registered trajectory data to all UASs.
As explained in Algorithm 1 for a consensus confirmation, the waiting time is twice more
than the end-to-end delay time (T) at each timestamp to avoid duplicated block generation.
As long as UASs respect the boundary on generating the maximum number of blocks
(hmax), the agreement is sent to neighboring UASs. If more than 51% of nodes approve, the
new block on the chain is executed. Otherwise, for a number of h + 1 generated blocks, a
random number (R) is selected such that R ∈

[
0, 2h − 1

]
, and a waiting time occurs once

again for R ∗ T. This process continues forward as long as the boundary on generating the
maximum number of blocks (hmax) is respected. Once this threshold is surpassed, the block
execution is refused, and airspace allocation is denied.

4. Results and Discussion

Blockchain-based airspace allocation methodology was tested and validated by relying
on our UAS-S4 trajectory database that was generated using a flight dynamics model and
its corresponding controller [57]. The UAS-S4 is shown in Figure 8, and Table 1 lists
its specifications.
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Table 1. The UAS-S4 geometrical and flight data specifications.

Specification Value

Wing area 2.3 m2

Wingspan 4.2 m
Mean aerodynamic chord 0.57 m

Total length 2.5 m
Maximum take-off weight 80 kg

Empty weight 50 kg
Loitering airspeed 35 knots
Maximum speed 135 knots

Operational range 120 km
Service ceiling 15,000 ft

We applied our approach within an aerial region, conducting tests with both 100 and
1000 UAS-S4 under the control of an adaptive fuzzy control algorithm [58]. For experimen-
tal studies, we took into account a cubic flight area of x = 16 km, y = 16 km, and z = 6 km.
The UAS-S4s were arranged with predetermined latitudinal and longitudinal coordinates,
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altitudes, and heading angles. The forthcoming paths of the UAS-S4s were then predicted
by an autoencoder [43] while the smart contract was validating the allocated airspaces.
The utilized validators were following the PoW and PoS consensus strategy. Table 2 pro-
vides a comparison of the performance of both algorithms concerning validation time
and error rate.

Table 2. The airspace allocation performance using The PoW and PoS.

Consensus
Mechanism Number of UAS Number of Shards Validation Time (ms) Error Rate %

Proof of Work (PoW)
100

4 21 7.7

16 18 7.2

1000
4 420 9.3

16 365 8.8

Proof of Stake (PoS)
100

4 11 13.1

16 8 12.6

1000
4 121 17.6

16 101 16.9

As shown in Table 2, consensus algorithms, including Proof of Stake (PoS) and Proof
of Work (PoW), are considered. We examined airspace areas with 100 and 1000 UAS-S4.
We partitioned each airspace into 4 and 16 shards. Based on the findings presented in
Table 2, one can deduce that PoW demonstrated greater accuracy compared to PoS, given
its lower error rate with an equivalent number of UAS-S4s. However, PoW exhibited longer
validation times compared to PoS.

Table 2 illustrates that within a flight region partitioned into four districts and hosting
100 UASs, the error rates were 13.1% for PoS and 7.7% for PoW, while their validation times
were 11 ms and 21 ms, respectively. Additionally, it is worth mentioning that an increased
quantity of UASs within a flight zone results in higher error rates and longer validation
times for a particular consensus mechanism, irrespective of the shard count. For instance, by
using the PoS consensus algorithm (considering 16 shards), raising the UAS count from 100
to 1000 leads to a 4.3% increase in the error rate (from 12.6% to 16.9%) and a 93 ms extended
validation time (from 8 ms to 101 ms). On the contrary, increasing the shard count (from 4
to 16) and using either PoW or PoS while keeping the UAS quantity constant enhances the
algorithm’s performance, resulting in decreased error rates and shorter validation times.
For example, when employing PoW in a flight area with 1000 UASs, the expansion of shard
count from 4 to 16 led to a 0.5% decrease in the error rate (reducing it from 9.3% to 8.8%) and
shortened the validation time by 55 ms (from 420 ms to 365 ms). The maximum acceptable
error rate was considered 20%. Larger error rates require a reduction in the number of
UAS-S4 in districts or an increase in the number of shards.

While PoS outperformed PoW in terms of validation time, their performances in terms
of error rates need to be evaluated. With this aim, the probability analysis of conflicts
between UASs has been carried out, where the lower probability of conflict means the
lower error rate of a consensus protocol.

Incorporating Gaussian distribution probability functions into the geometrical ap-
proach of conflict probability estimation offers a nuanced method to predict UAV conflicts
while accounting for uncertainties in UAV positions and velocities. The Gaussian model,
with its probabilistic nature, allows for a more sophisticated understanding and calculation
of potential conflicts, dynamically adjusting to the movements and position updates of the
UAVs. However, care must be taken to ensure the assumptions of normality are met and
sufficient computational resources are available for real-time calculations.
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For considering conflict probability as the performance metric, firstly, it is needed to
determine encounter situations between UASs. Figure 9 shows in 2D the conflict between
two UASs flying at a specific altitude.
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As shown in Figure 9, two aircraft (UASi and UASj) are coming to a probable collision
area, where α denotes the difference between their heading angles, and their distance to
the collision point 0 is represented as di and dj, respectively.

The Bayesian geometrical approach [59] was used for computing conflict probability
between UASs, which is represented by Equation (4):

Pcon f lict =
1
2

(
f
(

s− µ

σ
√

2

)
− f

(
−s− µ

σ
√

2

))
(4)

where s is the minimum allowed aircraft horizontal separation in an airspace. The minimum
distance is normally distributed with the mean µ and variance σ2, and f can be obtained
from Equation (5) [59].

f (x) =
2√
π

∫ x

0
exp(−t2) dt (5)

The mean µ and variance σ2 are computed through Equation (6) [59].

µ = λ
(
dj − ρdi

)
, σ2 = λ2a(t)2 (1 + ρ2) (6)

and Equation (7) [59].

λ =
sin(α)√

ρ2 − 2ρ cos (α) + 1
, ρ =

vj

vi
(7)

where UASi and UASj are flying to the conflict point 0 with vi and vj speeds; their distance
to the conflict point 0 is represented by di and dj, respectively.

While PoS exhibited superior performance in validation time, PoW surpassed PoS in
terms of error rate, which resulted in a lower probability of conflict between UASs using
the PoW methodology, as presented in Figure 10.
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Figure 10 depicts the probability of conflicts among UASs at a specific altitude. Each
cube size was considered to be 100 m ∗ 100 m ∗ 100 m in the cubic airspace. One hundred
UAS-S4s were arranged at x = 4− 8 km (latitude), y = 8− 12 km (longitude), z = 3.75 km
(altitude) considering 16 shards. This figure was extracted from the 10th shard, in which
7 UAS-S4s had conflicts in 16 km2 composed of 1600 airspaces sector (40 sectors along the
x-axis and 40 sectors along the y-axis). Comparing the plot on the left (corresponding to
PoS) with the one on the right (related to PoW) confirms that PoW outperformed PoS in
terms of conflict probabilities and safety. The average conflict probability for the PoS was
34.1%, and for the PoW, it was 25.4%.

The blockchain is a safe consensus protocol that can store trajectory data in an un-
trusted environment, even when nodes corresponding to new UAVs are added to the
P2P topology. Figure 11 illustrates the nodes’ (UAVs’) agreement approval probability
in order to assess the blockchain performance for block execution on the chain. It shows
the cumulative execution probability [60] when the number of blocks is increased. The
percentile of executed confirmations can be estimated by using the percentile analysis on
the generated blocks. This metric is utilized to evaluate the risk of confirmation failures by
using the ground station node.
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According to Figure 11, the cumulative probabilities of a successful confirmation are
0.547 (using the PoW consensus protocol) and 0.663 (using the PoS consensus protocol)
after their first block generation. After generating four blocks, this value settles at 0.901
(for the PoW) and is higher than 0.953 (for the PoS). The comparison of the cumulative
execution probability using the PoW and PoS consensus protocols reveals the superiority of
the PoS. The PoS is therefore considered a priority for some UASs to ensure the execution
of a new block on the chain with higher probability from this point of view, while the PoW
outperforms the PoS in terms of reliability.

The blockchain designed for consensus processing can also be assessed from the
perspective of reliability. With this aim, the blockchain’s error rates while the blocks are
generated were considered as performance indices. The error rates were measured in
relationship to the block execution failures while PoW and PoS consensus mechanisms
were in operation. This experiment was performed regarding both leader-based and leader-
free approaches, in which the leader-free consensus protocol allowed UAS-4s to reach an
agreement for airspace allocation without relying on a central authority, and vice versa for
the leader-based protocol [61]. The error rates using different consensus protocols and the
number of UASs are listed in Table 3.
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Table 3. Blockchain reliability analysis according to the control by various consensus mechanisms
and with 3 scales of UAS numbers.

Error Rates %

Number of UASs Leader-Free Leader-Based

PoW PoS PoW PoS

10 0.21 0.43 0.32 0.67
100 0.47 0.88 0.65 1.31
1000 0.96 1.75 1.34 2.71

As shown in Table 3, a flight zone was arranged using three different total numbers
of UASs (10, 100, and 1000) for the blockchain reliability analysis. The airspace was
partitioned into five shards. The results show that a consensus process with a leader
reduces the reliability of both the PoW and the PoS, while leader-free consensus is more
reliable as the error rate is higher. The results also reveal that the error rates when using
PoW’s leader-free consensus mechanism were lower than those of PoS, regardless of the
number of UASs in the flight zone. Therefore, the PoW leader-free consensus strategy was
better than PoS for airspace allocation.

5. Conclusions

This paper outlines the development of a consensus framework utilizing the blockchain
for managing Unmanned Aircraft Systems (UASs) traffic. The smart contract was intended
to assign secure airspace to the UASs. The consensus algorithm was formulated by drawing
from both Proof of Work (PoW) and Proof of Stake (PoS) algorithms. The airspace was
divided into multiple districts, where the smart contract’s efficiency could be enhanced
through reduced computational complexity.

The findings demonstrated that sharding can lead to a decrease in both the error rate
and validation time, underscoring the enhancement in consensus protocol performance
with a higher number of shards. Considering conflict probabilities with various consensus
protocols, the PoW offered a better safe airspace allocation than the PoS algorithm, in
which the average probability of conflict for PoW was 8.7% less than PoS. In fact, the PoW
outperformed PoS in terms of error rates. On the other hand, the cumulative execution
probability with an increasing number of blocks using the PoS was definitely better than
the PoW. Additionally, the PoS could provide a shorter validation time. Without paying
attention to the utilized proof methodology, the leader-free approach showed lower error
rates compared to those of the leader-based approach.
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Nomenclature

α The difference between two UAS’s heading angles
C(x,y,z) Cubic airspace regarding the latitude x, longitude y, and altitude z axes
di Distance to the conflict point
h Number of generated blocks
hmax Boundary on the maximum number of blocks generation
k Number of Unmanned Aerial Systems in a non-sharded flight zone
m Number of districts (shards)
lm Number of Unmanned Aerial Systems in the mth district
n Number of Unmanned Aerial Systems in a flight zone
s Minimum allowed horizontal separation for airspace
T End-to-end delay
v UAS’s speed when flying toward the conflict point
x Latitude
y Longitude
z Altitude
ATM Air Traffic Management
ASM Airspace Management
GPS Global Positioning System
LCP Linear Consensus Protocol
PoS Proof of Stake
PoW Proof of Work
SDA Swarm Dynamic Agents
UAS Unmanned Aerial Systems
UTM Unmanned Aerial Systems Traffic Management
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