
Journal of Hydrology 627 (2023) 130380

Available online 21 October 2023
0022-1694/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research papers 

Comparing a long short-term memory (LSTM) neural network with a 
physically-based hydrological model for streamflow forecasting over a 
Canadian catchment 

Behmard Sabzipour a,*, Richard Arsenault a, Magali Troin a,b, Jean-Luc Martel a, 
François Brissette a, Frédéric Brunet a, Juliane Mai c,d,e,f 
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A B S T R A C T   

Streamflow forecasting is crucial in water planning and management. Physically-based hydrological models have 
been used for a long time in these fields, but improving forecast quality is still an active area of research. 
Recently, some artificial neural networks have been found to be effective in simulating and predicting short-term 
streamflow. In this study, we examine the reliability of Long Short-Term Memory (LSTM) deep learning model in 
predicting streamflow for lead times of up to ten days over a Canadian catchment. The performance of the LSTM 
model is compared to that of a process-based distributed hydrological model, with both models using the same 
weather ensemble forecasts. Furthermore, the LSTM’s ability to integrate observed streamflow on the forecast 
issue date is compared to the data assimilation process required for the hydrological model to reduce initial state 
biases. Results indicate that the LSTM model forecasted streamflows are more reliable and accurate for lead- 
times up to 7 and 9 days, respectively. Additionally, it is shown that the LSTM model using recent observed 
flows as a predictor can forecast flows with smaller errors in the first forecasting days without requiring an 
explicit data assimilation step, with the LSTM model generating a median value of mean absolute error (MAE) for 
the first day of lead-time across all forecast issue dates of 25 m3/s compared to 115 m3/s for the assimilated 
hydrological model.   

1. Introduction 

Accurate, reliable, and easily understandable hydrological forecasts 
are crucial for a wide range of users in the water-related sectors, such as 
agriculture, hydropower, and floodplain management (Boucher et al., 
2012; Anghileri et al., 2016; Cassagnole et al., 2021). As a result, fore
casting streamflow has been the focus of numerous studies since the 
mid-1970s (Twedt et al., 1977; Day, 1985), and has seen an increasing 
amount of attention in recent decades (Troin et al., 2021) as demands for 
water resource management and natural disaster mitigation have risen 
substantially. 

There are two main methods used to forecast streamflow: the first is 

the use of dynamical (or process-driven) hydrological models, which 
range from conceptual and lumped to physically-based and distributed 
models; the second is the use of data-driven statistical models such as 
machine learning methods (ML) including artificial neural networks 
(ANNs) and autoregressive models (Rajagopalan et al., 2010). These 
approaches can provide an ensemble streamflow prediction (ESP) sys
tem when ensemble weather forecasts are used as inputs. However, 
dynamical hydrological models are often limited by the availability of 
data required for their implementation, such as soil type and depth; or 
by their simplistic process representations (Damavandi et al., 2019). 
These issues can be overcome using deep learning approaches, which 
can lead to reliable simulations of hydrologic systems even when the 
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underlying physical processes are not taken into account (Maier et al., 
2010). While they require large volumes of data for training, they do not 
require certain data types explicitly (such as soil data that can be diffi
cult to obtain). A particular type of deep learning model that has become 
increasingly popular in the last years in the field of hydrology, is the 
Long Short-Term Memory (LSTM) network, due to its ability to process 
sequential data and time series (Zhang et al., 2018; Shen and Lawson, 
2021). 

LSTMs, introduced by Hochreiter and Schmidhuber (1997), are an 
advanced type of recurrent neural networks (RNNs) designed to learn 
sequence (temporal) data and their long-term dependencies out
performing conventional RNNs (Kratzert et al., 2018). An LSTM consists 
of a memory cell, which is a neuron with a self-recurrent connection, 
and three nonlinear gates (i.e., forget, input and output gates) that 
control the movement of information within and outside the cell. The 
forget gate, or cell memory, determines what information from previous 
time steps should be discarded, allowing the LSTM to learn long-term 
dependencies that other RNNs cannot. The input gate regulates what 
information should be added to update the cell state, while the output 
gate determines how much of the cell state should be used to generate 
the output value. As a result, LSTMs can benefit from a longer memory to 
learn long-term dependencies by avoiding the exploding or vanishing 
gradients problematic that strongly affects traditional RNNs structures 
face (Xu et al., 2020). The capacity of LSTMs to overcome the issues 
short-term memory is particularly important when it comes to hydro
logical modelling, since processes such as the accumulation and melting 
of the snow cover and the evolution of soil moisture conditions are 
essential to properly model surface runoff. This has also been shown in a 
comparative study between LSTMs and other machine learning algo
rithms for hydrological forecasting (Rahimzad et al., 2021). 

The potential use and benefits of LSTMs in the field of hydrology 
have recently begun to be explored (e.g., Hu et al., 2018; Kratzert et al., 
2018; Zhang et al., 2018; Sahoo et al., 2019; Hunt et al., 2022; Arsenault 
et al., 2023). For example, Zhang et al. (2018) evaluated the perfor
mance of various RNN architectures in simulating water levels in Nor
way and found that the LSTM is better suited for multi-step-ahead 
forecasts than other architectures without cell memory. Kratzert et al. 
(2018) compared the performance of the LSTM and the SAC-SMA hy
drological model (Sorooshian et al., 1993) for simulating long-term 
streamflow over 241 catchments in North America and found that the 
LSTM outperformed the SAC-SMA model, highlighting the potential of 
LSTMs as regional hydrological models. Tounsi et al. (2023) corrobo
rated these findings by showing the LSTM model performance over the 
MOPEX dataset in the United States. Kratzert et al. (2018) and Le et al. 
(2021) also noted the possibility of applying LSTMs in regions other than 
the one used for training. Hunt et al. (2022) evaluated the performance 
of the LSTM in predicting streamflow in various climate regions of the 
United States and compared it to the Copernicus Emergency Manage
ment Service physics-based Global Flood Awareness System (GloFAS). 
The authors reported that the LSTM generated skillful forecasts that 
outperformed the raw and bias-corrected GloFAS forecasts up to a 5-day 
lead time. In this context, Hu et al. (2018) attributed the better perfor
mance of the LSTM compared to conceptual and physical-based hydro
logical models to the feature of the forget gate. However, other studies 
have reported the difficulty using LSTMs for predicting streamflow 
during extreme conditions, as well as for catchments with complex 
groundwater-river interactions and human abstractions (Kratzert et al., 
2018; Lees et al., 2021, Cho and Kim, 2022, Granata et al., 2022). 
Arsenault et al. (2023) showed that LSTMs systematically outperformed 
traditional hydrological models in a regionalization experiment per
formed over 148 North American catchments, with Tang et al. (2023) 
showing global hydrology models paired with LSTMs could drastically 
improve streamflow prediction in ungauged basins. Nevo et al. (2022) 
developed a flood forecasting model using LSTMs and found that it was 
significantly better than more traditional multiple linear regression 
models in forecasting river water stages in India and Bangladesh. Other 

studies have investigated variants of LSTMs for forecasting, including 
methods that allow forecasting multiple time steps at once rather than 
generating forecasted time series sequentially. For example, Girihagama 
et al. (2022) used an attention-based Encoder-Decoder- LSTM to 
improve streamflow forecasting skill over ten catchments in Canada, 
and Kao et al. (2020) found Encoder-Decoder-LSTMs to be reliable in 
converting rainfall sequences to runoff sequences and suitable for fore
casting hourly floods. Furthermore, other types of machine learning 
based forecasts have also shown promising results, such as radial basis 
function neural networks in Granata and Di Nunno (2023), which per
formed better than LSTMs for forecasts up to 15 days of lead-time on six 
UK rivers. 

Incorporating and integrating observational data is important for 
better performance of hydrological forecasting, as it helps adjust model 
states such that the model represents actual hydrological conditions as 
best as possible. This is done by applying methods such as data assimi
lation (DA) and regressions for state updating (Nearing et al., 2022; 
Brajard et al., 2020; Fang and Shen, 2020). Nearing et al. (2022) dis
cussed ways of integrating data in LSTMs to represent missing stream
flow data for gauged and ungauged basins. They used a regression 
method and variational DA method. The integration part was added to 
the cell state of LSTM, i.e., the one which is the recursive state of LSTM, 
in order to over-train observed streamflow data which are spared. They 
found DA has advantages over autoregression, since it is able to deal 
with up to 50 % of missing data. They reported DA worked better when 
used for catchments including both gauged and ungauged basins. Bra
jard et al. (2020) reported successful results for combining the ensemble 
Kalman filter with a surrogate model of a neural network. Feng et al. 
(2020) showed that it was possible to use data integration of streamflow 
observations in LSTM models to improve hydrological forecasts at the 
continental scale, especially in snowmelt dominated catchments. This 
was also tested with success by Khoshkalam et al. (2023) at the catch
ment scale, while using simulated streamflow to replace any missing 
data from the observational record. Fang and Shen (2020) used LSTMs 
to forecast soil moisture using satellite data using a Data Integration 
kernel to assimilate and update models with the most recent available 
observations showing that it was effective to reflect unseen processes in 
inputs, such as floods. 

This study aims to evaluate the potential of LSTM to simulate and 
forecast daily streamflow over the Lac-Saint-Jean (LSJ) catchment, 
located in the province of Quebec, Canada. In this region, a large portion 
of the streamflow comes from snowmelt, making it an ideal environment 
for testing LSTM forecasts in a wide array of hydrometeorological con
ditions. As there are only a few applications of LSTM forecasting in 
Nordic regions, the architecture and reliability of LSTM needs to be 
investigated to identify its benefits for streamflow forecasting as an 
operational deployment in this region. The strong snowpack dynamics 
and the importance of capturing such long-term hydrological processes 
make it more challenging than in regions with more uniform weather. 
The only similar study to our knowledge is that of Girihagama et al. 
(2022), who used an encoder-decoder LSTM with an attention mecha
nism to provide streamflow forecasts in ten river catchments in the Great 
Lakes region in Canada. Their study concluded that this variant of LSTM 
was able to provide excellent forecasting results for up to five days of 
lead-time. 

In particular, this study seeks to address the following research 
questions: 

● How well do LSTM-based models forecast streamflow over a catch
ment where the hydrologic response is dominated by snowmelt? 

● How does LSTM-based model performance compare with the oper
ational forecasting system (a distributed hydrological model com
bined with a data assimilation scheme) used as a benchmark? 
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2. Experimental design 

2.1. Study area 

This study was conducted on the LSJ catchment in the province of 
Quebec, Canada (Fig. 1). The catchment has an area of 45000 km2 and is 
used for hydropower generation by the Rio Tinto corporation for 
aluminum smelting. The catchment is made up of nine monitored sub- 
catchments, which drain into the reservoir, as shown in Fig. 1a. This 
figure also shows the catchment’s location (Fig. 1d). The sub-catchment 
“other tributaries” is made up of a series of small rivers and streams that 
all flow to the reservoir but are ungauged. The annual average precip
itation on the LSJ catchment is 1000 mm, of which 34 % falls as snow, as 
measured by Rio Tinto’s weather monitoring network stations. This 
provides substantial inflows to the Lac-St-Jean reservoir, a 1000 km2 

reservoir that can store up to 4550 hm3 of water for the hydropower 
generating station (Arsenault and Côté, 2019). Spring peak flows are 
associated with snowmelt events, while high flows in summer and fall 
are related to precipitation events. Mean annual streamflow is about 900 
m3s− 1 (Bergeron et al., 2021). 

2.2. Datasets 

In this study, multiple datasets were used, including streamflow data 
as well as observed and forecasted weather data. This section describes 

all datasets and their pre-processed methodology. 

2.2.1. Observed hydrometeorological data (used for calibration of 
hydrologic model) 

The observed hydrometeorological data were provided by Rio Tinto, 
the operator of the hydropower generating station and owner of water 
rights for the LSJ system. The data covered the period from January 
1954 to December 2019 and included daily minimum and maximum 
temperatures and precipitation from a network containing 16 weather 
stations distributed throughout the catchment. 

In addition to the weather data, Rio Tinto also provided inflows to 
the main reservoir, which were derived through mass balance calcula
tions by evaluating changes in the reservoir level at various locations 
along with known outflows from turbines and spillways. This was 
necessary as multiple rivers and tributaries flow into the reservoir, 
making a significant portion of the flows ungauged. However, the mass- 
balance derived inflows can be noisy at times due to wind displacing the 
water surface, which can bias storage volumes over short periods (Loi
selle et al., 2021). To address this, a three-day moving average was 
applied to smooth out variations in inflows, which did not change the 
total water balance over longer horizons, or the timing of events in a 
significant manner. The inflows to the reservoir are the target of the 
forecasting procedure in this study. 

Fig. 1. The Lac St-Jean (LSJ) catchment and its ten contributing sub-catchments, including the “other tributaries” which are the sum of all smaller ungauged rivers 
flowing into the LSJ reservoir (a). Hydrometric stations are represented by stars (a). The eleven gamma ray monitors (GMON) are represented by red crosses over the 
Voronoi polygons they generate (b). The intersection of the ten sub-catchments and the eleven Voronoi polygons represent the 28 hydrological response units (HRU) 
of the CEQUEAU semi-distributed hydrological model used in this study, represented by a blue circle (c). The location of the LSJ catchment in Quebec, Canada, is 
shown within Eastern North America (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2.2. Ensemble weather forecast (used for forecasting with hydrologic and 
LSTM model) 

To assess the performance of the distributed hydrological model and 
the LSTM model in forecasting mode, the 50-member operational 
ensemble weather forecast data was obtained from the European Center 
for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting 
System (IFS) using the Meteorological Archival and Retrieval System 
(MARS) archive (https://www.ecmwf.int/en/forecasts/dataset/opera 
tional-archive; Grawinkel et al., 2015). The variables of total precipi
tation, maximum and minimum temperature were available at a spatial 
resolution of 0.2◦ x 0.2◦ on a 6-hourly time step twice per day (0Z and 
12Z). For this study, only the 0Z-emitted forecasts were utilized and the 
four 6-hour timesteps were aggregated to a daily time step for each day. 
The forecast lead-times from one to ten days were downloaded, but the 
last day was truncated due to the five-to-six-hour time zone offset that 
made the tenth day unavailable for the entire period for the study 
location, resulting in an effective nine-day ensemble weather forecast. 
The forecasts were downloaded for the period of January 2015 to 
December 2019. Data prior to 2015 were not included due to a major 
update of the ECMWF integrated forecasting system in 2015, which 
caused a change in weather forecast statistics that would not be repre
sentative of the more recent model versions. The ensemble forecasts of 
precipitation and temperature were then spatially aggregated to the 
scale of the 28 distributed hydrological model sub-regions for the hy
drological model and over the entire catchment as input to the LSTM 
model. 

2.2.3. Reanalysis data (used for training of LSTM model) 
In this study, a second set of pseudo-observed meteorological data, 

known as reanalysis data, was used to train the LSTM model. This data is 
from the ECMWF fifth generation reanalysis (ERA5; Hersbach et al., 
2020). The reanalysis data used to provide observations on the historical 
period, so that the LSTM model could be used to forecast data with the 
same variables in the forecasting period. The station-based observations 
provided by Rio Tinto (Section 2.2.1) did not contain the desired spatial 
and temporal coverage of wind, solar radiation, and pressure variables 
for this training, thus ERA5 data was used instead. The variables used 
from ERA5 are the same as for the forecast data, but at an hourly time 
step on a 0.25◦ x 0.25◦ resolution. The ERA5 data was aggregated at the 
daily scale and was spatially aggregated over the entire catchment, to 
maintain consistency with the spatial and temporal scales of the 
ensemble weather forecast data. The data is available from January 
1979 to the present day with a latency of approximately five days, which 
was deemed sufficient for training the LSTM model in this study. 

3. Methods 

This study aims to evaluate the ability of the LSTM neural network 
model to forecast streamflows on a large, snowmelt-dominated catch
ment. A traditional semi-distributed hydrological model is also used as a 
comparison over the same catchment and time periods. The methods 
used to achieve the study objectives are described in detail in this sec
tion, including the forecast evaluation metrics (Section 3.1), the tradi
tional hydrological modeling and forecasting (Section 3.2), and the 
LSTM model training and forecast testing (Section 3.3). 

3.1. Performance evaluation criteria 

The performance of the different streamflow forecasts is evaluated 
using the Kling-Gupta Efficiency (KGE; Gupta et al., 2009), the Contin
uous Ranked Probability Score (CRPS; Hersbach, 2000) and the Mean 
Absolute Error (MAE; Mather and Johnson, 2016) at different lead times 
(from days one to nine) during the forecast. 

The KGE, which is unit less, is defined as: 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)22
√

(1)  

where r is the Pearson correlation coefficient; β is the bias ratio 
(μqsim

/μqobs
); and γ is the variability ratio (σqsim /σqobs ) where μqsim 

and σqsim 

are the mean and standard deviation of the forecasted (simulated) 
streamflow and μqobs 

and σqobs are the equivalent for the observed 
streamflow. A perfect forecast would have a KGE of 1, while suboptimal 
forecasts show KGE values lower than 1. 

The CRPS is a suitable metric for probabilistic forecasts. It measures 
the average distance between the observed probability density function 
(F(qobs)), and the ensemble forecast probability density function 
(F(qsim)), given by: 

CRPS =
1
N
∑N

i=1

∫ +∞

− ∞

[
F(qsimi ) − F(qobs)

]2dq (2)  

where N is the size of the forecast ensemble. The CRPS ranges from 0 to 
+ ∞, with zero being a perfect forecast. For streamflow, the units of 
CRPS is m3s− 1. CRPS has the same dimension as q (dq). 

MAE measures the difference between the observed and forecasted 
results but in a deterministic (rather than ensemble) setting. The MAE is 
the equivalent of the CRPS when a single member is used, and therefore 
the CRPS can be seen as an extension of MAE to ensembles. MAE is an 
average of the absolute error, as: 

MAE(t) =

∑N
i=1

⃒
⃒qsimi(t) − qobs(t)

⃒
⃒

N
(3)  

where qobs is the observed streamflow, qsimi is the simulated streamflow 
(which also means pseudo-forecasted as well) for the i-th member of the 
ensemble of size N at lead-time t. The optimal value for MAE is 0. In this 
study, MAE values presented are the average MAE over all forecasts 
MAE(t). 

3.2. The CEQUEAU hydrological model 

The CEQUEAU hydrological model is used as a benchmark for 
evaluating model performance statistics in this study. CEQUEAU is a 
semi-distributed model that incorporates three conceptual reservoirs to 
simulate key hydrologic processes: a surface reservoir to model land 
surface processes such as evapotranspiration and snowmelt), a soil 
reservoir that describes the soil infiltration and interflow processes, and 
a deeper reservoir that simulates groundwater and base flows (Morin 
and Paquet, 2007). Evapotranspiration is estimated using the Oudin 
method (Oudin et al., 2005) and snow processes are modeled with the 
degree-day CEMANEIGE model (Valéry, 2010). 

The catchment is divided into 28 hydrologic response units, which 
corresponds to the intersection of the influence area of GMON snow 
monitoring stations and the 10 hydrologic sub-catchments (Fig. 1a-1c). 
The simulation of vertical fluxes is independently performed on each of 
the 28 sub-regions, as described in Mai et al. (2020). Unit hydrographs 
are then employed to route flows to the downstream sub-catchments 
until they reach the outlet. CEQUEAU only requires daily precipitation 
and average daily temperature as meteorological inputs. The model was 
manually adjusted and calibrated by Rio Tinto, which provided their 
operational streamflow forecasting model for this study. The model was 
set up using data from January 1954 to December 2014 and has been 
their primary hydrological forecasting tool since. 

CEQUEAU was then employed to generate streamflow forecasts for 
the period of January 2015 to December 2019, both in open-loop mode 
(i.e., without data assimilation) and using an implementation of the 
Ensemble Kalman Filter (EnKF; Evensen, 2003) data assimilation pro
cedure. The EnKF used in this study was optimized for forecasting per
formance on the LSJ catchment and was implemented according to the 
procedure described in Sabzipour et al. (2023), which is summarized in 
the supplementary material (Section S1). CEQUEAU was forced with 
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observed meteorological variables (Section 2.2.1) until the forecast date 
using the EnKF to maintain robust state variables up to the day the 
forecast was issued. At this point, the hydrological model was run using 
the ECMWF ensemble weather forecasts (Section 2.2.2) as meteorolog
ical input to generate the ensemble streamflow forecasts. Data assimi
lation was performed every three days to increase computation 
efficiency and to prevent the model’s initial states from drifting too far 
away from the observations. Streamflow forecasts generated by 
CEQUEAU (with and without data assimilation) were only generated on 
the dates that data assimilation was performed to ensure the best 
possible initial states while allowing a small temporal gap between 
streamflow forecasts to prevent strong autocorrelations between suc
cessive forecast dates. 

3.3. Long short-term memory (LSTM) network 

In this study, a single-layer LSTM model with a variable number of 
units was chosen as the model structure. The setup details and hyper
parameters of the LSTM are summarized in Table 1. Different hyper
parameters and model structures were considered for each lead-time 
during the model training and were tested to obtain the best results as 
measured by the KGE metric. The dropout rate, number of epochs, batch 
size, and number of LSTM units hyperparameters were modified and 
optimized for each lead-time through trial-and-error to improve per
formance on the validation period. The dropout rate was included to 
randomly turn off a certain percentage of LSTM units during training, in 
order to reduce overfitting and improve modeling performance during 
forecasting. The number of epochs, or the number of times the model 
sees the full dataset during the training, and batch size, or the size of the 
dataset sub-sample used to estimate the gradient descent, were adjusted 
to speed up the training and ensure its convergence. This led to a larger 
number of epochs for longer lead-times. 

The LSTM models were trained and tested using multiple meteoro
logical variables from the ERA5 reanalysis dataset, including precipi
tation, temperature, wind, surface pressure, net solar radiation and 
dewpoint temperature, (Section 2.2.3) and daily observed streamflow 
provided by Rio Tinto (Section 2.2.1) for the period from January 1979 
to December 2014. The LSTM models were trained on sequences of 
[365-k] days of hydrometeorological data prior to a single observed 
streamflow target, where k is the lead-time for which the model will be 
used to forecast flows (see Fig. 2a). Additionally, streamflow data up to 
the forecast date were used as inputs to the LSTM model, allowing the 
network to access recent information about the current hydrological 
state at the time of forecast, similar to how CEQUEAU has access to 
assimilated initial states. However, this also means that for each forecast 
lead-time, the LSTM model needs to be retrained with streamflow ob
servations being lagged by the same number of days as the forecast lead- 
time. For example, for a 3-day lead-time forecast, the LSTM inputs 
would be a combination of 362 days of observed weather data prior to 
the forecast day as well as 362 days of streamflow observations lagged 
by 3 days (see Fig. 2a for an example of data and periods used to train a 
1-day and a 3-day lead-time forecasting model). This ensures that no 
observed streamflow from the forecast period is used during model 

training. To train these models, observed data (both weather and hy
drometric) are used for all time steps; however, in forecasting, the 
forecast lead-time days are replaced with actual forecast data and the 
observed streamflow time series ends on the day of the forecast issue 
(see Fig. 2b for an example of application of a 1-day and a 3-day fore
casting model). Nine different LSTM models were thus trained, corre
sponding to each lead-time (one to nine days) of the forecast. It is 
important to note that in this study, ERA5 reanalysis data was used as 
the study is performed in hindcasting mode. However, in a real-world 
application, ERA5 data would not be available for the 3–4 more recent 
days as the ERA5 data are released with a few days of lag. These data 
would thus need to be taken elsewhere in an operational setting. 

The network weights were optimized to maximize model perfor
mance over all training sequences. The training set was composed of 70 
% of the years selected at random from the training period, 15 % of the 
years were kept as the validation dataset to prevent the LSTM from 
overfitting during training, and the remaining 15 % of the dataset is used 
as testing data which are used to evaluate the LSTM’s robustness on an 
independent period prior to forecasting. 

Data normalization was applied to all hydrometeorological data 
using a scaling model calibrated on the training period data only, to 
ensure no contamination of the training dataset was accidentally 
introduced. Training and validation were performed using the Tensor
flow and Keras libraries in Python, with the Adam optimizer and the 
KGE metric as the objective (loss) function. The model was trained by 
generating one streamflow value for each [365-k]-day window of 
training data, and repeated for all days in the dataset, generating a 
hydrograph one day at a time in multiple batches. The trained model 
was then used to perform forecasts for the period from January 2015 to 
December 2019 by combining historical (ERA5 reanalysis dataset) and 
forecast (ECMWF) data into sequences of [365-k] days, ending on the 
desired lead-time’s meteorological data. One LSTM model was trained 
for each forecast lead-time due to lagged streamflow observations. The 
LSTM forecasts were also generated every three days and on the same 
dates as the CEQUEAU-DA data assimilation and forecasts were 
performed. 

4. Results 

4.1. Performance of the LSTM model in simulation 

Table 1 presents the statistics of the LSTM performance over the 
training, validation, and testing periods. Overall, the LSTM model per
forms well in simulating daily streamflow as suggested with KGE values 
above 0.90 for all lead-times over the training period and above 0.89 for 
the testing period. 

Although the LSTM model captures the lowest peak flows in the daily 
hydrograph of Fig. 3a, a slight underestimation of the highest peak flows 
is observed, ranging from 5 to 10 %. The timing of all peak flows is 
successfully captured during the training period. As for the testing 
period, the KGE values are slightly better than those obtained over the 
training period for day one, and the performance is comparable until day 
three (Table 1). However, for lead-times beyond day four, the LSTM 

Table 1 
Description of the LSTM models hyperparameters used for each of the forecast lead-times and training results.  

Lead times (days) Nb. of LSTM units Dropout rate Nb. of training epochs Batch size Training KGE Validation KGE Testing KGE 

1 128  0.2 100 128  0.97  0.99  0.98 
2 128  0.2 200 128  0.98  0.99  0.98 
3 128  0.2 200 128  0.95  0.95  0.95 
4 128  0.2 250 128  0.95  0.91  0.94 
5 128  0.2 250 128  0.92  0.94  0.91 
6 128  0.2 300 128  0.93  0.91  0.92 
7 64  0.1 1000 64  0.94  0.94  0.93 
8 64  0.1 1000 64  0.95  0.93  0.92 
9 64  0.1 1000 64  0.90  0.92  0.88  
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performance over the testing period is slightly lower, even though the 
KGE values remain very good (KGE ≥ 0.88). 

In the testing period, the LSTM model slightly underestimates the 
highest peak flows while the timing of peak flows is generally well 
simulated. These results can be seen in Fig. 3b for the 1-day lead-time 
LSTM model. Results for longer lead-times (from 2- to 9-day) show 
similar skill levels. 

Fig. 4 shows a quantile–quantile plot of the observed and simulated 
streamflows for each of the nine lead-times during the testing period. A 
general underestimation of peak flows is seen in most lead-times. 
Additionally, a small overestimation of the lowest flows can be noted 
for most lead-times, which can be seen in more detail in the supple
mentary materials (Figure S2). 

4.2. LSTM and CEQUEAU comparison in forecasting 

The main focus of this section is to compare the performance of the 
LSTM and the CEQUEAU models with (CEQUEAU-DA) and without 
(open-loop, CEQUEAU-OL) data assimilation when simulating stream
flow over the LSJ catchment at the annual and seasonal scales during the 
testing period. 

The skill of ensemble forecasts for one to nine days of lead time is 
analyzed in Figs. 5 to 7. Fig. 5 presents the CRPS and MAE scores using 
data from all years and all seasons as a first step to assess overall model 
performance. Figs. 5 and 6 present the forecast skill metrics for forecasts 
issued for each season (i.e., winter: December to March - DJFM; spring: 
April and May - AM; summer: June, to August - JJA; and fall: September 
to November- SON) for both the CRPS and MAE, respectively. These 
figures include the results of all forecast issue days within their 
respective periods (i.e., all forecasts generated during the summer days 
− 122 initial dates of forecast - are represented in the summer boxplots 
in Figs. 5 and 6). Lower CRPS and MAE values indicate more accurate 
forecasts. 

The annual results indicate that LSTM performs better than both 
CEQUEAU-DA and CEQUEAU-OL for both CRPS and MAE values up to 
the 8-day lead-time (Fig. 5). On average, the median LSTM performance 
is 22 % (42 %) better for CRPS (MAE) compared to CEQUEAU-DA, and 
37 % (37 %) better for CRPS (MAE) compared to CEQUEAU-OL across 
all lead times. 

The LSTM model outperforms CEQUEAU during the first three days 
of the forecast, as seen in the third quartile of the LSTM CRPS which is 
inferior (better) to the median CRPS of the CEQUEAU forecasts for the 

Fig. 2. Example implementation of a training sample for a 1-day and a 3-day lead-time forecasting model (a) and an example implementation of such forecasting 
models for 1-day and 3-day lead-time streamflow forecasts (b). Panel (a) presents a single sample, but the process is repeated on the entire dataset available for the 
training period and the same process is repeated on the validation and testing periods. Panel (b) shows an example for a single issue date, but the process is repeated 
for other forecast issue dates, combining the outputs of the 1-day to 9-day forecasts for each forecast issue date. 
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first two days, and a similar trend can be observed for MAE. This is 
supported by a non-parametric Wilcoxon test for median equality, which 
shows the results on an annual basis for both skill scores, as depicted in 
Table 2a. 

For days 4–9, the LSTM model still performs better than CEQUEAU, 
but by a smaller margin. The MAE results, on an annual scale, show that 
LSTM has significantly lower MAE values than CEQUEAU (using both 
DA and OL methods) for the nine lead-times (Table 2b). The CRPS results 
also support these findings, as shown in Fig. 4. However, after the 3-day 
lead-time, there is no significant difference between LSTM and 
CEQUEAU-DA for the CRPS. 

Additionally, CEQUEAU-DA generally provides better CRPS and 
MAE values than the OL scenario when looking at forecast quality over 
the entire year, which is expected. It should also be noted that the LSTM 
displays progressively wider spread (i.e. wider interquartile range) in 
CRPS and MAE as lead-time increases (for example, interquartile ranges 
of CRPS for days 1, 3, 5 are 39, 82, and 119 m3/s, respectively). This is 
likely attributed to the fact that the LSTM model has the exact same 
starting conditions for every member of the ensemble during a forecast, 
and only the forecasted weather can contribute to the variability, as will 
be discussed further. 

The ensemble forecast skill is evaluated and investigated on a sea
sonal basis (Figs. 6 and 7). The results reveal that the LSTM model 
performs well with lower CRPS and MAE values than both CEQUEAU- 
DA and CEQUEAU-OL up to a lead time of five days for CRPS values 
(see Table 2a for significance test results) and eight days for MAE values 
(Table 2b) for all seasons. However, from day six, the overall LSTM 
performance decreases and is now inferior to the two CEQUEAU model 
versions. The only exception is the summer season, for which the LSTM 
provides ensemble forecasts with better accuracy than CEQUEAU-DA 
and CEQUEAU-OL until the 8-day lead time. The Wilcoxon test results 
show decreasing significance with longer lead-times in general for the 
CEQUEAU-DA and CEQUEAU-OL comparisons (Table 2). 

4.3. Forecast performance evaluation 

Ensemble streamflow forecasts generated with the LSTM model are 
compared to those produced by CEQUEAU-DA and CEQUEAU-OL 
models for up to 9-day lead-times. The performance is evaluated for 
each season by selecting a typical forecast event and using the forecast 
issue date with the median streamflow observation of that season to 
ensure representativeness (Fig. 8). Ensemble forecasts using the three 
methods (LSTM, CEQUEAU-DA and CEQUEAU-OL) are then evaluated 
for these selected events. 

The results in Fig. 8 depict the added value of the LSTM model to the 
overall quality of ensemble forecasts in different seasons for various 
lead-times. In winter, LSTM provides an almost unbiased forecast up to 
approximately the 6-day lead-time, compared to the CEQUEAU fore
casts. The CRPS for the LSTM forecast is also lower than that of the 
CEQUEAU forecasts over the entire period due to the ensemble having a 
lower spread. The initial states are well simulated by all three fore
casting models and are not a factor in the bias related to initial 
conditions. 

In spring, forecasts vary significantly depending on the forecast 
model. The LSTM has much less variability than the CEQUEAU-OL 
forecast, which is in turn less variable than the CEQUEAU-DA imple
mentation. The latter has more variability primarily due to the assimi
lation of initial states, making it more sensitive to input meteorological 
data variations. Additionally, the LSTM forecasts for the first days 
display less bias than the hydrological model counterparts, owing to the 
integration of recent streamflow as inputs. It can also be seen that up to a 
lead-time of approximately five days, the LSTM forecast shows smaller 
ensemble error than the other models. However, in the following days, 
the small spread and increasing bias of the LSTM ensemble members 
heavily penalized the CRPS score, making it worse overall than the 
CEQUEAU implementations. This is also seen in Fig. 6b, where the LSTM 
generally produces better forecasts for shorter lead-times only. In sum
mer, LSTM decreases the spread of the ensemble forecasts over the 9-day 
lead-time, allowing it to get closer to the observed streamflow compared 
to both the CEQUEAU-DA and CEQUEAU-OL ensembles except during 

Fig. 3. Comparison between observed and simulated streamflow from the LSTM models over the 1953–1996 training period (a) and the 2005–2015 testing period 
(b), using a 1-day lead-time. 
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the last forecast days, contributing to the improvements in CRPS (see 
Fig. 6c). In fall, the comparison of LSTM-ensemble forecasts with the 
CEQUEAU-DA and CEQUEAU-OL ensembles shows that LSTM generates 
reliable forecasts that encompass the observation with very little spread 
for the entire forecast duration. The CEQUEAU-DA, however, has initial 
conditions that are more representative of the current state and are more 
saturated (i.e., more reactive) than CEQUEAU-OL for that given period. 

Overall, the main difference between the LSTM and CEQUEAU-based 
forecasts is that the LSTM is more confident in its forecasting, generating 
forecasts with less spread. When the forecast is unbiased, the forecast 

skill is better than that of the hydrological models. However, when the 
LSTM model generates a biased forecast, the low spread makes all 50 
members biased, thus increasing the CRPS and MAE error metric values. 

The forecasted hydrographs of each model are compared in Fig. 9. 
The results illustrate that the LSTM is more accurate at shorter lead- 
times (1-day to 3-day) than the CEQUEAU-DA and CEQUEAU-OL fore
casts throughout the year. Note that since forecasts are generated every 
3-days, it was required to generate and stich series of 1- to 3-day fore
casts together to produce a complete hydrograph. Similar results are 
found for the 4- to 6-day and 7- to 9-day forecasts presented in the 

Fig. 4. Quantile-quantile plot showing observed streamflow against simulated values from the nine LSTM models over the testing period, from 1 to 9 days in lead- 
time from a) to i). The 1:1 slope (dashed red line) is added for comparison purposes, representing a perfect match between observed and simulated streamflow. Each 
panel contains 3341 points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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supplementary materials Fig. S3A and S3B. The longer lead-times 
demonstrate that the LSTM errors are primarily caused by temporal 
shifts, while the CEQUEAU errors are mainly attributed to amplitude 
errors, but with better timing. 

5. Discussion 

5.1. Comparison between CEQUEAU and LSTM 

The CEQUEAU and LSTM models share some similarities but differ in 
key aspects when it comes to forecasting streamflow. CEQUEAU-DA 
initiates forecasts with an improved estimate of initial states, resulting 
in a more sensitive model from the first lead-time. On the other hand, the 
LSTM model is initialized deterministically using past weather and 
streamflow observations, resulting in a lack of uncertainty in the 1-day 
lead-time (Fig. 8). Both models are trained on historical data, but 
CEQUEAU is calibrated over a historical time period and used to 
generate forecasts based on incoming weather forecasts, while the LSTM 
model is trained on a set of two inputs (precipitation and temperature) 
and one output (streamflow). 

CEQUEAU-DA produces a wider spread of forecast results compared 
to the LSTM model. Both LSTM and CEQUEAU (both DA and OL) display 
CRPS and MAE errors worsening with increasing lead-times. This is 
likely due to the decreasing reliability of weather forecasts as lead-times 
increase, resulting in less skillful streamflow forecasts from both LSTM 
and CEQUEAU. Overall, the results indicate that LSTM provided better 
forecast results compared to the CEQUEAU model, while also requiring 
simpler implementation and no data assimilation. However, the LSTM 
model has the limitation of needing to be trained multiple times for 
different lead-times. Furthermore, while the LSTM model may perform 
well on a single catchment as seen with the LSJ, it might also benefit 
from training over several basins to be robust and efficient at capturing 
extreme events, such as in Kratzert et al. (2018, 2019). 

Finally, it is important to note that the LSTM model was able to 
successfully improve spring forecasts for up to 3 days compared to 
CEQUEAU-DA and CEQUEAU-OL. This is useful as spring melt is one of 

the most important processes to capture correctly for hydropower 
management in this system. However, it can also be seen that the 
CEQUEAU model outperforms the LSTM model in spring for longer lead- 
times. This could be due to the LSTM model not having sufficient data to 
successfully represent the streamflow patterns on longer timescales, and 
to the CEQUEAU model’s mass conservation constraints that ensure that 
snow that has accumulated will melt eventually, leading to smaller 
biases in overall streamflow on longer time scales. 

5.2. On the necessity of performing data assimilation 

Although LSTMs do not typically implement DA directly, they do 
have a recurrent state that allows for the ingestion of near real-time 
observations (Nearing et al., 2022). In this study, DA was not per
formed directly on the LSTM models. Instead, rather than implementing 
DA directly on the LSTM model states, an autoregressive component is 
integrated into the LSTM model by providing observed streamflow on 
the timesteps immediately preceding the forecast. This means that the 
result of the previous simulation has no impact on the current forecast 
and the LSTM breaks continuity in the forecasting stage. This method, 
along with a proper DA implementation, was done in Nearing et al. 
(2022), in which it is shown that the autoregressive approach is more 
accurate than the DA approach. However, this method is also sensitive to 
missing data, as any missing streamflow observation would preclude the 
model from being used in forecasting mode for that day. Some methods 
have been proposed to tackle this problem with success in Nearing et al. 
(2022). Hydrological models, on the other hand, ensure the forecast is 
done in one single run, which is an advantage over LSTMs using 
observed streamflow as inputs. The LSTM used in this study therefore 
trades continuity for not having to resort to the complex step of DA given 
the number of memory states in the LSTM. By providing observed 
streamflow in the training and forecasting steps, the LSTM can learn to 
minimize initial state errors, similar to the DA step in a hydrological 
model using observed streamflow to adjust its initial states. 

Both the hydrological model with DA and the LSTM model provided 
skilled streamflow simulations and forecasts. This study found that for 

Fig. 5. CRPS (a) and MAE (b) of the annual streamflow ensemble forecasts for the LSTM model (orange), CEQUEAU-DA (DA; green), and CEQUEAU-OL (OL; purple) 
over the 2015–2019 forecasting period. Each boxplot contains 536 forecasts, corresponding to one forecast every three days over the study period. The center 
horizontal line in each boxplot represents the median, box edges represent the 25th and 75th percentiles, and whiskers represent the extreme values not considered as 
outliers. Dots outside of the whiskers are outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the catchment studied, the LSTM outperforms the hydrological model 
for short-term forecasts (up to 5–9 days lead-time depending on the 
season) when using the CRPS and MAE metrics. Fig. 4a and 4b showed 
that the LSTM performed better than the CEQUEAU-DA and CEQUEAU- 
OL models for all lead-times with a significant improvement in forecast 
skill. 

5.3. Effects of excluding streamflow observations from the LSTM 
forecasting model 

In this study, the LSTM used observed streamflow up to the forecast 
issue date to provide information on the current hydrological state. The 
use of observed streamflow as a predictor is not a new concept in hy
drology; in fact, it has been a useful proxy for short-term forecasts over 
the last decade (Cloke and Pappenberger, 2009). Different studies have 
applied various methods such as using historical streamflow observa
tions directly to estimate future outcomes (e.g., Rajagopalan et al., 
2010), applying regression models (e.g., Seo et al., 2006; Hopson and 
Webster, 2010; Bogner et al., 2016), using autoregressive models (e.g., 
ARMA, ARMAX, GARCH,; Zhang et al., 2015; Amiri, 2015) and using 
artificial neural networks (e.g., Coulibaly et al., 2000; Machado et al., 
2011). 

Recent studies have focused on using LSTM for its ability to simulate 
hydrological processes and provide high-quality streamflow simulations 
and forecasts from historical weather data. In this study, streamflow was 
added as an input to the LSTM as a form of data integration. By training 
the model to combine the information from observed streamflow and 
weather up to the forecast issue date, as well as forecasted weather, the 
LSTM is able to make accurate streamflow forecasts for shorter periods. 
However, as the lead-time increases, the impact of observed streamflow 
diminishes because the streamflow observations are not available past 
the forecast issue date. This is reflected in the progressive widening of 
the CRPS and MAE values as lead-times increase (see Figs. 4 to 6). To 
improve performance for longer lead-times, the LSTM must be trained 

independently for each lead-time, with the observed streamflow lagged 
by the appropriate number of days. This makes the training process 
more labor-intensive and the model is less able to rely on the observed 
streamflow for predicting the forecasted streamflow, which results in 
progressively worse CRPS and MAE scores, similar to the forecasts issued 
using the hydrological model. Another possible explanation for this 
behavior is that of persistence in the streamflow observations. Indeed, 
using a simple persistence model, we find that we obtain Nash-Sutcliffe 
metric values of 0.9 and 0.87 for 1- and 2- day ahead deterministic 
forecasts. However, by day 7, the NSE drops to 0.58. This means that 
observed streamflow for a given day has a strong predictive power for 
the first few following days before losing skill. Of course, this test is only 
applicable for deterministic forecasts, but it informs on the predictive 
power of integrating streamflow observations as inputs to the LSTM 
model. 

Additional tests were conducted to overcome the need for training 
one LSTM per lead-time in order to improve forecasting performance. 
One test involved training the LSTM using only historical weather data 
as the input, rather than incorporating observed streamflow data. This 
approach was found to provide good results for only two days of lead- 
time. However, for longer lead-times, the LSTM performed worse than 
the hydrological models (CEQUEAU-DA and CEQUEAU-OL; see Fig. S4). 
This could be due to the fact that the forecast data from the ECMWF 
could have different statistical properties than the observations used to 
train the LSTM, leading to a bias in the forecast. Incorporating observed 
streamflow data may help to minimize this effect by reducing the weight 
of the weather component in the forecasting chain. 

5.4. Limitations 

This study has a few limitations that should be considered. First, the 
study was performed on a single catchment used for hydropower gen
eration. It would be interesting to apply the methodology to a larger 
sample of catchments to investigate the generalizability of the approach 

Fig. 6. CRPS of the seasonal streamflow ensemble forecasts for the LSTM model (orange), CEQUEAU-DA (green), and CEQUEAU-OL (orange) over each season of the 
2015–2019 forecasting period: winter: (December to March; DJFM - a), spring (April and May; AM - b) summer (June to August; JJA - c), and fall (September to 
November; SON - d). The number of points in each boxplot represents the number of issued forecasts for that season, equal to 191, 101, 122, and 122 for Winter, 
Spring, Summer, and Fall, respectively. Note that the y-axis ranges are different in all panels due to the large differences between seasons and some outliers are not 
shown for clarity’s sake. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. MAE of the seasonal streamflow ensemble forecasts for the LSTM model (orange), CEQUEAU-DA (green), and CEQUEAU-OL (purple) over each season of the 
2015–2019 forecasting period: winter: (December to March; DJFM - a), spring (April and May; AM - b) summer (June to August; JJA - c), and fall (September to 
November; SON - d). The number of points in each boxplot represents the number of issued forecasts for that season, equal to 191, 101, 122, and 122 for Winter, 
Spring, Summer, and Fall, respectively. Note that the y-axis ranges are different in all panels due to the large differences between seasons and some outliers are not 
shown, for clarity’s sake. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Results of a Wilcoxon rank sum statistical test with a significance level of 1 % for CRPS (a) and MAE (b) results between the forecasts generated by the three models 
used in this study (LSTM, CEQUEAU-DA and CEQUEAU-OL). A value of H = 0 indicates equal medians between the forecasts of the groups defined in each column, 
whereas a value of H = 1 indicates that the null hypothesis is rejected, indicating different medians for the two groups. Performance is evaluated per lead-time.  

(a) CRPS  

H - Result of the hypothesis test  

Winter Spring Summer Fall Annual 

Lead-time LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL 

1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 
3 0 1 1 1 1 1 1 1 1 1 
4 0 1 0 0 0 1 0 0 0 1 
5 0 1 0 0 1 1 0 0 0 1 
6 0 1 0 0 0 1 0 0 0 1 
7 0 1 0 0 1 1 0 0 0 1 
8 1 0 0 0 1 1 0 0 0 1 
9 1 1 0 1 0 0 0 0 0 1  

(b) MAE  

H - Result of the hypothesis test  

Winter Spring Summer Fall Annual 

Lead-time LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL LSTM vs. DA LSTM vs. OL 

1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 0 1 1 
5 1 1 1 0 1 1 1 0 1 1 
6 1 1 1 0 1 1 1 0 1 1 
7 1 1 1 0 1 1 1 1 1 1 
8 0 1 0 0 1 1 1 0 1 1 
9 1 1 0 0 0 0 0 0 1 1  
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to other catchments. This would require access to forecast data and long 
observational time-series, which should be considered in future research 
efforts. Second, the choice of LSTM model hyperparameters was based 
largely on expert knowledge and trial-and-error, and the resulting 
models were of high quality and able to outperform the traditional 

hydrological model implementations, which was sufficient for the scope 
of this paper. However, there are now better approaches to optimize the 
choice of hyperparameters. This could provide a path forward for better 
models in the future. It is also important to note that the LSTM trained in 
this study used a wide array of combinations of ERA5 meteorological 

Fig. 8. Forecasted streamflow ensembles for each season (winter: a, b, c; spring: d, e, f; summer: g, h, i; fall: j, k, l) as generated by the LSTM model (left column; a, d, 
g, j), CEQUEAU-DA (middle column; b, e, h, k), and CEQUEAU-OL (right column; c, f, i, l) over a 9-day lead-time. For each row (i.e., season), the forecast date chosen 
for display is that which corresponds to the day where the observed flow is the median value of all observations for that season. The exact dates are Jan-26–2016 
(Winter), Apr-26–2017 (Spring); Jul-30–2016 (Summer) and Nov-21––2015 (Fall). 

Fig. 9. Hydrographs generated from successive 1- to 3-day lead-time streamflow forecasts averaged over the 50 members for the LSTM (orange), CEQUEAU-DA 
(green), and CEQUEAU-OL (purple) models and observations (black) over the period between January 2015 and May 2019 (a). The focus is placed on the indi
vidual seasons of spring (b), summer (c), fall (d) and winter (e). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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time series. However, the most robust model tested only made use of 
precipitation and temperature. Adding more variables made the training 
more difficult and either converge to worse values or not converge at all. 
It could be possible to improve on these results by adding more types of 
data and finding LSTM model structures and hyperparameters that can 
make use of the extra input data; however, this was not successfully 
implemented in this study. 

Finally, it is important to recall that this study relies on ERA5 data 
that is not available in real-time but has a few days lag between real-time 
and the reanalysis emission. This means that while the results are good 
in this study, applicability in real-time forecasting would require 
replacing the most recent observations with another source than ERA5 
data, such as station observations. 

6. Conclusion 

This study evaluates the potential of the LSTM in simulating and 
forecasting streamflow of the Lac-Saint-Jean catchment in Canada. It 
compares the LSTM to the operational CEQUEAU model used by Rio 
Tinto for this catchment, which is set up in open-loop mode (CEQUEAU- 
OL) and with a data assimilation scheme (CEQUEAU-DA), which is used 
as a benchmark. The main findings of this study are as follows:  

(1) The LSTM achieves good performance in the training and testing 
periods for lead times up to 9 days with a KGE higher than 0.88.  

(2) The LSTM provides more skillful ensemble forecasts compared to 
CEQUEAU-OL and CEQUEAU-DA, as CRPS and MAE results show 
lower values for the LSTM, all percentiles considered.  

(3) The LSTM forecasts display tighter spreads than the CEQUEAU- 
based forecasts, likely due to the strong influence of the 
observed streamflow from the previous days used as a predictor, 
as opposed to the DA implementation that contains uncertainty.  

(4) The LSTM eliminates the need for integrating a DA process, 
typically required by traditional hydrological models, while still 
providing high-quality forecasts. 

The findings of this study have highlighted the advantages, limita
tions, and specific evaluation of the LSTM performance in streamflow 
forecasting for all seasons. Overall, this study shows that LSTM is a 
promising model for forecasting short-term streamflow, and confirms 
previous findings in other regions and catchments. It is recommended 
that this LSTM forecasting model be implemented for all seasons and 
lead-times up to 9 days, except for spring, for which the model should 
not be used for forecasts beyond 6–7 days of lead-time. It is likely that 
more advanced deep learning networks and data integration strategies 
will lead to even more significant improvements, such as training LSTM 
models on a large set of catchments to increase the size of the dataset (as 
in Kratzert et al., 2019). However, this study demonstrates that, in this 
snow-dominated North American catchment, LSTM models can provide 
short-term streamflow forecasts with better accuracy than those gener
ated by more complex distributed hydrological models. 
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