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Abstract
This paper proposes a novel method for the modal analysis of slow-varying vibration structures based on vector au-

toregressive models. The basic idea of this method consists of using a short-time sliding window (STSW) to identify modal

parameters for non-stationary vibrations. This method uses the recursive least-squares estimation for multivariable

systems with the singular value decomposition (SVD) method to find the solutions within a segment of the data from each

time window. Model identification is conducted by updating the SVD of the data matrix using the order and time from the

previous computational window to monitor the modal parameters of a slow-varying system. Finally, this work was validated

first by numerically simulating a system’s gradual changes submitted to an exciting force and further by an experiment on

a hydraulic turbine blade.
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1. Introduction

System identification methods are generally divided into
parametric and non-parametric methods (Petsounis and
Fassois, 2001a and 2001b). Non-parametric methods are
based on non-parameterized representations, which may be
the impulse response function, the autocovariance function,
and describing the signal’s power spectral density. Many
studies have used the Hilbert-Huang transform (Shi et al.,
2009), some focusing on the Cohen class of distribution
(Lee et al., 2001; Meltzer and Ivanov, 2003; Roshan-Ghias
et al., 2007), and others on the wavelet-based representation
(Wang et al., 2013).

The parametric methods are the functional time-
dependent autoregressive (TAR) series (Spiridonakos and
Fassois, 2013), time-dependent autoregressive moving
average (TARMA) series (Petsounis and Fassois, 2000),
and specific functional subspaces. They have drawn much
attention because of their broad application to many fields.
Author Ma et al. (2018) presented the parametric output-
only identification of time-varying structures using a kernel
recursive extended least-squares TARMA approach. More
specifically, the study used the TARMA model in kernel
Hilbert space to track the time-varying dynamics. Other
author Yang et al. (2015) proposed a moving kriging shape

function modeling of vector TARMA models for modal
identification and then validated the identification algorithm
with a moving cantilever beam experiment. From another
point of view, Li et al. (2019) presented a Bayesian esti-
mation of operational modal parameters for linear time-
varying mechanical systems based on the functional series
vector TAR model. This built the analytical expression
conjugate prior to the unknown parameters, the spanning
AR coefficients, and showed the excellent performance
of TAR models based on the Bayesian estimation for the
time-varying vibration. Another method, employed by
Spiridonakos and Fassois (2013), was to apply the sto-
chastic functional series time-dependent autoregressive
(FS-TAR) method in each state for effective fault diagnosis
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Zhaoheng Liu, École de technologie supérieure, 1100 Notre-Dame Ouest,
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in inherently non-stationary structures, after which, the AR
coefficients of the projection parameter vector are extracted
and utilized as the characteristic quantity representing
the structural state in each case. Based on parameterized
representations of the time-dependent series models,
parametric methods are advantageous in terms of their
improved accuracy, resolution, and tracking of time-varying
dynamics.

In real-life structural systems, the dynamic properties of
these systems change under working conditions and are
known as non-stationary systems (Chen et al., 2020).
Typical structural systems include traffic-excited bridges,
earthquake-excited structures, surfaces of any kind, sea
vehicles, robotic devices, and rotating machinery (Au et al.,
2004; Verboven et al., 2004; Vu et al., 2016). The extraction
of modal parameters for non-stationary systems is more
complex than for stationary systems whose dynamic
properties remain constant over time.

The methods for non-stationary system identification
may be classified as fast and slow non-stationary (fast and
slow time-varying). In the fast non-stationary methods, the
parameters are explicit functions of time. The slow non-
stationary methods, on the other hand, are based on con-
ventional stationary frequencies or time domain system
identification and signal segmentation techniques. There are
several difficulties in developing algorithms for identifying
fast non-stationary systems. The presence of time-
dependent coefficients results in more computational
complexity and matrix singularity. In addition, it is very
challenging to choose the functions for time-varying pa-
rameters in the methods for non-stationary vibration
systems.

Therefore, the slow non-stationary methods have drawn
much attention thanks to their potential application in
various practical systems. Under the assumptions of short
time-invariance and the theories of "time-freezing" (Zadeh,
1950), the time-varying systems can be regarded as time-
invariant systems over short periods. The vibration response
signals of slow-varying systems are entirely obtained si-
multaneously, but they can be received by continuous
sampling over time. Many researchers have developed
methods to extract modal parameters for the slow-varying
non-stationary vibration systems (Verboven et al., 2004;
Cheng et al., 2020; Zong et al., 2020). Although many
problems have been solved, the methods for slow-varying
non-stationary vibration remain limited as computational
complexity and matrix singularity. Hence, developing the
algorithms for slow-varying non-stationary structures to
overcome these disadvantages is an open problem. Fur-
thermore, updating the computational model to track and
monitor the modal parameters can be developed in con-
junction with the identification method to provide a more
efficient online modal analysis technique.

The time-varying autoregressive model (TVAR) is
similar to the conventional autoregressive (AR) model.

However, TVAR has more time-varying coefficients that
could lead to certain disadvantages, such as computational
complexity and matrix singularity for the identification. In
addition, the time-varying system’s ambient excitation is
usually difficult to measure under operating conditions. A
powerful technique to mitigate these disadvantages is the
locally stationary method based on the conventional sta-
tionary frequency domain or time domain system identi-
fication and signal segmentation technics. Many endeavors
have been made in this direction. Author Ma and Ding
(2019) assumed that the system parameters vary linearly
with time in each window. A linear function describes the
temporal variation of the parameter in the shifting window.
Hence, the time-varying parameters are identified in the
different time windows. In another identification approach,
the short-time autoregressive (STAR) modeling was used
for the operational modal analysis of a non-stationary
mechanical system (Vu et al., 2011a). Based on the sta-
tionary state of each data segment, the modal parameter
variations are monitored by autoregressive models for the
emerging steel plate.

With respect to the mathematical component, the sin-
gular value decomposition method is a widely used tech-
nique to decompose a matrix into several component
matrices (Gandhi and Rajgor, 2017; Stewart, 2006). It has
been used in system identification (Brincker et al., 2001;
Shen and Wai, 2021; Sun et al., 2021) to monitor the modal
parameters for both cases: stationary and non-stationary
vibrations. Other author Jiang et al. (2021) have presented
a method of damage detection using singular value de-
composition (SVD) for beam structures. SVD is applied to
decompose the trajectory matrix of the attractor re-
constructed from shape data to localize the damage to detect
the defects for beam-like systems, simplifying the mea-
surement method and reducing testing work. Another
technique, found in Lobos et al. (2001), is to use singular
value decomposition (SVD) to estimate the harmonics in
signals in the presence of high noise. The method was
developed to locate the frequencies in closely spaced si-
nusoidal signals. The study also presented the superiority of
SVD with the standard FFT technique for signals buried in
the noise. It concluded that the SVD method is especially
suitable for offline analysis of recorded waveforms.

The singular value decomposition of a matrix is
a valuable and important method used in the least-squares
fitting of data. Many applications, for instance, signal
processing, mechanical engineering, or statistics, employ
SVD. In many cases, the computing procedure of SVD is
repeated. This repetition could lead to high computational
costs. Some authors have shared that updating the SVD is
a further development that overcomes this drawback. Such
an update algorithm, due to Businger, is described in
Bunch and Nielsen (1978). It is reliable and efficient for
a matrix with SVD and is applied when adding or deleting
a row or column. In Brand (2006), author recently
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developed a fast algorithm to update a few dominant
singular values of an augmented matrix used to perform
background elimination in multiple analysis systems. A
thin SVD is calculated through a matrix’s column updates
and downdates.

This paper proposes a new algorithm for the online
monitoring of slow-varying modal parameters in vibrating
structures subjected to unknown excitation. The proposed
method applies a vector autoregressive model (VAR) in
a short-time sliding window (STSW) on measured signals.
The model parameters are determined and updated through
the order and time from the previous computational win-
dow. The recursive least-squares estimation for multivari-
able systems is used to find the solutions by the singular
value decomposition (SVD). This work aims to avoid the
computational complexity of identifying and monitoring
modal parameter variations for non-stationary vibrations. In
Bui et al. (2022), the Schur complement was used to update
the parameters of the VAR model and monitor the varying
modal parameters for a submerged plate. In terms of
computational time, the Schur method is fast because it
solves the standard equations of the least-squares. However,
the main obstacle to vibration signal analysis is that the
collected non-stationary signals are usually mixed with
heavy noise caused by variable operating or environmental
conditions. As a result, the rank deficient in least-squares
estimation must be coped with to overcome this problem.
This problem can be better handled by the generalized
Schur complement (Ando, 1979). However, in this paper we
are using the singular value decomposition method, which
is a highly reliable, computationally stable mathematical
tool that could obtain more accurate results and help to
resolve these problems.

This study is structured as follows. Section 2 briefly
introduces the vector autoregressive models and singular
value decomposition. The updated approximation for the
singular value decomposition of the matrix will be dis-
cussed in Section 3. Section 4 presents the proposed method
for updating the modal parameters of the VAR model. The
identification of the mechanical and operational systems
will be presented in Section 5. The conclusion is summa-
rized in the final Section.

2. Vector autoregressive models and
singular value decomposition

Considering the general time-invariant recursive process for
signal y½t� 2R1×n, referred to as a multivariate autore-
gressive model at p, dimension n and sampling period Ts,
that is given by the following equation (Vu et al., 2011b):

y½t� þ
Xp
i¼1

Aiy½t � i� ¼ e½t� (1)

where t designates the normalized discrete time, e ½t� 2R1×n

a residual vector with zero means, and Ai 2Rn×1 the AR
parameter matrix. Equation (1) is rewritten into the fol-
lowing linear regression form:

y½t� ¼ z½t�Pnp×n þ e½t� (2)

where z½t� ¼ ðy½t�1�, y½t�2�,…, y½t � p�ÞT 2R1×np is the
corresponding regression vector, and

Pnp×n ¼ ½�A1 � A2 …�Ap� is the AR parameter
matrix.

A least-squares estimation can be applied if the data are
assumed to be measured in a white-noise environment.
Considering N successive vectors of the output responses
from y ½t� to y ½t þ N�1�, the modal parameters matrix Pnp×n

can be found in the least-squares method by minimizing the
summed squared error between the left and right-hand sides
of the equation. The objective function to be minimized
may be expressed in the norm-2 vector notation form as
follows (Lobos et al., 2001):

E ¼ 1

2

��KN × npPnp× n � Y½t�N × n

��2
2

(3)

where

Y½t�N×n ¼

2
664
y½t�
y½tþ1�
…

y½t þ N�1�

3
775,KN×np ¼

2
664
z½t�
z½tþ1�
…

z½t þ N�1�

3
775 (4)

The singular value decomposition of the KN×np matrix is
used to compute the solution of the least-squares method.
There are orthogonal matricesUN×np,Vnp×np, and a diagonal
matrix Dnp×np such that KN×np ¼ UDVT . Here, UN× np and
Vnp× np are the left singular vectors and the suitable right
singular vectors of KN×np, respectively, and the diagonal
entries D ¼ diagðd1, d2,…, dnpÞ are the singular values of
KN×np. The model parameters of the AR model are esti-
mated as follows (Lobos et al., 2001):

Pnp×n ¼ VD�1UTY½t�N×n (5)

A state matrix of the AR model at order p is constructed
from the AR coefficient matrix, that is,

Anp×np ¼

2
66664
�A1 �A2 �A3 … … �Ap

I 0 0 … … 0
0 I 0 … … 0
… … … … … …

0 0 0 … I 0

3
77775 (6)

where I2Rn×n is the identity matrix. The eigenvalue de-
composition of the state matrix to determine modal pa-
rameters of a mechanic system is presented as:
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Anp×np ¼ LΛL�1 ¼ L

��������
g1 0 0 0
0 g2 0 0
0 0 1 «
0 0 … gnp

��������
L�1 (7)

where gi, i¼ 1, 2,…, np are discrete eigenvalues and
L2Rnp×np are eigenvectors of the state matrix. Considering
that, each complex eigenvalue gi of the discrete system
corresponds to one natural frequency of the mechanical

system, then: λi ¼ lnðgiÞ
Ts

. Therefore, the natural frequencies fi
and ξ i damping ratio are computed from complex conjugate
pairs λi as follows:

fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2ðλiÞ þ Im2ðλiÞ

p
2π

, ξ i¼ �ReðλiÞ
2πfi

(8)

3. Updating the singular value
decomposition of a matrix

In many least-squares and signal processing applications,
one updates a matrix KN×p by appending or deleting a row
or a column. After each update or downdate, the computing
process of the SVD must be repeated for the resulting
matrix. This section presents the updating formulation SVD
for the matrix when appending and deleting a row or
a column (Bunch and Nielsen, 1978).

Consider the singular value decomposition of a given
matrix KN×p as:

KN×p ¼ UDVT (9)

where U2RN×p and V2Rp×p are orthogonal, and
D2Rp×p is zero except on the main diagonal
D ¼ diagðd1, d2,…, dpÞ.

3.1. Updating the SVD of a matrix when appending
a row

Define a new matrix ~KðNþ1Þ×p that is based on the given
matrix KN×p when appending a row aT as follows:

~KðNþ1Þ×p ¼
�
KN×p

aT

�
¼ ~U~D~V

T
(10)

where ~U 2RðNþ1Þ×p, ~V2Rp×p, ~D2Rp×p, ~D ¼ diagð~d1, ~d2,
…, ~dpÞ.

One can compute ~U, ~D, ~V matrices of ~KðNþ1Þ×p by using
the provided information of the matrices U,D,V of KN×p.

With z ¼ VTa ¼ ½z1 z2 … zp�T , a factorized represen-
tation, is defined by:

~K
T

ðNþ1Þ× p ~KðNþ1Þ×p ¼ KT
N × pKN×p þaaT ¼ U

�
D2 þ zzT

�
VT

(11)

From equation (11), the singular values of ~KðNþ1Þ×p
are computed by the eigen decomposition of the matrix
D2 þ zzT . The SVD of D2 þ zzT is expressed by:

D2 þ zzT ¼ QV2QT . Here, Q2Rp×p is the orthogonal
and ~D ¼ V2Rp×p.

The singular values of the new matrix are updated
through the singular values of the matrixKN×p. The singular
values of the new matrix can be updated as by the method
developed in Bunch and Nielsen (1978) as follows:

~di ¼ di þ μi, 1 ≤ i ≤ p (12)

where μi satisfy the secular equation, more details on μi can
be found in Bunch and Nielsen (1978):

1þ
Xp
i¼1

z2i�
di þ dj þ μ

��
dj � di � μ

� ¼ 0, 1 ≤ j ≤ p (13)

Instead of computing the singular values directly of the
matrix ~KðNþ1Þ×p, one can update them through the secular
equation (13). Once the singular values of the new matrix
have been updated, the right singular vector
~V ¼ ½~v1 ~v2 … ~vp� is obtained by:

~vi ¼ VT�1
i z1��T�1

i z1
��
2

,Ti ¼ D2 � ~diI, z1 ¼ z

kak2
(14)

The updated left singular vectors ~U ¼ ½~u1 ~u2 … ~up� are
related to the updated right singular vectors as:

~ui ¼ 1
~di

�
KN×p

aT

�
~vi, 1 ≤ i ≤ p (15)

Obviously, the need to repeat SVD on equation (10)’s
matrix is avoided by using the updated formulas from the
four equations (12)–(15), which further reduces the com-
putational complexity of computing SVD. Thus, solving the
least-squares problem by SVD is beneficial for the iden-
tification process.

3.2. Updating the SVD of a matrix when deleting
a row

A new matrix based on the given matrix KN×p when de-
leting a row aT is defined as equation (16):

KN×p ¼
 
K%

ðN�1Þ× p
aT

!
¼ UDVT (16)

where ~KðN�1Þ×p ¼ ~U~V~D, ~U2RðN�1Þ×p, ~V2Rp×p, ~D2Rp×p,
~D ¼ diagð~d1, ~d2,…, ~dpÞ

Equation (16) implies that ~K
T
ðN�1Þ× p ~KðN�1Þ×p ¼

KT
N × pKN×p � aaT ¼ UðD2 � zzT ÞV, where ¼ VTa ¼

½z1 z2 … zp�T .
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Thus, the singular values of ~KðN�1Þ×p can be found by

computing the eigen decomposition of D2 � zzT ¼ QV2

QT , where Q2Rp×p is the orthogonal matrix, and ~D ¼
V2Rp×p is a non-negative and diagonal matrix.

The singular values decomposition of the matrix
~KðN�1Þ×p is defined through the SVD of the matrix KN×p as
follows (Bunch and Nielsen, 1978):

~di ¼ di þ μi, 1 ≤ i ≤ p (17)

where μi satisfy the secular equation:

�1þ
Xp
i¼1

z2i�
di þ dj þ μ

��
dj � di � μ

� ¼ 0, 1 ≤ j ≤ p (18)

The updated right singular vectors ~V ¼ ½~v1 ~v2 … ~vp� and
the updated left singular vectors ~U ¼ ½~u1 ~u2 … ~up� are
estimated as forms:

~vi ¼ VT�1
i z��T�1

i z
��
2

,Ti ¼ D2 � ~diI, 1 ≤ i ≤ p (19)

~ui ¼ 1
~di

~KðN�1Þ×p~vi, 1 ≤ i ≤ p (20)

Thus, the set of four equations (17)–(20) is an effective
procedure for updating the SVD of the matrix when
deleting a row. The aim of this technique is to reduce the
computational complexity when computing the SVD of
a matrix.

3.3. Updating the SVD of a matrix when appending
a column

In this case, a matrix based on the given matrix KN×p when
adding a column is defined as:

~KN×ðpþ1Þ ¼
�
KN×p b

� ¼ ~U~D~V
T

(21)

where ~U 2RN×ðpþ1Þ, ~V2Rðpþ1Þ× ðpþ1Þ, ~D2Rðpþ1Þ×ðpþ1Þ,
~D ¼ diagð~d1, ~d2,…, ~dpþ1Þ

Letting z
0 ¼ UTb ¼ ½z01 z

0
2 …z

0 �T , α ¼ 1
kbk2, the factor-

ized representation can be rewritten as:

~K
T

N ×ðpþ1Þ ~KN×ðpþ1Þ ¼KT
N ×pKN×pþbbT ¼U

�
D2þ z0z0T

�
VT

(22)

The eigen decomposition of D2 þ z
0
z
0T
can be written as

QV2QT , where Q2Rðpþ1Þ×ðpþ1Þ, ~D ¼ V2Rðpþ1Þ×ðpþ1Þ.

The singular values of the matrix ~KN×ðpþ1Þ are updated

via the eigen decomposition of D2 þ z
0
z
0T

as follows
(Bunch and Nielsen, 1978):

~di ¼ di þ μi, 1 ≤ i ≤ pþ1 (23)

where μi satisfy the secular equation:

1þ 1

α2
Xp
i¼1

z02i�
di þ dj þ μ

��
dj � di � μ

�
�
�
1� kz0k22

�2
α2μ

¼ 0, 1 ≤ j ≤ pþ1 (24)

The updated right singular vector ~V ¼ ½~v1 ~v2 … ~vpþ1� is
determined through the left singular vectorV2Rp×p and the

regular values ~D2Rðpþ1Þ×ðpþ1Þ form:

~vi ¼ ηi

"
VT�1

i Dz0

�1

#
,Ti ¼ D2 � ~diI, ηi

¼
�����
"
VT�1

i Dz0

�1

#�����
�1

2

(25)

The updated left singular vectors ~U ¼ ½~u1 ~u2 … ~upþ1�
are updated via the right singular vectors and the given
matrix by:

~ui ¼ 1
~di

�
KN×p b

�
~vi, 1 ≤ i ≤ ðpþ1Þ (26)

Instead of repeating the computing SVD of the matrix,
the SVD updating procedure of the matrix when appending
a column is presented in the set of four equations (23)–(26).

4. Modal analysis of non-stationary
vibrations

As presented in the previous section, many studies have
used the matrix’s singular value decomposition (SVD) in
system identifications. Updating the SVD of the matrices by
appending or deleting a column and a row has been pre-
sented in many algorithms. This section develops a formula
for updating model parameters for AR models by updating
the SVD of a data matrix through the identification pro-
cedure with respect to time and model order. The proposed
process for the modal analysis is also presented in this
section.

4.1. Updating in model order for AR model
parameters

Consider that, the data matrix KN×np and the output vector
Y½t�N×n of the AR at order p are formed from N successive
samples by:

Bui et al. 5



Y½t�N×n ¼

2
664
y½t�
y½tþ1�
…

y½t þ N�1�

3
775,KðpÞ

N × np ¼

2
664
z½t�
z½tþ1�
…

z½t þ N�1�

3
775
(27)

The goal of the model identification is to determine all
the model parameters. Based on equation (5), solving the
least-squares problem for the model parameters of AR
models by SVD is defined by:

Pnp×n ¼ VðpÞD
�1
ðpÞU

T
ðpÞY½t�N×n (28)

where KðpÞ
N × np ¼ UðpÞDðpÞVT

ðpÞ with UðpÞ 2RN×np, VðpÞ 2
Rnp×np are orthogonal matrices, and DðpÞ 2Rnp×np is
a square diagonal matrix.

The data matrix at order pþ1 can be built by appending

a data sub-matrix into the data matrix KðpÞ
N × np as follows:

Kðpþ1Þ
N × nðpþ1Þ ¼

�
KðpÞ

N × npK
0
N × n

�
, whereK0

N × n

¼

2
6664
y½t � ðpþ1Þ�
y½tþ1�ðpþ1Þ�
…

y½t þ N�1�ðpþ1Þ�

3
7775

The model parameter estimation of AR models at order
pþ1 is obtained by updating the SVD of the data matrix.
The flow diagram of updating order for model parameters is
presented in Figure 1. The proposed algorithm is summa-
rized as follows:

Input: KðpÞ
N × np,K

0
N × n,Y ½t�N×n,UðpÞ, DðpÞ,VðpÞ,

z
0 ¼ UTK

0
N × n ¼ ½z01 z

0
2 … z

0
np�

T
, α ¼ ��K0

N × n

���1

2

Step 1. Computation of the model parameters at order p.
Using the SVD in equation (9) of the data matrix to

estimate the model parameters at order p in equation (28).

Pnp×n ¼ VðpÞD�1
ðpÞU

T
ðpÞY½t�N×n (29)

Step 2. Update of the singular values of the data matrix at
order pþ1.

Solving the secular equation in equation (24) to calculate
the singular values of Dðpþ1Þ via z

0
,DðpÞ at order p.

Step 3. Update of the right vectorVðpþ1Þ of the data matrix at
order ðpþ1Þ.

Based on VðpÞ, z
0
,DðpÞ,Dðpþ1Þ, the right vectors Vðpþ1Þ at

order ðpþ1Þ are updated in equation (25).
Step 4. Update of the left vectors Uðpþ1Þof the data matrix at
order pþ1.

Once the singular values and the right vectors at order
pþ1 are obtained, the left vectors Uðpþ1Þ are updated

through VðpÞ, z
0
,DðpÞ,Dðpþ1Þ,K

ðpÞ
N × np,K

0
N × n in equation

(26).
Step 5. Computation of the model parameters of AR models
at order ðpþ1Þ.

Because the singular values, the left and right vectors at
order pþ1, are calculated via UðpÞ,DðpÞ,VT

ðpÞ at order p, the
solution of the least-square problem Pnðpþ1Þ×n ¼
Vðpþ1ÞD�1

ðpþ1ÞU
T
ðpþ1ÞY½t�N×n can be directly updated.

The above algorithm identifies the model parameters
at higher model orders through the SVD of the data
matrix at the previous order. The model parameters are
defined with low computational complexity and com-
putational time effectiveness. This technique is prefer-
able to the repetitive approach of equation (28) for each
order value.

4.2. Updating in time for AR model parameters

Observation matrix K½k�N×np and output vector Y½k�N×n at
time t ¼ k of the AR at order p are extracted from the
measured portion of the global response as follows:

K½k�N×np ¼

2
664
z½k�
z½kþ1�
…

z½k þ N�1�

3
775,Y½k�N×n ¼

2
664
y½k�
y½kþ1�
…

y½k þ N�1�

3
775
(30)

Based on equation (5), solving the least-squares problem
for the model parameters of AR models by SVD is defined
as:

P½k�np×n ¼ V½k�D½k��1U½k�TY½k�N×n (31)

where K½k�N×np ¼ U½k�D½k�V½k�T . At time t ¼ k þ m, the
data matrix of AR models can be represented by:

K½k þ m�N×np ¼

2
6666664

z½k þ m�
…

z½k þ Nþ1�
…

z½k þ mþ N�1�

3
7777775
,Y½k þ m�N×n

¼

2
6664
y½k þ m�
y½k þ mþ1�
…

y½k þ mþ N�1�

3
7775 (32)

From the data matrices of the model at time t ¼ k and
t ¼ k þ m, one can rewrite equations (30) and (32), re-
spectively, as:
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K½k�N×np ¼

2
6664
z½k�
z½kþ1�
…

z½k þ N�1�

3
7775 ¼

	
R1m×np

RðN�mÞ×np



,

K½k þ m�N×np ¼

2
6666664

z½k þ m�
…

z½k þ Nþ1�
…

z½k þ mþ N�1�

3
7777775
¼
"
RðN�mÞ×np
R2m×np

#

(33)

where

R1m×np ¼

2
64
z½k�
…

z½k þ m�1�

3
75,RðN�mÞ×np ¼

2
64
z½k þ m�
…

z½k þ N�1�

3
75,

R2m×np ¼

2
64
z½k þ N �
…

z½k þ mþ N�1�

3
75

(34)

Instead of the iterative solution procedure required
to calculate the model parameters at time t ¼ k þ m, the
model parameters of the ARmodel at time t ¼ k þ m can be
obtained by updating the SVD of the matrix. Figure 2
presents the flow diagram of updating in time for model
parameters. The algorithm is implemented in five steps:

Input: K½k�N×np,Y½k�N×n,R1m×np,R2 m×np,RðN�mÞ×np,
Y½k þ m�N×n,U½k�,D½k�,V½k�
Step 1Computation the model parameters at time t ¼ k.

The model parameters of the AR model at time t ¼ k are
calculated using equation (31).
Step 2Update of the singular values of the data matrix at
time t ¼ k þ m.

The singular values of the data matrix K½k þ m�N×np are

identified by solving the secular equation in equations (13)
and (18).
Step 3Update of the right vectors V½k þ m� of the data
matrix at time t ¼ k þ m.

Once, the singular values of the data matrix
K½k þ m�N×np at time t ¼ k þ m are obtained in Step 2. The

right vector are identified by equations (19) and (14)
through R1m×np,R2m×np,RðN�mÞ×np,U½k�,D½k�,V½k�.
Step 4Update of the left vectors U½k þ m� of the data matrix
at time t ¼ k þ m.

The left vectors U½k þ m� are computed using equations
(15) and (20) through

R1m×np,R2m×np,RðN�mÞ×np,V½k þ m�,D½k�,D½k þ m�

Step 5Computation of the model parameters of the AR
models at time t ¼ k þ m.

The AR model’s model parameters are obtained by using
the updated singular values, right vectors, and left vectors in
steps 2, 3, and 4 as: P½k þ m�np×n ¼ V½k þ m�D½k þ m��1

U½k þ m�TY½k þ m�N×n.

Figure 1. Flow diagram of updating order for model parameters.
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From this algorithm, the parameters of models t ¼ k þ m
are updated through the SVD of the data matrix at the time
t ¼ k.

5. Results and discussion

In this section, the proposed method will be applied to
a lumped-mass dynamic system and to a hydraulic turbine
blade experimental setup to extract the modal parameters
and monitor the systems.

5.1. Lumped-mass mechanical model

A numerical simulation was carried out to produce nu-
merical system input-output data. A mechanical model of

the simulated system used for this study is shown in
Figure 3. The dynamical model of the system was derived in
equation (35).

The motion equation of the system can be derived
from either a Newton or Lagrange formulation, as
follows:

	
m1ðtÞ 0
0 m2ðtÞ


�
€x1ðtÞ
€x2ðtÞ

�
þ
	
c1þ c2þ _m1ðtÞ � c2
� c2 c2þ _m2ðtÞ


�
_x1ðtÞ
_x2ðtÞ

�

þ
	
k1þ k2 � k2

� k2 k2


�
x1ðtÞ
x2ðtÞ

�
¼
�
f ðtÞ
0

�
(35)

where _m1ðtÞ ¼ dm1ðtÞ
dt , _m2ðtÞ ¼ dm2ðtÞ

dt .

Figure 3. Schematic model of a two-degree-of-freedom (2-DOF) time-varying mechanical system illustrating its key components and

the dynamic interactions between them.

Figure 2. Flow diagram of updating in time for model parameters.
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Figure 4. Mass changing function.

Figure 5. Modal parameters of the system.
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Because the variation of the masses is small in this
example, the derivative of the masses with respect to time is
negligible in the damping matrix. Therefore, equation (35)
can be rewritten as follows:	

m1ðtÞ 0

0 m2ðtÞ

�

€x1ðtÞ
€x2ðtÞ

�
þ
	
c1 þ c2 � c2
�c2 c2


�
_x1ðtÞ
_x2ðtÞ

�

þ
	
k1 þ k2 � k2
�k2 k2


�
x1ðtÞ
x2ðtÞ

�
¼
�
f ðtÞ
0

�
(36)

An excitation signal with a white-noise shape is applied
in this sub-section with the different rate change of system’s
masses. Figure 4 shows the gradual changing masses for
two different rates. The numerical values of the system
parameters are given as follows:

c1¼ 10 ðNs=mÞ, c2¼ 20 ðNs=mÞ, k1¼ 10000 ðN=mÞ, k2
¼ 22000 ðN=mÞ

The system’s varying modal parameters are simulated
in Figure 5 on a theoretical basis for the two different rates,
2.5 (%/s) and 5 (%/s). At the masse’s change rate 2.5 (%/s),
the first natural frequency varies within the range of (2.32–
2.47) (Hz), and the second varies within the range of
(7.95–8.51) (Hz). At the masse’s change rate 5 (%/s), the

two natural frequencies vary within the range of (2.19–
2.47) (Hz) and (7.49–8.51) (Hz), respectively.

The displacement responses of the system under a par-
ticular excitation were obtained through the ODE45 method
in MATLAB using a fixed-integration step and recorded at
a sampling frequency of 100 (Hz). At the mass change rate
2.5 (%/s), Figure 6(a) plots the non-stationary vibration
displacement signal. The signal’s spectrogram under
a random excitation is presented Figure 6(b). Figure 7(a)
and (b) show the non-stationary vibration displacement
signal and the signal’s spectrogram under a random exci-
tation at the mass change rate 5 (%/s).

The proposed method uses the AR model to identify the
mechanical system’s modal parameters in each data seg-
ment. The model’s parameters at the next segment are
updated using the results of previous segments. The length
of each window is sufficient to contain the modal param-
eters, and the length must be at least four times the highest
period in order to track the changes of all modes. The model
order selection procedure is based on the minimum de-
scription length (MDL) (Bui et al., 2022).

Figure 8 presents the identification of the modal pa-
rameters with the proposed method at the mass change rate
2.5 (%/s). Obviously, the natural frequencies are accurately
determined and tracked. The results of damping ratios for

Figure 6. (a) Realization of the non-stationary vibration dis-

placement and (b) Short-time Fourier transform of the signal with

the gradual change at 2.5 (%/s).

Figure 7. (a) Realization of the non-stationary vibration dis-

placement and (b) short-time Fourier transform of the signal with

the gradual change at 5 (%/s).
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the first and second modes are also in very good agreement
with the calculated values. The proposed method performs
better in terms of accuracy resolution than STFT. It can be
observed from these figures that the proposed method
matches well with theoretical variations. At the higher
change rate of the masses, the modal parameters of the
system using the proposed method are shown in Figure 9.

Table 1 presents a comparison of the computation time
for the modal parameter diagrams of the proposed method
with the recently published updated method by Schur
complement (Bui et al., 2022). Generally, the identified
results by the proposed method match with the simulated
results presented in Figure 5. It can be seen that the first
mode is still accurately identified and tracked. However, the
second mode is largely dispersed, especially its damping
ratio, which is known to associate with a greater uncertainty
(Vu et al., 2011a). Conservatively, the proposed method can
identify and monitor the mass change rate at 5 (%/s). This
change rate is quite high for real systems. As can be seen
from Table 1, the proposed method performs better than the
Schur method.

5.2. Experimental data

In this section, the proposed method is applied to a hy-
draulic turbine blade to monitor the modal parameters. The

turbine blade is made of bronze alloy “M”-C92300 cor-
responding to the standard designation 87Cu-8Sn-IPb-
4Zn.F. Figure 10 shows the configuration of the test in
which four accelerometers have been mounted to record the
accelerations of this blade.

5.2.1. The turbine blade in air. The test was carried out using
an LMS system. A PCB impact hammer with a sampling
frequency of 6400 (Hz) acted on the structure in the static
test (Figure 11). The natural frequencies of this blade shown
in Table 2 are obtained by different methods: Ansys, the
power spectral density (PSD) of responses in MATLAB,
short-time autoregressive model (STAR) (Vu et al., 2011a),
method by Schur complement (Bui et al., 2022), and the

Figure 8. Modal parameters of the system with the gradual

change at 2.5 (%/s) using the proposed method.

Figure 9. Modal parameters of the system with the gradual

change at 5 (%/s) using the proposed method.

Table 1. Comparison of the computational time of two methods:

method by Schur complement (Bui et al., 2022) and proposed

method for modal parameter diagram (data from two-channels).

Method by Schur

complement (Bui

et al., 2022) Proposed method

Mass change 2.5 (%/s) 5 (%/s) 2.5 (%/s) 5 (%/s)

Time (s) 114 114 103 103
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Figure 10. Blade with four accelerometers.

Figure 11. Modal test of the blade in the air.

Table 2. Modal identification of the blade in the air (Hz).

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Ansys Non-identify 332.9 643.16 896.9 963.6 1157.6

PSD in MATLAB 204.7 359.4 582.8 843.8 1050 1295.0

STAR (Vu et al., 2011a) 208.0 368.0 576.0 848.0 1040 1294.5

Method by Schur complement (Bui et al., 2022) 204.0 357.2 579.4 845.9 1047 1293.0

Proposed method 204.4 360.3 582.5 846.4 1055 1297.0
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proposed method. As seen, the proposed method reveals
excellent matching results with previous identification
methods.

The first frequency (204.7 Hz) was not identified using
the finite element method because it was the mounting-
structure mode. The system’s PSD plot obtained from the
spectrogram function in MATLAB is presented in
Figure 12. The stabilization diagram obtained from the
proposed method is shown in Figure 13. As shown in
Table 2, the identifications of frequencies by the proposed
method are pretty accurate for all modal parameters. The
proposed method with order updating was applied to the
systems to extract the natural frequencies.

5.2.2. Turbine blade raised from water
5.2.2.1. Experiment setup. A hydraulic test bench was

constructed in the research laboratory to evaluate fluid-
structure interactions. When the blade was placed inside

a perforated tank, the vibration of the blade in air and water
could be measured. The valves and various outlet nozzles
are used to control the flow speed. The flow rates and
therefore the depth of the blade in the water can be adjusted
according to the desired flow velocities. A fastening system
is a multi-tasking tool for mounting a blade in variable
boundary conditions.

The PCB330A sensors are utilized for vibration
measurements. The Vishay System 6000 was used to re-
cord pressure sensors during different tests. The data is
exported and saved in different formats, such as.xls and
.txt, by the software “Strain Smart” designed to work with
the Vishay acquisition box. A PCB impact hammer is acted
on the structure tests. The hammer is equipped with a steel
extension to hit the plate at different depths. The con-
figuration of the experiment is depicted in Figure 14. The
blade is submerged at different depths, and the depth/
length ratio varies from 0.4 (totally submerged) to 0 (in
air).

The natural frequencies of the blade change with respect
to the submerged depth due to the effect of the fluid. Before
the blade rises, its modal parameters were determined by
analytical and experimental methods at different depth
length ratios (D/L). The result is shown in Table 3. The
temporal response data at sampling frequency 8192 (Hz) are
depicted in Figure 15(a) and (b) plots the short-time Fourier
transform of the signals.

The modal signal-to-noise ratio (Vu et al., 2007) is
utilized to separate spurious and real modes. The smallest
frequency is then obtained for the next window computa-
tion. In this section, the proposed method was applied to
track modal parameters for the submerged blade. The length
of each data segment was chosen to track all the modes of
the signals. The size length of the sliding window varies and

Figure 12. Spectra of the blade in the air by spectrogram

functions in MATLAB.

Figure 13. Order-updating stabilization diagram of the blade in the air using the proposed method.
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is chosen to be at least 4 times that of the longest natural
period of the previous block (Bui et al., 2022).

Before the blade rises, its modal parameters was de-
termined by analytical and experimental methods at dif-
ferent depth length ratios (D/L). The result is shown in
Table 3.

In this section, the proposed method was applied to the
measured signals. The length of each data segment was chosen
to track all the modes of the signals. In each window, the
minimum description length (MDL) was used to obtain the
order of the models. The system’s natural frequencies were
extracted using the proposed method as shown in Figure 16.

Compared with the modal testing in Table 3 and STTF of
the signals shown in Figure 15, the identifications of fre-
quencies (147–151.6, 191.2–199, 292.2–303, 435.3–451.4,
579.6–605.2) (Hz) are quite accurate for all modal

Figure 14. Modal test of the blade in water.

Table 3. Modal identification of submerged blade by impact test.

Mode

Frequencies (Hz) of submerged condition (depth/blade

length)

0.4 (totally submerged) 0.2 0.1 0 (totally in air)

1st 160.8 166.85 170.8 Non-identify

2nd 288.1 288.1 290 332.9

3rd 352.7 354 358 643.2

4th 496.9 498 500 896.9

5th 640.5 642.8 645 963.6

Figure 15. (a) Response to the blade’s acceleration and (b) short-

time Fourier transform of the signal.
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parameters. Figure 16 shows that the natural frequencies
increase slightly when the blade rises from the water to the
surface under turbulence. This increase is relevant to the
depth ratio of the blade submerged in water. This result
agrees well with the conclusion in other authors (Vu et al.,
2007).

During the rise-up, the blade is in a moving condition, and
the boundary condition is affected by the movement. The
clamp and the fixing systems are also in vibration. These lead
to a little discrepancy to results in Table 3 which are from the
modal testing (static), Figure 16 is dynamic turbulent testing,
so some other effects, such as the boundary condition, change
of mass, and stiffness, can explain the discrepancy. However,
the two representations agree on the frequencies and the
variation of the frequencies.

7. Conclusion

In this work, a new method of the modal parameter
identification and monitoring using a vector autore-
gressive model has been introduced for non-stationary
vibrations. The technique uses SVD and a short-time
sliding window as autoregressive models to extract the
model parameters. The method aims to reduce the
computational complexity for the online slow-varying
monitoring of non-stationary cases by updating the SVD
to estimate AR model parameters through the order and
time of the previous computational window. The pro-
posed method was validated first through a numerical
simulation of a mechanical system at the different rates of
masses and then through experiments on a submerged

hydraulic turbine blade. Results show that the proposed
method is a powerful technique for analysis and moni-
toring the modal parameters in non-stationary vibration
systems under a reasonable varying rate at 5% per second.
Natural frequencies can be accurately obtained and
monitored. The identification and monitoring of damping
ratios are sufficiently convincing.
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