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Abstract: Most of the dimensionality reduction algorithms assume that data are independent and
identically distributed (i.i.d.). In real-world applications, however, sometimes there exist relationships
between data. Some relational learning methods have been proposed, but those with discriminative
relationship analysis are lacking yet, as important supervisory information is usually ignored. In this
paper, we propose a novel and general framework, called relational Fisher analysis (RFA), which
successfully integrates relational information into the dimensionality reduction model. For nonlinear
data representation learning, we adopt the kernel trick to RFA and propose the kernelized RFA
(KRFA). In addition, the convergence of the RFA optimization algorithm is proved theoretically. By
leveraging suitable strategies to construct the relational matrix, we conduct extensive experiments to
demonstrate the superiority of our RFA and KRFA methods over related approaches.

Keywords: relational learning; dimensionality reduction; graph embedding; trace ratio; document
understanding and recognition; face recognition

1. Introduction

In some applications, such as pattern recognition and data mining, dimensionality
reduction methods are often used since they can reduce space-time complexity, denoise,
and make the model more robust. Principal component analysis (PCA) [1–3] and linear
discriminant analysis (LDA) [2,4–7] are two typical linear algorithms. Following them,
researchers have proposed many variants, such as kernel PCA [8], generalized discriminant
analysis (GDA) [9], and linear discriminant analysis for robust dimensionality reduction
(RLDA) [10].

For nonlinear dimensionality reduction problems, manifold learning provides an
effective solution. By supposing that data are located on a low-dimensional manifold, data
samples observed in high-dimensional space can be represented in a low-dimensional
space. Some representative manifold learning algorithms are ISOMAP [11], locally linear
embedding (LLE) [12] and Laplacian Eigenmaps (LE) [13].

From the algorithmic perspective, algorithms mentioned above can be categorized
as global methods or local methods. Global methods learn the low-dimensional repre-
sentations by using global information of data. PCA and LDA are all global methods.
The global methods are often effective and efficient, such that they are widely used in
many real world applications. However, when dealing with non-linear data, using the
global method cannot capture the genuine distribution of data very well. Local methods
using the manifold learning idea, such as LLE and LE, pay special attention to the intrinsic
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structure of data. Nevertheless, most of these manifold learning methods disregard label
information when recovering the low-dimensional manifold structure, in that they are
inherently unsupervised.

Although the above-mentioned methods are defined from different perspectives of di-
mensionality reduction, graph embedding provide a unified framework for understanding
and comparing them [14]. Furthermore, by integrating label information in the computa-
tion of intrinsic and penalty graphs within the graph embedding framework, a supervised
dimensionality reduction method called marginal Fisher analysis (MFA) is proposed [14].

In traditional dimensionality reduction algorithms as described above, a data distribu-
tion assumption is generally applied that data are independent and identically distributed
(i.i.d.). However, in real-world applications, there are often certain relativity or links
between certain data, for instance, geometrical or semantic similarity, links among web
pages, citation relations between scientific papers. Relationships usually indicate that these
related samples are likely to have similarities or belonging to the same class. Neverthe-
less, although some dimensionality reduction methods consider to preserve the locality of
data [15–18], the useful relationships are often simply ignored during the learning process
of most existing dimensionality reduction methods.

Recently, relational learning has often been used in practical applications, for instance,
web mining [19] and social network analysis [20]. In addition, relational information is also
considered in social network discovery, document classification, sequential data analysis
and semi-supervised graph embedding [21–23].

In the domain of dimensionality reduction, some algorithms have already been pro-
posed in which the relational information is integrated into the representation learning
process. In [24], Duin et al. propose the relational discriminant analysis (RDA). In RDA,
relationships among data are measured by the Euclidean distance between objects and
prototypes or support objects of each class. However, RDA uses mean squared error as
the objective function, and cannot perform well on multi-class learning problems. In [25],
Li et al. propose the probabilistic relational PCA (PRPCA) to build a probabilistic model as-
sociated with PCA and relational learning. RDA and PRPCA effectively integrate relational
learning into the dimensionality reduction algorithms. Nevertheless, how to better inject
relationships into traditional dimensionality reduction models is still worth exploring.

Recently, a few deep relational learning algorithms have been proposed. Specifically,
Gao et al. design a deep learning model based on relational network for hyperspectral
image few-shot classification [26], Chen et al. apply local relation learning for face forgery
detection [27], and Cho et al. develop a weakly supervised anomaly detection method via
context-motion relational learning [28]. In addition, some relational learning methods are
used in the one-shot [29] or zero-shot [30] learning scenarios. However, many real-world
applications have only very few data. Hence, shallow relational learning algorithms are
still needed to be proposed and utilized.

In this paper, we propose a novel and general framework for dimensionality reduction,
called relational Fisher analysis (RFA) [31]. Besides the intrinsic and penalty graph in the
graph embedding framework, we further construct a relational graph which captures the
relational information encoded within data. Through this graph, the proposed RFA takes
into account the impact of the relational information in the presentation learning process.
An effective iterative trace ratio algorithm is proposed to optimize RFA. Futhermore, we
use the kernel trick to extend RFA to its kernelized version—KRFA. Additiionally, we
theoretically prove that the optimization algorithm of RFA converges. To evaluate the effec-
tiveness of RFA, we conduct extensive experiments in many real-world applications. The
results demonstrate that the proposed RFA outperforms most of the classic dimensionality
reduction algorithms on the datasets we use. The effectiveness of KRFA is also tested.

This paper is based on one of our previous conference papers [31], with significant
improvements. For concreteness, we propse the KRFA algorithm and add more exclusive
experiments with comparison to the related approaches. The rest of this paper is organized
as follows: In Section 2, we introduce several related ideas, including graph embedding,
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trace ratio problem and relational learning, which are highly relevant to our work. In
Section 3, we focus on our proposed method RFA, including the notation, the formulation
and the iterative optimization method of RFA. Section 4 includes the proof of the conver-
gence of RFA and we present how to extend RFA to a kernel version—KRFA. In Section 5,
we compare our methods RFA and KRFA to other commonly used dimensionality reduction
methods with extensive experiments, which demonstrate the effectiveness of our proposed
methods. Finally, we summarize this paper in Section 6.

2. Related Work

In this section, we first briefly introduce some traditional dimensionality reduction
methods, and then offer a detailed description about relevant ideas including graph em-
bedding, trace ratio problem and relational learning, respectively. Finally, we specify how
those ideas are used in this work.

2.1. Traditional Dimensionality Reduction Methods

Some basic ideas of traditional dimensionality reduction methods are presented in this
subsection, such as PCA, LDA as well as several locality based manifold learning methods
including LLE and LE. Advantages and drawbacks of these methods are also presented in
this part.

2.1.1. PCA

The main idea of PCA [1] is to seek projection directions with maximal variances of the
low-dimensional embeddings. It effectively extract and retain the principle components of
the original data. However, as PCA is an unsupervised dimensionality reduction method,
low-dimensional embeddings obtained from this method cannot perfectly maintain the
discrimination between data of different classes.

2.1.2. LDA

LDA [7], well known as a supervised dimensionality reduction method, aims to seek
projection directions to minimize the intraclass scattering and maximize the interclass
scattering for the low-dimensional embeddings. However, for LDA, if the dimensionality
of data is far greater than the data size, the intraclass scattering matrix may suffer from the
singularity problem and thus it influences the solution of this dimensionality reduction
algorithm. Furthermore, since the rank of the interclass scattering matrix is at most C− 1,
the number of available projection directions of LDA is at most C − 1, where C is the
number of classes.

2.1.3. Manifold Learning Methods

PCA and LDA are all global methods which use global information to project the
original data into a subspace and obtain the low-dimensional data representations. How-
ever, for highly nonlinear data structure, these linear methods cannot learn the nonlin-
ear relationships between data and thus the results are not ideal. By assuming that the
high-dimensional data have a low-dimensional manifold structure, manifold learning
algorithms can nonlinearly map the high-dimensional data onto their low-dimensional
manifold. Among manifold learning methods, local geometric information-based methods,
such as LLE, LE and local preserving projection (LPP) [32] are widely used. The ideas
behind them are as follows.

LLE [12] preserves the linear reconstruction characteristics in a local neighborhood
of each datum. Hence, the low-dimensional embeddings obtained by LLE presents the
local geometrical structure of the data manifold. LE [13] preserves the similarities of
the neighboring data points based on an adjacency matrix and a graph Laplacian matrix.
However, for LLE and LE, as the nonlinear mapping function between the high-dimensional
and low-dimensional spaces is not learned, we cannot easily obtain the low-dimensional
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representations of new data. To the end, LPP [32] performs a linear approximation of LE,
and successfully overcomes its drawback as mentioned above.

2.2. Graph Embedding
In [14], Yan et al. show that some commonly used dimensionality reduction algorithms

could be transformed into a unified framework despite their different motivations, and the
unified framework is called graph embedding. This framework derives a low-dimensional
feature space, which preserves the adjacency relationship between sample pairs. The
general objective function of this framework is presented in Equation (1), where W denotes
the similarity matrix of the undirected weighted graph G = {X, W} and B is the constraint
matrix defined to avoid a trivial solution of the objective function,

V∗ = argmin
VT SBV=I

VTSW V = argmin
V

VTSW V
VTSBV

, (1)

where SW and SB are matrices constructed with respect to X, W and B, respectively.
We note that this unified framework graph embedding also provides a new idea for

researchers to propose new dimensionality reduction algorithms. In particular, Yan et al.
propose a novel dimensionality reduction method by defining an intrinsic graph which
characterizes the intraclass compactness and a penalty graph which characterizes the
interclass separability in the graph embedding framework, and call it marginal Fisher
analysis (MFA).

2.3. Trace Ratio Problems
As presented in the above subsection, within the context of graph embedding, the di-

mensionality reduction methods can be viewed as trying to obtain the transformation
matrix W that makes Tr(WTSpW) maximum and Tr(WTSlW) minimum. This is often for-
mulated as a trace ratio optimization problem, that is maxW Tr(WTSpW)/Tr(WTSlW) [33].
Generally, there are two kinds of solutions for this problem: (1) Simplifying the problem
into a ratio trace problem: maxW Tr[(WTSlW)−1(WTSpW)], then using generalized eigen-
value decomposition (GED) to obtain the transformation matrix W; (2) Directly optimizing
the objective function through an iterative procedure, with each step presented as a trace
difference problem: Tr[(WT(Sp − λnSl)W)]. However, for the first solution, the optimiza-
tion of ratio trace formulation may deviate from the original objective, which results in a
closed-form but inexact solution and may subsequently lead to uncertainty in subsequent
classification or clustering problems. For the second solution, Wang et al. [33] propose an
efficient iterative procedure by solving the trace difference problem in each iterative step,
named iterative procedure (ITR). It is proven that ITR could converge to the optimal solu-
tion and solve the trace ratio problem. With the orthogonal assumption on the projection
matrix, objective function of the ITR optimization can be defined as

W = argmax
WT W=I

tr(WTSpW)

tr(WTStW)
. (2)

In [34], Nie et al. address the graph-based feature selection framework using the
iterative process of the trace ratio problem. In [35], Zhong et al. analyze the iterative
procedures for the trace ratio problem and prove necessary and sufficient conditions of
the existence of the optimal solution of trace ratio problems, which are that there is a
sequence {λ∗1 , λ∗2 , . . . , λ∗n} that converges to λ∗ as n→ +∞, where λ∗ is the optimal value
of Equation (2). Based on these previous works, we also formulate RFA as a trace ratio
problem and theoretically prove the convergence of its optimization algorithm.

2.4. Relational Learning

In many real-world applications, data generally share some kinds of relations, such
as geometrical or semantic similarity, links or citations. This relation information encoded
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inside data provides valuable evidence for some issues, such as classification and retrieval.
To the end, relational learning is generally integrated into the representation learning models.

In [36], Duin et al. prove that it is possible to use only proximity measure (distances or
similarities) to represent the samples rather than mapping the feature vectors to the low-
dimensional space. In addition, they propose a proximity description-based dimensionality
reduction method called relational discriminant analysis (RDA) in [24]. Instead of data,
RDA uses similarities to a subset of objects in the training data as features. In this case,
dimensionality reduction can be conducted either by selection methods (such as random
selection [37], systematic selection [38]), or by feature extraction methods (such as multi-
dimensional scaling [39], Sammon mapping [40] and Niemann mapping [41]).

In [25], Li et al. model the covariance of data with the relationships between instances
and propose a Gaussian latent variable model which successfully integrates relational
information into the dimensionality reduction process, called probabilistic relational PCA
(PRPCA). In PRPCA, relational information is defined by the relevance between data
samples. We take the scientific paper citation as an example. If there is a quoting between
the papers, it means that these papers most likely have similar topics. To take the inter-
influence between cited papers into account, Li et al. further construct a matrix Φ = ∆−1,
which satisfy the condition that similar instances often have a lower probability density
at the latent space. To the end, PRPCA, based on the relational covariance Φ, successfully
applies the relational information to the dimensionality reduction algorithms.

Relational learning is also commonly used for data mining, information retrieval
and other machine learning-related applications. Paccanaro et al. [42] propose a method,
called linear relational embedding, for the distributed representations of data, where
data consist of the relationship of concepts. Wang et al. [43] utilize the characteristic
that existing relations between items are often useful in recommendation systems and
propose a model called relational collaborative topic regression (RCTR), which expand the
traditional CTR model by integrating feedback information, item content information and
relational information. Xuan et al. [44] propose a nonparametric relational topic model
using stochastic processes instead of fixed-dimensional probability distributions.

Based on the classical works mentioned above, we propose a general and effective
dimensionality reduction framework named relational Fisher analysis (RFA). This frame-
work uses graph embedding [14] as theoretical foundation and integrates the relational
information [24,25] encoded inside data into the dimensionality reduction process. Be-
sides the intrinsic graph and the penalty graph as defined using graph embedding, we
further construct a relational graph based on the existing relationships between data, which
enables the desired low-dimensional space to preserve the intrinsic information, reduce the
penalty information and further learn and preserve the relational information among the
data samples. In addition, through the derivation and equivalent transformation opera-
tions, the objective function of our proposed method can be transformed into the trace ratio
form for optimization. Based on a systematic analysis of two optimization method for trace
ratio problems [33], we propose a novel iterative algorithm which uses the value of the
trace ratio as criterion for the algorithmic convergence. In addition, by further introducing
the ITR-Score defined in [34] into the iterative process, optimal projection directions are
learned, which improves the effectiveness of the proposed RFA model.

3. Methodology

In this section, we first present some notations used in our work. The iterative steps,
the optimization method and the proof of global convergence of RFA are then introduced
in detail.

3.1. Notation

Matrices are represented in uppercase bold letters, for instance, A, while vectors are
represented in boldface lowercase letters, for instance, a, and ai is the ith element of a. Ai∗
and A∗j denote the ith row and jth column of a matrix A; therefore, the element of the
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ith row and jth column of the matrix is represented by Aij. The trace of A is defined by
tr(A) and the transpose of A is defined by AT . In addition, |Aij| is the absolute value of
Aij, ‖A‖F is the Frobenius norm of A. If A is positive definite, we have A � 0, while it is
positive semi-definite (psd), we have A � 0.

In a learning task that contains multiple classes of data, we usually have dataset
{{X∗i, yi} ∈ <D × <1, i = 1, 2, . . . , N}, where each X∗i represents a sample and yi ∈
{1, 2, . . . , C} is the class of that sample, C > 2 is the total number of classes and N is
the total number of samples. For a linear dimensionality reduction task, we hope to
find a projection matrix W and obtain the d-dimensional representation Z∗i of X∗i by
Z∗i = W ∗ X∗i, where Z∗i ∈ <d, i = 1, 2, . . . , N, d < D is the dimensionality of the output.

3.2. Formulation of RFA

As discussed in Section 2, graph embedding has already been proven to be a general
framework for dimensionality reduction. However, there are two shortages of graph
embedding. First, graph embedding does not obtain and preserve the relational information
between data. Second, the graph embedding framework needs to be solved by generalized
eigenvalue decomposition, which is only an approximate approach. Inspired by graph
embedding, we propose a new dimensionality reduction framework called RFA, which
integrates relationships among data into the dimensionality reduction model and can
alleviate the two problems mentioned above. Formulation of the proposed RFA is described
as follows.

We use R ∈ <N×N to denote the relational matrix. The dimensionality reduction
framework RFA is modeled as

L = min
W

tr(WTXLIXTW)

tr(WTXLPXTW)
+ λtr(WTXRXTW), (3)

where LI and LP define the intrinsic and penalty graphs, respectively, and λ > 0 is a
hyperparameter. Specifically, we only consider undirected graph and assume that LI ,
LP and R are symmetric and psd. Based on this formulation and these assumptions,
the generality of RFA can be explained from the following two points:

(1) If λ = 0, our algorithm can be simplified to a basic graph embedding model, so
that some commonly used dimensionality reduction algorithms can be regarded as special
cases of RFA;

(2) Otherwise, if L only contains relational information, RFA can be considered to use
relational learning to reduce the dimensionality of data. For instance, the MDS algorithm is
a special RFA algorithm under this condition.

3.3. Optimization of RFA
We reformulate Problem (3) as

L = min
W

tr(WTSIW)

tr(WTSPW)
+ λtr(WTSRW), (4)

where SI = XLIXT , SP = XLPXT and SR = XRXT .
As R is psd, SR is as well. We suppose SR = UΛUT . We have

L = min
V

tr(VT S̃IV)

tr(VT S̃PV)
+ λtr(VTV), (5)

where W = UΛ−1/2V, S̃I = Λ−1/2UTSIUΛ−1/2 and S̃P = Λ−1/2UTSPUΛ−1/2.
Furthermore,

∂L
∂V

=
2tr(VT S̃PV)S̃IV− 2tr(VT S̃IV)S̃PV

tr(VT S̃PV)2
+ 2λV. (6)
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We let ∂L
∂V = 0. We have

tr(VT S̃PV)S̃IV− tr(VT S̃IV)S̃PV
tr(VT S̃PV)2

= −λV. (7)

Equation (7) can be rewritten as

(S̃I −
tr(VT S̃IV)

tr(VT S̃PV)
S̃P)V = −λtr(VT S̃PV)V. (8)

We let η = tr(VT S̃I V)

tr(VT S̃PV)
and λ̃ = −λtr(VTS̃PV). We obtain

(S̃I − ηS̃P)V = λ̃V. (9)

It can be seen from Equation (9) that the columns of matrix V are the eigenvectors of
S̃I − ηS̃P, where η is a parameter related to V.

Without loss of generality, we assume VTV = Id, where Id is an identity matrix. Hence,
we have the following constrained trace ratio problem [33,45]:

L̃ = min
VT V=Id

tr(VT S̃IV)

tr(VT S̃PV)
. (10)

Problem (10) can be solved with the iterative method similar to that in [33,45]. The spe-
cific steps are as follows:

(1) Removing the null space of St = S̃I + S̃P [46]. We assume that St = ŨΛ̃ŨT ,
where Λ̃ is a diagonal matrix and Ũ contains the eigenvectors of St corresponding to
nonzero eigenvalues. Therefore, Formula (10) can be transformed to

L̃ = min
W̃T W̃=Id

tr(W̃T ŜIW̃)

tr(W̃T ŜPW̃)
, (11)

where V = ŨW̃, W̃ ∈ <r×d, ŜI = ŨTS̃IŨ and ŜP = ŨTS̃PŨ. We can further rewrite the
problem (11) as

L̃ = min
W̃T W̃=Id

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
, (12)

where ŜT = ŨT(S̃I + S̃P)Ũ = ŜI + ŜP. Since ŜT is positive definite, for any orthonormal
matrix W̃, Problem (12) satisfies that the denominator is positive.

(2) Efficient iterative optimization. The original trace ratio problem (12) can be
rewritten as a trace difference problem:

W̃∗ = argmin
W̃T W̃=Id

tr(W̃T(ŜI − η̃ŜT)W̃), (13)

where η̃ is a parameter which can be calculated in the iterative process. In the iterative
process, we first randomly initialize the target matrix W̃ to be an arbitrary orthogonal

matrix as W̃0 ∈ <r×d, and then calculate η̃0 =
tr(W̃T

0 ŜI W̃0)

tr(W̃T
0 ŜTW̃0)

. By using the calculated η̃0, we

can obtain W̃1 by solving Problem (13). In the end, through several iterations, we obtain
W̃T , where T is the number of iterations and it’s satisfied |η̃T − η̃T−1| < ε (ε = 10−5 is used
in our experiments). Then, W̃T is the optimal solution of Problem (12). In next section, we
prove that RFA owns the global convergence. In order to improve the effectiveness of our



Algorithms 2023, 16, 522 8 of 22

method, we select some superior projection directions for each W̃t, as performed in [47].
Our selection criterion is

W̃t = argmin
W̃∈Φ

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
, (14)

where Φ is a set of r× d matrices with columns formed by eigenvectors of ŜI − η̃t−1ŜT . We
use the eigenvectors corresponding to d smallest ITR-score [48] to initialize the selection.

Algorithm 1 specifically describes the iterative procedure of Problem (12).

Algorithm 1 Optimization of Problem (12)

1: Initialization: Initialize W̃ as an orthonormal matrix W̃0 ∈ <r×d and Let η̃0 = 0.
2: Iterations:
3: for t = 0 to MaxIt do
4: (1) Compute η̃t as

η̃t =
tr(W̃T

t−1ŜIW̃t−1)

tr(W̃T
t−1ŜTW̃t−1)

.

5: (2) Solve the eigenvalue decomposition problem:

(ŜI − η̃ŜT)Ŵ∗i = λ̃iŴ∗i.

6: (3) Compute

si =
tr(ŴT

∗iŜIŴ∗i)

tr(ŴT
∗iŜTŴ∗i)

, i = 1, . . . , r.

7: (4) Use {Ŵ∗i}r
i=1 to initialize W̃t and solve the following problem:

W̃∗t = argmin
W̃∈Φ

tr(W̃T ŜIW̃)

tr(W̃T ŜTW̃)
,

where Φ is a set of matrices with columns formed by {Ŵ∗i}r
i=1.

8: if |η̃t − η̃t−1| < ε (ε = 10−5 is used in our experiments) then
9: Break.

10: end if
11: end for
12: Output: W̃t.

4. Global Convergence of RFA and Extensions

In this section, we first prove that RFA can converge to the global optimal solution,
and then, we apply the kernel trick to RFA for nonlinear relational dimensionality reduction.

4.1. Global Convergence of RFA

Theorem 1 states the convergence of RFA.

Theorem 1. The RFA algorithm converges to a global optimal solution of Problem (3).

Proof. Considering that all the formulas, from Problem (3) to Problem (12) in the previous
section, are all transformed equivalently, we only prove the convergence of Problem (12)
here. Specifically, we show that L̃ of Problem (12) has a lower bound, which gradually
decreases with the iterative process.

We can easily see that for any W̃, it satisfies that 0 ≤ tr(W̃T ŜI W̃)

tr(W̃T ŜTW̃)
≤ 1, so that the lower

bound of L̃ is 0.
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Next, we prove that the objective value of Problem (12) gradually decreases with the
iterative process of RFA. Defining

η̃t =
tr(W̃T

t−1ŜIW̃t−1)

tr(W̃T
t−1ŜTW̃t−1)

, (15)

we then have

tr(W̃T
t−1(ŜI − η̃tŜT)W̃t−1) = 0. (16)

However,

W̃t = argmin
W̃T W̃=Id

tr(W̃T(ŜI − η̃tŜT)W̃). (17)

Therefore,

tr(W̃T
t (ŜI − η̃tŜT)W̃t) ≤ 0, (18)

and

η̃t+1 =
tr(W̃T

t ŜIW̃t)

tr(W̃T
t ŜTW̃t)

≤ η̃t. (19)

Thus, we prove that η̃t gradually decreases with the iterative process, and Theorem 1
holds.

According to Theorem 1, we can see that RFA can converge to the global optimal
solution. In addition, for given intrinsic and penalty graphs and the relational matrix,
the computational complexity of the RFA algorithm is only Θ(N), where N is the total
number of data. That also illustrates the efficiency of our algorithm.

4.2. Kernel Extension

In this subsection, we apply kernel trick to our RFA method and present the kernel
RFA (KRFA) method, which can be used to nonlinear dimensionality reduction problems.

The KRFA optimization problem is basically the same as Problem (3), except that the
data point X∗i needs to be mapped to a reproducing kernel Hilbert space and obtain φ(X∗i),
where φ(·) denotes the mapping function. In addition, the corresponding intrinsic and
penalty graphs and the relational matrix should also be mapped to the reproducing kernel
Hilbert space. The kernel function K(X∗i, X∗j) = φ(X∗i)Tφ(X∗j).

We suppose the projection matrix W = ΦΓ. We have WTΦ = ΓTK.
Normalizing and centering the data in the high-dimensional feature space, we substi-

tute K with
K̂ = K− 1NK−K1N + 1NK1N . (20)

In this way, the learning task of RFA is able to be described as

LK̂ = min
Γ

tr(ΓTK̂L̃IK̂TΓ)

tr(ΓTK̂L̃PK̂TΓ)
+ λtr(ΓTK̂R̃K̂TΓ), (21)

where L̃I , L̃P and R̃ are the intrinsic graph, the penalty graph and the relational matrix,
respectively. The distance of the samples in the reproducing kernel Hilbert space can be
calculated by

D(xi, xj) =
√

K(xi, xi) + K(xi, xj)− 2K(xi, xj). (22)
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With reference to the derivation and transformation procedure of RFA, KRFA can be
eventually transformed into

L̃K = min
VT

KVK=Id

tr(VT
KS̃K

I VK)

tr(VT
KS̃K

P VK)
. (23)

As KRFA’s optimization process is similar to RFA, we still use iterative methods to
solve it.

5. Experiments

In this section, extensive experiments are conducted to validate the effectiveness of
our RFA and KRFA methods. For the linear case, we conduct experiments on document
analysis, handwritten digits recognition, face recognition and webpage classification prob-
lems. For KRFA, we test its performance on several benchmark datasets. The results of
comparative experiments are presented below.

5.1. Performance of RFA

To evaluate the performance of RFA, we selected several related dimensionality reduc-
tion methods for comparison with RFA. These methods were LDA, MFA, RDA, and PRPCA,
respectively. Among them, LDA, MFA and RDA are supervised methods, while PRPCA is
unsupervised. We note that, due to the flexibility in the design of the relational matrix, RFA
could be either global or local. We describe this detail in the following part.

We followed MFA to construct the intrinsic and penalty graphs [14]. The numbers of
nearest neighbors for constructing the intrinsic graph (ki) and the penalty graph (kp) were
set to 5 and 20, respectively, for all the datasets.

We applied RFA to document understanding, face recognition and several other
recognition tasks. In order to test the performance of RFA on document recognition
tasks, we used the Ibn Sina ancient Arabic document dataset [49], USPS handwritten
digits dataset (http://www.cs.nyu.edu/~roweis/data.html, accessed on 19 October 2023),
two handwritten digits datasets (Optdigits and Pendigits) and one English letter dataset
(Letter) from the UCI machine learning repository [50]. For face recognition tasks, we used
two face datasets [51–54], the CMU PIE (http://www.face-rec.org/databases/, accessed
on 19 October 2023) and the YaleB (http://www.cad.zju.edu.cn/home/dengcai/Data/
FaceData.html, accessed on 19 October 2023) datasets. At the same time, we used some
UCI datasets, including Shuttle, Thyroid, Vowel and Waveform21, to evaluate RFA.

In our experiments, we used the classical graph Laplacian matrix, L = D−M, to de-
fine the relational matrix, whose weight matrix M is shown as below:

Mij =

{
1, if xi ∈ Nk(xj) or xj ∈ Nk(xi),

0, otherwise,
(24)

where Nk(xi) is the set consisting of the k nearest neighborForof xi. For each dataset,
the value of k was selected based on 5-fold cross-validation. Moreover, D is the diagonal
degree matrix with Dii = ∑j Mij.

We note that the Laplacian weight matrix formed by the above formula contains
the relationship information between the sample and a certain number of its neighbors,
which allows the iintegration of the local relationships between data into the supervised
representation learning algorithm. At the same time, as a general model, the relationship
matrix R in RFA can be of various forms. For example, R can be the centralization matrix
H = IN − 1

N 11T , where N denotes the data size and 1 is a column vector of length N with
all ones.

For the PRPCA algorithm, we performed this experiment using the codes provided by
the authors. For the RDA algorithm, we randomly selected the prototypes [24]. For algo-
rithms other than RDA, we used the 1-nearest neighbor classifier to evaluate the classifica-
tion performance of them.

http://www.cs.nyu.edu/~roweis/data.html
http://www.face-rec.org/databases/
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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5.1.1. Comparison on Hand-Writing Datasets

We first tested the performance of RFA on the hand-writing datasets. For clarity,
the details of the used datasets are shown in Table 1.

Table 1. Statistics of the used datasets.

Dataset Classes Samples Dimensions

Ibn Sina 174 20,688 200
USPS 10 9298 256

Pendigits 10 5620 16
Optdigits 10 10,992 64

Letter 26 20,000 16

Ibn Sina dataset: This dataset [55] is an ancient manuscript dataset, one image of
which is shown in Figure 1, and we tried to identify the Arabic subwords on this dataset. In
the experiment, we used a 50-page manuscript as the training set and 10 pages as the test
set. We extracted the square-root velocity (SRV) representation [56] of the Arabic subwords.
Then, we removed the outlier classes, including the classes that had less than 10 samples.
Finally, we obtained a 174-class Arabic subword dataset with 17,543 samples for training
and 3125 samples for test.

Figure 1. One image of the Ibn Sina dataset.

In this experiment, we set the number of the nearest neighbors – k of the RFA to 8 and
compared RFA with the LDA and MFA dimensionality reduction algorithms. The classi-
fication accuracies after using these three dimensionality reduction methods to map the
data to different dimensionalities are shown in Figure 2. We can see that RFA is far better
than the LDA algorithm and slightly better than the MFA algorithm. At the same time,
when the dimensionality is from 50 to C− 1 (C is the number of classes), the correct rate of
the MFA algorithm has a certain fluctuation and tends to decline, while the classification
performance of our RFA algorithm is relatively stable, which means that our algorithm is
more robust than MFA.
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Figure 2. Classification accuracy obtained by LDA, MFA and RFA on the Ibn Sina dataset.

USPS dataset: The USPS is an U.S. post handwritten digits dataset that contains
7291 training data and 2007 test data from 10 classes and the dimensionality of the data
features is 256. Some handwritten digits in the USPS dataset are shown in Figure 3.

In this experiment, we set the number of the nearest neighbors – k of RFA to 24.
The classification accuracies obtained by RFA and the compared algorithms are shown
in Figure 4. Because the LDA subspace has a maximum of C − 1 dimension (C is the
number of classes), LDA is only presented with a black star in the figure. We can see
that when the dimension is 9, RFA obtains a comparative results with LDA and MFA.
When the dimension increases, the results of RFA are always optimal. At the same time,
the classification accuracy obtained by RDA is low.

Figure 5 presents 3D visualization of the learned data representations by RFA, which
shows the effect of RFA to obtain better classification boundaries between the classes.
In Figure 6, we show the 2D projections of data learned by both RFA and MFA, to further
show the effectiveness of RFA. It is easy to see that the samples processed by RFA are less
likely to overlap at the boundary, indicating that compared to MFA, RFA preserves more
properties that help distinguish the samples.

In addition, the robustness of RFA is tested with respect to ki and kp (used to construct
the intrinsic and penalty graphs). From Figure 4, it can be seen that RFA obtained the best
result when the subspace dimension was 35, with parameter settings ki = 5, kp = 20 and
k = 24. We fixed k and one of ki and kp to obtain the results when another parameter took
different values. Figures 7 and 8 show that RFA is very robust.

Figure 3. Sample images from the USPS dataset.
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Figure 4. Classification results obtained by RFA and the compared methods on the USPS dataset.
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Figure 5. 3D visualization of the mapped data obtained by RFA. Samples of different classes are
marked with different colors.

We also selected three document recognition-related datasets from the UCI machine
learning repository to further test the effectiveness of RFA. They are Optdigits, Pendigits
and Letter. Optdigits was preprocessed by NIST [57] programs to obtain 5620 instances
in 8 × 8 dimensions. The Pendigits dataset contains a large number of preprocessed 16-
dimensional samples written by 44 different authors, including 7494 training examples
and 3498 test samples. Letter consists of 20,000 handwritten characters written by 20 fonts
from 26 capital letters in the English alphabet. We used the 5-fold cross-validation for these
experiments. Tables 2–4 show the classification accuracy and standard deviation obtained
on these three datasets and the boldface results are the best ones. We can see that RFA
performs consistently better than other compared methods.
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Figure 6. 2D visualization for data pairs. (a–d) are the results obtained by RFA, and (e–h) are the
results obtained by MFA.
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Figure 8. Classification results obtained by RFA and MFA with different values of kp on the
USPS dataset.

Table 2. Classification results obtained on the Optdigits dataset. The best results are highlighted
in boldface.

Dimension LDA MFA PRPCA RDA RFA

9 0.9219 ± 0.0117 0.9657 ± 0.0020 0.9687 ± 0.0053 0.7407 ± 0.0048 0.9662 ± 0.0017
15 - 0.9845 ± 0.0039 0.9690 ± 0.0087 0.7407 ± 0.0017 0.9875 ± 0.0031
20 - 0.9836 ± 0.0041 0.9696 ± 0.0075 0.7399 ± 0.0054 0.9891 ± 0.0025
25 - 0.9849 ± 0.0030 0.9696 ± 0.0071 0.7425 ± 0.0042 0.9891 ± 0.0035
30 - 0.9819 ± 0.0062 0.9698 ± 0.0071 0.7415 ± 0.0053 0.9875 ± 0.0048
35 - 0.9795 ± 0.0051 0.9703 ± 0.0067 0.7404 ± 0.0066 0.9879 ± 0.0036
40 - 0.9783 ± 0.0058 0.9710 ± 0.0079 0.7402 ± 0.0056 0.9875 ± 0.0032
50 - 0.9781 ± 0.0026 0.9701 ± 0.0071 0.7407 ± 0.0043 0.9877 ± 0.0023

Table 3. Classification results obtained on the Pendigits dataset.

Dimension LDA MFA PRPCA RDA RFA

9 0.9843 ± 0.0020 0.9929 ± 0.0013 0.9797 ± 0.0027 0.9203 ± 0.0046 0.9939 ± 0.0006
13 - 0.9940 ± 0.0026 0.9604 ± 0.0028 0.8856 ± 0.0052 0.9950 ± 0.0018
15 - 0.9945 ± 0.0018 0.9887 ± 0.0008 0.9212 ± 0.0050 0.9962 ± 0.0013

Table 4. Classification results obtained on the Letter dataset.

Dimension LDA MFA PRPCA RDA RFA

9 0.9108 ± 0.0070 0.9570 ± 0.0014 0.9230 ± 0.0018 0.3699 ± 0.0064 0.9580 ± 0.0018
13 0.9108 ± 0.0070 0.9725 ± 0.0022 0.9604 ± 0.0028 0.3727 ± 0.0065 0.9753 ± 0.0022
15 0.9575 ± 0.0023 0.9596 ± 0.0018 0.9567 ± 0.0022 0.3715 ± 0.0087 0.9695 ± 0.0011

5.1.2. Comparison on Face Datasets

Here, we tested RFA on the face recognition problems. The PIE and YaleB datasets
were used. The details of these two datasets are shown in Table 5. For the corresponding
experimental settings, we set the number of the nearest neighbors – k on the PIE dataset to
8 and k on the YaleB dataset to 18.
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Considering that RDA cannot perform well on multi-class classification problems, we
used LPP instead as a compared method in these experiments. We used the 5-fold cross-
validation to decide the value of parameter k for graph construction in LPP. We performed
the experiments in different low-dimensional spaces on the PIE and YaleB datasets, and the
experimental results are shown in Tables 6 and 7.

Table 5. Statistics of the face recognition datasets.

Dataset Classes Samples Feature Dimension

PIE 68 11,554 1024
YaleB 38 2414 1024

Table 6. Classification results obtained on the PIE dataset.

Dimension LDA MFA PRPCA LPP RFA

9 0.9021 ± 0.0070 0.9173 ± 0.0045 0.7736 ± 0.0113 0.8156 ± 0.0089 0.9198 ± 0.0026
15 0.9430 ± 0.0038 0.9526 ± 0.0040 0.8810 ± 0.0063 0.8930 ± 0.0054 0.9540 ± 0.0021
20 0.9528 ± 0.0031 0.9592 ± 0.0027 0.9089 ± 0.0062 0.9122 ± 0.0044 0.9603 ± 0.0030
25 0.9597 ± 0.0040 0.9617 ± 0.0028 0.9224 ± 0.0056 0.9262 ± 0.0042 0.9621 ± 0.0040
30 0.9613 ± 0.0037 0.9639 ± 0.0042 0.9299 ± 0.0041 0.9320 ± 0.0031 0.9644 ± 0.0027
35 0.9623 ± 0.0025 0.9643 ± 0.0024 0.9342 ± 0.0037 0.9352 ± 0.0040 0.9660 ± 0.0024
40 0.9633 ± 0.0019 0.9638 ± 0.0021 0.9370 ± 0.0049 0.9383 ± 0.0036 0.9655 ± 0.0021
50 0.9639 ± 0.0012 0.9643 ± 0.0029 0.9394 ± 0.0052 0.9411 ± 0.0034 0.9656 ± 0.0024

C-1(67) 0.9641 ± 0.0048 0.9640 ± 0.0034 0.9356 ± 0.0045 0.9437 ± 0.0035 0.9654 ± 0.0037

Table 7. Classification results obtained on the YaleB dataset.

Dimension LDA MFA PRPCA LPP RFA

9 0.7788 ± 0.0199 0.8355 ± 0.0190 0.3675 ± 0.0378 0.4859 ± 0.0437 0.8347 ± 0.0212
15 0.8774 ± 0.0092 0.9031 ± 0.0071 0.4793 ± 0.0572 0.5911 ± 0.0367 0.9039 ± 0.0096
20 0.9209 ± 0.0136 0.9273 ± 0.0104 0.5460 ± 0.0426 0.6276 ± 0.0171 0.9279 ± 0.0067
25 0.9395 ± 0.0189 0.9370 ± 0.0126 0.5427 ± 0.0377 0.6392 ± 0.0345 0.9387 ± 0.0109
30 0.9507 ± 0.0157 0.9490 ± 0.0081 0.5518 ± 0.0399 0.6736 ± 0.0219 0.9495 ± 0.0079
35 0.9582 ± 0.0132 0.9503 ± 0.0093 0.5481 ± 0.0385 0.6740 ± 0.0109 0.9503 ± 0.0116
40 - 0.9511 ± 0.0102 0.2084 ± 0.3698 0.6997 ± 0.0059 0.9569 ± 0.0146
50 - 0.9482 ± 0.0101 0.3698 ± 0.1481 0.7142 ± 0.0123 0.9532 ± 0.0089

C-1(37) 0.9594 ± 0.0094 0.9511 ± 0.0122 0.5306 ± 0.2147 0.6864 ± 0.0102 0.9548 ± 0.0107

We can see from the experimental results that RFA performs very well. Although LPP
is an effective dimensionality reduction method for face recognition, RFA is significantly
better than LPP. Moreover, RFA obtains comparable results with LDA and MFA. These
results demonstrate the effectiveness of RFA in the face recognition applications.

Additionally, convergence of RFA is verified on these two datasets. As illustrated in
Figures 9 and 10, the value of η (trace ratio) decreases through the iterative procedures until
it reaches the global optimal value η∗ on both of the two datasets, which clearly shows the
convergence of RFA.
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Figure 10. Changing cave of η over the iteration number on the YaleB dataset.

5.1.3. Comparison on Other UCI Datasets

To evaluate the generalization ability of RFA, we conducted experiments on UCI
datasets of other fields. The details of the used datasets are shown in Table 8. For the
corresponding experimental settings of these four dataset, we set the number of the nearest
neighbors – k to 15. For the fairness of comparison, the subspace dimension of each method
was set to C− 1.

Table 8. Statistics of the UCI datasets.

Dataset Classes Samples Dimensions

Shuttle 7 14,516 9
Thyroid 3 215 5
Vowel 11 990 10
Waveform21 3 5000 21
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The results shown in Table 9 demonstrate the advantage of RFA over the related
approaches. It is very effective in a wide range of applications.

Table 9. Classification results obtained on several UCI datasets.

Dimension LDA MFA PRPCA RDA RFA

Shuttle 0.9975 ± 0.0009 0.9979 ± 0.0012 0.9959 ± 0.0037 0.9162 ± 0.0132 0.9981 ± 0.0003
Thyroid 0.9395 ± 0.0265 0.9488 ± 0.0303 0.9488 ± 0.0195 0.9209 ± 0.0265 0.9581 ± 0.0255
Vowel 0.9859 ± 0.0109 0.9869 ± 0.0085 0.9859 ± 0.0090 0.3505 ± 0.0349 0.9879 ± 0.0077

Waveform21 0.8184 ± 0.0119 0.8258 ± 0.0197 0.8150 ± 0.0118 0.5972 ± 0.0279 0.8278 ± 0.0175

5.1.4. Comparison on Document Classification and Webpage Classification Problems

As a general dimensionality reduction framework, the relational matrix can be con-
structed with different strategies. In the previous sections, we considered the relationship
between samples based on their class labels or similarity. However, in some complicated
problems, relationships may presented in other forms. For example, as indicated in [25],
if there is a reference relationship between two papers, they are likely to have the same
topic. However, due to the sparse nature of the bag-of-words representation, the similarity
between these two papers may be very low. Thus, to further testify RFA, we designed
a relational matrix based on the citation relevance between data samples to model RFA,
and tested its effectiveness on document classification and webpage classification problems.

For this experiment, we used two datasets, citeseer and WebKB (https://linqs-data.
soe.ucsc.edu/public/lbc/, accessed on 19 October 2023). We note that the WebKB dataset
contains four subsets: Cornell, Texas, Washington and Wisconsin, and we show the ex-
perimental results of these four subsets separately. Each dataset contains bag-of-words
representation of documents or webpages and citation links between the instances. Citeseer
contains 3312 scientific documents from 6 different classes, and there are 4732 citation
relation between the documents. WebKB consists of 877 webpages from 5 different classes,
and there are 1608 page links within this dataset. We adopted the same strategy as in
PRPCA to construct the relational matrix:

(1) Constructing the adjacent graph A according to the relevance between data samples.
If there was a citation or link between sample i and j, then Aij = 1; else, Aij = 0.

(2) Letting D̃ii = ∑j Aij = (AA)ij, then B = AA− D̃,

Bij =

{
(AA)ij = ∑N

k=1 AijAkj, if i 6= j,
0, otherwise.

(25)

(3) Defining G = 2A + B as the relational matrix in RFA.
We took PRPCA as the baseline method in this part. Experimental results are illustrated

in Figure 11; we can see that RFA achieves comparable results with PRPCA in all these five
datasets and is even better than PRPCA on some of the datasets.

https://linqs-data.soe.ucsc.edu/public/lbc/
https://linqs-data.soe.ucsc.edu/public/lbc/
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Figure 11. Classification accuracy and standard deviation obtained by RFA and PRPCA on the
document and webpage classification problems.

5.2. Performance of KRFA

To evaluate the efficiency of KRFA, we tested its performance on several benchmark
datasets from the UCI machine learning repository. The details of these datasets are shown
in Table 10. For the corresponding experimental settings, we set the number of the nearest
neighbors – k of these five dataset to 15. To avoid the singular value issue, we adopted
KPCA to retain 98% of the variance before formally performing KMFA and KRFA. We used
Gaussian kernel in the experiment and for the fairness of the comparison, the subspace
dimension of each method was set to C− 1. Table 11 shows the comparison results obtained
by KRFA, KMFA and RFA.

Table 10. Statistics of the UCI datasets.

Dataset Classes Samples Dimensions

Ecoli 8 336 8
Satimage 7 6435 36
Vehicle 4 846 18
Waveform40 3 5000 40
Wine 3 178 13

Table 11. Classification accuracy and standard deviation obtained on several UCI datasets.

Dimension KMFA RFA KRFA

Ecoli 0.4200 ± 0.0431 0.4230 ± 0.0423 0.4511 ± 0.0648
Satimage 0.7749 ± 0.0345 0.3915 ± 0.0834 0.8182 ± 0.0343
Vehicle 0.7694 ± 0.0152 0.6808 ± 0.0489 0.7824 ± 0.0187

Waveform40 0.7996 ± 0.0136 0.8216 ± 0.0097 0.8256 ± 0.0062
Wine 0.9716 ± 0.0350 0.9716 ± 0.0286 0.9773 ± 0.0239

As shown in Table 11, the proposed KRFA obtained a comparable and even better
result than KMFA. Furthermore, experimental results of KRFA were all better than RFA
on the used datasets. That superiority can be especially reflected on the Satimage dataset.
The performance of RFA on Satimage was unsatisfactory. However, KRFA conducted
effective nonlinear dimensionality reduction and thus obtained good result on the following
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classification problem. These two points clearly demonstrate the nonlinear dimensionality
reduction ability of KRFA.

6. Conclusions

In this paper, we propose a novel and general framework named relational Fisher
analysis (RFA) which integrates relational information into the dimensionality reduction
models. RFA can be effectively optimized with an iterative method based on trace ratio.
For nonlinear dimensionality reduction, we adopt kernel trick to RFA and design its
kernel version named KRFA. Extensive experiments demonstrate that RFA and KRFA
outperform other related dimensionality reduction algorithms in most cases. In future
work, we plan to extend this research in the following aspects: (1) Exploiting efficient
relationship metric for different relational data to further test the effectiveness of the
proposed RFA model; (2) Further extending the formulation of RFA for semi-supervised
learning; and (3) Extending RFA for tensor representation learning and applying it to tensor
analysis problems.
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