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ABSTRACT Federated Learning (FL) is a decentralized machine learning (ML) technique that allows a
number of participants to train an ML model collaboratively without having to share their private local
datasets with others. When participants are unmanned aerial vehicles (UAVs), UAV-enabled FL would
experience heterogeneity due to the majorly skewed (non-independent and identically distributed -IID)
collected data. In addition, UAVs may demonstrate unintentional misbehavior in which the latter may fail
to send updates to the FL server due, for instance, to UAVs’ disconnectivity from the FL system caused by
high mobility, unavailability, or battery depletion. Such challenges may significantly affect the convergence
of the FL model. A recent way to tackle these challenges is client selection, based on customized criteria that
consider UAV computing power and energy consumption. However, most existing client selection schemes
neglected the participants’ reliability. Indeed, FL can be targeted by poisoning attacks, in which malicious
UAVs upload poisonous local models to the FL server, by either providing targeted false predictions for
specifically chosen inputs or by compromising the global model’s accuracy through tampering with the
local model. Hence, we propose in this article a novel client selection scheme that enhances convergence
by prioritizing fast UAVs with high-reliability scores, while eliminating malicious UAVs from training.
Through experiments, we assess the effectiveness of our scheme in resisting different attack scenarios, in
terms of convergence and achieved model accuracy. Finally, we demonstrate the performance superiority of
the proposed approach compared to baseline methods.

INDEX TERMS Dropouts, edge computing, federated learning, model poisoning, stragglers, UAV, un-
manned aerial vehicle.

I. INTRODUCTION
Machine achine Learning (ML)-assisted techniques are gar-
nering an increasing interest in various research disciplines,
including unmanned aerial vehicle (UAV)-enabled wireless
networks, as a result of the booming traffic data, the ris-
ing deployment of UAVs, and reduced costs [1], [2], [3].
Specifically, UAVs are extensively employed for data col-
lection and offloading [1], [2], which may be complex due
to environment and user quality-of-service (QoS) require-
ments’ unpredictable changes. Thus, the development of
intelligent management schemes for related applications, e.g.,
based on ML, is needed. Conventional ML algorithms are

cloud-centric, which makes them inappropriate for stringent
QoS and UAV-enabled wireless networks. Indeed, relying
on the cloud may expose sensitive information, such as
the UAVs’ locations and IDs, to attacks, besides increas-
ing the UAVs’ energy and bandwidth consumption needed
for data transmissions. To bypass this risk, federated edge
learning (FEEL) has been recently introduced [4], [5], where
UAVs distributively train models on their local datasets
without exposing their raw data through transmissions. How-
ever, UAV-based FEEL faces several challenges, such as
statistical heterogeneity and system heterogeneity. Indeed,
due to the different locations of UAVs, collected data is
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significantly skewed, i.e., non-independent and identically
distributed (non-IID). Moreover, the differences in UAVs’
storage, computing, and power consumption, affect the latter’s
data collection and model training quality. Hence, system
heterogeneity results in the appearance of FEEL stragglers,
forcing the federated learning (FL) server to wait for the
slowest UAVs prior to model aggregation, thus resulting in
a slower FL convergence.

In addition, UAV participants can demonstrate uninten-
tional misbehavior during training due to poor connectivity
or system faults. For instance, a UAV participant may fail
to respond to the FL server due to its high mobility and/or
low battery level, resulting in a small number of FL updates.
In this case, the FL server would generate a biased global
model and/or need to relaunch the FL round from the be-
ginning. Another unexplored issue is the potential intentional
malicious behavior of UAV participants [6], [7]. Indeed, such
behavior may lead to denial-of-service (DoS) attacks on the
FL server (untargeted attacks), or produce false predictions for
FL targeted inputs (poisoning targeted attacks). To tackle such
problems, defense mechanisms have to rely on specific as-
sumptions related to data distributions, e.g., data IIDness [7],
and the number of attackers [6], [8].

The combination of the aforementioned FEEL risks would
inevitably degrade the performances of FL, e.g., slow or
even cancel model convergence, as well as increase training
time, energy consumption, and bandwidth consumption. To
the best of our knowledge, no prior work has jointly ad-
dressed the intentional and unintentional misbehavior of FL
participants in UAV-enabled systems and its impact on FL per-
formance. Consequently, we aim here to investigate the UAV
participants’ selection problem in heterogeneous data and sys-
tem settings, in the presence of unreliable UAV participants
categorized into one of the following profiles: Adversaries,
stragglers, or dropouts. The classification of UAVs into these
profiles is realized by analyzing their history and response
behavior during training. In the absence of malicious UAVs,
i.e., adversaries, our proposed solution acts as an FL client
selection scheme that prioritizes reliable UAVs. In contrast, in
the presence of malicious UAVs, we target detecting and elim-
inating the latter in the early stages of FL training. The main
contributions of this article can be summarized as follows:

1) The diversity of locally available resources has an in-
fluence on overall learning performance, therefore, we
propose a novel participant selection policy based on
favoring highly reliable participants in order to elimi-
nate training instability and reach the best FL accuracy
performances.

2) In the presence of malicious participants performing
untargeted or targeted attacks, we propose a line of
defense that aims to identify and filter malicious up-
dates/participants from training without requiring raw
data exchanges.

3) Under the assumption of non-IID data distributions
among UAV participants, we demonstrate through ex-
periments that our proposed selection scheme efficiently

mitigates unreliable participants and achieves superior
performances, in terms of FL model accuracy, training
time, dropout ratio, and minimal attack success rate,
compared to baseline methods.

The remainder of the article is organized as follows.
Section II presents the related works. In Section III, the
system model is introduced. Subsequently, the problem for-
mulation and the proposed scheme are detailed in Section IV.
In Section V, experiments and performance evaluation are
conducted. Finally, Section VI concludes the article.

II. RELATED WORKS
A. CLIENT SELECTION IN FL
Participants’ resources can be extremely heterogeneous, e.g.,
different communication and computation capabilities, which
may affect FL training [9], [10], thus causing the appearance
of stragglers. A straggler can be defined as an FL participant
who spends a high time training its data and uploading its
related local model to the aggregator or FL edge computing
(EC) server. This slow training can be due to several factors
such as the low computing power, the degraded communica-
tion link with the EC server, and the large size of the dataset.
Indeed, the EC server should be receiving updates from par-
ticipants in a reasonable time. On the other hand, a participant
who leaves the FL training process before finishing its given
tasks is referred to as a dropout. Dropping out from the FL sys-
tem, i.e., quitting during the training or the aggregation phase
in a given round, can significantly impact the FL performance.
In fact, in such a situation, the EC server shall interrupt the
current training round and relaunch it, thus leading to lost data
and wasted energy consumption. The dropping out event can
be caused by intentional or unintentional quitting from the FL
system. The latter can be due to the participant being hijacked,
or disconnected due to traveling away from the EC server.

To tackle the aforementioned issues, client selection has
been developing in recent years. In particular, for the strag-
glers’ issue, client selection policies are set up to improve
the overall training latency. For instance, the proposed client
selection technique of [11], called Oort, favored the partic-
ipation of clients with the most useful data for both model
accuracy enhancement and faster training. To mitigate the
effect of unreliable participants, Oort removed clients that
participated successfully in a given number of FL rounds.
Nevertheless, this defense mechanism treated malicious and
non-malicious participants equally, i.e., without any distinc-
tion.

Subsequently, client clustering has been involved in the
selection process to improve FL performances. For example,
authors of [12] presented the TiFL algorithm, which divided
participants into different tiers according to their training
response latency. Then, participants belonging to the same
tier would be selected at each training round. TiFL used
an adaptive tier selection technique that adjusted clustering
(or tiering) to the observed training performances over time.
In [13], the authors proposed FedRN, a robust FL method
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that exploits k-reliable neighboring participants with high data
similarity to train the model only with clean samples over
reliable participants.

Due to the heterogeneity of computing and communication
resources at FL participants, the authors of [14] tackled the
stragglers’ problem by proposing FedCS. FedCS is a greedy
FL mechanism that favors incorporating more participants
into its deadline-constrained training process, regardless of
the datasets choice, and communication and computing ca-
pabilities.

Given the complexity of FL systems, intelligent participant
selection methods based on reinforcement learning (RL) have
been proposed. For instance, a deep RL control method has
been presented in [15] to accomplish the desired trade-off
between local updating and global aggregation, in order to
minimize the loss function while adhering to a resource bud-
get limitation. In the context of FL for wireless networks,
authors in [16] examined the client scheduling problem to
achieve low FL latency and rapid convergence, while taking
into account the full or partial knowledge of channel state
information (CSI) in communication links. The scheduling
problem has been solved using a multi-armed bandit (MAB)
solution. Specifically, MAB was proposed to learn statisti-
cal data online without prior CSI knowledge and use it to
build the scheduling strategy. Similarly, federated reinforce-
ment learning (FRL) was proposed in [17] aiming to improve
local driving models of connected and autonomous vehicles
(CAVs). Specifically, CAV selection for FRL has been inves-
tigated, while taking into account CAVs’ reputation, quality
of driving local models, and training time overhead.

To automate quality-aware FL participant selection, au-
thors of [18] proposed a novel scheme named AUCTION.
The latter used reinforcement learning (RL) to progressively
enhance the participants’ selection policy through interaction
with the FL platform after encoding the selection policy into
an attention-based neural network. Although the developed
method considered the quantity and quality of training data
and cost of training, it ignored the effect of communication
and computing latency, i.e., the stragglers’ effect. Alterna-
tively, the latter can be reduced using asynchronous FL where
participants upload their local models asynchronously to the
server [19], [20], [21].

On the other hand, the dropout problem was investigated
by only a few in the literature. For instance, [10] proposed a
multi-criteria-based client selection technique that combines
for each client the computing power, storage, and energy
consumption to forecast the latter’s potential to carry out FL
training rounds and handle the least number of discarded
rounds caused by client dropouts. When client dropouts are
caused by highly dynamic environmental conditions, authors
of [22] proposed decentralized FL to reduce mandatory com-
munications with the central FL server and rely instead on
cooperative aggregation with nearby participants. In [23], a
mobile edge computing (MEC) framework is proposed for
a multi-layer federated learning protocol, named HybridFL.
This approach implemented model aggregation over two

levels, namely edge and cloud levels, using several aggrega-
tion techniques. Moreover, it relied on a probabilistic method
for participant selection at the edge layer to mitigate both
stragglers and dropouts, while ignoring the state of partic-
ipants (whose reliability is agnostic). Through simulations,
HybridFL is shown to shorten FL rounds’ length and accel-
erate convergence.

In the aforementioned works, although participants may
struggle to be performing well in FL, they have been con-
sidered benign or non-malicious, i.e., they do not misbehave
intentionally against the FL process.

B. ATTACKS ON FL AND DEFENSE MECHANISMS
Despite FL’s successful deployment in many fields, this ML
technique is prone to attacks. Indeed, given that partici-
pants have complete authority over the local training process,
the latter becomes an attack surface through which an at-
tacker, e.g., a malicious client, can access the learning process
through the client system’s vulnerabilities. Subsequently, a
poisoning (targeted) attack can be conducted, in which the
ML model is altered during training, thus inducing the global
model into producing erroneous outputs that correspond to the
attacker’s action on certain inputs, e.g., the attacker can con-
duct a data poisoning attack where it alters an image classifier
to change an attacker-targeted label of local data samples with
specific attributes. An example of a targeted attack is illus-
trated in Fig. 1 for UAVs 1 and 2 [24]. Another type of attack
is the untargeted attack, where the attacker aims to disrupt the
training process by producing incorrect outputs on all inputs
and thus slowing down FL convergence. We illustrate this case
in Fig. 1 for UAV 3 [25].

For the sake of clarity, we detail the targeted and untargeted
attack objectives in Fig. 2. In the case of a targeted attack,
attackers with a specific target or objective (red arrows) work
together in each training round to advance towards the defined
objective, by gradually shifting their malicious inputs. In an
untargeted attack (orange arrows), attackers demonstrate dif-
ferent and even divergent behaviors, to achieve different local
objectives.

Since untargeted attacks have a direct and significant effect
on the FL accuracy performance, they can be detected and
mitigated through robust aggregation schemes performed at
the server level [6], [8]. Similarly, a method called attestedFL
was proposed in [25] where each node’s training history is
monitored via a fine-grained assessment technique to detect
malicious participants. However, the latter was proven ineffi-
cient in highly non-IID datasets.

For targeted attacks, authors of [26] proposed a defense
mechanism, called CONTRA, which uses a cosine-similarity-
based metric and builds reputation by dynamically rewarding
or punishing participants depending on their historical con-
tributions to the FL global model. In [7], authors presented
Justinian’s GAAvernor (GAA), a defense method that re-
lies on RL to mitigate malicious attacks. Specifically, GAA
generated reward signals for policy learning using a quasi-
validation set, i.e., a combination of a small dataset that
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FIGURE 1. System model.

FIGURE 2. Model attacks’ objectives vs. true objective (Red and orange
arrows point to the directions of the attacks’ objectives, and blue arrows
to the true objective).

exhibits a distribution similar to the actual sample distribution,
and historical interactions data with the participants, as expe-
rience. However, this method was applied only for IID data
samples, which is not realistic in the context of UAV-enabled
systems. In [8], [27], model updates were clustered together,
and the small-sized clusters were identified as malicious, thus
eliminated from the FL process. Despite its simplicity, this
approach would inevitably delete relevant data from non-
malicious participants, due to clustering inaccuracy.

Other methods relied on reputation design to avoid the neg-
ative impact of the participants’ malicious behavior on FL per-
formance. For instance, authors of [28], [29], [30] proposed
reputation-based participants’ selection, where a reputation
score is updated either according to the state and channel
quality of each participant [28], or using reputation-aware
clustering [29], or using an incentive mechanism to favor the
frequent selection of highly reliable participants [30].

According to the above discussion, there is a need to mit-
igate unreliable participants in FL heterogeneous systems.

Table 1 below summarizes the key differences between related
works and our contribution. To the best of our knowledge, ex-
isting works are not effective in defending against unreliable
participants demonstrating different behaviors. Furthermore,
most works can not be applied directly to UAV-based systems
due to the latter’s heterogeneity.

III. SYSTEM MODEL
The considered system model is depicted in Fig. 1. It is
composed of a base station (BS) that is paired to an edge
computing (EC) server to satisfy ground users’ and NU UAVs’
FL tasks. Ground users and NU UAVs are deployed in the
BS’s 3D coverage area. The UAVs act as edge nodes with
lower capabilities than the BS, but sufficiently high to perform
local ML training on their local datasets, denoted as DSi,
∀i = {1, . . . , NU }1. For the sake of simplicity, we assume here
that the FL process is set up among the BS as the aggregator
and only the UAVs as participants, where the model’s local
update parameters, denoted by weight vector wi,r for UAV
i in FL round r, are uploaded from the UAVs to the BS.
Moreover, we assume that the EC server has four engines:
A participant filtering engine, a participant selection engine,
a security engine, and an aggregation engine. The participant
filtering engine identifies and eliminates the stragglers in the
participants’ pool. The participants’ selection engine chooses
the UAVs that will train and upload their model parameters
in each FL round. The security engine is used to eliminate
unreliable participants, while the aggregation engine performs
model aggregation on the local updates of selected UAVs into

1We assume here that UAVs have sufficient power to execute ML while
flying. This can be justified by the advancements in powerful miniaturized
computing devices with low-power consumption, e.g., tiny ML [32], [33].
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TABLE 1. Comparison of Related Works

a global model, as shown in Fig. 1. Furthermore, for ease of
reading, notations are described in Table 2.

A. FEDERATED LEARNING MODEL
Initially, the EC server creates a generic model for a spe-
cific FL task, then selects a set of participants with whom
to communicate model parameters. The minimum number of
participants selected is Pr = NU × fr , where fr ∈ [0, 1] is the
fraction of participants involved in round r. Once selected,
UAV client i downloads the most recent global model wr−1

from the EC server for synchronization. Then, it executes
multiple iterations of stochastic gradient descent (SGD) on
mini-batches Mi,r from its dataset DSi, to update its model
weight wi,r , such that

wi,r = SGD(wr−1, Mi,r ) − wr−1, ∀i = 1, . . . , Pr . (1)

Periodically, the resulting weight update is uploaded to the EC
server. Subsequently, the EC server aggregates the collected
local models’ parameters to produce the global model wr as
follows:

wr = wr−1 +
Pr∑

i=1

|Mi,r |
|Mr | wi,r, (2)

where Mr = ∪Pr
i=1Mi,r denotes the number of data samples

from Pr participants in round r. If an insufficient number of
model updates is received, i.e., a high dropout ratio, the round
is canceled by the EC server.

B. FL LATENCY MODEL
Based on the hardware configuration information and size of
the local training dataset of the ith UAV, the EC server can
estimate the local training time as [34]

ti,r = Te
κ|Mi,r |

γi
, ∀i = 1, . . . , Pr, (3)

where κ is the number of CPU-cycles needed to process one
data sample, Te is the number of local iterations, and γi is the
available CPU-frequency of UAV client i.

At the end of Te local training iterations, the neural net-
works’ (NN) updated parameters are transmitted through the
wireless channel to the EC server, via the BS.

Assuming that communications between the BS and UAVs
follow the free-space air-to-ground path loss model, that BS
and UAVs are equipped with a single-antenna, and that simul-
taneous communications from UAVs to the BS are orthogonal
in the frequency domain, then the communication link be-
tween UAV i and the BS can be represented as

hi =
√

β0d
− αi

2
i , ∀i = 1, . . . , NU , (4)

where di denotes the 3D distance between UAV i and the
BS, β0 is the reference channel gain, and αi is the path-loss
component expressed as

αi = a1

1 + a4 exp (a3 (θi − a4))
+ a2, ∀i = 1, . . . , NU , (5)
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TABLE 2. Notations

where θi is the elevation angle between the BS and UAV i,
and {a1, . . . , an} are parametric constants related to the urban
environment [35].2 Subsequently, the achievable uplink and
downlink data rates for FL data exchange can be, respectively,
given by

Ri,BS = Bi log2

(
1 + Pi|hi|2

Biσ 2

)
, ∀i = 1, . . . , NU , (6)

and

RBS,i = B log2

(
1 + PBS|hi|2

Bσ 2

)
, ∀i = 1, . . . , NU , (7)

2Different air-to-ground channel models can be considered. However, their
impact is expected to be similar to that of the considered channel model
since variations in channel quality would lead to the same effect from the
FL perspective, e.g., slower FL convergence, lower FL accuracy, and higher
UAV power consumption.

where Bi (resp. B) is the bandwidth allocated to the transmis-
sion of UAV i (resp. the BS), Pi (resp. PBS) is the transmit
power of UAV i (resp. the BS), and σ 2 is the unitary power
of the additive white Gaussian noise (AWGN). Hence, the
required times for FL updates’ upload over the uplink, and
download over the downlink, can be respectively expressed
by

ti,BS = V z/Ri,BS, (8)

and

tBS,i = V z/RBS,i, (9)

where V is the number of NN model parameters and z is the
size of a single model parameter, e.g., a NN weight. Conse-
quently, the overall duration of global FL round r at the EC
server is expressed as follows:

tr = max
i=1,...,Pr

(
ti,r + ti,BS

) + tag, (10)

where tag is the time taken by the EC server to perform aggre-
gation on the participants’ weight updates. Moreover, since
tBS,i is negligible, thus it is eliminated from tr .

C. EC SERVER AND UAVS’ SECURITY PROFILES
In our system, we assume that the EC server is benign, i.e.,
is not prone to cyberattacks and do respond correctly to FL
operations. Regarding the UAV participants, we consider two
security profiles, namely reliable UAVs and unreliable UAVs.
Expressly, we assume that:
� A reliable UAV i is an honest participant that accurately

reports its model parameter values, i.e., it uploads non-
tampered vector weights wi,r to the EC server in round
r.

� An unreliable UAV would demonstrate unreliable behav-
ior in different manners. The first manner consists of
dropping out, intentionally or not, from FL training after
it started. The second manner is to submit poisonous
model parameters to the EC server. This situation hap-
pens when an attacker takes control of one or several
UAVs, makes them malicious, and obliges them to alter
their own model parameters, either trained or transmitted
ones. To align with practical systems, we assume that an
attacker cannot corrupt more than 50% of the available
UAV participants.

IV. PROBLEM FORMULATION AND PROPOSED SOLUTION
A. PROBLEM FORMULATION
In order to design a resilient FL system, we need to address
the negative impact of statistical and system heterogeneity on
the accuracy metric, denoted Ai,r , of each UAV participant i
in round r. Then, we address the security and reliability of the
FL process in the presence of unreliable UAV participants.
Formally, let xr = [x1,r, . . . , xNU ,r] be the vector of binary
variables that indicate the participation or not of UAVs in FL
round r, while ζ is a deadline for local training and update
weights transmission. We assume that among the participating
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NU UAVs, there exist four sets, namely Ph
r , Ps

r , Pd
r , and Pm

r ,
of sizes Ph

r , Ps
r , Pd

r , and Pm
r , respectively, such that NU =

Ph
r + Ps

r + Pd
r + Pm

r . These sets correspond respectively to
honest (i.e., non-straggler, non-dropout, and non-malicious),
stragglers, dropouts, and malicious participants.3 Our objec-
tive consists of maximizing the accuracy by aggregating the
update weights from Ph

r only. Let P̃h
r be the decided set of

participating UAVs in the aggregation process, based on the
xr strategy, i.e., |P̃h

r | = ∑NU
i=1 xi,r . Subsequently, the related

problem can be formulated as follows:

max
xr ,ζ

NU∑
i=1

xi,r .Ai,r (P1)

s.t. ti,r + ti,BS ≤ ζ ,∀i ∈ P̃h
r , (P1.a)

0 ≤
NU∑
i=1

xi,r ≤ NU , (P1.b)

xi,r ∈ {0, 1},∀i = 1, . . . , NU , (P1.c)

where constraint (P1.a) indicates that local training and update
weights transmission should not exceed a deadline ζ . If ζ is
exceeded, the concerned UAV participant is considered as a
dropout. Constraint (P1.b) ensures that the maximal number
of participants does not exceed the number of available UAVs,
while (P1.c) reflects the binary nature of the participant selec-
tion variable.

Problem (P1) can be proven NP-hard. Indeed, for a given
ζ , it aims to maximize a sum objective, while respecting a
resource constraint (maximal number of UAV participants),
(P1) can be reduced to a knapsack problem, which is already
proven to be NP-hard [36]. Since it is intractable to directly
find the global optimum of (P1), we propose to solve it using
a cascaded solution, where the first sub-solution eliminates
the stragglers and sets ζ , the second focuses on selecting non-
dropouts from the remaining non-stragglers UAVs, while the
third sub-solution filters out malicious participants from the
resulting set of the second sub-solution. These sub-solutions
are detailed in the subsections below.

B. PROPOSED NON-STRAGGLERS PARTICIPANT
SELECTION
Most research in the literature has focused on achieving a
higher convergence rate for client scheduling by minimizing
the number of communication rounds required to reach a
specific level of global accuracy. However, this approach does
not minimize the elapsed round time during training. Indeed,
training time, ti,r , is constrained by stragglers who would
extend the training round time, due for instance to limited
CPU frequency speed γi.4 In addition, participants may be

3For the sake of simplicity we assume that Ph
r , Ps

r , Pd
r , and Pm

r are distinct
sets.

4To be noted that the EC server can estimate the UAVs’ CPU information
through the processing of a standardized training task on them and tracking
the time required to complete it.

FIGURE 3. Distribution of training round time for different UAVs’ CPU
frequencies.

training different numbers or sizes of data samples, due to
the statistical heterogeneity, thus affecting the training round
time. In Fig. 3, we illustrate an example of the system hetero-
geneity’s effect, in terms of ti,r , and as a function of UAVs’
CPU frequency ranges of γi. As it can be seen, having UAVs
with a large range of CPU capabilities, e.g., γi ∈ [105, 107]
Hz, resulted in the highest number of outliers or stragglers
(black diamonds).

Stragglers can be eliminated from the participants’ set Pr

by applying the interquartile range (IQR) [37], which is a
popular statistical method that detects outliers. Our choice
of IQR is motivated by its high robustness in skewed data.
IQR value is calculated as the difference between quartiles
Q3 (i.e., third quartile of the data or upper 75% of data), and
Q1 (i.e., lower 25% of data). Differently from the classic IQR
method, we define our decision range as the upper bound of
the accepted data points, and we do not consider the lower
bound. Hence, any data point that has ti,r larger than the upper
bound, defined as

IQRup = Q3 + ν × IQR, (11)

where ν is a scaling parameter, where ν > 0. Thus, the par-
ticipants’ filtering engine eliminates stragglers from Pr and
generates a novel set of UAVs, denoted Pns

r . Subsequently,
we define by

ζ = 2

|Pns
r |

∑
i∈Pns

r

ti,r, (12)

the deadline for local training and update weights transmis-
sion. For the sake of simplicity, the value of ζ is chosen
conservatively (twice the average local training time of non-
stragglers), since transmission time is typically one or several
orders of magnitudes lower than training time.

Within (11), the scaling factor ν is a constant multiplier that
is applied to the IQR in order to determine the outliers’ thresh-
old. Actually, the value of ν to be used significantly depends
on the application type and datasets properties. Nevertheless,
most applications in the literature opted for a scaling factor of
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1.5, as it is agreed to be a typical acceptable value [38], [39].
In any case, if the training time showcases extreme values or
high variability, a higher scaling factor would be preferable.
In contrast, a small scaling factor would be suitable to prevent
false positives if the training times are homogeneous. In ad-
dition, using a large ν would lead to an aggressive straggler
elimination strategy, which might affect the training accuracy,
whereas a small ν value leads to a more conservative straggler
elimination, and probably to longer training times.

C. PROPOSED NON-DROPOUTS PARTICIPANT SELECTION
Given the high mobility and fragility of UAV systems, un-
steady communications or equipment failure may occur,
which will lead to losing the client during the training
round, i.e., dropping out of the FL process. As a result, the
convergence and performance of the FL under partial partic-
ipation mechanism is significantly impacted by the quantity
of aggregated models. According to [40], increasing the
number of aggregated local models improves the accuracy
performance. However, in a realistic system, not all selected
participants would succeed in training and uploading their
updates within the fixed deadline. Consequently, the reliability
of participants is vital to ensure convergence to an enhanced
accuracy.

To mitigate dropouts and maintain resilient operations, we
define here a reliability score, denoted by 
i,r for UAV i ∈
Pns

r , which provides an assessment of the participant’s behav-
ior within the FL process. Specifically, a UAV uploading its
model parameters within ζ is rewarded, while those failing,
i.e., dropping out of the training round, are penalized. The
reliability score is expressed by


i,r = 
i,r−1 + g, ∀i ∈ Pns
r , (13)

where 
i,r−1 is the obtained reliability score for the previous
round r − 1, and

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if UAV i is asked to participate in round r
but did not respond, or started responding
but got disconnected before completing,

1, if UAV i participated and (P1.a) is satisfied
−1, otherwise.

(14)
Assuming that a “reliable” (non-dropout) participant is de-
fined by a value 
i,r equal or greater than a reliability
threshold ρ, then the set of potential participants can be re-
duced to Pnd

r = {i ∈ Pns
r |
i,r ≥ ρ}. Furthermore, in order to

avoid bias in the global model and fast battery exhaustion
of participants, we establish a client over-selection avoidance
mechanism, where if 
i,r reaches a pre-fixed maximum value
ρ0, it is reset to 0.

In the particular case of a portion or all scores being lower
than ρ, Based on the calculated 
i,r values, the participant
selection engine prioritizes the inclusion of Pr − |Pnd

r | high-
score UAVs to Pnd

r , which have 
i,r < ρ.

D. PROPOSED NON-MALICIOUS AGGREGATION
Following the previous steps to obtain a non-straggler non-
dropout participants set Pnd

r , we focus here on achieving non-
malicious aggregation of update weights at the EC server.

As an input for our problem, we use the update weights
inputs, denoted wnd

r , of the participants’ set Pnd
r . The EC

server evaluates wnd
i,r , ∀i ∈ Pnd

r to classify them as malicious
(i.e., targeted or untargeted attack) or non-malicious. Then,
malicious update weights are eliminated from FL aggregation.

To do so, we start by characterizing the malicious attacks
as follows. First, targeted attacks are easy to perform, e.g.,
erroneously classifying samples in a dataset, but difficult to
detect since they subtly effect the global model. if the num-
ber of attackers is large, they typically demonstrate similar
behaviours that are different from those with non-malicious
intentions. Second, untargeted attacks demonstrate behaviours
dissimilar from any other participant, thus their weight up-
dates can be considered as outliers. A successful attack would
eventually deviate the FL convergence direction towards a
different one. By measuring the pairwise angular distance
(PAD) between the participants’ update weights, the desired
convergence direction can be estimated. The use of PAD is
preferred over other measures, such as the Euclidean distance,
since malicious participants cannot alter the direction of a
gradient without reducing their attack’s efficacy. Hence, we
propose here to calculate the PAD using the cosine similarity.

Unlike [41] that calculated cosine similarity PAD on mini-
batch gradients to estimate the direction of the true gradient,
authors of [42] demonstrated that an approximate estimation
of the true gradient’s direction can be obtained by applying
cosine similarity PAD on the FL’s weight updates, under
sufficiently smooth FL loss function and low learning rate
conditions. Consequently, we opt here for a similar approach
as [42], where the cosine similarities between weight updates,
defined by κi, j , ∀(i, j) ∈ Pnd

r × Pnd
r , are calculated as

κi, j = < wi,r,w j,r >

||wi,r ||||w j,r || , (15)

where < ·, · > is the Euclidean dot product and || · || is the
magnitude’s operator.

With the cosine similarity factors in hand, we transpose
this information into a graph G having the elements of Pnd

r
as vertices, and κi, j as edges. According to the previous
discussion, targeted attackers would behave similarly, while
untargeted attackers can be seen as outliers. Backed with these
assumptions, in addition to the ratio of attackers (f) being
typically below half of participants in Pnd

r , i.e., f < 50%,
we can adopt a clustering approach to detect targeted and
untargeted attackers in G. For the sake of simplicity, we opt
for the density-based spatial clustering of applications with
noise (DBSCAN) to execute this task. The expected result is
several clusters, where the largest one would correspond to the
non-malicious participants, while smaller ones correspond to
targeted attackers, and outliers to untargeted attackers. Subse-
quently, the EC server aggregates wnd

i,r from the non-malicious
(largest) cluster only, denoted as P̃h

r .
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Algorithm 1: UAV Reliable Participation.

As it can be seen in the above subsections IV-B to IV-D,
our solution consists of three cascaded sub-solutions, where
the output of one sub-solution is the input of the next one. We
summarize its operation in Algorithm 1.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENT SETUP
We consider an FL system with a single BS/EC server and
NU = 50 UAVs within its coverage area. The UAVs’ com-
puting frequencies γi, ∀i = 1, . . . , NU , are randomly sampled
from the range [106, 108] Hz. To filter out stragglers, we set
ν = 1.5 [38], [39]. Also, ρ is set to -5 and ρ0 to 10. These
values were determined numerically through experimentation.
We assume that κ = 7 × 104 CPU cycles, Pi = 0.28 Watt,
∀i = 1, . . . , NU . Additionally, we have set up a network con-
figuration wherein the model weights are transmitted from the

FL client to the server with a total delay ranging between
20 ms and 200 ms, using a total bandwidth of 10 MHz. We
test our solution’s effectiveness on an image classification
FL task, where the dataset is split into a training set and a
testing set at ratios 80% and 20%, respectively. We run our de-
fense approach on two popular datasets, namely MNIST and
CIFAR-10, where MNIST consists of black and white hand-
written digits of 60,000 training samples with size 28 × 28
pixels [43], while CIFAR-10 is composed of colored pictures
with size 32 × 32 pixels, including 50,000 training images
and 10,000 testing images [44]. Both datasets are divided into
10 classes, for numbers from “0” to “9” in MNIST, and for
object and animal classes in CIFAR-10. We assume that each
UAV acan have a maximum number of |Mr | = 1300 samples.
To take into account dataset non-IIDness in our experiment,
we use different distribution methods. To build the first data
distribution, called “Distribution 1”, we use random sampling
with the notion of “k% non-IID”, where k measures the degree
of non-IIDness in percentage. Accordingly, by setting k = 80,
80% of the dataset is dispersed randomly between the UAV FL
clients while the remaining 20% is equally distributed among
them. This data distribution strategy leads to unbalanced lo-
cal datasets. For the second distribution, called “Distribution
2”, we intentionally spread the data such that each UAV has
data issued from Nc = 2 classes only. To be noted that both
distributions 1 and 2 reflect two different strategies of data
non-IIDness. This distributions design task is executed only
once, and the resulting local datasets will be used in the
remaining of this section.

In our MNIST experiment, we adopt at each FL par-
ticipant the LeNet-5 convolutional neural network (CNN)
architecture [45], while we adopt the VGG11 architecture
for CIFAR-10-related system [46]. The latter is composed
of eight CNN layers and three fully connected layers. We
set the mini-batch size to 64, the number of local iterations
for each round Te = 10, and we use the vanilla stochastic
gradient descent optimizer. Moreover, we select the minimum
number of participants Pr = 5, r0 = 200 as the number of FL
rounds, 0.01 as the learning rate, and the cross-entropy loss as
the loss function. Finally, the hyperparameter ε for DBSCAN
clustering is set to ε = 0.02 in the MNIST-related system, and
to ε = 0.06 for the CIFAR-10 related system.

Here, we evaluate our solution’s performance in two dif-
ferent settings. In the first setting, we assume statistical and
system heterogeneous environments using different data dis-
tributions, where stragglers and dropouts can exist, but no
attackers, i.e., the ratio of attackers is f = 0%. In the second
setting, we consider f > 0%, with different targeted and un-
targeted attack scenarios. The experimented targeted and un-
targeted attacks are chosen as the label flipping attack and ad-
ditive noise attack, respectively, which are detailed as follows:
� Label flipping attack: It attempts to modify the behavior

of an ML model on a subset of data samples while re-
taining the primary model performance over the whole
testing dataset. Specifically, attackers attempt to com-
pel the model to identify samples with the label “5”
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as images with label “3”, as shown in Fig. 1 (Top-left
rectangle).

� Additive noise attack: During this attack, a malicious
participant contributes with Gaussian noise in its local
model updates in order to degrade the global model’s
accuracy and prevent its convergence, as illustrated in
Fig. 1 (Top-middle rectangle).

The performance metrics evaluated in our system are the FL
accuracy in the absence of malicious participants ( f = 0%),
while under attacks ( f > 0%), we evaluate the attack success
rate, denoted as ASR, and the false positive (FP) and false
negative (FN) ratios of detected attackers. In a targeted attack
scenario, ASRta is defined as the ratio of the number of altered
dataset samples (i.e., those with their label flipped from ‘5’ to
‘3’) incorrectly classified (i.e., classified to anything but ‘5’)
to the total number of samples within the dataset. It can be
written as

ASRta = |Sta|/|S|, (16)

where |Sta| (resp. |S|) is the size of incorrectly classified
data from the attacked class dataset (resp. size of dataset).
Similarly, ASRua for an untargeted attack can be expressed
by

ASRua = |A1 − A2|/A1, (17)

where A1 and A2 are the measured accuracy values under the
scenarios of no attacks and an untargeted attack, respectively.
Moreover, FP denotes the ratio of honest participants wrong-
fully identified as attackers, while FN refers to the ratio of
non-detected attackers.

B. RESULTS AND DISCUSSION
1) SETTING 1 (f = 0)
We evaluate the global accuracy, denoted Ag, of our solution,
and compare it to those of four baseline methods. The first
benchmark is the centralized learning approach, which is a
model training technique characterized by the collection and
processing of all data in a single server. The second base-
line is the random selection scheme of participants, denoted
“Random Selection”, which operates conventionally with FL.
The third baseline, named “Speed-based Selection”, chooses
the fastest participants in terms of data processing time. The
forth approach called “Weight divergence-based Selection”,
defines the weight divergence metric as the distance between
the weights of the local and global models, calculated as

ŵi,r =
∣∣∣∣wi,r − wr−1

wr−1

∣∣∣∣ , ∀i = 1, . . . , NU , (18)

and describes the update drift in non-IID datasets condi-
tions [16], [47]. Specifically, a large weight divergence value
implies that the client’s data has a high non-IIDness degree
compared to other participants, thus it should take part in
more upcoming rounds to reduce this gap and maximize its
accuracy. Moreover, selecting participants with larger weight
divergence values would prevent bias, which is a result of the
global model “drifting” to a client’s local optimizer [48].

FIGURE 4. Global accuracy vs. FL rounds under different data distributions
(MNIST dataset).

In Figs. 4(a) and 5(a), we present the global accuracy
of the aforementioned participants selection methods, under
Distribution 1 scenario, and using the MNIST and CIFAR-
10 datasets, respectively. Accordingly, centralized learning
achieves the best accuracy performance of 98.9% for the
MNIST dataset and 82.4% for the CIFAR-10 dataset after
50 epochs.5 In contrast, the remaining techniques achieve
performances ranging between 90% (random selection) and
96% (proposed solution) for MNIST, while for CIFAR-10
their performances are between 45.03% (random selection)
and 57.5% (proposed solution). The findings indicate that the
convergence and performances of FL, even when optimized,
are below those of centralized learning, as a result of data
non-IIDness.6 In any case, the proposed solution demonstrates
its superiority over the FL baselines.

5Here, the number of rounds represents the number of epochs for central-
ized learning.

6Given that centralized learning is computationally heavy and due to its
very high performance gap with FL techniques, we decide to drop it in the
remaining experiments.
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FIGURE 5. Global accuracy vs. FL rounds under different data distributions
(CIFAR-10 dataset).

TABLE 3. Comparison of Participants Selection Methods in Terms of
Accuracy, Dropout Ratio, and Average Round Time (MNIST Dataset)

The superior performance of our solution is mainly due to
the careful participant selection that guarantees a small num-
ber of dropouts and a small round time, which is not the case
with most baselines. Indeed, through the results of Tables 3
and 4 (Distribution 1), we can see that our solution has the
lowest dropout ratio χd , and the second lowest average round
time τa. “Speed-based Selection” achieves the best τa perfor-
mance since it always selects participants with low processing
times, regardless of their dropout risk. The proposed solution
offers a good trade-off between reliability and convergence
speed while maximizing global accuracy.

TABLE 4. Comparison of Participants Selection Methods in Terms of
Accuracy, Dropout Ratio, and Average Round Time (CIFAR-10 Dataset)

In Figs. 4(b) and 5(b), we extend the performance evalu-
ation to Distribution 2. As noticed, the proposed solution is
robust to highly unbalanced data distribution and achieves
high accuracy, compared to baselines. Also, it convergences
the fastest. Similarly to Distribution 1, the dropout ratio and
average round time are the lowest and second lowest ones as
shown in Tables 3 and 4 (Distribution 2).

2) SETTING 2 (f > 0)
In this setting, and under the data assumption of Distribution
1, we compare our solution to three baselines. First, we use
the previously defined “Random Selection” where malicious
attackers filtering is in place. Then, we define “Random Se-
lection + K-means”, which adds to “Random Selection” a
K-means [49] based clustering defense mechanism to detect
attackers when (15) is applied. The number of clusters is set
to C = 2, in order to distinguish between the non-malicious
and malicious UAVs. Finally, the third baseline is “Oort” [11],
which relies on controlling participation to FL by limiting the
number of participation rounds per UAV to 20. Experiments
have been conducted with attackers ratios (among available
NU = 50 UAVs) f ∈ {10%, 20%, 33%}.

Performance under untargeted attacks: Under additive
noise attacks (untargeted attacks), we evaluate in Figs. 6
and 7 the ASRua performances of the proposed solution and
baselines, given different f ratios, and for the MNIST and
CIFAR-10 systems, respectively. For any f , the proposed
solution (pink lines) achieves the lowest, and thus the best,
performance in terms of attack success rate. Looking into
the subfigures in Fig. 6 (resp. Fig. 7), we notice that our
solution succeeds in keeping the ASRua below 1% (resp.
10%) for most of the time with MNIST (resp. CIFAR-10).
In contrast, all baselines’ performances are worse than that
of our method, for any f . Specifically, “Random Selection”
(blue lines) and “Oort” (red lines) achieve the worst ASRua.
Indeed, since “Oort” eliminates participants through rounds,
at some point, it can improve the ASR performance. How-
ever, since this method does not clearly distinguish between
non-malicious and malicious UAVs, over time, the UAV pool
from which participants are selected is shrinking, thus lead-
ing to degraded performances. In the meanwhile, “Random
Selection + K-means” demonstrates better results than the
previous baselines, but still worse than our solution. More-
over, as f increases, this method demonstrates less robustness.
The poor performance of this method is due to the high FP
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FIGURE 6. Attack success rate vs. FL rounds under untargeted attack
(MNIST dataset).

and FN of attackers’ detection using K-means, thus causing
the non-detection of malicious UAVs and the elimination of
non-malicious UAVs during training. In Tables 5 and 6, we
see that as f increases, FP and FN deteriorate for the bench-
marks, hence leading to worse results. Finally, the obtained
ASRua results for MNIST are better than those for CIFAR-
10, for any method. Indeed, the CIFAR-10-related task is
more complex, thus a stronger data non-IIDness is observed,
leading to the cluster-based selective aggregation being less
efficient.

FIGURE 7. Attack success rate vs. FL rounds under untargeted attack
(CIFAR-10 dataset).

Performance under targeted attacks: Under a targeted at-
tack such as flipping labels of a target class, the accuracy
for that specific class is affected, especially when f is high.
In Figs. 8 and 9, we illustrate the performance, in terms of
ASRta, of the different participant selection methods, for the
MNIST and CIFAR-10-related datasets, respectively. For the
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TABLE 5. Comparison of Participant Selection Methods in Terms of FN, FP,
and global/class Accuracy (MNIST Dataset)

MNIST dataset, our method demonstrates a stable (i.e., ro-
bust) behavior for any f value at performance around 0.2%.
Meanwhile, the benchmarks’ performances are above 2%.
For the CIFAR-10 dataset, the proposed algorithm achieves
ASRta below 1% for f ≤ 10% and around 7% for f > 10%.
Meanwhile, the other approaches realize ASRta above 10%
for any f .

Unlike the benchmarks, the proposed solution is able
to realize correct UAV clustering and efficient malicious
participants elimination, even for high f and complex datasets
such as the CIFAR-10. On the other hand, “Random Selec-
tion + K-means” demonstrated better performances than the
other benchmarks but less than the proposed method and with
instability through rounds. This is due to the randomness in

TABLE 6. Comparison of Participant Selection Methods in Terms of FN, FP,
and global/class Accuracy (CIFAR-10 Dataset)

K-means initialization that affects FP and eliminates non-
malicious participants, as shown in Tables 5 and 6. Finally,
“Oort” demonstrates the worst results, similar to “Random
Selection”, since it does not effectively eliminate malicious
UAVs.

In Tables 5 and 6, we compare the results of the above
solutions in terms of FN, FP, and accuracy, under different
attack scenarios, where targeted and untargeted attacks refer
to the events where the ratio of UAVs f is totally dedicated
to that specific attack, while the targeted+untargeted scenario
means that only f /2 are dedicated for untargeted attacks and
the other f /2 to targeted ones. To be noted that the accuracy
refers to the global accuracy when no or only untargeted at-
tacks are performed, while in scenarios of targeted attack and
targeted+untargeted attack, two accuracy values are presented
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FIGURE 8. Attack success rate vs. FL rounds under targeted attack (MNIST
dataset).

for each f value, where the first (top) refers to the global
accuracy, while the second (bottom) to the accuracy of the
targeted class with the label flipping attack only, i.e., the
classes of the number “5” and “cat” in MNIST and CIFAR-10
experiments, respectively. Accordingly, the use of DBSCAN
in our solution is more efficient in identifying clusters of non-
malicious and malicious participants than “Random selection

FIGURE 9. Attack success rate vs. FL rounds under targeted attack
(CIFAR-10 dataset).

+ K-means” and “Oort” in any scenario. Indeed, due to the
K-means’ sensitivity to outliers and noise, it tends to provide
high FP and FN ratios, in particular at high f values, and
thus the system’s accuracy is impacted. In contrast, DBSCAN
demonstrates stable behavior regardless of the type of attack-
ers, since it is a density-based algorithm. “Oort” provides
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FIGURE 10. Global accuracy vs. ρ and ρ0 (MNIST dataset, Distribution 1).

the worst results as it is not using an efficient mechanism
to mitigate attacks. The impact of both untargeted and tar-
geted attacks have a small impact on the global accuracy
of the proposed solution, while “Random Selection + K-
means” performance significantly degrades with f , compared
to the no attack scenario. Indeed, this method is inefficient
when no attackers are present, thus underperforming, i.e., it
is mis-clustering the UAVs. However, when f > 0, K-means
operates well and thus is able to achieve better results. In
contrast, “Oort” performs very well when no attacks occur, but
its accuracy drastically drops as soon as f > 0. This is mainly
due to its incapability to correctly assess the maliciousness of
participants.

C. DISCUSSION ON HYPERPARAMETERS SENSITIVITY
To enforce a criterion for the minimal contribution from the
participants, we established the reputation threshold ρ and its
maximal value ρ0 as settable coefficients. Participants having
reputations below ρ are not considered in subsequent FL
rounds. In order to understand the impact of the values of
ρ and ρ0, we illustrate in Fig. 10 the achieved global accu-
racy performance as a function of ρ and ρ0, and under the
distribution 1 setting. We notice that the choice of ρ and ρ0

values have a significant impact on the global accuracy Ag.
For instance, a small ρ degrades Ag for any ρ0, which is the
result of a very slow process of unreliable UAVs elimina-
tion. Another negative impact on Ag is the choice of close ρ

and ρ0 values, e.g., ρ = 9 and ρ0 = 10 respectively. In this
case, several UAVs will be eliminated, seen as with very low
reliability scores or falsely being identified as dropouts. In
contrast, a large ρ0 value may lead to clients’ over-selection.
For instance, if a UAV begins as a reliable client before turning
unreliable after a certain number of rounds, it will still have
a high reliability score, which will have a detrimental effect
on the accuracy performance. Therefore, a tradeoff between ρ

and ρ0 is necessary to improve Ag.

VI. CONCLUSION
In this article, we have investigated the problem of participant
selection in FL under the presence of misbehaving UAVs,
by considering straggler, dropout, and malicious participants’
profiles. To reach efficient and reliable FL, we proposed
a novel three-step selection method that sequentially elimi-
nates misbehaving participants, starting with stragglers, then
dropouts, and finally malicious ones. Through experiments,
we demonstrate the superiority of our solution in terms of
accuracy, convergence, average round time, and attack success
rate, compared to baseline methods, and considering different
data distribution among UAVs and under the absence or pres-
ence of malicious nodes. As a future work, we will extend
our investigation on FL to other types of attacks and hetero-
geneous systems, where participants are of different types and
operate under varying constraints.
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