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1. Introduction

Stable power system operations rely on
three key factors: reliability, adequacy,
and security: 1) reliability: this term con-
cerns the consistent supply of electricity;
it ensures that power is delivered without
interruptions, providing a dependable ser-
vice; 2) adequacy: adequacy ensures that
the power system has ample resources
and capacity to meet electricity demand
under normal circumstances and unex-
pected situations, such as equipment fail-
ures or emergencies; it’s about having a
safety net in place; and 3) security: security
involves protecting the power system from
potential failures or blackouts; it encom-
passes strategies and measures to prevent
issues from occurring and to minimize
their impact if they do.

As a result, power system planners and
operators must continually refine their
approaches to maintain the required
reliability, adequacy, and security levels.
These aspects are vital for ensuring
uninterrupted power supply. The concept

of “capacity value” plays a pivotal role in addressing these
challenges, especially when integrating renewable energy
sources into the power system. Capacity value helps evaluate
how effectively renewable sources can contribute to reliability,
adequacy, and security. Consequently, it’s indispensable for
successfully incorporating renewables.[1]

The worldwide energy sector is witnessing incremental rises
in electricity consumption, with an annual growth of a few
percentage points.[2,3] Concurrently, the photovoltaic (PV) sector
experiences substantial annual expansion.[4] The significance of
PV power in sustainable energy solutions has underscored the
critical importance of accurately estimating its capacity value
for effective integration into power systems. However, current
estimation methods are prone to significant errors due to various
factors such as data granularity, forecasting inaccuracies, and the
variability and intermittency inherent in solar energy.[5]

Inconsistencies in the methodologies used to calculate capac-
ity value can lead to divergent outcomes. These inconsistencies
highlight the pressing need for precise estimation to optimize
resource allocation, enhance grid resilience, reduce greenhouse
gas emissions, and facilitate the transition toward a sustainable
energy future.[1] The successful integration of PV modules into
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clean electricity generation hinges on precisely evaluating their
operational efficiency, a critical factor for gauging their capacity
to generate energy.[6] Integrating variable renewable energy sour-
ces, like PV power, into the grid presents challenges, notably in
accurately estimating capacity value. Various methodologies have
been explored, with data quality playing a pivotal role. Research
has also delved into innovative techniques, including integrating
energy-storage and hybrid renewable systems, such as coupling
PV with battery storage.[7]

Research efforts have examined the influence of climate
change, regulatory policies, forecasting improvements, and the
application of machine learning and artificial intelligence (AI)
in capacity value estimation for renewables.[8] Additionally, prob-
abilistic forecasting has emerged as a valuable approach for PV
power forecasting, offering a range of possible outcomes instead
of a single-point prediction.[9] Combined with machine-learning,
metaheuristic optimization techniques can enhance the accuracy
of PV power forecasting models and capacity value estimates by
fine-tuning model parameters to minimize prediction errors.[10]

The research[11] aims to provide policymakers and energy experts
with a streamlined approach to designing solar farms, addressing
the imperative for renewable energy in urban areas. Long-term
planning for solar PV should align with diverse stakeholder
goals. Costa et al.[12] proposes a robust optimization strategy
to optimize the financial surplus between solar PV producers
and consumers, considering uncertainties and stakeholder
actions. Using Singapore as a case study, the article highlights
the necessity of incentives to meet national solar PV installation
targets, cautioning against potential overestimation (20%–30%)
without proper planning.

Recent research has expanded capacity value assessment from
individual power plants to a holistic evaluation of renewable
sources in the power system, considering the system-wide capac-
ity value and the importance of grid flexibility. Moreover, capacity
value now includes other energy services renewables provide,
such as ancillary services.[13]

The coupling of photovoltaics with energy-storage technolo-
gies, particularly battery systems, has shown promise in improv-
ing the capacity value of PV power plants. Energy storage helps
smooth out the variability and intermittency of PV power,
increasing its reliability and, consequently, its capacity value.[14]

The potential of hybrid renewable systems, such as solar wind
storage, has also been explored. These systems utilize the com-
plementary nature of renewable resources and storage technolo-
gies to enhance overall system reliability and capacity value.[7]

Another critical factor is the quality of solar resource data used
in capacity value calculations. High-quality data leads to more
accurate capacity value estimations, enhancing system planning
and operations.[15] Climate change’s impact on renewable energy
availability patterns is also a significant consideration, requiring
integration into capacity value estimation for robust power
system planning.[16]

Accurate forecasting plays a crucial role in enhancing
the capacity value of renewable energy sources. Machine learning
and AI applications are increasingly important in renewable
energy forecasting, leading to more efficient system
operations.[17]

A broader, system-wide perspective in capacity value assess-
ment has gained traction. This approach considers the combined

impact of multiple renewable sources on system reliability, pro-
viding a holistic assessment of their capacity value.[18] Capacity
value extends beyond electricity production, including ancillary
services crucial for maintaining power system stability, such
as frequency regulation and voltage support.[19]

The growing adoption of battery-energy-storage systems cou-
pled with solar photovoltaic plants and their potential as dispatch-
able energy resources and alternatives to conventional peaking
generation are examined in ref.[20] while considering their lim-
itations and capacity saturation at high penetrations. This study
also compares the value of conventional thermal generators with
PV plants. Therefore, the capacity value of renewable energy
sources, particularly PV power, is a critical factor in their integra-
tion into the power grid.

To further extend the current literature, this study delves into
an extensive comparative analysis of six methods for calculating
capacity value, including exact and approximate ones. This
research does not merely provide a comparative analysis but dis-
sects each method under diverse geographical scenarios, thereby
unearthing the unique merits and limitations. This comprehen-
sive approach to analysis offers valuable insights for future
research and practical applications, enhancing the understand-
ing of the intricacies associated with these methods and promot-
ing their appropriate use in various scenarios. The research is
conducted on a well-established test system and investigates
three real-case locations: Belgium, Texas, and California.

Gopi et al.[21] compared various machine-learning approaches
for forecasting solar farm performance and investigated how
weather affects solar farm performance. Incorporating the study
into the literature review would underscore the application of
machine-learning techniques in capacity value prediction and
offer insights into the impact of meteorological conditions on
PV generation. Bi et al.[22] investigate how power is generated
by colocated offshore wind and floating solar farms during high
wind and wave conditions. Simulations consider several varia-
bles and their interactions to predict the stability of solar power
generation. Since the electricity generation changes very little,
the results validate the feasibility of hybrid offshore wind–solar
farms when structural safety is considered. Narasimman et al.[23]

used artificial neural networks to examine a 5MW solar PV
system. Levenberg–Marquardt’s model performance was
satisfactory. The plant’s energy usage, shading losses, and per-
formance under various circumstances were all investigated.
Power reductions and enhanced performance were attained
through optimized tilt angles and appropriate supply manage-
ment. Power growth is enhanced with regular cleaning.

The study also introduces a novel metric called the “Marginal
Moving Average Limited Hours ELCC (Equivalent Load Carrying
Capability) - Based Capacity Value (MMALH).” This metric aims
to address challenges in estimating the capacity value of PV
plants, including data granularity, forecasting, variability, inter-
mittency, and inconsistencies in methodologies. The marginal
moving-average limited hours (MMALHs) method leverages a
restricted number of hours and employs a moving average
approach, improving precision and facilitating better modeling
of PV-generation behavior. This novel approach provides a more
reliable measure of PV plants’ capacity value and effectively
reduces errors associated with traditional capacity value estima-
tion methods.
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To comprehensively analyze capacity value assessment
methods, this study implements case studies examining three
real-world locations— Belgium, Texas, and California. The case
studies rely on actual solar production data from PV farms in
these regions and established reliability test systems for the load
profiles. The generation system model includes conventional
power plants with a defined capacity. Various capacity value esti-
mation techniques are then applied, including accurate methods
like equivalent load-carrying capability (ELCC) and approxima-
tion methods like the capacity factor approach. The results are
carefully analyzed to discern the effectiveness of different tech-
niques across the diverse geographical scenarios encompassed in
the case studies.

A comprehensive examination of prevalent techniques for
estimating the capacity value of PV plants underscores distinct
advantages and limitations, laying the groundwork for develop-
ing innovative approaches. Established methods such as ECP,
equivalent firm power (EFP), and ELCC excel in delivering accu-
rate capacity value assessments but are hindered by their reliance
on extensive data inputs and complex modeling. In contrast,
while computationally simpler, approximation techniques like
Garver, Z, and capacity factor suffer from a lack of precision
and struggle to capture the variability inherent in PV generation.

Our proposed MMALH ELCC methodology is positioned as a
transformative advancement in this landscape. It is designed to
strike a delicate balance between the precision of reliability-based
methods and the computational efficiency of approximation tech-
niques. By strategically selecting representative hours, MMALH
minimizes the demand for extensive datasets, reducing
data dependence and computational complexity. Incorporating
a marginal capacity value calculation ensures accuracy, while
integrating a moving average approach accounts for the variable
nature of PV-generation patterns. In this way, MMALH not only
addresses the limitations inherent in existing methods but also
represents a significant contribution to the field of capacity value
prediction for PV plants. This heightened clarity regarding the
unique attributes of MMALH not only enhances the critical anal-
ysis in the literature review but also underscores our work’s novel
and substantial contributions, providing a more explicit justifica-
tion for the study.

The article is structured as follows. 1) Introduction: an overview
of the capacity value of power plants, with a focus on PV systems;
2) Capacity Value Methods: various existing methods for determin-
ing power plant capacity value are presented; 3) Evaluation of
Existing Methods: comprehensive evaluation of existing methods
through several scenarios and reporting the significant findings
and the shortcomings of existing methods; 4) Proposed Metric:
introduction of a new metric for capacity value; 5) Effectiveness
Evaluation: evaluation of the effectiveness and superiority of the
proposed metric; and 6) Conclusion: a concluding section summa-
rizing the article’s key findings and implications.

2. Various Methods of Power Plant Capacity Value

2.1. Problem Definition

The capacity value of renewable energy power units, including
PV, is essential for evaluating their contribution to system

reliability. Various methods have been proposed to estimate
capacity value, with outcomes ranging from 5% to 95% of maxi-
mum generation capacity.[1] This wide variance in results high-
lights a key challenge with existing capacity value calculation
techniques. While accurate methods like ELCC provide detailed
reliability information, their extensive data requirements lead to
impractical implementation complexity. Approximationmethods
like Garver and Z enable more straightforward computation but
lack precision in modeling variable PV generation. These defi-
ciencies motivate the development of an enhanced PV capacity
value estimation approach that balances accuracy and practical
application. Therefore, the critical limitations in the existing
capacity value metrics are as follows: 1) high data dependence:
methods like ELCC, ECP, and EFP provide accurate assessment
but require extensive input data (e.g., hourly generation profiles),
leading to impractical complexity in large systems; 2) inability to
capture variable PV patterns: approximation techniques like the
Garver, Z method, and capacity factor (CF) offer computational
simplicity but lack precision in modeling the variable and inter-
mittent nature of PV generation; 3) forecasting inaccuracies: reli-
ability indices used for capacity value calculation depend heavily
on forecasted PV-generation data; however, uncertainties and
errors in forecasting PV output lead to incorrect capacity value
estimates; and 4) inconsistent capacity value evolution: existing
methods fail to accurately represent the marginal capacity value
contribution decrease as more PV capacity is added to the
system.

Overall, limitations in prevailing capacity value estimation
methods, including substantial data needs, forecasting inaccura-
cies, and the inability to capture dynamic PV-generation patterns,
lead to significant errors and inconsistencies. This underscores
the need for a refined calculation technique that overcomes these
challenges to support successful PV integration. The following
subsections present the most popular methods in the literature
for evaluating the capacity value.

2.2. Accurate Methods

The most commonly used indicators for evaluating the reliability
of a power system are the loss of load expectation (LOLE) and loss
of load probability (LOLP), which characterize the probability of
load shedding due to the possible outage of a portion of the gen-
eration capacity. They are directly related to the capacity value of
the power units. Based on these indicators, three main methods
have been proposed for determining the capacity value of
photovoltaic power units.

2.2.1. ELCC Method

The ELCC represents the allowable increase in the load level that
can be added to the system without changing the LOLE value
when adding a new power unit. To calculate the ELCC
corresponding to a PV power unit, the LOLP value without
considering the PV unit is calculated using Equation (1):[24]

ε ¼
X
t∈T

pt ¼
X
t∈T

ProbfGt < Ltg (1)
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Then, the PV unit is added to the system. Considering the
variable generation of the PV unit in each hour, it is necessary
to rewrite the capacity outage probability table (COPT) for each
hour. By considering these changes and adding a constant load to
the entire load profile, the new LOLE value of the system is cal-
culated using Equation (2):[9]

εELCC ¼
X
t∈T

ProbfGt þ V t < Lt þ Lg (2)

By changing the constant load added to the load profile (L) in
an iterative process, the constant load value that satisfies
Equation (3) can be obtained:

εELCC ¼ ε (3)

Therefore, the capacity value of the PV power unit is equal to
the load value (L) resulting from Equation (3). It should be noted
that by considering the variable generation of the PV unit, the
uncertainty of solar irradiance is also somewhat included in
the presented model, using multiyear data.[25]

2.2.2. Equivalent Conventional Power (ECP) Method

The ECP of a power unit is the capacity of a conventional power
unit with a defined forced outage rate (FOR) that, if replaced by a
new power unit, will not change the LOLE value.[26] To calculate
the LOLE value with the addition of a PV unit to the system,
Equation (4) is calculated:

εPV ¼
X
t∈T

ProbfGt þ V t < Ltg (4)

Then, the PV unit is replaced with a benchmark unit with an
FOR rate of 5%. The LOLE value is recalculated using
Equation (5):

εB ¼
X
t∈T

ProbfGt þ Bt < Ltg (5)

The nominal capacity of the benchmark unit (Bt) is then
changed in an iterative process to satisfy Equation (6):

εPV ¼ εB (6)

The capacity value of the PV power unit based on the ECP
measure is equal to the nominal capacity of the benchmark
unit.[26]

2.2.3. Equivalent Firm Power (EFP) Method

This method is very similar to the ECP method but has a zero
FOR value for the benchmark unit. Therefore, the PV power unit
is always replaced with an entirely ideal power unit available at all
times.[27]

2.3. Approximation Methods

As the dimensions of the power system increase, exact methods
become very time-consuming, and they also require a large

database to increase their accuracy. Therefore, approximation
methods that use less data and reach a solution faster have been
proposed. The following three common methods are generally
used.

2.3.1. CF Approximation

In this method, the capacity value of a PV unit is approximated by
the average capacity factor or CF of that unit in high-risk inter-
vals. These high-risk intervals can be high LOLP intervals by con-
sidering the generation system without PV or high load intervals.
The standard average CF value can be calculated, or a weighted
average, to give a higher value to the CF for higher-risk hours.
Here, we use the weighted average method. To do this, the sub-
interval T 0 is first selected where the system load is high, and in
these intervals, the value of LOLP is determined. Then, weighted
coefficients are calculated for all study hours according to
Equation (7)[28]:

wt ¼
ptP

τ∈T 0 pτ
(7)

With the aforementioned weighting coefficients, the capacity
value of the PV unit is obtained from Equation (8).
X
τ∈T 0

wτV τ (8)

2.3.2. Garver Approximation Method

Garver has provided an approximation for the LOLP function in
which the LOLP function is approximated by an exponential
function with two parameters, β and γ.[29] As a result, the value
of LOLE for the system without considering the PV unit can be
calculated with Garver approximation as Equation (9):

ε ≈
X
t∈T

β: exp �G� Lt
γ

� �
(9)

Now, if the PV unit is added to the generation system and a
constant load is also added to the entire load profile, the value of
LOLE with Garver approximation is obtained from Equation (10):

εELCC ≈
X
t∈T

β: exp �Gþ V t � Lt � L
γ

� �
(10)

As mentioned in the ELCC-based method, the capacity value
of the PV unit equals a fixed value of load so that the value of
LOLE does not change. The fixed load value is calculated from
Equation (9) and (10) by setting them equal to each other, as
shown in Equation (11):

L ¼ γ: log

P
t∈T exp

Lt
γ

� �
P

t∈T exp
Lt�V t

γ

� �
0
@

1
A (11)

As a result, the value of the capacity of a PV power plant unit is
equal to the calculated load value in Equation (11).
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2.3.3. Z Approximation Method

This method focuses on the difference between the available
production capacity and the load (reserve value) during peak load
hours without considering the PV power plant unit. To explain
this method, we first define the reserved parameter as
Equation (12):

St ¼ Gt � Lt (12)

In a complex power system featuring multiple power plant
units, it is asserted that the variable St follows a Gaussian distri-
bution. Moreover, the relationship between the average (mean)
and the variability (standard deviation) of St serves as a gauge of
the system’s capacity adequacy, denoted as Z according to
Equation (13):

Z ¼ � μS
σS

(13)

Furthermore, the assertion holds that when augmenting
production capacity or introducing additional load into the power
system, while the mean and variance values may alter, we still
observe a Gaussian distribution in which Z remains unchanged.
Consequently, the capacity of a PV power plant unit is equivalent
to the load that needs to be incorporated into the system every
hour to maintain a consistent value of Z. With the addition of a
PV power plant unit and a constant load to the system, the mean
and standard deviation values of St change to μS þ μPV � L andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2S þ σ2PV

p
, respectively. Therefore, to keep Z constant,

Equation (14) must hold

� μS
σS

¼ � μS þ μPV � Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2S þ σ2PV

p (14)

By solving Equation (14), Equation (15) is obtained:

L ¼ μPV þ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2S þ σ2PV

q
� σS

� �
(15)

Consequently, the capacity of a PV power plant unit aligns with
the load calculated in Equation (15). It’s important to highlight that
this method assumes that the distribution of St continues to follow
a Gaussian pattern even with the integration of PV units. This
approach is applicable for power systems with relatively low levels
of PV power plant unit penetration or, in rare instances, when only
a single PV power plant unit is introduced into a production sys-
tem primarily comprising traditional power plant units.

3. Comprehensive Evaluation of Existing Methods

To thoroughly investigate and assess the effectiveness and
limitations of the existing methods, it is imperative to explore
a range of conditions. Additionally, measuring the influence
of diverse conditions and parameters on capacity values is a
crucial aspect of this evaluation. Consequently, a set of distinct
scenarios has been delineated for this purpose. In the forthcom-
ing subsections, we will scrutinize the test system data and sub-
sequently analyze the numerical outcomes.

3.1. Data

3.1.1. Generation System

The generation system of this network includes traditional power
plants with a total production capacity of 3405MW, and the
maintenance schedule is omitted.[30]

3.1.2. PV Power Plant Unit Information

Different scenarios for the PV power plant units have been con-
sidered in this project, including production patterns of a sample
PV power plant unit in Belgium, Texas, and California, as shown
in Figure 1.

3.1.3. Independent Load Profile

Regardless of the peak load, which should be selected according
to the production capacity, the load profile in different regions
differs and will affect the LOLP and capacity value. Therefore,
different load profile scenarios are considered here, including
reliability test system (RTS), electric reliability council of Texas
(ERCOT), and Belgium network load profiles, as shown in
Figure 2.[31,32] RTS and ERCOT are robust and widely recognized
benchmarks for reliability evaluations that were chosen to
enhance the credibility of our study. Specifically, ERCOT and
RTS were selected for their widespread recognition as reliable
benchmarks in the power industry, providing a foundation for
comparisons with existing research and industry standards.
Moreover, we have also chosen the Belgium load profile due
to its significantly different pattern compared to the other load
profiles. This deliberate selection was motivated by our aim to
comprehensively evaluate the capacity assessment methods
under diverse scenarios. Including the Belgium load profile
ensures that our study captures a broad spectrum of potential
challenges and opportunities. This contributes to a more compre-
hensive understanding of the capacity values for PV plants in
various regional contexts.

In all scenarios, the peak load is 2850MW, and the capacity of
the PV unit is 5MW with an emergency outage rate of 0.1%.
Also, in the capacity factor and Z methods, hours with high risk
are selected when the load exceeds 80% of the peak.

3.2. Scenario Generation and Result Analysis

3.2.1. Scenarios Related to Different Environmental and
Geographical Conditions and Analysis of the Results of
Implementing Different Capacity Valuation Methods

In this section, we have generated five scenarios by selecting vari-
ous climatic conditions for load and solar production. We then
applied different capacity valuation methods to these scenarios,
and the results are presented in Table 1. 1) When comparing sce-
narios 1 and 2, it becomes evident that differing solar production
patterns notably influence the capacity value of the PV power
plant unit despite having the same load profile. Figure 1d
illustrates the production pattern of the PV power plant unit
in Belgium and Texas. Notably, the PV power plants in Texas
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Figure 1. Sample solar production in a) Belgium, b) Texas, c) California, and d) comparison of Belgium and Texas.
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Figure 2. Network load profiles in a) RTS, b) ERCOT, and c) Belgium.

Table 1. Results of implementing different capacity valuation methods for different scenarios related to different load and production conditions for a
5MW PV power plant.

Scenario Load PV ELCC [MW] ECP [MW] EFP [MW] Capacity factor [MW] Garver [MW] Z [MW]

1 RTS Belgium 0.37 0.75 0.7 0.642 0.7371 0.934

2 RTS Texas 1.18 2.03 1.95 1.5927 1.6035 1.7876

3 Belgium Belgium 0.74 0.95 0.92 0.6827 0.7146 1.0342

4 ERCOT Texas 2.13 2.07 1.91 2.4493 2.3137 2.059

5 ERCOT California 2.3 1.88 1.8 2.4734 2.3653 2.1931
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exhibit higher overall production levels, and their production
pattern significantly varies from that in Belgium, with more con-
sistent production throughout the year. 2) Although PV power
generation in Belgium is relatively modest, a significant capacity
value increase is observed when comparing scenarios 1 and 3.
This increase is attributed to both scenarios sharing the same
PV power generation conditions and geographical region,
highlighting the interplay between these factors. 3) Upon exami-
nation of all scenarios, it is apparent that most methods exhibit
similar behavior, except for scenario 5. In this case, compared to
scenario 4, the ECP and EFP methods produce contrasting
values. This deviation arises from the distinct calculation techni-
ques employed by these methods. While it is generally expected
that reliability-based methods yield similar values, certain load
and production patterns can lead to outcome differences due
to methodological variations. 4) Across nearly all scenarios,
the values obtained from various methods exhibit remarkable
consistency with minimal divergence. The exception to this trend

is scenario 1, where the ELCC value notably deviates from the
values derived through other methods.

3.2.2. The Effect of PV Unit Capacity

In this section, we investigate the impact of PV capacity on its
capacity value. To achieve this, we maintain consistent load
and PV production conditions while varying only the capacity
of the PV unit. This analysis uses the ERCOT load profile and
PV production data from Texas, resulting in the creation of
the sixth scenario, as detailed in Table 2.

Figure 3a presents the outcomes of applying various capacity
valuation methods to scenario 6. This graph illustrates how the
capacity value of each megawatt (MW) of a PV unit fluctuates in
response to changes in the rated capacity of the PV unit. The
results demonstrate that approximation methods are not highly
affected by changing the rated capacity of PV units, while the

Table 2. Scenario related to analyzing the effect of PV unit capacity on capacity value.

Scenario Load profile Maximum load [MW] PV generation profile PV unit’s FOR [%] PV rated capacity [MW]

6 ERCOT 2850 Texas 0.1 0.1–10

Figure 3. Changes in the value of capacity per megawatt of PV unit with the variation of a) nominal capacity of PV unit and b) the FOR of the PV unit.
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exact methods vary significantly. The overall trend of variation in
exact methods is increasing with the increment in the rated
capacity of PV units. ELCC shows a smoother curve and the
capacity value change rate decreases when the rated capacity
increases. This can be justified as for a specific range of low
values for the rated capacity of PV unit, the capacity value of each
MW of PV unit increases as it has a higher effect on the genera-
tion system.

3.2.3. The Effect of the PV Unit’s FOR

In this section, we maintain the conditions of scenario 6, keeping
the PV unit’s capacity constant at 5 MW. However, we vary its
FOR value to analyze the impact of FOR on its capacity value.
This analysis defines the seventh scenario, as detailed in Table 3.

The result of implementing different capacity valuation meth-
ods for scenario 7 is shown in Figure 3b. As expected, approxi-
mationmethods are not affected by the FOR of the PV unit, while
exact methods show a decreasing trend when the FOR of the PV
unit increases.

3.2.4. The Effect of Peak Load

This section investigates how peak load variations affect the PV
unit’s capacity value. This analysis leads to creating the eighth
scenario, outlined in Table 4.

The result of implementing different capacity valuation
methods for scenario 8 is shown in Figure 4a. It is highly
expected that the capacity value of the PV unit should increase
when the system’s peak load increases. In this case, approxima-
tion methods show an opposite direction, and therefore, their
accuracy when increasing the peak load is significantly low.
However, the exact methods show an increasing trend with
increasing the system’s peak load.

3.2.5. The Effect of Selecting a Peak Period Basis on CF-Based
and Z Methods

The objective of this scenario is to assess the impact of choosing a
specific peak load period on the accuracy of CF-based and Z
methods, both of which rely on calculations made for the peak
load period. This examination results in formulating the ninth
scenario, as presented in Table 5.

By implementing the aforementioned scenario, the changes in
CF-based and Z indicators are shown in Figure 4b, where the

capacity value with the ELCC indicator is also compared. Exact
methods consider all the hours and will not be affected in this
scenario. However, as is seen in Figure 4b, tightening the risky
period considerably affect the capacity value of approximation
methods. It can be understood that as the load profile has a
sharper shape around the peak load and as the timing of peak
load and peak generation of the PV unit aligns more, the capacity
value should increase. However, exact methods cannot accurately
consider the significance of peak load periods in capacity value
evaluation. This can be considered as one of the limitations of the
existing methods.

3.2.6. The Effect of Equipping the PV Unit with a One-Axis and
Two-Axis Solar-Tracking System

In this section, we explore the impact of incorporating a
solar-tracking system, specifically a one-axis and two-axis track-
ing system,[7] on the capacity value of the PV unit. Including such
a system, which optimizes solar radiation capture and subse-
quently boosts power generation, is expected to increase capacity
value. Consequently, we define the tenth scenario, outlined in
Table 6, to assess this effect.

The result of implementing different capacity valuation meth-
ods for scenario 10 is shown in Table 7.

As anticipated, the presence of a solar-tracking system, which
enhances the power generation of a PV unit, indeed leads to an
increase in the unit’s capacity value. This augmentation in capac-
ity value is observed consistently across all six accurate and
approximation methods.

3.3. Effect of Rated Capacity on Capacity Value

In this subsection, we investigate the impact of adding a new
PV unit to the generation system on its capacity value. To
isolate the effect of the unit’s capacity from the variability of
PV generation, we employ scenario 2 within the RTS system,
which has an installed generation capacity of 3405MW and a
yearly peak load of 2850MW. The PV generation pattern for
Texas has been deliberately modified to create a smoother and
more stable generation profile. To mitigate the influence of
variability on this study, we’ve narrowed the maximum differ-
ence between peak and valley generation to 10%. Additionally,
we have chosen to use ELCC to assess the units’ capacity value
for this analysis.

Table 3. Scenario related to analyzing the effect of PV unit’s FOR on capacity value.

Scenario Load profile Maximum load [MW] PV generation profile PV unit’s FOR [%] PV rated capacity [MW]

7 ERCOT 2850 Texas 0–5 5

Table 4. Scenario related to analyzing the effect of peak load amount on capacity value.

Scenario Load profile Maximum load [MW] PV generation profile PV unit’s FOR [%] PV rated capacity [MW]

8 ERCOT 2750–3350 Texas 0.1 5
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3.3.1. Increasing the Capacity as Independent Units

In this section, we systematically adjust the capacity of the new
unit being introduced to the system and calculate the capacity
value for each MW of capacity. This measurement is expressed
as a per-unit ratio of capacity value to capacity. By analyzing the
variations in the capacity value, we aim to discern the influence of
the unit’s capacity on its capacity value. This study is driven by

Table 5. Scenario related to analyzing the effect of selecting a high-risk period on capacity value.

Scenario Load profile Maximum load [MW] PV generation profile PV unit’[s] FOR [%] PV rated capacity [MW] Risky time (% of maximum load)

9 ERCOT 2850 Texas 0.1 5 40–100

Figure 4. Changes in the value of capacity per megawatt of PV unit with the variation of a) peak load and b) the high-risk period.

Table 6. Scenario related to analyzing the effect of the presence of a solar-tracking system on capacity value.

Scenario Load profile Maximum load [MW] PV generation profile PV unit’s FOR [%] PV rated capacity [MW] Risky time (% of maximum load)

10 ERCOT 2850 Texas, fixed, one-axis & 2-axis 0.1 5 80

Table 7. Results of implementing different capacity valuation methods for
scenario 10.

Sun-tracking system ELCC ECP EFP CF Garver

Fixed 2.13 2.07 1.91 2.4493 2.3137

One-axis 2.96 3.19 3.08 3.1136 2.9387

Two-axis 3.15 3.33 3.25 3.2512 3.0717

www.advancedsciencenews.com www.entechnol.de

Energy Technol. 2024, 2301294 2301294 (10 of 20) © 2023 The Authors. Energy Technology published by Wiley-VCH GmbH

 21944296, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ente.202301294 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [06/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.entechnol.de


the primary objective of understanding how the unit’s capacity
level impacts its capacity value.

Changes with Variable Steps and a Wide Range of Values: The
changes, with the unit capacity varying from 0.1 to 5000MW,
are illustrated in Figure 5. The main difference between this
analysis and scenario 6 is that in this scenario, we increased
the range of variation for the rated capacity to see how the
capacity evaluation methods behave with high variation of rated
capacity.

As observed, the per-MW value undergoes distinct trends as
the capacity of the new unit is considered as a percentage of the
existing system capacity: 1) 0.003%–0.03% of the system capac-
ity: a substantial increase in the per-MW value with a steep slope
is evident; 2) 0.03%–0.14% of the system capacity: the increase in
per-MW value continues, albeit with a more gradual slope;
3) 0.14%–20.55% of the system capacity: the per-MW value
remains relatively stable during this range; 4) 20.55%–73.4%
of the system capacity: a decline in the per-MW value is observed;
this behavior aligns with the expectation for decreasing the capac-
ity value when the rated capacity increases to very high values
than the maximum load of the system; and 5) 73.4%–146% of
the system capacity: in this range, a gradual slope characterizes
a slight upturn in the per-MW value; the slight increment in the
capacity value differs from our expectation, and this phenome-
non can be considered another limitation of existing methods.

Changes with Fixed Steps and a Limited Range of Values: Given
that adding units with extremely low capacities (0.1 MW) or units
with capacities close to the existing system capacity is not
practically feasible, we will refine our study by focusing on a
more practical capacity range. To simplify our analysis, we will
consider fixed increments in capacity. Specifically, we will
investigate the capacity range of the PV unit from 1 to
100MW, exploring three distinct scenarios with different step
changes in capacity, as seen in Figure 6.

3.3.2. Adding Sequentially New Units

This section will implement a different approach when adding
new units to the system. For instance, when adding a 10MW
unit, we will do so by sequentially incorporating 1MW units
and measuring the capacity value for each of these newly added
1MW units. Subsequently, we will examine various scenarios
involving the addition of a 100MW unit, considering increments
of 1, 2, and 5MW.

This approach allows us to gain insights into the capacity value
at various stages of capacity addition, offering a more granular
understanding of how different unit sizes affect the outcome.

The following graphs are obtained for these scenarios
(Figure 7).
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Figure 5. Changes in the value of each MW of capacity as the new unit capacity increases with variable steps: a) a general view and b) the initial changes.
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Figure 7 demonstrates that the overall trend of capacity value
variation with adding new units to the generation system is
decreasing. It is justifiable that as new units are added to the
generation system, the need to have more generation capacity
to satisfy the demand with acceptable reliability decreases.
Therefore, the capacity value should also decrease. However,
we can see that high fluctuations also exist in the trends in
Figure 7, which are more than expected. This behavior is another
limitation and shortcoming of the existing methods.

3.4. Discussion and Limitations

In Section 3, we comprehensively evaluated different scenarios to
demonstrate how the capacity value using existing methods
changes in response to variations in different parameters of
the system, including the rated capacity of the PV unit, the
FOR of the PV unit, maximum load of the system, and the risky
period of load profile. Several key findings emerged from this
analysis, which are described as follows: 1) environmental and

0 10 20 30 40 50 60 70 80 90 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

New Unit Capacity [MW]

Pe
rc

en
ta

ge
 o

f C
ap

ac
ity

 V
al

ue

0 10 20 30 40 50 60 70 80 90 100
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

New Unit Capacity [MW]

Pe
rc

en
ta

ge
 o

f C
ap

ac
ity

 V
al

ue

0 10 20 30 40 50 60 70 80 90 100
0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.954

 New Unit Capacity [MW]

Pe
rc

en
ta

ge
 o

f C
ap

ac
ity

 V
al

ue

(a)

(b)

(c)

Figure 6. The changes in the capacity value of eachMW of capacity as the new unit capacity increases with a) 1 MW step, b) 2MW step, and c) 5MW step.
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geographical factors: environmental and geographical condi-
tions, such as solar radiation levels and temperature in the
region, substantially impact the capacity value of PV units; 2) load
profile matching: the degree to which the load profile aligns with
the solar radiation pattern significantly influences capacity value;

3) additional parameters: other factors like PV unit capacity,
FOR, peak load, and the presence of a solar-tracking system were
also investigated; each factor was observed to have a distinct
effect on capacity value; 4) comparison with conventional units:
generally, it was noted that the capacity value of PV power plant
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Figure 7. The changes in the capacity value of each MW of capacity as the a) 1MW, b) 2 MW, and c) 5 MW units are added step by step.
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units, even under optimal conditions, tends to be lower than that
of conventional units that can consistently achieve their desired
production levels; and 5) performance of approximation meth-
ods: across different scenarios combining load profiles and
PV-generation patterns, approximation methods, which rely on
mean and variance values, demonstrated more significant simi-
larity to ELCC than ECP and EFP methods; this resemblance was
especially pronounced when the load and PV-generation profiles
originated from the same geographical area.

In conclusion, when predicting the capacity value of a PV unit
for future generation and load profiles, ELCC exhibited superior
performance compared to ECP and EFP, particularly in scenarios
where load and PV-generation profiles vary over time. ELCC’s
ability to account for the dynamic behavior of both load and
PV generation makes it a more suitable method for such real-
world scenarios.

Moreover, based on the close relationship between the capac-
ity value and reliability indices of the power system, our initial
expectation was that increasing the capacity of the new unit
should result in increasing the capacity value to reach a peak
point and then, for high values of the rated capacity, the capacity
value should decrease or remain unchanged as the rated capacity
increases. Moreover, gradually adding new capacity to the unit
should decrease the overall capacity value. This expectation
was based on the rationale that as the overall capacity of the gen-
eration system increases, there should be less need for additional
generation capacity to meet demand. In essence, when a genera-
tion system possesses a capacity significantly exceeding its peak
load, adding new units would be a limited necessity. Conversely,
in scenarios where the generation system cannot meet demand
during outage scenarios, there would be a more significant
requirement for additional generation capacity. Consequently,
new units in such situations should exhibit a higher capacity
value.

These expectations were rooted in the fundamental relation-
ship between capacity and demand within the context of a gen-
eration system. However, the actual simulations have yielded
results that exhibit more nuanced and complex patterns of
change in capacity values under different conditions, as previ-
ously described. Therefore, the limitations and shortcomings
of the existing methods described in Section 2 are as follows:
1) while approximation methods have less dependency on hourly
data and are less prone to forecasting inaccuracy, they are not
affected by the rated capacity and the FOR of the PV unit; there-
fore, exact methods behave better in presenting the variations of
capacity value; 2) increasing the rated capacity of the PV unit to
high values resulted in the ascending trend of the capacity value,
which is one of the shortcomings of the existing exact methods;
3) while existing exact methods demonstrate the overall descend-
ing trend of the capacity value when new units are added step by
step to the generation system, the fluctuations of the curves are
higher than expected, which is another shortcoming of the exist-
ing exact methods; 4) existing exact methods cannot accurately
reflect the effect of risky periods on the capacity value evaluation
of PV units; and 5) data dependency in existing exact methods is
high such that all hourly data of the generation and load profile
is required to evaluate the capacity value of PV units, which is
another limitation of these methods.

4. Proposed New Metric for Capacity Value

Based on our comprehensive analysis and discussions
concerning various capacity value estimation methods and their
limitations and shortcomings, we propose a new practical capac-
ity value metric that effectively represents the behavior of
PV-generation units and their impact on the reliability of the
generation system.

To formulate this new metric for capacity value estimation, we
need to consider two crucial concepts: 1) forecasting: traditional
methods for assessing capacity value rely on calculating reliability
indices like LOLP based on the system’s hourly generation and
load data; however, capacity value serves as a metric to anticipate
the future value of a unit intended for addition to the generation
system. Given the high uncertainty and variability associated
with PV generation, accurately estimating the hourly generation
of a PV power plant often results in low accuracy. Consequently,
even accurate capacity value estimation techniques can contain
inherent inaccuracies due to the challenging task of hourly esti-
mation; and 2) capacity value behavior: as elucidated in previous
sections, among the accurate methods, ELCC demonstrates bet-
ter modeling of the variable behavior of PV generation; however,
this method has several shortcomings, as explained in
Section 3.4.

Taking these considerations into account, we propose a new
capacity value metric that incorporates both forecasting and
capacity value behavior, enabling a more accurate representation
of the future value of PV-generation units within the generation
system. This metric addresses the limitations associated with tra-
ditional capacity value estimation methods and provides a more
reliable assessment of PV unit contributions to system reliability.

To address the issue of inaccurate forecasting, we propose a
method that involves considering a limited number of hours
when calculating the capacity value. Instead of analyzing all
8760 h a year, we model each day with 6 h strategically selected
to represent different demand and PV-generation conditions. For
each of these hours, estimating the maximum, minimum, and
average values of demand and PV generation is necessary. This
approach results in higher estimation accuracy than estimating
all hourly values of demand and PV generation.

Additionally, to align with the second concept and the
observed behavior of capacity value, we calculate a unit’s mar-
ginal moving average capacity value as it is added to the system.
This approach enables us to capture the capacity value changes
associated with incremental additions of PV units.

Therefore, we propose a novel metric called “Marginal Moving
Average Limited Hours ELCC-Based Capacity Value (MMALH).”
This metric involves breaking down the rated capacity of a PV
unit into smaller increments and then calculating the moving
average of the capacity value as these smaller units are progres-
sively added to the generation system. To assess the capacity
value at each of these incremental steps, we utilize a modified
ELCCmethod. This approach allows us to obtain a more accurate
representation of the capacity value of PV units while consider-
ing limited hours and incremental additions.

To calculate the modified ELCC corresponding to a PV power
unit, the LOLP value without considering the PV unit is
calculated using Equation (16):
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ε ¼
X
t∈T

pt ¼
X
t∈T

ProbfGt < Ltg (16)

where T is the subset of hours in which the three off-peak, peak,
and average values of the daily demand and the three peak, valley,
and average values of the daily PV generation are happening.

Then, the PV unit is added to the system. Considering the var-
iable generation of the PV unit in the three specific hours of a
day, it is necessary to rewrite the COPT for each of the six critical
hours mentioned earlier. Considering these changes and adding
a constant load to the entire load profile, the new LOLE value of
the system is calculated using Equation (17).

εModified ELCC ¼
X
t∈T

ProbfGt þ V t < Lt þ Lg (17)

changing the constant load added to the load profile (L) in an
iterative process, the constant load value that satisfies
Equation (18) can be obtained:

εModified ELCC ¼ ε (18)

Therefore, the capacity value of the PV power unit is equal to
the load value (L) resulting from Equation (18). Based on the
modified ELCC method proposed here, the flowchart for calcu-
lating the MMALH capacity value is shown in Figure 8. Based on
the proposed flowchart, for each of the smaller units of the
original PV unit, the capacity value of adding this unit to the base
generation system based on the proposed modified ELCC is
evaluated, and the moving average value of the capacity values
up to this point is determined as MMALH capacity value.
Finally, the ultimate marginal capacity value of adding this unit
to the generation system is obtained as Equation (19):

MMALH� CV ¼ n�MMALHn (19)

In Equation (19), the final capacity value of the PV unit is cal-
culated based on its rated capacity.

The MMALH metric has significant practical utility for real-
world planning and operation of PV plants. The MMALH
approach enables system operators and planners to make better
decisions regarding PV expansion and integration by accurately
assessing a PV plant’s marginal capacity value. For instance, the
metric can inform optimal PV siting and sizing to extract maxi-
mum capacity value based on geographical factors and load pro-
file alignment. During operations, MMALH provides a tool to
assess the impacts of PV-forecasting improvements and predict
the capacity value of potential PV additions. This allows balanc-
ing PV-penetration levels to maintain adequate system reliability
and capacity. The proposed MMALH metric delivers a practical
tool for PV plant design, planning, and operations to maximize
PV penetration without compromising system security.

In the context of this research article, the MMALHs ELCC-
based capacity value is a new metric proposed to estimate the
capacity value of PV plants. It considers factors such as genera-
tion adequacy, limited operating hours, and moving averages to
represent the capacity value pattern accurately. The limitations
and challenges faced during the case studies conducted in
Belgium, Texas, and California include factors such as data avail-
ability, data quality, and the representativeness of the selected

locations. In addition to improving capacity value assessment
accuracy, the suggested metric clears the path for well-informed
decision-making procedures to enable the smooth integration of
solar energy into the grid. The advancement of renewable energy
is accelerated by the validation of the metric through real-world
case studies. By reducing the dependency on fossil fuels, this
research contributes significantly to mitigating the adverse
effects of climate change and global warming, thereby improving
the quality of life on our planet.

5. Effectiveness Evaluation of the Proposed
Metric

In this section, we conduct several analyses to evaluate the
effectiveness of the new metric proposed in Section 4.

Figure 8. The flowchart of calculating marginal moving average
limited-hours capacity value.
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5.1. Comparison with Existing Methods

This analysis compares the capacity value obtained by our
proposed and existing methods. The load profile of ERCOT
and the PV generation of Texas are considering the specific
6 h of each day in the case study. The PV unit’s rated capacity
is 10MW, and a one-axis solar-tracking system is included.
The result of comparing the capacity value of this unit is illus-
trated in Figure 9.

Figure 9 illustrates that the result of the proposed metric is
very close to other metrics. However, based on the definition
of the ELCC approach, the proposed method belongs to the accu-
rate methods category with less dependency on the total hourly
data of a year. Therefore, for long-term planning of the power
system, it can better estimate the capacity value of a PV unit
added to the system. Furthermore, due to the intrinsic nature
of this metric, which calculates the marginal moving average
capacity value, it is well-suited to effectively capture the trend
of capacity value decreasing as the generation system’s capacity
increases. This aligns with the expected behavior of capacity
value as the generation capacity grows.

5.2. Adding a New Unit Gradually and Calculating the Capacity
Valueas a Moving Average

In this section, we intend to compare the results obtained in
Section 3.3.2 with those from using our proposed metric. To bet-
ter compare, we use all the hours for calculating Marginal
Moving-Average Limited-Hours Capacity Value (MMALH-CV).
Therefore, when adding a new unit at each step, we calculate
the average capacity value as a moving average. This means
we compute and display the average capacity value for the added

units up to that point at each step. The results are illustrated in
Figure 10.

Combining the results using our proposed metric and
the results obtained from the existing ELCC method in
Section 3.3.2 can better demonstrate the effectiveness of our pro-
posed metric to reflect the descending behavior of capacity value
when new units are added sequentially to the generation system.
This comparison is demonstrated in Figure 11.

To demonstrate the superiority of our proposed MMALH-CV,
we also conducted this analysis for 2MW steps using a limited
6 h daily, as described in Section 4. The result is shown in
Figure 12.

Figure 12 clearly shows that considering limited hours of the
load and generation profile results in a very close capacity value to
considering all the hours. Moreover, our proposed MMALH
capacity value metric demonstrates a smoother trend in the vari-
ation of capacity value, which aligns better with our expectation
of having a descending trend for the capacity value when new
units are added sequentially to the generation system.

5.3. Increasing the Capacity as Independent Units with a
Wide Range

To evaluate the effectiveness of our proposed MMALH-CV com-
pared to the existing methods regarding the second limitation
described in Section 4.3, a similar scenario to Section 3.3.1.1
is considered using our proposed method. Figure 13 demon-
strates how the capacity value using MMALH changes when
the capacity of the new PV power plant changes from 0.1 to
5000MW.

Figure 13 demonstrates that our proposed method overcomes
the existing method’s limitations, and the descending trend
continues to happen even for high values of rated capacity.

Figure 9. Comparing the results of different metrics for capacity value.
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6. Conclusion

This research article comprehensively analyzes existing methods
for evaluating the capacity value of PV units and highlights their
limitations and shortcomings. The wide variance in results

obtained from different methods emphasizes the critical chal-
lenge of accurately calculating capacity value. The existing meth-
ods either require extensive data and suffer from impractical
complexity or approximate the capacity value but fail to capture
the variable nature of PV generation. Additionally, forecasting
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Figure 10. The changes in the moving average capacity value of each MW of capacity as the a) 1MW, b) 2 MW, and c) 5MW units are added step by step.
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inaccuracies and inconsistent capacity value evolution further
hinder the effectiveness of these methods.

The article proposes a new metric called the MMALHs ELCC-
based capacity value to overcome these limitations. This metric
reduces the reliance on extensive data while providing a more
accurate representation of capacity value behavior. Real-world
case studies conducted in Belgium, Texas, and California validate
the effectiveness of this proposed metric. This research
recommends maximizing the capacity utilization factor through
optimized design, advanced tracking systems, improved mainte-
nance practices, and effective grid integration to enhance the
performance of solar plants. Continuous monitoring and analy-
sis of the utilization factor are essential for identifying areas for
improvement and increasing overall productivity. By addressing
the limitations of existing methods and introducing the MMALH
approach, this research contributes to a better understanding and
assessment of capacity value in PV power systems.

Potential future works can be aligned with the following
recommendations 1) Expansion planning: in expansion
planning, it is recommended to focus on robust modeling and
analysis to accurately determine the capacity value of energy
sources. Additionally, integrating renewable energy sources,
designing appropriate market mechanisms, promoting techno-
logical innovation, and establishing supportive policies are
essential for maximizing capacity value and ensuring a reliable
electricity system. 2) Quantum computing integration: quantum
computing holds immense potential for revolutionizing various
fields, including energy and renewable technologies. In the
context of PV farms, integrating quantum computing can offer
significant advancements in capacity estimation, optimization,
and simulation. Future research should explore the application
of quantum algorithms and machine-learning techniques to
enhance capacity value estimation, optimize PV farm layouts,
and improve overall system efficiency.
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Figure 11. Comparing the charts of Section 3.1.2, 3.3.2, and 5.2.

Figure 12. Comparing the results of moving average capacity considering all hours and limited hours.
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Nomenclature

T Study time interval [h]

T Limited-hours time interval [h]

Gt Available conventional generation capacity at time t [MW]

G Installed nominal conventional generation capacity [MW]

V t PV unit production at time t [MW]

μPV Average hourly PV production [MW]

σPV The standard deviation of hourly PV production [MW]

ε Loss of load expectation (LOLE) value of the system without PV [h year�1]

εPV LOLE value with the addition of PV [h year�1]

V The nominal capacity of PV unit [MW]

Lt Load level at time t [MW]

μS Average St [MW]

σS The standard deviation of St [MW]

Bt The nominal capacity of the benchmark unit at time t [MW]

pt Probability of load loss at time t

εELCC LOLE value with the addition of PV and load [h year�1]

εB LOLE value with the addition of the benchmark unit [h year�1]
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