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Abstract 

This paper presents a mass-spring model to predict the normal incidence acoustic response of a 

metamaterial composed of a compact linear periodic array of dead-end resonators.  The dead-end 

resonators considered are ring-shaped Helmholtz resonators.  The model is based on a mass-spring 

analogy and considers the thermoviscous losses in the metamaterial following an effective fluid 

approach.   A matrix equation of acoustic motion is derived for the finite case of N-periodic arrays.  

Under external excitation, its direct solution predicts the sound absorption coefficient and 

transmission loss.  Under the homogeneous case, the solution of its associated eigenvalue problem 

predicts the acoustic eigenfrequencies and mode shapes.  The dispersion relation is also solved to 

predict the beginning of the first stopband, and a low frequency approximation allows developing a 

formula to estimate the first eigenfrequency.  The results show that the system with N degrees-of-

freedom has three stopbands over the frequency range studied, with zero sound absorption and 

transmission.  The model also helps to understand how the acoustic dissipation, at a given resonant 

frequency, is affected by the position of the acoustic velocity nodes (eigenmodes) in the geometry of 

the metamaterial.  Prototypes are designed, manufactured, and tested in an impedance tube to validate 

the model. 
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I. INTRODUCTION  1 

Conventional acoustic materials, such as porous materials and resonators, are sometimes not 2 

suitable for noise mitigation at low frequencies.  Indeed, at these frequencies, they may require a 3 

significant thickness to obtain good acoustic properties (sound absorption and/or sound transmission 4 

loss).  Research is moving towards new solutions such as subwavelength acoustic metamaterials. When 5 

properly engineered, subwavelength acoustic metamaterials have good acoustic properties at small 6 

thickness-to-wavelength ratios; generally smaller than 1/10, even 1/100, against 1/5 for conventional 7 

materials.  Different types of acoustic metamaterials exist such as membrane-type1, structured 8 

resonators2–4, surface arrangements4–6 or dead-end periodic structures7,8. Dead-end (DE) structures are 9 

composed of a main pore with a periodic arrangement of lateral resonators. The periodic arrangement 10 

of DE is responsible for the effective increase in air compressibility in the main pore7.  Due to this 11 

increase, the effective celerity is decreased as well as the resonance frequencies of the material. 12 

Following this principle, these materials are also known as “slow sound materials”8. 13 

The first studies of these periodic DE materials focused on straight quarter-wavelength resonators 14 

as the DE structures7–9.  Also, side branch Helmholtz resonators were used as DE resonators10,11.  In 15 

another way, Dupont et al.12 proposed to use ring-shaped cavities around the main pore as DE 16 

resonators.  Such a resonator is the equivalent of an axisymmetric quarter-wavelength resonator. It 17 

will be called hereafter quarter-wavelength annular resonator.  Linear periodic arrangements of these 18 

DE resonators were the subject of other studies: Brooke et al.13 investigated the nonlinear response 19 

of these materials at high sound pressure level, while numerical modelling was done to effectively 20 

consider thermo-viscous losses in the metamaterial14.  21 

In this paper, a variant of the ring-shaped quarter-wavelength annular resonator is studied.  It is 22 

an annular (or ring-shaped) Helmholtz resonator (AHR).  It is formed by an annular neck connected 23 
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to an annular cavity. Therefore, the whole material is composed of a compact linear periodic array of 24 

AHR along a main central cylindrical pore. This metamaterial will be called multi-AHR.  25 

To study periodic DE materials, transfer matrix method is commonly used7,10–12.  However, it does 26 

not allow a simple visualization of the phenomena involved, nor to make a detailed analysis of the 27 

eigenfrequencies and mode shapes. For this purpose, a mass-spring model, based on a mechanical 28 

analogy, is proposed.  Mass-spring models are largely used in acoustics to describe Helmholtz 29 

resonators with one or more degrees of freedoms2,15–18.  Periodic mass-spring systems are similar to 30 

one-dimensional monatomic harmonic crystals that have been studied for a long time19. The aim of 31 

this article is to show that previous works on this topic can be transposed to acoustic DE structures 32 

with a view to study their propagation behaviors, their dispersion relations, their stopbands, and their 33 

natural frequencies and mode shapes. Moreover, a simple formula is derived from the mass-spring 34 

analogy to predict the first eigenvalue of the studied metamaterial. Finally, an original mapping of the 35 

mass displacement according to the frequencies and the position of the masses is proposed to analyze 36 

the complexity of the acoustic phenomena (propagation of the sound, resonances, stopbands and 37 

modes) underlying the metamaterial. 38 

The present paper is organized as follows. In Sec. II, the studied geometry is presented. Sec. III 39 

presents the model to determine the surface acoustic impedance of an AHR.  In Sec. IV, the complete 40 

mass-spring model of the metamaterial is presented.  It is shown how this model can be transposed 41 

to a global transfer matrix. Also, the non-dissipative eigenvalue problem is presented, and a simple 42 

expression for the first natural frequency is derived.  Sec. V presents the validation of the developed 43 

model against experimental impedance tube tests and predictions obtained by another modeling 44 

method. Then the sound propagation through the metamaterial is studied. Note that some of the 45 

developments presented below were presented in the form of a conference paper20. 46 
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II. MATERIALS 47 

The proposed metamaterial is composed of a compact linear array of periodic unit cell (PUC), see 48 

Fig. 1(a). A PUC is composed of a pore , a junction , and a DE resonator (here an AHR, neck  49 

and cavity ). Fig. 1(b) shows a photo of the manufactured axisymmetric multi-AHR sample. For the 50 

experimental part, the samples of the proposed metamaterial is composed of several stackable 51 

elements which have been manufactured in aluminum 6061-T6. A 0.45-mm chamfer is present on the 52 

contour of the cells to facilitate their assembly and reduce acoustic leaks. The geometry has been 53 

designed so that the aluminum plate between cavities  is 1-mm thick. Note that the first and last 54 

circular pores are shorter than the inner pores.  The length of the first and last pores is 𝑙𝑒𝑛𝑑 = 1.5 mm. 55 

The length of the inner pores is 𝑙𝑝 = 2 mm.  The radius of all the pores (viewed as the central main 56 

pore) is 𝑟𝑝 = 2 mm.  The neck of an AHR starts at 𝑟𝑝 and ends at 𝑟𝑛 = 3 mm with an annular neck 57 

thickness of ℎ𝑛 = 1 mm. The AHR cavity ends at radius 𝑟𝑐 = 21 mm and its thickness is ℎ𝑐 = 2 mm. 58 

The number of cells is 𝑁 = 10, for a total length of 31 mm. The sample radius is 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 = 22.22 59 

mm.  The geometric parameters of the sample are summarized in TABLE I.   60 
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  61 

FIG. 1. (color online). (a) Schematic of the axisymmetric sectional view. The dashed black line is 62 

the contour of the plane defining the fluid of revolution of the PUC for the mass-spring model of 63 

Sec. IV.  The bold green line is the contour of the plane defining the fluid of revolution of the PUC 64 

for the hybrid approach of Sec. V.A.  The thick colored lines are idealized representations of the 65 

acoustic boundary layers where thermal and viscous losses appear in the annular Helmholtz resonator 66 

(red) and in the main pore (blue). (b) Photo of the manufactured multi-annular Helmholtz resonators 67 

sample.  68 

TABLE I. Dimensions of the main parameters of multi-annular Helmholtz resonators sample. 69 

Geometric parameters 𝑙𝑒𝑛𝑑  𝑙𝑝  𝑟𝑝  𝑟𝑛  ℎ𝑛  𝑟𝑐  ℎ𝑐  𝑟𝑠𝑎𝑚𝑝𝑙𝑒   

Sample (mm) 1.5 1 2 3 1 21 2 22.22  
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III. ANNULAR HELMHOLTZ RESONATOR 70 

An AHR is composed of two thin concentric rings aligned and of different thicknesses, identified 71 

as  and  in Fig. 1(b). The subscript 𝑛 refers to neck and 𝑐 to cavity. An AHR is supposed to be 72 

thin (i.e., small thickness-to-radius ratio ℎ𝑐 𝑟𝑐⁄   ) in a way that only radial propagation is considered.  73 

The wave equation for a one-dimensional concentric radial wave is given by21 74 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕Ψ

𝜕𝑟
) −

1

𝑐2

𝜕2Ψ

𝜕𝑡2 = 0, (1) 75 

where 𝑟 is the radial coordinate, Ψ the acoustic pressure, and 𝑐 is the sound speed.   Each part of the 76 

AHR (neck and cavity) is considered as a different media with its own solution of Eq. (1).  The air 77 

saturating both parts of the AHR has effective fluid properties. These effective properties make it 78 

possible to consider the thermal and viscous losses which occur in the acoustic boundary layers along 79 

the walls which are perpendicular to the wavefronts in the AHR. As thicknesses ℎ𝑐 and ℎ𝑛 are small, 80 

the neck and the cavity are considered as slits. The parameters of the representative slits are given in 81 

TABLE II. Also, harmonic regime is assumed, Ψ(𝑟, 𝑡) = 𝑝(𝑟)𝑒𝑗𝜔𝑡, with 𝑡 the time and 𝑗2 = −1. 82 

The acoustic pressure in the neck (𝑠 =  𝑛) and cavity (𝑠 =  𝑐) can be expressed as  83 

 𝑝𝑠(𝑟) = 𝐴𝑠J0(𝑘s𝑟) + 𝐵𝑠Y0(𝑘𝑠𝑟), (2) 84 

where J𝑚 and Y𝑚 are respectively Bessel functions of the first and second kind of order 𝑚, 𝐴𝑠 and 𝐵𝑠 85 

represent the amplitudes of the diverging and converging pressure waves respectively, 𝑘𝑠 is the 86 

effective wave number of the air in the neck or cavity determined by the JCA model.  87 
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TABLE II. Parameters of the Johnson-Champoux-Allard model for circular pores (main pore) 88 

and slits (AHR: neck and cavity). In the table, 𝜂 is the dynamic viscosity of air, 𝑟𝑝 is the radius of the 89 

main pore and ℎ𝑠 the thickness of the annular neck (𝑠 =  𝑛) and cavity (𝑠 =  𝑐). 90 

JCA parameter Units Circular pore Slits 

Porosity  1 1 

Tortuosity  1 1 

Viscous characteristic length m 𝑟𝑝  ℎ𝑠  

Thermal characteristic length m 𝑟𝑝  ℎ𝑠  

Static airflow resistivity Pa·s/m² 
8𝜂

𝑟𝑝2  
12𝜂

ℎ𝑠
2   

    

The radial acoustic velocity is obtained using the one-dimensional Euler linearized equation with 91 

cylindrical coordinates, −
𝜕𝑝(𝑟,𝑡)

𝜕𝑟
= 𝜌

𝜕𝑣(𝑟,𝑡)

𝜕𝑡
, and is equal to  92 

 𝑣𝑠(𝑟) = −
𝑗

𝑍𝑠
[𝐴𝑠J1(𝑘𝑠𝑟) + 𝐵𝑠Y1(𝑘𝑠𝑟)]. (3) 93 

where  𝑍𝑠 is the effective characteristic impedance of the air in the neck or cavity determined by the 94 

JCA model. 95 

All AHR boundary walls are supposed rigid and perfectly reflective. This imposes the acoustic 96 

velocity to be zero at 𝑟 = 𝑟𝑐. Applying this boundary condition for the cavity on Eq. (3) gives  97 

 𝐵𝑐 = −𝐴𝑐
J1(𝑘𝑐𝑟𝑐)

Y1(𝑘𝑐𝑟𝑐)
. (4) 98 

The surface impedance at the entrance of the annular cavity is determined by substituting Eq. (4) 99 

into Eqs. (2) and (3) at 𝑟 = 𝑟𝑛.  This yields 100 
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 𝑍𝑆,𝑐 =
𝑝𝑐(𝑟𝑛)

𝑣𝑐(𝑟𝑛)
= 𝑗𝑍𝑐

J0(𝑘𝑐𝑟𝑛)−
J1(𝑘𝑐 𝑟𝑐)

Y1(𝑘𝑐 𝑟𝑐)
Y0(𝑘𝑐𝑟𝑛)

J1(𝑘𝑐𝑟𝑛)−
J1(𝑘𝑐 𝑟𝑐)

Y1(𝑘𝑐 𝑟𝑐)
Y1(𝑘𝑐𝑟𝑛)

. (5) 101 

The continuity of pressure and flow at the interface between the annular neck and cavity at 𝑟 = 𝑟𝑛 102 

leads to  103 

 
𝑝𝑛(𝑟𝑛)

𝑆𝑛𝑣𝑛(𝑟𝑛)
=

𝑍𝑆,c

𝑆𝑐
, (6) 104 

where 𝑆𝑛 = 2𝜋𝑟𝑛ℎ𝑛 and 𝑆𝑐 = 2𝜋𝑟𝑛ℎ𝑐 are the cylindrical surfaces of the annular neck and cavity at 105 

𝑟𝑛.  Substituting Eqs. (2) and (3) into Eq. (6) gives   106 

 𝑗𝑍𝑛
𝐴𝑛J0(𝑘𝑛𝑟𝑛)+𝐵𝑛Y0(𝑘𝑛𝑟𝑛)

𝐴𝑛J1(𝑘𝑛𝑟𝑛)+𝐵𝑛Y1(𝑘𝑛𝑟𝑛)
=

ℎ𝑛

ℎ𝑐
𝑍𝑆,𝑐. (7) 107 

By rearranging Eq. (7), the ratio between both amplitudes 𝐴𝑛 and 𝐵𝑛 can be expressed as  108 

 𝛶 =
𝐵𝑛

𝐴𝑛
=

ℎ𝑛
ℎ𝑐

𝑍𝑆,𝑐
𝑗𝑍𝑛

J1(𝑘𝑛𝑟𝑛)− J0(𝑘𝑛𝑟𝑛)

Y0(𝑘𝑛𝑟𝑛)−
ℎ𝑛
ℎ𝑐

𝑍𝑆,𝑐
𝑗𝑍𝑛

Y1(𝑘𝑛𝑟𝑛)
. (8) 109 

Now, the surface impedance of an AHR (or at the entrance of the annular neck) is obtained from Eq. 110 

(2) and Eq. (3). It is given by 111 

 𝑍𝑆,𝐴𝐻𝑅 =
𝑝𝑛(𝑟𝑝)

𝑣𝑛(𝑟𝑝)
= 𝑗𝑍𝑛

J0(𝑘𝑛𝑟𝑝)+𝛶Y0(𝑘𝑛𝑟𝑝)

J1(𝑘𝑛𝑟𝑝)+𝛶Y1(𝑘𝑛𝑟𝑝)
. (9) 112 

𝑍𝑆,𝐴𝐻𝑅 is the input impedance of an AHR seen by the main pore. Subsequently, this impedance will 113 

be used in the mass-spring model described in the next section. 114 

IV. MASS-SPRING MODEL FOR A METAMATERIAL 115 

Previous research has shown that periodic DE metamaterials can be modeled using the lumped 116 

parameter model7,12. The lumped parameter model is generally used with the transfer matrix 117 

formulation which gives good agreement with experimental results. However, the transfer matrix 118 

method does not allow to give a simple interpretation of the acoustical behavior of a metamaterial, 119 

nor to extract analytic formulas of its natural frequencies. For this purpose, the lumped parameter 120 
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model is employed following a mass-spring analogy.   A mass-spring representation of the PUC shown 121 

in Fig.1(b) is depicted in Fig. 2. 122 

 123 

FIG. 2. (color online). Mass-spring representation at junction 𝑖 of the PUC shown in Fig. 1(b). 124 

A. Mass-spring model 125 

1. The lumped model 126 

In a mass-spring analogy, each pore is represented by a corresponding equivalent mass. That is 127 

verified if the effective wavelength of a pore is much smaller than its length. To consider viscous 128 

losses, the air density is replaced by an effective density of the corresponding pore. The effective 129 

density is given by the JCA model for a cylindrical pore with the parameters given in TABLE II. Note 130 

that the term “equivalent” refers to a lumped property of the mass-spring system (mass for a pore, 131 

stiffness for a cavity), while the term “effective” refers to the properties of the air saturating a 132 

component of the metamaterial (i.e.: pore, neck, or cavity). The equivalent mass of the 𝑖th pore is  133 

 𝑀𝑒𝑞,𝑖 = 𝜌𝑝𝐴𝑝𝑙𝑖, (10) 134 

where 𝜌𝑝 is the effective density of the air in the pore, 𝐴𝑝 = 𝜋𝑟𝑝
2 is the pore cross-sectional area,  𝑙𝑖 =135 

𝑙𝑝
′  for 2 ≤ 𝑖 ≤ 𝑁, and 𝑙𝑖 = 𝑙𝑒𝑛𝑑

′  for 𝑖 = 1 and 𝑖 = 𝑁 + 1.  It is worth mentioning that 𝑙𝑝
′ , respectively 136 

𝑙𝑒𝑛𝑑
′ , is the corrected length to account for radiation effect on both sides of each inner pore, 137 

respectively end pore. From the inner side, an end pore radiates into an AHR cavity, and from the 138 
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other side it radiates into the exterior medium.  For the exterior medium radiation, the length 139 

correction is calculated by the method proposed by Karal22, 𝑙𝐾𝑎𝑟𝑎𝑙. For the inner side, where a pore 140 

radiates into an AHR, the geometry studied is outside the limits of the formulas of length correction 141 

given by Karal22 and Ingard23.  In fact, their formulas predict a length correction greater than the 142 

distance ℎ𝑛 between two consecutive pores.  With this observation, an intuitive and logical approach 143 

is that the maximum end correction should not exceed half the distance between two pores.  Thus, 144 

the author proposes to use the corrected length 𝑙𝑝
′ = 𝑙𝑝 + ℎ𝑛 for the inner pores and 𝑙𝑒𝑛𝑑

′ =145 

𝑙𝑒𝑛𝑑 + 𝑙𝐾𝑎𝑟𝑎𝑙 +
ℎ𝑛

2
 for the exterior pores.  For the geometry described in the previous section and 146 

inserted in an impedance tube of the same radius 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 as the metamaterial sample,  𝑙𝑝
′ = 3.0 mm 147 

and 𝑙𝑒𝑛𝑑
′ = 3.5 mm.  148 

Applying Newton’s second law on the first pore, 𝑖 = 1, the equation of motion is 149 

 𝑀𝑒𝑞,1
𝜕2𝑥1

𝜕𝑡2 = −𝑝1𝐴𝑝 + 𝐴𝑝𝑃1, (11) 150 

where 𝑥1 is the acoustic displacement relative to the first mass, 𝑝1 is the acoustic pressure at the first 151 

junction (identified as  in Fig. 1(b)), and 𝑃1 is the total acoustic pressure at the input of the 152 

metamaterial. Similarly, applying Newton’s second law on the inner pores, 2 ≤ 𝑖 ≤ 𝑁, the equation 153 

of motion is  154 

 𝑀𝑒𝑞,𝑖
𝜕2𝑥𝑖

𝜕𝑡2 = −𝑝𝑖𝐴𝑝 + 𝑝𝑖−1𝐴𝑝, (12) 155 

where 𝑥𝑖 is the acoustic displacement of mass 𝑖, 𝑝𝑖 and 𝑝𝑖−1 the acoustic pressures at junctions 𝑖 and 156 

𝑖 − 1. Finally, applying Newton’s second law on the last pore, 𝑖 = 𝑁 + 1, the equation of motion is 157 

 𝑀𝑒𝑞,𝑁+1
𝜕2𝑥𝑁+1

𝜕𝑡2 = 𝑝𝑁𝐴𝑝 − 𝐴𝑝𝑃𝑁+1,  (13) 158 

where 𝑃𝑁+1 is the total acoustic pressure at the exit of the metamaterial. 159 
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To solve the equations of motion, the pressures before and after a junction need to be determined. 160 

Inside the junction, the pressure is assumed to be constant, and the losses are negligible compared to 161 

that of the cavities and pores. The pressure at any junction 𝑖 can be written as24 162 

 𝑝𝑖 = −𝜌0𝑐0
2 Δ𝑉𝐽

𝑉𝐽
, (14) 163 

where 𝜌0 and  𝑐0 are the adiabatic density and sound speed of the air in the junction, Δ𝑉𝐽 is the 164 

variation of the junction volume, and 𝑉𝐽 = 𝐴𝑝ℎ𝑛 is the junction volume.  The variation of volume at 165 

junction 𝑖 can be expressed as  166 

 Δ𝑉𝐽 = −𝑥𝑖𝐴𝑝 + 𝜉𝑑𝑒,𝑖𝐴𝑑𝑒 + 𝑥𝑖+1𝐴𝑝 ,  (15) 167 

where 𝑥𝑖 and 𝑥𝑖+1 are the acoustic displacements relative to the upstream and downstream masses 168 

connected to junction  𝑖, 𝜉𝑑𝑒,𝑖 is the radial acoustic displacement at the input of the DE resonator, 169 

and 𝐴𝑑𝑒 = 2𝜋𝑟𝑝ℎ𝑛 is the common area between the junction and the DE.  170 

Using harmonic dependence, the relation between the acoustic radial velocity and displacement is 171 

𝑣𝑑𝑒 = 𝑗𝜔𝜉𝑑𝑒.  Assuming continuity of pressure at the interface between the junction and the neck of 172 

the AHR, the surface impedance at the input of the 𝑖th AHR is given by 𝑍𝑆,𝐴𝐻𝑅 = 𝑝𝑖  𝑣𝑑𝑒,𝑖⁄  (all AHRs 173 

are identical in the metamaterial). Substituting this result into Eq. (15) and substituting Eq. (15) into 174 

Eq. (14) gives the pressure at junction 𝑖:  175 

 𝑝𝑖 =
𝑥𝑖−𝑥𝑖+1

𝑉𝐽

𝜌0𝑐0
2 

+
𝐴𝑑𝑒

𝑗𝜔𝑍𝑆,𝐴𝐻𝑅

𝐴𝑝   ∀ 𝑖 = 1, 2, …𝑁. (16) 176 

Therefore, the value of 𝑝𝑖−1 is deduced.  It is given by 177 

 𝑝𝑖−1 =
𝑥𝑖−1−𝑥𝑖

𝑉𝐽

𝜌0𝑐0
2 

+
𝐴𝑑𝑒

𝑗𝜔𝑍𝑆,𝐴𝐻𝑅

𝐴𝑝  ∀   𝑖 = 2,…𝑁 + 1. (17) 178 

Using Eq. (16) and Eq. (17), Eqs. (11), (12) and (13) can be rewritten in a matrix form  179 

 (−𝜔2𝐌𝐞𝐪 + 𝐊𝐞𝐪)𝐱 = 𝐟.  (18) 180 
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where 𝐱 = {𝑥1 𝑥2  … 𝑥𝑁+1 }
𝑡  is the acoustic displacement vector relative to the masses,  181 

 𝐟 = {𝐴𝑝𝑃1 0 …  0  −𝐴𝑝𝑃𝑁+1 }
𝑡
 is the force vector, and superscript 𝑡 refers to the transposed vector.  182 

The equivalent mass matrix, 𝐌𝐞𝐪, is diagonal and is written as  183 

 𝐌𝐞𝐪 =

[
 
 
 
 
𝑀𝑒𝑞,1    0

 𝑀𝑒𝑞,2    
  ⋱    
   𝑀𝑒𝑞,𝑁  

0    𝑀𝑒𝑞,𝑁+1]
 
 
 
 

.  (19) 184 

The equivalent spring matrix, 𝐊𝐞𝐪, is tridiagonal and is written as  185 

 𝐊𝒆𝒒 = 𝐾𝑒𝑞

[
 
 
 
 
1 −1   0
−1 2 −1   
  ⋱   
  −1 2 −1
0   −1 1 ]

 
 
 
 

, (20) 186 

where 𝐾𝑒𝑞 is the stiffness of the junction coupled with the AHR given by 187 

 𝐾𝑒𝑞 =
𝐴𝑝

2

𝑉𝐽

𝜌0𝑐0
2 

+
𝐴𝑑𝑒

𝑗𝜔𝑍𝑆,𝐴𝐻𝑅

 . (21) 188 

Eq. (18) is the matrix equation of acoustic motion which relates the acoustic displacements to the 189 

external acoustic forces applied to the metamaterial.  It can be rewritten in a more compact form as  190 

 𝐀𝐱 = 𝐟,  (22) 191 

where 𝐀 is the dynamic stiffness matrix, a combination of the frequency-dependent mass and stiffness 192 

matrices of size 𝑁 + 1.  193 

2. Acoustic indicators and global transfer matrix  194 

For a given force, the displacement of the masses can be deduced from Eq. (22). The normal 195 

incidence acoustic impedance at the surface of the sample is given by the ratio of the acoustic pressure 196 

and velocity.  For the harmonic regime under consideration, it is given by 𝑍𝑠 = 𝑃1/𝑗𝜙𝜔𝑥1, with 𝜙 =197 

 𝐴𝑝 𝐴𝑠𝑎𝑚𝑝𝑙𝑒⁄  and 𝐴𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜋𝑟𝑠𝑎𝑚𝑝𝑙𝑒
2 , the cross-section area of the sample.  Note here that the 198 
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metamaterial sample is inserted into a tube of the same diameter (configuration similar to an 199 

impedance tube test).  From 𝑍𝑠, the normal incidence reflection coefficient 𝑅, incident pressure 𝑃𝑖 , 200 

and sound absorption coefficient 𝛼 can be deduced, respectively, from: 𝑅 = (𝑍𝑠 − 𝜌0𝑐0)/(𝑍𝑠 +201 

𝜌0𝑐0), 𝑃𝑖 = 𝑃1/(1 + 𝑅) , and 𝛼 = 1 − |𝑅|2.   If the sample is backed by a rigid and perfectly 202 

reflective wall, 𝑥𝑁+1 must be imposed to zero prior to solving Eq. (22). If the sample is backed by an 203 

anechoic termination, the impedance at the rear surface is equal to the characteristic impedance of the 204 

transmission fluid, that is 𝜌0𝑐0.  Then the surface impedance at the rear surface of the sample is 205 

𝑃𝑁+1/𝑗𝜙𝜔𝑥𝑁+1 = 𝜌0𝑐0.  By continuity, the transmitted pressure is 𝑃𝑡 = 𝑃𝑁+1 = 𝑗𝜔𝜙𝜌0𝑐0𝑥𝑁+1, and 206 

the normal incidence sound transmission loss is 𝑇𝐿 = −10log (𝑃𝑡/𝑃𝑖). 207 

Another way to compute the acoustic response of the metamaterial is by converting Eq. (22) into 208 

a transfer matrix.  Eq. (22) can be modified to link the acoustic pressure and velocity as  209 

 𝐙𝐮 = 𝐩,  (23) 210 

where 𝐙 = 𝐀 𝑗𝜔𝐴𝑝⁄  is the acoustic impedance matrix, 𝐮 = 𝜕𝐱 𝜕𝑡 = 𝑗𝜔𝐱⁄   is the acoustic velocity 211 

vector, and 𝐩 = {𝑃1 0 …  0 𝑃𝑁+1 }
𝑡 is the acoustic pressure vector.  Second, Eq. (23) is rewritten in a 212 

four-pole transfer pressure-velocity matrix formulation. The transfer matrix 𝐓𝐌 of the metamaterial 213 

links the upstream acoustic fields to the downstream acoustic fields by the following relation: 214 

 (
𝑝1

𝑢1
) = 𝐓𝐌 (

𝑝𝑁+1

𝑢𝑁+1
),  (24) 215 

where 𝑝1 and 𝑢1 correspond to the acoustic pressure and velocity at the input pore of the 216 

metamaterial, respectively, 𝑝𝑁+1 and 𝑢𝑁+1 correspond to the acoustic pressure and velocity at the 217 

output pore of the metamaterial. The demonstration of the transition between the two formulations 218 

is presented in the Appendix. The transfer matrix of the metamaterial can be written as  219 
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𝐓M = (−1)𝑁+1 [

det(𝐙1:𝑁,1:𝑁) 

det(𝐙2:𝑁+1,1:𝑁) 

det(𝐙) 

det(𝐙2:𝑁+1,1:𝑁) 

−
det(𝐙1:𝑁,2:𝑁+1)

det(𝐙)
+

det(𝐙1:𝑁,1:𝑁) det(𝐙2:𝑁+1,2:𝑁+1)

det(𝑍)det(𝐙2:𝑁+1,1:𝑁) 

det(𝐙2:𝑁+1,2:𝑁+1)

det(𝐙2:𝑁+1,1:𝑁)

], (25) 220 

where the subscripts on 𝐙 represent submatrix (rows and columns) of 𝐙, and det refers to the 221 

matrix determinant.  222 

Since the two end pores of the metamaterial open to an outside air medium, the global matrix of 223 

the metamaterial sample 𝐓𝐺  is obtained by multiplying 𝐓𝑀 by section change transfer matrices 224 

 𝐓𝐺 = 𝐓𝜙  𝐓𝑀 𝐓𝜙
−1, (26) 225 

where  226 

 𝐓𝜙 = [
1 0
0 𝜙

], (27) 227 

with 𝜙 as defined previously. Here, it is assumed that upstream and downstream exterior air media 228 

are identical and of the same lateral dimensions as the metamaterial sample. 229 

The normal incidence sound transmission loss (anechoic-backed) and the sound absorption 230 

coefficient (hard-backed) of the metamaterial sample can be deduced from the global transfer matrix.  231 

They are respectively given by  232 

 𝑇𝐿 = 20log10 |
𝑇𝐺,11+ 𝑇𝐺,12 𝜌0𝑐0⁄ +𝑇𝐺,21𝜌0𝑐0+𝑇𝐺,22

2
| (anechoic-backed) (28) 233 

and 234 

 𝛼 = 1 − |
𝑇𝐺,11−𝑇𝐺,21𝜌0𝑐0

𝑇𝐺,11+ 𝑇𝐺,21𝜌0𝑐0
|
2

 (hard-backed). (29) 235 

with 𝑇𝐺,𝑎𝑏 the elements of the global transfer matrix, where 𝑎 and 𝑏 refer to the row and column of 236 

𝐓𝐺 . 237 

B. Dispersion relation 238 

To determine a simple expression for the dispersion relation of our system, we consider this one 239 

as a perfect periodic structure. In this case, all the masses in the mass-spring system are identical and 240 
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given by 𝑀𝑒𝑞 = 𝜌𝑝𝐴𝑝ℎ𝑝, and the stiffness is given by Eq. (21). The structure is similar to a one-241 

dimensional monatomic chain and the dispersion relation is given by25 242 

 ω2 = 4
𝐾𝑒𝑞

𝑀𝑒𝑞
sin2 (

𝑞ℎ𝑐𝑒𝑙𝑙

2
), (30) 243 

where 𝑞 is the wave number and ℎ𝑐𝑒𝑙𝑙 the cell thickness ℎ𝑐𝑒𝑙𝑙 = 𝑙𝑝
′ + ℎ𝑛. 244 

C. Natural frequencies – lossless case 245 

One of the interests of the mass-spring analogy is that the natural frequencies and mode shapes 246 

can be determined by solving the eigenvalue problem. One of the goals is to predict frequencies at 247 

which absorption peaks occur for the hard-backed termination. In this way, displacement of the last 248 

mass is imposed to zero, that is  𝑥𝑁+1 = 0. 249 

1. Eigenvalue problem 250 

Since the last mass displacement is zero, the last row and column of the dynamic stiffness matrix 251 

𝐀 are eliminated. Previously, the losses were considered in the mass and stiffness matrices. For the 252 

estimation of the natural frequencies, the lossless case is considered. All the effective properties are 253 

replaced by adiabatic air fluid properties, 𝑐0 and 𝜌0, in the calculations of the equivalent mass, Eq. (10), 254 

and stiffness, Eq. (21).  In this case, the equivalent mass and stiffness will be identified by 𝑀𝑒𝑞,𝑖
0  and 255 

𝐾𝑒𝑞
0 . While 𝑀𝑒𝑞,𝑖

0  is now real-valued and independent of frequency, 𝐾𝑒𝑞
0  is real but still depends on 256 

frequency due to the Bessel functions. The eigenvalues (natural frequencies) are obtained by solving 257 

numerically  258 

 det(𝐀1:𝑁,1:𝑁
0 ) = 0. (31) 259 

where 𝐀1:𝑁,1:𝑁
0  is the lossless dynamic stiffness matrix for the hard-backed termination. 260 

2. Expression of the first natural frequency 261 

To obtain a simple formula of the first natural frequency, perfect periodic structure, lossless and 262 

low frequency assumptions need to be made. First, the metamaterial is assumed to be perfectly 263 
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periodic, that is to say that all the equivalent masses are identical (the first mass end correction due to 264 

exterior medium radiation are not considered). In this case the wave number for the hard-backed 265 

termination can be rewritten as25 𝑞ℎ𝑐𝑒𝑙𝑙 =
2𝑛−1

2𝑁+1
𝜋, and all equivalent masses are identical, i.e. 𝑀𝑒𝑞,𝑖 →266 

𝑀𝑒𝑞.  Substituting this wavenumber into Eq. (30) gives the eigen angular frequencies in the perfectly 267 

periodic case  268 

 𝜔𝑛 = 2√
𝐾𝑒𝑞

𝑀𝑒𝑞
sin (

2𝑛−1

2𝑁+1

𝜋

2
). (32) 269 

where 𝑛 is for the 𝑛th eigenvalue.  270 

Now, neglecting the thermoviscous losses, 𝑀𝑒𝑞
0  and 𝐾𝑒𝑞

0  can be substituted for 𝑀𝑒𝑞 and 𝐾𝑒𝑞 in 271 

Eq. (32).  Note that 𝑀𝑒𝑞
0 = 𝜌0𝐴𝑝𝑙𝑝

′  is real-valued and constant. For its part, the stiffness can be 272 

simplified further under the assumption of low frequency development when 𝑘𝑟𝑐 ≪ 1 and 𝑘𝑟𝑛 ≪ 1. 273 

The first order Taylor series of Bessel functions for small arguments are26 J0(𝑧) ≈ 1, Y0 ≈ 2 𝜋⁄ ln 𝑧, 274 

J1(𝑧) ≈ 𝑧 2⁄  and Y1(𝑧) ≈ −(𝑧𝜋 2⁄ )−1. With this low frequency assumption, the AHR surface 275 

impedance, Eq. (9), simplifies to  276 

 𝑍𝑆,𝐴𝐻𝑅 ≈ 2𝑗𝜌0𝑐0
2 [ω𝑟𝑝 (1 −

𝑟𝑛
2

𝑟𝑝
2 +

ℎ𝑐

ℎ𝑛

 𝑟𝑐
2

𝑟𝑝
2 (1 −

𝑟𝑐
2

𝑟𝑛
2) )]

−1

. (33) 277 

For multi-AHR, perfectly periodic and without thermoviscous losses, Eq. (33) allows the following 278 

simplification 279 

 √
𝐾𝑒𝑞

𝑀𝑒𝑞
≈ 𝑐0√

𝐴𝑝

𝑙𝑝
′ (𝑉𝑑𝑒+𝑉𝐽)

, (34) 280 

where 𝑉𝑑𝑒 = 𝜋𝑟𝑐
2ℎ𝑐 − 𝜋𝑟𝑛

2(ℎ𝑐 − ℎ𝑛) − 𝑉𝐽 is the volume of an AHR, and 𝑉𝐽 = 𝜋𝑟𝑝
2ℎ𝑛. Considering 281 

the first natural frequency and enough cell repetitions (𝑁 = 10 in this study), the sine function of Eq. 282 

(32) is approximated by its first order Taylor series sin(𝑧) ≈ 𝑧. For hard-backed termination, the first 283 

natural frequency of a multi-AHR can be approximated by  284 
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 𝑓1 ≈
𝑐0

2(2𝑁+1)
√

𝐴𝑝

𝑙𝑝
′ (𝑉𝑑𝑒+𝑉𝐽)

. (35) 285 

V. VALIDATION 286 

To validate the previous developments and highlight certain characteristics, normal incidence 287 

sound absorption coefficient and sound transmission loss predicted with the mass-spring model on 288 

the multi-AHR described above will be compared with two other approaches: hybrid numerical-289 

analytical approach and experimental approach. Before proceeding to the validation, these approaches 290 

are briefly detailed.   291 

A. Hybrid numerical-analytical approach  292 

The hybrid numerical-analytical approach is a combination of the finite element method (FEM) 293 

and the transfer matrix method (TMM). Its main interest is to explicitly calculate the thermoviscous 294 

losses in the acoustic boundary layers, while maintaining a reasonable computing time. This hybrid 295 

approach was presented by Kone et al.14 for multi-quarter-wavelength annular resonators.  Here it is 296 

used to study the multi-AHR described above.  297 

Firstly, the FEM is used to solve the thermoviscous-acoustic (TVA)27 problem on a single periodic 298 

unit cell of the multi-AHR to extract its four-pole transfer matrix 𝐓PUC, see Fig. 1(b). The cell is 299 

axisymmetric and is composed of half a pore, a junction with a side-branch AHR, and half a pore. 300 

Rigid wall condition is assumed on all material contours.  Secondly, the PUC is periodized 𝑁 times 301 

with the TMM by (𝐓PUC)
𝑁. On the schematic of Fig.1(b), one notes that it is necessary to add an 302 

extra length to the pores at both extremities of the previously periodized structure. This operation is 303 

necessary to take into account the fact that  
𝑙𝑝

2
< 𝑙𝑒𝑛𝑑 in the fabricated sample, and the additional 304 

length due to the radiation effect in the exterior medium. The transfer matrix of each of these extra 305 

pore lengths is obtained analytically by 306 
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 𝐓𝑒𝑛𝑑 = [
cos (𝑘𝑝𝛿′) 𝑗𝑍𝑝sin (𝑘𝑝𝛿′)
𝑗

𝑍𝑝
sin (𝑘𝑝𝛿′) cos (𝑘𝑝𝛿′)

], (36) 307 

with  𝛿 = 𝑙𝑝 − (ℎ𝑐 − ℎ𝑛) and the corrected associated length is 𝛿′. This length is calculated according 308 

to the Karal22 method. For the studied geometry, 𝛿′ = 2.0 mm.28  Thirdly, as for Eq. (26), since the 309 

two end pores of the metamaterial open to an outside air medium, the section change transfer matrix 310 

of Eq. (27) is used.  Consequently, the global matrix of the metamaterial sample for the hybrid 311 

approach is given by 312 

 𝐓𝐻 = 𝐓𝜙 𝐓𝑒𝑛𝑑  (𝐓PUC)
𝑁 𝐓end𝐓𝜙

−1. (37) 313 

This equation is finally used to compute the normal incidence sound transmission loss (anechoic-314 

backed) and absorption coefficient (hard-backed) with Eqs. (28) and (29). 315 

In our application of the hybrid approach, the TVA problem was solved with COMSOL 316 

Multiphysics 6.0.  After validating the FEM model, the CPU time required to solve one converged 317 

TVA problem on the studied PUC, at 1500 frequencies from 1 Hz 3000 Hz, was 30 min on a personal 318 

computer.  319 

B. Experimental approach: impedance tube  320 

The transmission loss can experimentally be deduced from Eq. (28), where transfer matrix TG is 321 

replaced by the measured four-pole transfer matrix. Mecanum impedance tube is used according to 322 

the two-cavity three-microphone method29. The third microphone is baffled in the center of the rigid 323 

moving end (piston) of the tube.  324 

Sound absorption coefficient (hard-backed) can also be deduced from the measured four-pole 325 

transfer matrix and Eq. (29).  However, due to the high noise attenuation of the metamaterial, the 326 

sound absorption coefficient defined by the measured transfer matrix was very noisy.  It was preferred 327 

to measure directly the sound absorption coefficient (hard-backed) from the two-microphone 328 
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impedance tube detailed in standard30. In this configuration, the sample is backed by a hard 329 

termination. 330 

The diameter of the tube is 44.44 mm and the outside diameter of the tested multi-AHR sample 331 

of Fig. 1(a) was manufactured to fit in the tube (both diameters are equals). Petroleum jelly is used 332 

around the sample to prevent acoustic leakage. The acoustic excitation is random noise between 115 333 

and 4325 Hz is used as acoustic excitation. Each measurement on a sample is repeated five times. 334 

Each time, the internal parts are disassembled and then reassembled randomly.  Only the two end 335 

sections of length 𝑙𝑒𝑛𝑑 are kept at extremities. The experimental result presented in the following 336 

comparison is the envelope of all these measurements. 337 

C. Comparison of the methods 338 

Firstly, the prediction obtained with the developed mass-spring model on the studied multi-AHR 339 

is compared with experimental results and the hybrid approach prediction.  The comparison is in 340 

terms of the normal incidence sound absorption coefficient for the hard-backed termination, and the 341 

normal incidence sound transmission loss for the anechoic-backed termination.  342 

The results are shown in Fig. 3. The results show a good agreement between the three approaches. 343 

For the hybrid approach, the added inertial effect, due to the radiation of an internal pore towards its 344 

upstream and downstream AHR cavities, is explicitly taken into account by the numerical calculations 345 

of the TVA problem on a PUC.  It can be noticed that by substituting the corrected length for the 346 

internal pores in the mass-spring model, as presented in Sec. A.1, the model predicts a sound 347 

absorption coefficient similar to the other two approaches.  In Fig. 3, it can be noted that the 348 

predictions deviate slightly from each other when the frequency increases. On the one hand, the 349 

authors believe that these deviations are due to geometric imperfections of the samples impacting the 350 

measurements.  Small imperfections are more sensitive as the wavelength is reduced.  On the other 351 

hand, the thermoviscous losses in the mass-spring model are approximated with the JCA model with 352 
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parameters for simple canonical pore shapes (cylindrical and slits).  While these geometries are, at first 353 

order, good idealization of the different parts of the multi-AHR, the real geometries are more complex.  354 

Despite these differences, the prediction made with the mass-spring model is rather satisfactory and, 355 

a priori, validates the model and the proposed correction for the effective length of the internal pores. 356 

 357 

FIG. 3. (Color online). The normal incidence sound absorption coefficient (hard-backed) and 358 

transmission loss (anechoic-backed) of the multi-annular Helmholtz resonators sample.  Comparison 359 

between experimental approach, hybrid approach, and mass-spring model. 360 

In the case of hard-backed termination (absorption problem), Fig. 3(a), the metamaterial presents 361 

several peaks of absorption. Absorption peaks are associated with the quarter-wavelength resonances 362 

of the metamaterial backed by a rigid termination.  This is similar to conventional porous materials.   363 

Their position in frequencies depends on the thickness of the metamaterial and its effective properties. 364 

For the metamaterial studied, the periodic resonators have the effect of reducing the effective 365 

compressibility of the air in the metamaterial (or more precisely that of the air in its central perforation) 366 

without modifying its effective density7,12. Thus, the effective celerity is reduced and the quarter-367 

wavelength resonances of the metamaterial are shifted towards low frequencies. 368 

In the case of anechoic-backed termination (transmission problem), several lobes of transmission 369 

loss spaced by troughs are observed, Fig. 3(b). The troughs of the transmission loss are associated 370 
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with the half-wave resonances of the metamaterial similar to what occurs in conventional porous 371 

materials. And the lobes of transmission loss occur at the anti-resonances, quarter-wave profile, of the 372 

metamaterial.  However, contrary to conventional materials, the metamaterial shows a stopband 373 

starting around 2200 Hz where sound cannot propagate inside the metamaterial.  The metamaterial 374 

becomes almost purely reflective (the absorption tends to zero and the transmission loss increases).  375 

Based on the mass-spring model, Sec. VI.B. discusses in more detail the complexities of acoustic 376 

phenomena in relations to the acoustic resonances of the metamaterial and of its resonators in an 377 

extended frequency range.  378 

From the previous results, we now focus on the hard backed-termination configuration and 379 

absorption peaks. One of the motivations of periodic DE type metamaterials is to have absorption 380 

peaks at the lowest possible frequencies and for the lowest total thickness without increasing the 381 

volume.  Therefore, it is proposed to compare the natural frequencies derived from the mass-spring 382 

model, in Sec IV.C, with the resonant frequencies observed on the absorption curves. 383 

The first three rows of TABLE III present the first four resonant frequencies observed on the 384 

absorption curves obtained by experiments, hybrid approach and the corrected mass-spring model.  385 

Also, TABLE III presents the natural frequencies obtained by the solution of the eigenvalue problem 386 

with the lossless assumption, Eq. (31), the lossless and perfectly periodic assumptions, Eq. (32), and 387 

the lossless, perfectly periodic, and low frequency assumptions, Eq. (32) with Eq. (34).  For the former 388 

two, since the equivalent stiffness in Eqs. (31) and (32) is frequency dependent, their solutions are 389 

obtained numerically. For the last case, Eq. (32) is solved analytically thanks to Eq. (34).  Finally, the 390 

last row of the table gives the approximation of the first natural frequency obtained by Eq. (35).   391 

TABLE III shows that for each peak, the resonant frequencies predicted by the three approaches 392 

are very close to each other. They diverge by no more than 2.4%.  Thus, the resonances predicted by 393 
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the corrected mass-spring model are, a priori, quite satisfactory. These resonances are now used as a 394 

reference to validate the different calculations of the natural frequencies. 395 

In TABLE III, it can be noted that the numerical solution of the eigenvalue problem, Eq. (31), 396 

with the lossless approximation, gives eigenfrequencies slightly higher than the resonant frequencies. 397 

The relative errors (values in parentheses) are larger at low frequencies and smaller as the frequency 398 

increases. This is logical since the viscous and thermal skin thicknesses decrease with frequency and 399 

the losses are lower.  When the perfectly periodic assumption is added (fifth row of the table), only a 400 

slight increase of 1 or 2 % is observed compared to the previous situation.  This was expected since 401 

the difference between the fabricated sample and the perfectly periodic case is small.  In fact, the 402 

fabricated sample is the periodic sample with additional thickness (additional pore length of 0.5 mm) 403 

at both ends.  Consequently, the periodic case has a little less mass at its ends, thus increasing the 404 

natural frequencies.  Now, if the low frequency approximation is added (Eq. (34)), the first natural 405 

frequency (sixth row of the table) deviates only by 1 % from the previous situation.  However, the 406 

deviation largely increases for higher modes (the low frequency approximation is less appropriate as 407 

the frequency increases).  408 
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 TABLE III. Resonant and natural frequencies for the multi-annular Helmholtz resonators sample 409 

described in Sec. II.  Comparison between the resonant frequencies obtained by the experimental, 410 

hybrid and mass-spring approaches, and the natural frequencies obtained by different approximations 411 

derived from the mass-spring model. Values in parentheses are relative errors compared to Mass-412 

spring model. 413 

Resonant/natural frequencies (Hz) Mode 1 Mode 2 Mode 3 Mode 4 

Experimental approach 306 873 1309 1598 

Hybrid approach 301 861 1283 1567 

Mass-spring model 301 863 1301 1610 

Lossless approximation, Eq. (31) 
314 

(4 %) 

887 

(3 %) 

1333 

(2 %) 

1646 

(2 %) 

Lossless and periodic approximation, Eq. (32) 
319 

(6 %) 

899 

(4 %) 

1345 

(3 %) 

1656 

(3 %) 

Lossless, periodic, and low frequency approximations, 

Eqs. (32) and (34) 

322 

(7 %) 

958 

(11 %) 

1572 

(21 %) 

2152 

(34 %) 

Formula for first natural frequency, Eq. (36) 
322 

(7 %) 
- - - 

     

A last estimate is given for the first resonance frequency by Eq. (35) assuming lossless, low 414 

frequency and perfect periodic system, with linearization of the sine function.  This simple formula 415 

gives a relatively good approximation of the first resonant.  From this formula, it could be noticed 416 

that for minimizing the metamaterial first resonant frequency, the volume of the DE, the pore length 417 
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or number of cells can be increased.  On the contrary, the first resonant frequency increases with the 418 

pore cross section area. 419 

VI. DISCUSSION 420 

A.  Band structure – dispersion curve 421 

Eq. (30) gives the dispersion relation of an infinite periodic one-dimensional monatomic chain, 422 

without low frequency approximation. The dispersion curve, or band structure, with or without losses 423 

is shown in Fig. 4(a). It should be mentioned that the results presented in Fig. 4 assume that only plane 424 

waves propagate upstream, downstream and in the main pore of the axisymmetric metamaterial. In 425 

reality, transverse modes could begin to appear from a cutoff frequency above 30 kHz.  The results 426 

here aim only to study and understand the fundamental behavior of these metamaterials.427 

 428 

FIG. 4 (Color online). (a) Dispersion curves obtained by Eq. (30), (b) normal incidence sound 429 

absorption coefficient (hard-backed), and (c) normal incidence sound transmission loss (anechoic-430 

backed) for the multi-annular Helmholtz resonators. Stopbands are indicated by grey areas and are 431 

delineated by black lines.  432 

  433 
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Unlike conventional mono-atomic chain, the dispersion curve shows alternating passband and 434 

stopband before the cutoff frequency (30 kHz). This is due to the frequency dependence of the 435 

stiffness. A stopband appears when no energy is carried by the propagating wave, which is equivalent 436 

to the real part of the group velocity being zero31.  So, a stopband starts each time the real part of the 437 

nondimensional wavenumber reaches 𝜋, continues when it equals 0 (the real part of the equivalent 438 

stiffness becomes negative, for detail see Sec. VI.C) and ends when it moves away from 0.  The 439 

opposite being a passband.  In the stopband, the sound does not propagate (lossless case), or slightly 440 

(lossy case), inside the metamaterial.  In the stopband, the metamaterial is purely (lossless case), or 441 

nearly (lossy case), reflective. This yields nearly zero absorption (hard-backed), see Fig. 4(b), and zero 442 

transmission (anechoic-backed) (or, basically, infinite sound transmission loss), see Fig. 4(c). For 443 

frequencies under the cutoff frequency (30 kHz), three stopbands (2170-10254 Hz, 11762-19063 Hz, 444 

and 20721-27808 Hz) are observed, each and linked to a DE resonance. 445 

The phase change in the dispersion curve and the peaks of the peaks of transmission loss in the 446 

stopbands are associated to the resonances of the DE, which can be determined by solving numerically 447 

Im(𝑍𝑆,𝐴𝐻𝑅) = 0, Eq. (9). The DE resonances are responsible of the sudden drop of the acoustic 448 

wavenumber, Fig. 4(a). The frequencies of the DE resonances 𝑓𝐷𝐸 differ slightly from the frequencies 449 

corresponding to the beginning of the stopbands.  The beginning of a stopband depends on the 450 

spacing between DE32–34. Because the spacing is small for the studied geometry, the DE resonances 451 

are close to the beginning of the stopbands. For the infinite periodic configuration with losses, the 452 

beginning of a stopband is deduced from the numerical resolution of Eq. (30), when Re(𝑞)ℎ𝑐𝑒𝑙𝑙 = 𝜋, 453 

i.e. when 𝑓 = Re (
1

𝜋
√

𝐾𝑒𝑞(𝑓)

𝑀𝑒𝑞(𝑓)
).  The zoom in Fig. 4(a) shows that for the lossless case, the start of a 454 

stopband beginning clearly at Re(𝑞)ℎ𝑐𝑒𝑙𝑙 = 𝜋.  For the lossy case, the beginning of a stopband 455 

appears at a smaller frequency and for a value of Re(𝑞)ℎ𝑐𝑒𝑙𝑙 less than  𝜋.  Moreover, the increase in 456 
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sound transmission loss, Fig. 4(c), starts to increase at a lower frequency than the beginning of a 457 

stopband in the lossy case.  This is due to two main effects: the finite size of the material and the fact 458 

that the end masses are larger due to the end corrections.  Anyway, the formula  𝑓 = Re (
1

𝜋
√

𝐾𝑒𝑞(𝑓)

𝑀𝑒𝑞(𝑓)
) 459 

gives a good estimation of the beginning of the stopbands. 460 

B. Modal displacement of masses 461 

The mass-spring model is now used to visualize and analyze the displacements of the masses (i.e., 462 

global air displacements of the main pores) in the studied metamaterial for the hard-backed 463 

termination.   Fig. 5 shows the acoustic displacement mapping of the masses as a function of 464 

frequency.  The displacement is normalized by the incident displacement. Note that although the 465 

mapping is continuous, only displacements at mass positions exist. The masses are at the positions 466 

indicated by the horizontal dashed lines, while the vertical solid black lines indicate the beginning and 467 

end of a stopband.  Fig. 5(a) shows the mapping when losses are considered, while Fig. 5(b) is in the 468 

lossless case – both mappings have similarities.   As for it, Fig. 5(c) represents a zoom on the first 469 

passband and stopband in the lossless case.   470 

In Fig. 5, the vertical lines in yellow are the modal lines. Each corresponds to an eigenfrequency 471 

of the metamaterial, the first four eigenfrequencies of which are given in TABLE III.   Since the 472 

system has 𝑁=10 moving masses (hard-backed), 10 modal lines appear in a passband.  Similarly, the 473 

dark red lines are the nodal lines, where zero displacement occurs.  The number of times a modal line 474 

is crossed by a nodal line marks the mode number.  For example, since only one nodal line (the 475 

horizontal one at the rigid termination) intersects the first modal line in the first passband, the first 476 

mode is mode 1.  Note that the same 10 modes repeat in each passband. This is counter-intuitive 477 

compared to a linear mass-spring system or the one-dimensional monatomic chain which will have a 478 

finite number of modes equal to the number of degrees-of-freedom.   Since a “spring” in the 479 
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metamaterial has a frequency-dependent stiffness derived from an AHR having multiple natural 480 

frequencies, Im(𝑍𝑆,𝐴𝐻𝑅 = 0),  the same 10 modes will repeat in each passband.  The modal lines 481 

associated with these 10 modes are easier to see in the lossless case since the modal and nodal lines 482 

are smeared out in the highest passbands in the lossy case.   483 

In Fig. 5(c), it should be noted that when a nodal line intersects a modal line at an exact mass 484 

position (a vertical dashed line), that corresponding mass is stationary and no viscous loss is produced 485 

by that mass. On the contrary, when the intersection does not fall exactly at a mass position, that mass 486 

will always be in motion and will always produce viscous loss.  For example, the tenth mass at 27 mm 487 

will always move in the first passband since its position never falls at an intersection of a modal and 488 

nodal line.  The authors believe that this understanding of the position of masses relative to nodal and 489 

modal lines could potentially be useful in optimizing the design of these metamaterials by preventing 490 

masses from falling close to a nodal line.  For now, such optimization remains to be done and is not 491 

the purpose of this article. 492 

Figs. 6 and 7 show the modal shapes, in the lossy case, for the first three modes, and the 493 

displacement shape in the first stopband for the hard and anechoic backed terminations, respectively. 494 

For the hard-backed termination, Fig. 6, the first three mode shapes in the first passband are another 495 

visualization of the first three modal lines of Fig. 5(a) (the vertical lines in yellow).  The filled areas in 496 

the graphs are the envelopes over a time period at the corresponding frequency.  The blue dots 497 

represent the 11 masses of the mass-spring representation of the metamaterial at an instant 498 

corresponding to a maximum amplitude.   499 

In the hard-backed termination, the last mass is logically always stationary. In Fig. 6, one can 500 

recognize that the first mode for the hard-backed termination is the quarter-wave resonance, whereas 501 

it is the rigid mode for the anechoic-backed termination. The other mode shapes in the first passband 502 



 

 28 

are also those typical of a linear system.  Recall that these same mode shapes will repeat in each 503 

passband with higher attenuation for higher passbands. 504 

Finally, Figs. 6 and 7 show that in a stopband the mass displacement quickly decreased through 505 

the material.  In this case, the material is almost reflective, and all the sound is mainly reflected by the 506 

first mass-spring cell.  The insets in Figs. 6 and 7, for the “In stopband” case, show the acoustic 507 

pressure distribution from the first to third mass.  One can note that the pressure at the first mass is 508 

nearly twice the amplitude of the incident pressure.  This represents the blocked pressure on a hard 509 

wall having a reflection coefficient of nearly 1.   Note that the acoustic pressure was easily obtained 510 

here from the displacements calculated by the mass-spring model by solving Euler's equation with a 511 

finite difference scheme. See supplementary materials for figures of acoustic pressure profiles and 512 

animations of mass displacements for the first modes and in the first stopband for the hard and 513 

anechoic backed terminations.  514 
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 515 

FIG. 5 (Color online). Displacement mapping of the masses as a function of frequency for the 516 

hard-backed termination. Cubic interpolation is used to obtain a continuous mapping. The positions 517 

of the masses are indicated by the horizontal dashed lines. The beginning and end of the stopbands 518 

are indicated by the vertical black lines. 519 
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 520 

FIG. 6 (Color online). Mass displacement profile with loss at the first modes and in the stopband 521 

for the hard-backed termination. 522 
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 523 

FIG. 7 (Color online). Mass displacement profile with loss at the first modes and in the stopband 524 

for the anechoic-backed termination. 525 

C. Analysis of the equivalent stiffness 526 

As discussed earlier, in a conventional infinite periodic one-dimensional monatomic chain, only 527 

one stopband band is present. For a frequency greater than the single occurrence 528 

𝑓 = 𝜋−1√𝐾/𝑀, the disturbance does not propagate.  For our metamaterial, the presence of other 529 

passbands is due to the fact that it has several stopbands starting at all occurrences 530 

 𝑓 = 𝜋−1 √𝐾𝑒𝑞(𝑓)/𝑀𝑒𝑞(𝑓).  This is because the equivalent stiffness is related to the DE resonances 531 

via Eq. (21). At a DE resonance the amplitude of the stiffness exhibits a drop, see Fig. 8(b). Its real 532 
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part is then equal to zero, see Fig. 8(a), then becomes negative before becoming positive again in the 533 

next bandwidth.  For each bandwidth, a new problem of 𝑁 + 1 degrees-of-freedom (or 𝑁 in the case 534 

of a hard-backed termination) is redefined with a higher equivalent stiffness leading to the same modes 535 

at higher frequencies. The values of 𝐾𝑒𝑞  increase with the order of the passband. Fig. 8(b) shows that 536 

the stiffness values nearly double from one passband to the next.  The fact that the stiffness and the 537 

thermo-viscous losses grow with the frequency explains why the maximum absorption or transmission 538 

(transmission loss) decreases (increases) with the order of the passband.    539 

Finally, in the first passband, it can be observed that the amplitude of the stiffness is quasi-static 540 

at low frequencies and decreases abruptly as the first resonance DE approaches. This decrease in 541 

stiffness when approaching the DE resonance explains why the resonances of the metamaterial 542 

(absorption or transmission loss peak) are closer to each other with frequency.  Near the DE 543 

resonance, they overlap.   544 
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 545 

FIG. 8 (Color online). Real part (a) and modulus (b) of the equivalent stiffness as a function of 546 

frequency in the lossy case. Stopbands are indicated by grey areas and are delineated by grey lines. 547 

VII.   CONCLUSION 548 

A mass-spring model was developed to study metamaterials composed of a compact linear 549 

periodic array of thin ring resonators along a main central pore. This resulted in an acoustic equation 550 

of motion, where the degrees of freedom are the air motion in each pore segment between the 551 

resonators. The resonators were modeled by introducing a surface impedance into the equivalent 552 

stiffness matrix of the developed acoustic equation of motion. While the surface impedance can be 553 

developed for different types of resonators, this article has developed that of a ring-shaped Helmholtz 554 

resonator. From the mass-spring model, a modal analysis of eigenfrequencies and mode shapes was 555 
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performed, and a formula predicting the first resonance was proposed. The model was used to study 556 

the band structure of the metamaterial which shows an infinite succession of passbands and 557 

stopbands. In each passband, N resonances were observed, where N is also the number of masses in 558 

the mass-spring model. Unlike a linear mass-spring system of N degrees of freedom, the N-mass 559 

metamaterial exhibits an infinite number of degrees of freedom. An original representation of the 560 

band structure in terms of cartography of acoustic displacement of masses as a function of frequency 561 

has been proposed. This representation made it possible to better understand the acoustic behavior 562 

of the metamaterial in relation with the intersections between the nodal lines, the modal lines and the 563 

localization of the masses. To validate the model, a prototype of the metamaterial was machined in 564 

aluminum. The prototype was tested in an acoustic tube for normal incidence sound absorption and 565 

sound transmission loss. A good correlation between the experimental results and the model 566 

predictions was obtained. 567 
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APPENDIX: IMPEDANCE MATRIX TO TRANSFER MATRIX  581 

The passage of the acoustic impedance matrix to the transfer matrix is here demonstrated. The 582 

acoustic impedance matrix is defined as 𝐙𝒖 = 𝒑, Eq. (24) (N + 1 by N + 1 matrix). Thereafter, the 583 

matrix coefficients of 𝐙 are noted 𝑧. 584 

The Cramer’s rule gives  585 

  𝑢𝑘 =
det(𝐙𝑘)

det(𝐙)
, (A1) 586 

where 𝐙𝑘 is a square matrix formed by replacing the 𝑘-th column of 𝐙 by the external pressure acoustic 587 

vector 𝒑 = {𝑃1 0 … 0 −𝑃𝑁+1}
𝑇. The input and output acoustic velocities can be deduced with 588 

 𝑢1 =
det(𝐙1)

det(𝐙)
, (A2a) 589 

 𝑢𝑁+1 =
det(𝐙𝑁+1)

det(𝐙)
, (A2b) 590 

where 591 

 det(𝐙1) =
|
|

𝑃1 𝑧12 0 ⋯ 0
0 𝑧22   ⋮
⋮  ⋱  0
0   ⋱ 𝑧𝑁,𝑁+1

𝑃𝑁+1 0  𝑧𝑁+1,𝑁 𝑧𝑁+1,𝑁+1

|
|
=

𝑃1 det(𝐙2:𝑁+1,2:𝑁+1)

−(−1)𝑁+2𝑃𝑁+1 det(𝐙1:𝑁,2:𝑁+1)
 (A3) 592 

and  593 

 det(𝐙N+1) =
|
|

𝑧11 𝑧12  0 𝑃1

𝑧21 ⋱   0
0  ⋱  ⋮
⋮   𝑧𝑁,𝑁 0

0 ⋯ 0 𝑧𝑁+1,𝑁 𝑃𝑁+1

|
|
=

(−1)𝑁+2𝑃1 det(𝐙2:𝑁+1,1:𝑁)

−𝑃𝑁+1 det(𝐙1:𝑁,1:𝑁)
. (A4) 594 

Combining and rearranging Eq. (A2b) and Eq. (A4) leads to  595 
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 𝑃1 =
𝑃𝑁+1 det(𝐙1:𝑁,1:𝑁)+𝑢𝑁+1 det(𝐙)

(−1)𝑁+2 det(𝐙2:𝑁+1,1:𝑁)
. (A5) 596 

Combining Eq. (A2a) and Eq. (A3) leads to 597 

 𝑢1 =
𝑃1 det(𝐙2:𝑁+1,2:𝑁+1)−(−1)𝑁+2𝑃𝑁+1 det(𝐙1:𝑁,2:𝑁+1)

det(𝐙)
. (A6) 598 

Replacing 𝑃1 by its expression given by Eq. (A5), 𝑢1 can be rewritten  599 

𝑢1 =
−𝑃𝑁+1

1

det(𝐙)
( (−1)𝑁+2 det(𝐙1:𝑁,2:𝑁+1) −

det(𝐙1:𝑁,1:𝑁) det(𝐙2:𝑁+1,2:𝑁+1)

(−1)𝑁+2 det(𝐙2:𝑁+1,1:𝑁)
)

+𝑢𝑁+1
det(𝐙2:𝑁+1,2:𝑁+1)

(−1)𝑁+2 det(𝐙2:𝑁+1,1:𝑁)

. (A7) 600 

Finally, the transfer matrix is obtained from Eq. (A5) and Eq. (A7) 601 

{
𝑃1

𝑢1
} = (−1)𝑁+1 [

det(𝐙1:𝑁,1:𝑁) 

det(𝐙2:𝑁+1,1:𝑁) 

det(𝐙) 

det(𝐙2:𝑁+1,1:𝑁) 

−
det(𝐙1:𝑁,2:𝑁+1)

det(𝐙)
+

det(𝐙1:𝑁,1:𝑁)det(𝐙2:𝑁+1,2:𝑁+1)

det(𝑍)det(𝐙2:𝑁+1,1:𝑁) 

det(𝐙2:𝑁+1,2:𝑁+1)

det(𝐙2:𝑁+1,1:𝑁)

] {
𝑃𝑁+1

𝑢𝑁+1
}.  602 

  (A8) 603 
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