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A B S T R A C T

In this paper, we present a new volumetric ambient occlusion algorithm called Contextual Ambient Occlusion
(CAO) that supports real-time clipping. The algorithm produces ambient occlusion images of exactly the same
quality as Local Ambient Occlusion (LAO) while enabling real-time modification to the shape used to clip the
volume. The main idea of the algorithm is that clipping only affects the ambient value of a small number
of voxels, so by identifying these voxels and recalculating the ambient factor only for them, it is possible to
significantly increase the rendering performance (by 2-5x) without decreasing the quality of the rendered
image. Due to its fast performance, the algorithm is suitable for interactive environments where clipping
changes could occur every frame. Additionally, the algorithm does not have any stereoscopic inconsistency,
which makes it suitable for mixed reality environments. This paper is an extended version of the ‘‘Contextual
Ambient Occlusion’’ article presented during the 2023 Graphics Interface conference, and includes, among
other additions, the source code of the algorithm.
1. Introduction

Ambient occlusion (AO) is a global illumination technique in com-
puter graphics that is used to estimate how much each particle in the
scene is illuminated with ambient lighting. The ambient factor of a
particle can be viewed as an ‘‘accessibility’’ of the particle [1]. The
general idea is that particles that are more obstructed and thus less
accessible receive less ambient light and become darker consequently.
In volume rendering, the particle is surrounded with semi-transparent
or opaque voxels that cause this darkening by absorbing the ambient
light and not producing any emission [2].

One of the variations of volumetric AO, Local Ambient Occlusion
(LAO), is a shading technique that could be used in volume rendering
to provide better understanding of volumetric structures by darkening
regions less likely to be exposed to ambient light [3]. However, the
computation of a darkening factor is expensive because it requires
sampling the neighborhood of a voxel and is usually computed prior to
visualization. When using interactive volumetric clipping techniques,
the ambient occlusion term needs to be recomputed every time the
clipping region is modified because any change to the voxel opacity will
affect how much neighboring voxels are obstructed. This computation
is difficult to achieve in real-time, as can be seen on Fig. 2. In this
paper, we propose a new technique called Contextual Ambient Occlu-
sion (CAO) that enables fast recomputation of regions where ambient
occlusion is likely to have changed every frame, while maintaining
temporal stability.
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The main idea of the algorithm is that in LAO, the ambient factor
of a voxel is affected only by a small number of surrounding voxels
in a certain spherical radius. Therefore, when parts of the volume are
clipped, only a small number of voxels have their value affected by
the clipping. In our algorithm, we propose a pipeline that allows us to
identify those voxels and perform the LAO recalculation only for them.
Fig. 1 illustrates an example of an image that we were able to obtain
with this algorithm.

The algorithm was specifically designed for volume ray casting
where a perspective transformation (which includes all linear trans-
formations such as translation, rotation, and scaling) could be applied
to the clipping region every frame. Therefore, it is particularly well
suited for interactive visualization of volumetric data where the user
controls the position and rotation of the clipping regions, such as
with the interactive clipping technique presented by Joshi et al. [4].
In addition to the fast calculation time, the algorithm achieves high
AO quality because it uses the discrete volume rendering integral for
opacity calculations, similar to Hernell et al. [3]. However, unlike the
implementation described by Hernell et al. [3] where only one ray
is cast per frame, the algorithm calculates the final AO factor for all
rays every frame, which avoids having a blurry effect that comes from
the combination of multiple frames. This makes it possible to use our
algorithm even with a significant change of the position, rotation or
scale of the clipping region every frame.
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Fig. 1. CAO applied on medical volumes. One concave clipping shape (torus) and one convex shape (cylinder) are applied to an MRI head on the left. The same convex clipping
mesh (cylinder) is applied to a CT chest image on the right. Both medical images were taken from the default dataset provided by 3D Slicer software (https://www.slicer.org/).
Fig. 2. Ray cast performed for each voxel to calculate the LAO factor. Each red point
represents a tri-linearly interpolated sample taken from the volume. The ambient factors
of all rays are then aggregated together to create a single ambient value for the voxel.

In addition to the previous advantages, the new method is com-
patible with virtual reality (VR) and augmented reality (AR) displays
because all the ambient occlusion factor calculations are done in data
space. This avoids the problem of screen-space stereoscopic incon-
sistency [5] and makes the algorithm scale well with an increasing
resolution and number of viewports. We evaluated the performance
of the algorithm in comparison with a naive implementation where
the ambient factor is recalculated for all voxels every frame and found
that our algorithm offers a 2-5x speedup. Additionally, if we compare
our algorithm to the one proposed by Hernell et al. [3], the latter
takes multiple frames (e.g. 54 to achieve a similar quality to images
presented in Fig. 9) to recover from a change of clipping frames, which
is unacceptable for interactive VR environments, and our algorithm
fixes this problem.

This paper is an extended version of the ‘‘Contextual Ambient
Occlusion’’ article [6] presented during the 2023 Graphics Interface
conference. The main contributions compared to the conference paper
are the publication of the source code, the description of an extension
of the algorithm that supports multiple simultaneous clipping meshes,
2

as well as a thorough evaluation of the effect of the number of rays
used during the spherical ray casting on the quality of the image, which
highlights the advantages of the CAO algorithm compared to LAO.

2. Related work

One of the most popular techniques to calculate ambient occlusion
that is commonly used in real-time computer graphics is Screen-Space
Ambient Occlusion (SSAO), which has the advantages of only requiring
a depth map as an input and having good performance due to the fact
that all calculations are done in screen-space [7]. However, in volume
rendering where a depth map cannot be obtained due to the absence
of isosurfaces in the dataset that needs to be visualized, alternate
algorithms to estimate the ambient factor have to be used.

One of the first papers to present a real-time implementation of
AO-alike volume shading technique was Vicinity Shading [8]. This
algorithm first calculates the normal for each voxel, and then sends
3D Bresenham rays in a half-spherical neighborhood at the same side
as the normal vector. Each ray traverses the volume until it reaches a
voxel whose opacity is higher, and the results of all rays are aggregated
together using averaging. This averaged value then represents that
vicinity value of the voxel, which can also be interpreted as the ambient
factor of the voxel.

Díaz et al. [9] presented an algorithm that speeds up the precalcula-
tion part compared to vicinity shading and does not require calculating
the normal of every voxel. The algorithm uses the concept of 3D
summed area tables (SAT) which are used to quickly aggregate and cal-
culate the average opacity of multiple voxels. In the precalculation step,
a 3D SAT volume of opacities is constructed from the initial volume and
used during rendering to quickly evaluate the average vicinity value for
a single voxel with very few texel fetches. The biggest disadvantage
of this algorithm is that 3D SATs give only a rough approximation
of the ambient value because all voxels used to calculate the vicinity
value have equal weight, no matter their distance from the voxel. To
improve upon this problem, another algorithm based on the idea of
using 3D SATs was presented by Schlegel et al. [10]. This improved
algorithm changes how the 3D SAT is used at runtime. Instead of simply
estimating the average vicinity value around the voxel, the algorithm
calculates ‘‘shells’’ around the volume where each one has a different
distance from the voxel. Then, the values of all shells are aggregated
together using the absorption formula presented by Max [11], similar
to the standard volume rendering integral. However, even in that case,

https://www.slicer.org/
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Table 1
Comparison of existing volumetric ambient occlusion methods. Quality represents the relative quality of the obtained ambient value. The ‘‘Real-time
modification to’’ column indicates what type of modification could be done in real-time within the algorithm without a loss in performance. The red,
yellow and green circles represent low, medium and high quality of the ambient factor correspondingly.

Author(s) Name Quality Real-time modification to:

Radius TF Clipping

Stewart [8] Vicinity shading ✗ ✗ ✗

Ropinski et al. [12] Clustered histograms ✗ ✓ ✗

Díaz et al. [9] SAT of opacities ✓ ✗ ✗

Hernell et al. [9] Local Ambient Occlusion ✓ ✗ ✗

Schlegel et al. [10] Shelled SAT of opacities ✓ ✗ ✗

Engel & Ropinski [13] Deep-learned AO ✗ ✓ ✓

Ours Contextual Ambient Occlusion ✗ ✗ ✓
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due to the aggregation of many voxels together, only a rough estimation
of the ambient factor is obtained.

Unlike 3D SAT table algorithms which focus on fast precalculation
and rendering time, some other algorithms focus on having a high
quality of the ambient value by focusing on the physical accuracy of
the ambient value calculation. Such is the case of the Local Ambient
Occlusion (LAO) algorithm presented by Hernell et al. [3]. This algo-
rithm presents an expensive precalculation step where for each voxel its
ambient value is calculated. This calculation consists of casting multiple
rays in a spherical pattern around each voxel. Each of the rays samples
the opacities in the volume and aggregates them using the absorption
formula described by Max [11]. The values of all rays are then averaged
together to create a single ambient value for the voxel. The algorithm
produces high quality results as further voxels affect the ambient value
exponentially less than closer ones, which is more physically accurate.

Some ambient occlusion algorithms focus on being able to properly
estimate the ambient factor if the opacity transfer function of the vol-
ume changes in real-time. Such is the case of the clustered histograms
algorithm presented by Ropinski et al. [12], whose main idea is that
voxels with approximately the same neighborhood will have roughly
the same ambient factor independently of the transfer function used. In
this algorithm, for each voxel, a local histogram of neighboring voxels
is created, and then similar histograms are clustered together. This
histogram stores that degree of influence that each neighboring voxel
has on the main voxel using inverse distance weighting. Consequently,
a new 3D texture is filled which contains the cluster index for every
voxel. With this information, the ambient factor is calculated in real-
time by applying the transfer function on the histogram. In 2021, a
different approach was proposed to estimate the ambient factor with
dynamic transfer function change by Engel and Ropinski [13]. In this
algorithm, deep learning was used to predict the impact of a change of
the transfer function on the ambient value. Many combinations of MRI
volumes and transfer functions were created and rendered with Monte
Carlo ray tracing, and the resulting voxel ambient values were learned.
The created model could then be used to predict the ambient value for
any MRI image and any opacity transfer function.

In Table 1, we presented a summary of volumetric ambient occlu-
sion algorithms where we compared them in terms of their ambient
factor quality, and we also evaluated what types of real-time changes
can be done to the algorithm. In order to rate the quality, we separated
all the algorithms into 3 logical groups, ranging from low to high
that measure how physically accurate the ambient factor is. The high-
quality group encompasses all algorithms that follow the absorption
model presented by Max [11] and perform spherical ray casting. The
medium-quality group consists of algorithms that provide some varia-
tion of inverse weighting for voxels based on their distance from the
voxel for which the ambient value is calculated. The low-quality group
consists of algorithms that calculate an unweighted average of opacities
of neighboring voxels for a single voxel.
3

3. Methods

The CAO algorithm is able to recalculate in real-time the changes
to occlusion that occur in the volume when parts of this volume are
clipped, while achieving exactly the same quality as LAO. Because the
algorithm simply prevents unaffected voxels from being recalculated,
the calculation is always exact and remains stable over successive
frames. All of the ambient occlusion computations are done in data
space to avoid the stereoscopic screen-space inconsistency problem
described by Shi et al. [5], which makes it suitable for VR and AR
environments. The source code is published in the form of a Unity3D
package,1 which can be easily integrated in existing Unity3D projects.

3.1. Pipeline

The central idea of the CAO algorithm is that we render an inflated
version of the clipping shape in two depth buffers, and then we use
these buffers to determine which voxels need recomputation of the
ambient factor.

The algorithm requires as input a volume 𝑉 stored in a 3D texture,
he opacity transfer function 𝑇𝐹 𝑜 as well as the clipping mesh 𝑀 .
he mesh 𝑀 should satisfy the requirements described by Weiskopf
t al. [14], meaning it has to be either convex, or concave with the
imitation that it could be fully rendered with exactly two opacity
eeling steps [15]. For example, as indicated in Fig. 1, a concave shape
uch as a torus can be used in this algorithm because it satisfies this
onstraint.

We propose a novel approach to obtain the correct ambient factor
or all voxels every frame by only recalculating the ambient factor for
oxels where it was affected by clipping. We use shadow test volume
lipping (see Section 3.2) to perform the clipping and dilation maps
see Section 3.3) to determine which voxels were affected by clipping.

A visual representation of the pipeline is given in Fig. 3, where the
teps executed using a compute shader are marked as C.S., while the
teps executed using the rendering pipeline are indicated with R.P.

Steps done before ray casting:

I. (C.S.) The ambient factor is computed for all voxels using LAO
spherical raycasting assuming that no clipping is applied on the
volume. The resulting AO values are stored in a volume called
𝑉𝑃𝐴𝑂 and used later.

II. (R.P.) The front and back faces of the clipping mesh are rendered
using two depth-only rendering passes and the resulting depth
maps are stored in two textures.

III. (C.S.) Dilation maps are computed from the depth maps created
in step I and stored in two textures. The dilation maps are
computed by calculating the Minkowski sum between the depth
map and a sphere that represents the LAO rays cast region.

Steps done during rendering:

1 https://github.com/andrey-titov/ContextualAO

https://github.com/andrey-titov/ContextualAO
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Fig. 3. Visual representations of the 6 steps necessary to obtain the volume shaded using CAO. Steps I–III are done once before the rendering, while steps IV-VI are done every
frame. C.S. represents compute shaders while R.P. stands for the rendering pipeline.
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IV. (C.S.) Shadow test volume clipping (see Section 3.2) is done for
each voxel of the initial volume 𝑉 , and the result is stored in a
volume 𝑉𝑜 containing the opacity of each voxel after clipping
is applied. Additionally, a mask volume 𝑉𝑚 is populated that
indicates for each voxel if it was clipped, and in the case that
it was not, whether its ambient value was affected by clipping.

V. (C.S.) A volume containing the final LAO coefficients 𝑉𝐴𝑂 for the
image is outputted. The volume 𝑉𝑚 is read to determine whether
the LAO value should be recalculated with a spherical ray cast,
or if the initial ambient value stored in 𝑉𝑃𝐴𝑂 could be used as-is.

VI. (R.P.) The initial volume 𝑉 is rendered using shadow test volume
clipping (see Section 3.2), and at every ray step the 𝑉𝐴𝑂 volume
is sampled to determine the ambient factor for the current ray
sample.

3.2. Shadow test volume clipping

In our implementation, we use a clipping algorithm similar to
shadow test clipping presented by Weiskopf et al. [14], which we
adapted to be used with ray casting volume rendering. It is used during
the computation of LAO and to render the clipped volume. Shadow
test clipping is a modification of convex volume cutting based on
depth clipping described by Weiskopf et al. [14]. The advantage of this
algorithm is that it makes it very simple to test for any point inside the
volume if it is clipped, by only requiring to sample two depth maps.

In standard depth clipping [14], a convex mesh is inserted in the
volume, and the boundary of the mesh is used to separate the clipped
parts of the visible ones. In our case, we consider the region outside
the mesh as being visible, while the inside part is considered to be
invisible, and therefore clipped. This corresponds to depth clipping
described by Weiskopf et al. [16], which can be seen as a subtraction
of the clipping mesh from the original volume. However, other types
of logical operations can be supported too. The algorithm could be

adapted to work with volume probing [16] where the region inside the i
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mesh is visible and everything else is invisible. This would correspond
to the intersection logical operator between the mesh and the volume.
The modification would require performing a contraction instead of
a dilation of the clipping mesh in step III of Section 3.4, as well as
inverting the conditions described in Lines 24 and 26 of Algorithm 2
in step IV.

In the original implementation of depth-based volume cutting [14],
the front and back faces of the clipping mesh are rendered from the
point of view of the observer in two different passes, and the created
depth buffers 𝑍𝑓𝑟𝑜𝑛𝑡 and 𝑍𝑏𝑎𝑐𝑘 are stored. Then, during rendering, each
ragment2 𝑓 is considered as visible only if it passed the following
lipping test (assuming that smaller depth values correspond to closer
bjects to the camera):

𝑖𝑠𝑖𝑏𝑙𝑒(𝑓 ) = (𝑧𝑓 ≤ 𝑧𝑓𝑟𝑜𝑛𝑡) ∨ (𝑧𝑓 ≥ 𝑧𝑏𝑎𝑐𝑘), (1)

here 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑓 ) is a Boolean function that indicates if the fragment 𝑓
s visible (i.e. not clipped), 𝑧𝑓 corresponds to the depth value of 𝑓 , and
𝑓𝑟𝑜𝑛𝑡 and 𝑧𝑏𝑎𝑐𝑘 represent the depths within the depth buffers 𝑍𝑓𝑟𝑜𝑛𝑡 and
𝑏𝑎𝑐𝑘 for the current pixel location of 𝑓 .

Shadow test volume clipping is a modification of the depth-based
lipping where the location from which 𝑍𝑓𝑟𝑜𝑛𝑡 and 𝑍𝑏𝑎𝑐𝑘 are computed
iffers from the location of the observer [14]. In this scenario, these
wo depth buffers are created from an arbitrary position in the scene
ith projection parameters that may differ from the projection camera,
nd we will further refer to it as the clipping camera. Because of this
hange, when the clipping test is performed on each fragment 𝑓 during
endering, this fragment should be transformed to the coordinate space
f the clipping camera. This technique is referred to as shadow test
lipping because the idea of this technique is very similar to shadow

2 Note that the word ‘‘fragment’’ is used to describe samples of the volume
ecause the original clipping algorithms were implemented with texture
apping [14]. In ray casting, ‘‘sample’’ should be used instead to denote

nformation retrieval from a 3D texture.
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Fig. 4. Shadow test volume clipping. The clipping camera is attached to the clipping
mesh and renders its front and back faces once to depth buffers. These depth buffers
are then used every frame to determine which fragments are clipped by performing
a clipping test. Each fragment needs to be transformed to the coordinate space of
the clipping camera, sample the depth buffers and then perform the clipping test to
determine whether the fragment is visible.

mapping [17], where a light source creates a depth map of the scene,
and each sample in the scene has to be transformed into the coordinate
space of the light source projection camera, and its depth is compared
to the one in the shadow map to determine whether the sample is lit or
in a shadow. An illustration of shadow test clipping is given in Fig. 4.

In our implementation, we use shadow test volume clipping both
during the computation of the volume containing LAO information, but
also during the rendering of the volume. As indicated in Fig. 4, we use
an orthogonal projection for the clipping camera to obtain the highest
precision in the depth buffers. During the rendering, the position and
rotation of the virtual camera is synchronized with the clipping mesh,
so that the depth maps never change from the point of view of the
camera. This makes it possible to precalculate these depth maps before
the rendering and never change them after, unless the geometry of the
clipping mesh would dynamically change.

3.3. Local update of LAO

The key idea of CAO is that clipping modifications only affect
the ambient factor of a small number of voxels located close to the
clipping boundary, so LAO could be recalculated only for the voxels
that were affected by clipping. This is illustrated in Fig. 5, where all
voxels fall into 3 categories: (a) voxels that were clipped, (b) non-
clipped voxels whose ambient factor was affected by the clipping and
(c) non-clipped voxels that were not affected by the clipping. By only
recalculating the ambient factor of voxels that fall into category (b), it
is possible to significantly speed up the calculation time of LAO without
compromising the quality of the final rendered image. In order to do
so, the CAO algorithm precalculates the LAO factor for all voxels of
a volume before any clipping is applied, and intelligently recalculates
LAO only for those affected voxels.

To distinguish which voxels have an ambient factor affected by
clipping, a Minkowski sum is calculated between the clipping mesh and
a sphere representing the neighborhood considered for LAO calculation,
as illustrated in Fig. 6. The radius of the sphere must correspond to
the length of the rays sent during the ray casting for each voxel. The
mesh created from this Minkowski sum could be used with depth-based
mesh clipping to delimit the region of voxels for which LAO should be
recalculated. We will further refer to it as the dilation shape.

In the actual implementation, this Minskowski sum does not need
to be explicitly performed and the dilation shape does not need to be
5

Fig. 5. 3 possible categories for the voxel. The green circles represent the spherical
neighborhood used to perform the LAO calculation. The orange line represents the
boundary of the clipping mesh.

Fig. 6. 3 possible categories for the voxel. The green circles represent the spherical
neighborhood used to perform the LAO calculation. The orange and the purple lines
represent the boundaries of the clipping mesh and the dilation shape correspondingly.

created in the form of a mesh because doing so is computationally
expensive, and a significantly simpler approach could be taken instead.
Since the initial clipping mesh already creates depth maps used for
depth-based volume clipping, the depth maps of the dilation shape
could be computed using them. Therefore, instead of computing a
Minkowski sum in 3D, it can be calculated in 2D by adding a half-
spherical depth map to the depth maps created by the initial mesh.
This sum will create the depth map of the dilation shape which is then
used to classify voxels. Since the rendering of the volume will be done
with shadow test volume clipping, this operation would only need to
be performed once before the rendering begins.

3.4. Precomputation of the dilation shape depth maps

Before starting rendering, three precalculation steps should be com-
pleted.

I. The ambient factor is computed for all voxels in the volume
in a spherical neighborhood using LAO and the result is
stored in a volume called 𝑉𝑃𝐴𝑂. In order to compute the
ambient factor for a single ray, the absorption model is used [3].

Thus, for a ray 𝑘 sent from the voxel 𝑥 the ambient factor is
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Fig. 7. Computation performed for every pixel during the Minkowski sum calculation.
he algorithm ‘‘inflates’’ the original depth map using a spherical depth map and stores
he biggest value that was possible to obtain. Note that here, the creation of 𝐷𝑏𝑎𝑐𝑘 from
𝑏𝑎𝑐𝑘 is illustrated.

expressed as:

𝐴𝑘(𝑥) =
1
𝑀

𝑀
∑

𝑚=1

𝑚−1
∏

𝑖=1
(1 − 𝑎𝑖), (2)

where 𝑀 represents the number of samples taken by the ray,
𝑚 and 𝑖 are used to iterate through the samples (assuming
that smaller numbers corresponds to closer samples), and 𝑎𝑖
represents the opacity at the 𝑖th sample. To combine the ambient
values of all rays, the following formula is used (which performs
an averaging):

𝐴(𝑥) = 1
𝐾

𝐾
∑

𝑘=1
𝑤𝑘 𝐴𝑘(𝑥), (3)

where 𝐾 represents the number of rays, 𝑘 is used to iterate
through the rays, 𝐴𝑘(𝑥) represents the ambient value of the ray
𝑘, and 𝑤𝑘 is an optional parameter that could be used to perform
directional weighting. The obtained ambient factor 𝐴(𝑥) ranges
from 0 (the voxel is fully occluded) to 1 (the voxel is completely
unobstructed).

II. A ‘‘clipping’’ camera is introduced in the scene which ren-
ders the clipping mesh with two depth-only passes to two
framebuffer objects (FBOs) using orthogonal projection. The
clipping camera is used to render this mesh from some point in
the scene, similar to how a light source generates a depth map
in shadow mapping (see Fig. 4). The front and the back faces
of the mesh are rendered into each FBO correspondingly, and
the value of empty pixels of 𝑍𝑓𝑟𝑜𝑛𝑡 is inverted. This way, for any
voxel in the volume, it can easily be determined if it is clipped by
transforming it to the coordinate space of the clipping camera.
The two FBOs 𝑍𝑓𝑟𝑜𝑛𝑡 and 𝑍𝑏𝑎𝑐𝑘 are kept without change for all
future rendering.
The 3D pose of the clipping mesh relative to the clipping camera
should respect some constraints. If the clipping mesh is convex,
then it should be positioned in the center of the clipping camera
and have a margin around it to leave space for the dilation map
generated in step III. If the mesh is concave, then an additional
limitation should be respected, which is that the clipping mesh
could be rendered with 2 depth peeling passes from the point of
view of the clipping camera. If this limitation is not respected,
the clipping mesh would cut regions similar to the convex hull

of the concave mesh.

6

Fig. 8. Comparison between CAO images created (left) without anti-aliasing and (right)
with anti-aliasing with 𝑁 = 32. Both images are rendered with a 54-ray spherical
raycast.

III. The Minkowski sum of the clipping mesh and the LAO ray
cast region is rendered to two additional FBOs. This Minkoski
sum does not need to actually be represented with a mesh in
order to be projected, it can be calculated in screen space from
the two FBOs which contain the original projected mesh. These
new textures containing the depth maps of the dilation shape are
called 𝐷𝑓𝑟𝑜𝑛𝑡 and 𝐷𝑏𝑎𝑐𝑘.
To calculate 𝐷𝑓𝑟𝑜𝑛𝑡 from 𝑍𝑓𝑟𝑜𝑛𝑡, a compute shader needs to be
executed that will combine the depth map 𝑍𝑓𝑟𝑜𝑛𝑡 with a spherical
kernel that represents the depth map of a sphere, as illustrated in
Fig. 7. The compute shader instantiates a thread for each pixel of
the output depth map 𝐷𝑓𝑟𝑜𝑛𝑡, which has the same 2D dimensions
as 𝑍𝑓𝑟𝑜𝑛𝑡. The algorithm requires input the radius of the sphere
called 𝑟𝑥𝑦 which is measured in pixels, as well as the 𝑧-offset 𝑟𝑧
which represents a depth in the range [0, 1]. These values are
calculated by projecting the dilation radius in the coordinates
of the carving camera and measuring the pixel length, as well
as the depth. This dilation radius depends on the length of the
rays used in step I. Algorithm 1 respresents the steps needed to
be performed to calculate a single depth value of 𝐷𝑓𝑟𝑜𝑛𝑡 at pixel
position (𝑥, 𝑦) using 𝑍𝑓𝑟𝑜𝑛𝑡. Then, the same process is repeated
for the buffer 𝐷𝑏𝑎𝑐𝑘 using 𝑍𝑏𝑎𝑐𝑘 with the exceptions that in line
7, 𝑧𝑠𝑝ℎ𝑒𝑟𝑒 is added to 𝑧𝑚𝑒𝑠ℎ, and 𝑧𝑚𝑖𝑛 is replaced with 𝑧𝑚𝑎𝑥, so the
𝑚𝑎𝑥 function instead of the 𝑚𝑖𝑛 one is applied at line 8.

Algorithm 1 Calculation of a dilated depth value executed for every
pixel (𝑥, 𝑦) of 𝐷𝑓𝑟𝑜𝑛𝑡.
1: 𝑧𝑚𝑖𝑛 ← +∞
2: for 𝑖 between 𝑥 − 𝑟𝑥𝑦 and 𝑥 + 𝑟𝑥𝑦 do
3: for 𝑗 between 𝑦 − 𝑟𝑥𝑦 and 𝑦 + 𝑟𝑥𝑦 do
4: if (𝑖, 𝑗) is within radius 𝑟𝑥𝑦 of (𝑥, 𝑦) then
5: 𝑧𝑚𝑒𝑠ℎ ← 𝑍𝑓𝑟𝑜𝑛𝑡[𝑖, 𝑗] ⊳ Fetch 𝑍𝑓𝑟𝑜𝑛𝑡 at pixel (𝑖, 𝑗)

6: 𝑧𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑟𝑧 ⋅

√

1 −
(

𝑛𝑜𝑟𝑚((𝑥−𝑖,𝑦−𝑗))
𝑟𝑥𝑦

)2

7: 𝑧𝑑𝑖𝑙𝑎𝑡𝑒𝑑 ← 𝑧𝑚𝑒𝑠ℎ − 𝑧𝑠𝑝ℎ𝑒𝑟𝑒
8: 𝑧𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑧𝑑𝑖𝑙𝑎𝑡𝑒𝑑 , 𝑧𝑚𝑖𝑛)
9: 𝐷𝑓𝑟𝑜𝑛𝑡[𝑥, 𝑦] ← 𝑧𝑚𝑖𝑛

3.5. Steps performed each frame

Each frame, the following computation is performed:

IV. A compute shader clips the initial volume 𝑉 and outputs
a 3D texture 𝑉𝑜 where all the clipped voxels are set to be
transparent, while the visible voxels hold the opacity of
the voxel. Additionally, the mask volume 𝑉𝑚 is populated.
Here, the computer shader code is executed once for each voxel,
and outputs either 0 (for zero opacity or full transparency), the



A. Titov, M. Kersten-Oertel and S. Drouin Computers & Graphics 119 (2024) 103884
original opacity of the voxel as if no clipping was applied, or
the anti-aliased opacity value. Fig. 8 illustrates the importance
of using anti-aliasing when filling the 𝑉𝑜 volume.
To calculate the anti-aliased opacity value, multisample anti-
aliasing (MSAA) is used. First, for each voxel, one sample is
taken in its center, and 8 samples are taken at the corners of
the voxel. If it is determined that some of the samples around
a voxels are clipped, and some are not, then 𝑁 additional
samples are taken at predefined positions in the [−1,−1,−1]
to the [1, 1, 1] neighborhood of the voxel, for a total of 𝑁 + 9
samples. Algorithm 2 demonstrates this anti-aliased shadow test
clipping procedure, which also includes populating the mask vol-
ume 𝑉𝑚 in addition to filling the opacity volume 𝑉𝑜. Additional
notes regarding some steps of the algorithm are provided in the
supplementary material.

V. A compute shader reads the mask volume, calculates the
LAO factor in a different manner depending on the mask
value 𝑉𝑚, and outputs the LAO factor to the 𝑉𝐴𝑂 volume.
If the voxel is of category 𝑎, then no calculation is performed
and the ambient factor that is saved is 1. If the category is 𝑐,
then no LAO calculation is performed either, and instead the
precalculated 𝑉𝑃𝐴𝑂 volume is sampled and its value is copied
in the output 𝑉𝐴𝑂 volume as-is. Finally, if the category is 𝑏, only
then the LAO calculation is performed for the voxel.
For each voxel in category 𝑏, rays are sent in 𝐾 predefined
directions, similarly to how it was made in step I for the volume
𝑉𝑃𝐴𝑂. The ambient factors of all rays are then averaged, and this
value is written in the output 3D texture 𝑉𝐴𝑂.

VI. The volume 𝑉 is rendered with a ray casting algorithm, and
for each sample of each ray, the 𝑉𝐴𝑂 volume is sampled to
determine the ambient factor. Here, the volume is rendered
using standard ray casting, and at every sample of each ray,
shadow test volume clipping using the 𝑍𝑓𝑟𝑜𝑛𝑡 and 𝑍𝑏𝑎𝑐𝑘 depth
maps is used to determine if the sample is visible or not. If it is
visible, then the 𝑉𝐴𝑂 volume is sampled.

3.6. Multiple simultaneous clipping meshes

The original CAO algorithm could be extended to support multiple
clipping meshes that carve in the volume simultaneously, while being
completely independent from each other. This can be done both to
have multiple clipping meshes that move independently (as for example
in the case where both hands control a mesh each) or to simulate a
complicated concave clipping shape made out of simpler meshes, as
long as each simpler mesh satisfies the constraints described in step II
of Section 3.4.

To support multiple clipping meshes, any mesh added to the scene
should be associated with its own clipping camera that renders it to a
different set of FBOs. Then, before any rendering is done, steps II and
III of the CAO pipeline described in Section 3.4 should be performed
for each mesh with its associated clipping camera. This way, each
mesh will have its own 𝑍𝑓𝑟𝑜𝑛𝑡, 𝑍𝑏𝑎𝑐𝑘, 𝐷𝑓𝑟𝑜𝑛𝑡 and 𝐷𝑏𝑎𝑐𝑘 buffers. Then,
Algorithm 2 of step IV should be modified so that Lines 19 to 23 are
performed in a loop for all meshes that are carving in the volume.
Additionally, the conditions of incrementing the counters 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 in Line
25 and 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 in Line 27 should be modified to aggregate the results
of depth tests from all meshes. In Lines 24 and 25, 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 must only
incremented if the sample is outside all meshes. This means is that if
the sample is inside at least one clipping shape, then it is considered
as being invisible, but otherwise, it is visible. Similarly, in Lines 26
and 27, 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 must be incremented only if the sample is within at
least one dilation shape. That would mean that the ambient value of
the associated voxel of this sample was affected by clipping of at least
one mesh, and the voxel of the sample should be marked as requiring
recalculation.
7

Algorithm 2 Anti-aliased shadow test clipping calculation executed for
every voxel (𝑥, 𝑦, 𝑧) of 𝑉 .
1: 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 ← 0
2: 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 ← 0
3: 𝑆ℎ𝑎𝑑𝑜𝑤𝑇 𝑒𝑠𝑡𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔(9 samples around voxel (𝑥, 𝑦, 𝑧))
4: if 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = 9 then
5: 𝑉𝑜[𝑥, 𝑦, 𝑧] ← 𝑇𝐹 𝑜(𝑥, 𝑦, 𝑧)
6: else if 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = 0 then
7: 𝑉𝑜[𝑥, 𝑦, 𝑧] ← 0
8: else
9: 𝑆ℎ𝑎𝑑𝑜𝑤𝑇 𝑒𝑠𝑡𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔(𝑁 MSAA samples of (𝑥, 𝑦, 𝑧))

10: 𝑉𝑜[𝑥, 𝑦, 𝑧] ←
𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒
𝑁+9 ⋅ 𝑇𝐹 𝑜(𝑥, 𝑦, 𝑧)

11: if 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 = 0 then
12: 𝑉𝑚[𝑥, 𝑦, 𝑧] ← 1
13: else if 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 > 0 then
14: 𝑉𝑚[𝑥, 𝑦, 𝑧] ← 0.5
15: else
16: 𝑉𝑚[𝑥, 𝑦, 𝑧] ← 0

17: function ShadowTestClipping(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
18: for sample (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) of 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
19: (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) ← 𝐴𝑝𝑝𝑙𝑦𝐶𝑙𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑉 𝑃 (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙)
20: 𝑧𝑓𝑟𝑜𝑛𝑡 ← 𝑍𝑓𝑟𝑜𝑛𝑡[𝑥𝑐 , 𝑦𝑐 ]
21: 𝑧𝑏𝑎𝑐𝑘 ← 𝑍𝑏𝑎𝑐𝑘[𝑥𝑐 , 𝑦𝑐 ]
22: 𝑑𝑓𝑟𝑜𝑛𝑡 ← 𝐷𝑓𝑟𝑜𝑛𝑡[𝑥𝑐 , 𝑦𝑐 ]
23: 𝑑𝑏𝑎𝑐𝑘 ← 𝐷𝑏𝑎𝑐𝑘[𝑥𝑐 , 𝑦𝑐 ]
24: if 𝑧𝑐 < 𝑧𝑓𝑟𝑜𝑛𝑡 or 𝑧𝑐 > 𝑧𝑏𝑎𝑐𝑘 then
25: 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 ← 𝑐𝑣𝑖𝑠𝑖𝑏𝑙𝑒 + 1
26: if 𝑑𝑓𝑟𝑜𝑛𝑡 < 𝑧𝑐 < 𝑑𝑏𝑎𝑐𝑘 then
27: 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 ← 𝑐𝑑𝑖𝑙𝑎𝑡𝑒𝑑 + 1

Table 2
Scenes tested during the evaluation.

Scene Resolution Samples
per ray

Clipping mesh % Voxels
recalculated

Engine 256 × 256 × 110 20 Sphere 14.94
Beetle 416 × 416 × 247 40 Cube 20.24
Skeleton 512 × 512 × 512 50 Rectang. prism 16.13

4. Evaluation

To evaluate the CAO algorithm, 3 scenes were created, each fea-
turing a different dataset with different parameters, as indicated in
Table 2. The volumes were taken from the ImageVis3D 1 dataset.3 In
each scene, a volume was rendered, from which a region was clipped
away. We used a single-color transfer function for each volume to
better highlight the effect of LAO rendering on the dataset. The 3
rendered volumes are demonstrated in Fig. 9 with a close-up, with 54-
ray spherical ray cast used for LAO. The screenshots of the scenes using
6 and 54 ray configurations are available in the Supplementary Figure
1, and close-ups of these screenshots are presented in Supplementary
Figure 2. Regarding the number samples 𝑁 used for anti-aliasing, we
used 32 for a total of 41 samples including the 9 original ones taken for
all voxels. To execute all our tests, we used a Windows 10 machine with
an AMD Ryzen 7 5800X CPU, 32 GB of RAM and an AMD RX 6700XT
GPU with 12 GB of VRAM.

First, we evaluated the percentage of voxels that would need to
be recalculated in our CAO algorithm, which we have also written in
Table 2. This was measured by comparing the number of voxels within
the 𝑉𝑚 volume that were marked as requiring recalculation compared
to the total number of voxels in the volume. As can be seen from that
table, this percentage is relatively low, hovering around 15%–20%.

3 https://www.sci.utah.edu/software/imagevis3d.html

https://www.sci.utah.edu/software/imagevis3d.html
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Fig. 9. Scenes used for the evaluation of the CAO algorithm, as well as their close-ups. All presented images were created with 54-ray spherical ray cast. The left, middle and
right images demonstrate the Engine, Beetle and Skeleton scenes correspondingly.
Table 3
Mean frames per second (FPS) for each scene. The speedup represents the ratio of the
framerate of our algorithm (CAO) compared to a naive implementation (LAO).

Scene Number
of rays

Solid
color

LAO - FPS CAO - FPS Speedup of
CAO

Engine 6 272.846 111.549 184.902 1.66
14 67.910 155.245 2.29
26 42.831 126.378 2.95
54 22.543 85.363 3.79

Beetle 6 128.288 15.497 42.581 2.75
14 7.509 25.581 3.41
26 4.192 16.063 3.83
54 2.012 8.526 4.24

Skeleton 6 95.142 4.316 17.514 4.06
14 2.020 9.594 4.75
26 1.107 5.729 5.18
54 0.529 2.825 5.34

Note that the samples of the LAO rays have a distance of 1 mm between
each other, which also corresponds to the Euclidian distance between
any two neighboring voxels.

Second, we measured the rendering performance of the CAO al-
gorithm and compared it to a naive implementation where LAO was
recalculated for all voxels every frame, as can be seen in Table 3. In
the naive implementation, the 𝑉𝑚 volume as well as the depth maps
f the dilation shape 𝐷𝑓𝑟𝑜𝑛𝑡 and 𝐷𝑏𝑎𝑐𝑘 were not calculated. However,

the output image produced by the naive LAO algorithm is exactly the
same as the CAO one. Additionally, we compared the performance of
the algorithm with Solid Color rendering where the same color was
applied to all samples instead of LAO, but this implementation also
featured shadow test volume clipping.

Third, we determined the computation cost breakdown when cal-
culating a single frame of each of the 3 scenes using the LAO and
CAO algorithms, with 6 and 54 rays, as can bee seen in Fig. 10. The
graphs demonstrate that in terms of the amount of calculations, the
longest step to perform along those described in Section 3.5 is step
V, where the spherical ray cast is performed. Further, with increasing
dimensions of the volume that is rendered, the proportion of the step 5
8

computations becomes even larger, overshadowing steps IV and VI in
terms of calculation time.

Additionally, we have evaluated the overhead that having multiple
clipping meshes has on the rendering performance. We created a mod-
ified version of the 3 scenes described previously where we added a
spherical mesh that also clips each volume. The modified Engine scene
can be seen in Fig. 11, while screenshots of all scenes can be seen in
Supplementary Figure 3. In all 3 scenes, we have positioned the new
mesh so that it overlaps with the already existing clipping mesh, to test
our aggregation function of samples from different depth and dilation
maps. The comparison between the frame rates of having one or two
clipping meshes can be seen in Table 4. As can be seen from these re-
sults, using an additional clipping mesh results in a slowdown hovering
around 8–16%. Moreover, we can see that the loss of performance is
more significant (ranging from 14.3% to 15.7%) for a smaller datasets,
as in the Engine scene for example, compared to bigger datasets such
as the Skeleton (where the slowdown ranges from 8.3% to 10.5%). We
hypothesize that the reason for this difference is that larger datasets
have a much longer execution of the spherical ray casting step (step V
of the algorithm), as can be seen from the computation cost breakdown
above. Therefore, even though additional clipping would also affect the
amount of calculations needed to be performed in step V, the main step
affected by the algorithm is step IV due to the doubling of the amount of
sampling that has to be performed for each voxel sample. Thus, smaller
datasets where step IV takes a larger proportion of the execution time
would be slowed down more. Another important aspect that can be
noted from Table 4 is that the number of rays has little impact on the
slow down time, which is to be expected because it mainly affects step
V, which is not directly affected by changes to the number of clipping
meshes used in the scene.

Furthermore, we evaluated the effect that the number of rays has
on the quality of the created image. This was done to demonstrate the
importance of having a high number of rays during the spherical ray
casting, which is specifically the case where CAO performs particularly
better compared to LAO. We measured this by calculating the Root
Mean Square (RMS) between the indicated number of rays and the
ground truth image which was calculated using 512 rays which were

distributed using the Fibonacci Lattice [18] on the surface of a sphere.
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Fig. 10. Runtime computation cost breakdown for a single frame using the LAO
and CAO algorithms, in milliseconds (ms). ‘‘Clipping’’ corresponds to the step IV of
the algorithm explained in Section 3.5, ‘‘Spherical ray cast’’ corresponds to step V,
‘‘Rendering’’ corresponds to step VI, and ‘‘Overhead’’ represents time spent by the
Unity3D engine on calculations not related to AO.

Table 4
Performance comparison between using 1 and 2 clipping meshes in each scene, as well
ass the corresponding slowdown percentage.

Scene Number
of rays

CAO 1 mesh -
FPS

CAO 2 meshes -
FPS

% Slowdown

Engine 6 184.902 158.508 14.3
14 155.245 132.542 14.6
26 126.378 107.000 15.3
54 85.363 71.936 15.7

Beetle 6 42.581 37.690 11.5
14 25.581 23.097 9.7
26 16.063 14.150 11.9
54 8.526 7.487 12.2

Skeleton 6 17.514 15.717 10.3
14 9.594 8.800 8.3
26 5.729 5.173 9.7
54 2.825 2.527 10.5

The ray patterns were chosen according to the 26-neighborhood of a

voxel, with a jittering factor added to increase the randomness. For

the numbers of rays, they were chosen so that they approximately

double each time. In the case of 6 rays, the directions with a Manhattan

distance of 1 were chosen, while for 14 rays, directions of a Manhattan
9

Fig. 11. Modified Engine scene with two clipping meshes.

Table 5
Root Mean Square per-voxel (3D) difference between the ambient occlusion factor
obtained with a different number of rays and the AO factor obtained for the ‘‘ground
truth’’ volume obtained with a large number of rays (512), for each scene. Range: [0,
1].

Scene 6 Rays 14 Rays 26 Rays 54 Rays

Engine 0.03907 0.01203 9.759 ∗ 10−3 6.937 ∗ 10−3

Beetle 0.01746 8.765 ∗ 10−3 5.144 ∗ 10−3 3.438 ∗ 10−3

Skeleton 0.02520 0.01205 7.910 ∗ 10−3 5.208 ∗ 10−3

Table 6
Root Mean Square per-pixel (2D) difference between the image pixel values obtained
with a given number of rays and the pixel values obtained for the ‘‘ground truth’’
image obtained with a large number of rays (512), for each scene. Range: [0, 255].
Each pixel component was treated as an individual value.

Scene 6 Rays 14 Rays 26 Rays 54 Rays

Engine 11.771 2.755 1.936 1.032
Beetle 4.485 1.950 1.072 0.848
Skeleton 5.292 1.603 1.134 0.956

distance of 1 and 3 were chosen. For the 26 rays case, all 26 neigh-
boring directions were considered, while for 54 rays, the centers of all
cube faces of a Rubik’s cube were chosen.

The RMS was calculated both for the voxel values indicated in
Table 5, as well as the final color of the pixels in the rendered image as
indicated in Table 6. Additionally, we made a per-pixel demonstration
of the error between each number of rays and the ground truth image,
which we have shown in the Supplementary Figure 4. We also added
an example that demonstrates the difference in error for the Engine
scene in Fig. 12. The colors in these images were inverted to better
demonstrate the error. We performed this comparison to demonstrate
the importance of having a high number of rays, which is also where
our algorithm has the highest speedup.

Finally, knowing that the algorithm produces exactly the same
image as LAO, to make sure that our implementation is correct, we
compared the screenshots produced by the LAO and CAO algorithms
for the 3 scenes. We have created screenshots using 6, 14, 26 and 54
ray configurations and we made a per-pixel comparison between the
LAO and CAO images for each configuration. We have found that every
pair of pixels had the exact same 𝑅𝐺𝐵 components, confirming the
correctness of our implementation. This result was expected because
our CAO algorithm dynamically determines every frame what voxels
could have a LAO value that is affected by clipping, and performs a
recalculation on these voxels. Thus, with a correct implementation, it
is impossible to obtain a different AO value for LAO and CAO.

5. Discussion

The most important advantage of our algorithm is that it offers

exactly the same quality of image as the LAO algorithm presented by
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Fig. 12. The 2D error (pixel value difference) between the image rendered with the
6-ray configuration and the ground truth image with 512 rays (left), as well as the error
between the 54-ray configuration and the same ground truth image (right). Each pixel
color aggregates the average error between the RGB components. The pixel colors are
inverted, and thus darker colors represent higher error. The error ranges bewtween 0%
and 20%, with 20% being the highest recorded error for a single pixel in the images.

Hernell et al. [3], while reducing AO factor recomputation time when
clipping parameters are modified. This algorithm produces a physically
accurate ambient factor, as it follows the absorption model described
by Max [11]. We propose a more sophisticated rendering pipeline for
the LAO algorithm that is able to take care of carving within the
volume while maintaining proper recalculation of the ambient factor.
Additionally, our algorithm supports clipping with all convex shapes
and concave shapes that can be rendered with two opacity peeling
steps [15].

When compared to LAO, it can be seen from Table 3 that our algo-
rithm offers a significant speedup, with 2-5x the frame rate compared
to a full recalculation of all voxels. It can also be seen that the speedup
is higher for volumes with a higher 3D resolution and with a higher
number of rays. This is expected because in those cases the total amount
of computation necessary for the spherical ray cast becomes larger, so
cutting down the amount of computation at this step yields the best
speedup, as can be seen in Fig. 10. For example, for our largest dataset
(Skeleton), for the 26 and 54 ray cases, the speedup was 5.18 and
5.34 correspondingly. Thus, our algorithm is especially useful when a
high-quality ambient factor needs to be calculated every frame with a
volume with high dimensions. To highlight the importance of using a
high number of rays, we have also measured the effect of that number
on the quality of the obtained image. As can be seen from Table 6, the 6
and even the 14-ray patterns have a relatively high error, and to get to
a mean error that is below 1 within the [0, 255] color range, one needs
o use at least a 54-ray configuration. The difference of the 2D error
etween the 6-ray configuration and the 54-ray configuration from the
round truth image made with 512 LAO rays can be seen in Fig. 12.

Additionally, since the calculation is done in data space, it avoids
he stereoscopic screen-space inconsistency described by Shi et al. [5],
hich can result in viewer discomfort. This inconsistency exists in

creen-space algorithms such as SSAO due to the fact the left and
ight eye view slightly different parts of the dataset, which might
onsequently lead to a different calculated ambient value for the same
bject in each eye.

The algorithm that we presented is particularly suitable for inter-
ctive environments where the position and rotation of the clipping
egion might change every frame. Unlike the algorithm presented by
ernell et al. [3] in which only one LAO ray is cast per frame, in our

mplementation a full ray cast is performed every frame. Because of
his, the user always perceives the final LAO image without having
lurring or visual artifacts from previous frames, which makes it more
uitable for scenarios where the clipping region is controlled by direct
ser input. Such is the case of interactive VR and AR environments
here the clipping region is controlled with hand gestures or con-

rollers with 6 degrees of freedom, so small changes to the clipping
egion could occur every frame due to hand shaking. In addition to this,
he AO calculation performance scales well with increased number of
10
viewports and the resolution in each of the viewports. This is due to the
fact that CAO is calculated in data space, but also because the rendering
of the volume is done with shadow test volume clipping, which avoids
needing to generate the depth map for every viewport like it is done
by Weiskopf et al. [14]. This further makes the algorithm suitable for
VR and AR displays which may have more than one viewport and a
relatively high resolution for each eye.

The main drawback of the algorithm is that it requires a significant
amount of video memory, especially when rendering volumes with a
high spatial resolution. As can be seen in Fig. 3, there are 5 volumes
with the same dimensions as the dataset that have to be kept in
video memory simultaneously. Another drawback is that any change
to the opacity transfer function would require a recomputation of the
volume 𝑉𝑃𝐴𝑂 that stores the precalculated LAO values. In that case,
the framerate of the algorithm would decrease to the one shown for
the LAO algorithm in Table 3. However, as can be seen from this table,
even in that case the framerate will remain highly interactive, and only
the configurations where the dataset has high dimensions and a high
number of rays would be severely affected.

6. Conclusion

In this paper we have presented a novel volumetric ambient occlu-
sion algorithm that was optimized to work with real-time clipping of
the volume. The code of the algorithm was published on GitHub in
the form of a Unity3D package, with the link given in the Methods
section. In this algorithm, we determine during each frame which
voxels’ ambient value was affected by clipping and we perform an
LAO recomputation only on these voxels. Since those affected voxels
are located in a small radius around the clipping shape, their number
is significantly lower than the total number of voxels in the volume.
Our algorithm is able to find these voxels by calculating the dilated
depth map of the clipping volume, and then by using shadow test
volume clipping to determine if the voxels require recomputation. The
algorithm offers a 2-5x speedup over recalculating the ambient factor
of all voxels every frame. Additionally, a simple extension can be made
to the algorithm that would make it support multiple simultaneous
clipping meshes. Furthermore, the algorithm is suitable for interactive
environments since the final image is generated every frame, and it
is suitable for VR and AR environments since it does not have any
stereoscopic inconsistency.

In the future, more tests should be made to measure the effect
of different parameters on the quality of the rendering. A user study
could be performed to measure the effect of the number of rays, to
determine the right compromise between the quality of the rendered
image and the performance. Additionally, the effect of the resolution
of the FBOs of the clipping camera needs to be evaluated both in
terms of the quality of the created image, as well as the performance.
Moreover, the use of more complex concave meshes could be explored
that are not made out of multiple simpler meshes. With these complex
concave meshes, 𝑃 depth peeling passes may be required, in which case
𝑃 depth and dilation buffers should be used, similar to how concave
mesh clipping was described by Weiskopf et al. [14]. Further, a more
rigorous evaluation should be done to determine how our algorithm
combined with interactive clipping helps the perception of volumetric
data compared to more basic volume rendering techniques such as
Phong shading [19] or using a simple 1-dimensional transfer function.
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