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ABSTRACT This work introduces a new condition monitoring approach for complex systems based on a
standardized latent space representation. Latent variable models such as the variational autoencoders are
widely used to analyze systems described by a high-dimensional physical space. The encoding of such
space defines a low-dimensional and physically representative latent space. Of note, however, the latent
space obtained for complex systems operating under multiple conditions is often difficult to exploit in
defining an efficient Health Index, thanks to the non-deterministic and hyperparameter-dependent nature
of the latent space. In addition, the distribution of the healthy cluster is not known a priori. The original
contribution of this paper is to use the Nataf isoprobabilistic transform to map the latent space into a
standardized space. This normalizes the spatial structure of the latent space and relaxes themodel’s sensitivity
to hyperparameters during the learning process. Moreover, the characterization of the healthy condition in
the standard Nataf space leads to the definition of two complementary health indices suitable for complex
systems. An implementation in two case studies demonstrates the potential of the proposed approach.
First, the approach was successfully applied within NASA’s Commercial Modular Aero-Propulsion System
Simulation dataset. The second case study consisted of analyzing multiple degradation in operating wind
turbines. Encouraging results emerge from both case studies, with critical conditions being detected
significantly earlier than in competing approaches. The proposed approach can be generalized to complex
systems equipped with multiple sensors, and overcomes difficulties related to latent space analysis of
multiple condition systems.

INDEX TERMS Condition monitoring, early detection, latent space modeling, Nataf transform, variational
autoencoder.

NOMENCLATURE
cdf Cumulative distribution function.
CM Condition Monitoring.
DNN Deep Neural Network.
HI Health Index.
LHI Latent Health Index.
LV Latent Variable.
LVM Latent Variable Model.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haidong Shao .

NT Nataf Transform.
O&M Operation and Maintenance.
pdf Probability density function.
VAE Variational Autoencoder.

NOTATION
PROBABILITY DISTRIBUTIONS
χN , fχN , FχN Chi distribution with N degrees of freedom

and the respective pdf and cdf.
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8 cdf of the normal distribution N (0, 1).
ϕN N-variate normal joint cdf of the multivari-

ate normal distribution N (0, 1).
Px Percentile x of a distribution.

CONDITION MONITORING
τ , 1lag Time period, lag time.
DTM , DTN Detection thresholds.
IM , IN Health Indices defined in the standard Nataf

space.
R2 Coefficient of determination.

NATAF TRANSFORM
L Cholesky decomposition of the correlation

matrix.
RU , rUij Fictive Nataf correlation matrix and correla-

tion coefficients.
RZ , rZij Matrix of correlation and correlation coeffi-

cients describing the latent space variable.
T , T1, T2 Nataf transform and its intermediary trans-

forms.
D, Dτ , DHY Random variables describing the norm of

points from datasets projected in the stan-
dard Nataf space.

VAE MODEL
βcl , βkl Loss function coefficients.
L, LRE, LKL, LCL Loss function and its components.
fφ , gθ VAE parametric functions.

REPRESENTATION SPACES
R, X, Shealthy Datasets.
SHY, Sτ Random vectors describing the distribu-

tion of datasets in the standard Nataf
space.

x, z, s Data points from physical space, latent
space, and Nataf space, respectively.

X, Z, U, S Random vectors describing the distribu-
tion of points in the physical space, latent
space, intermediaryNataf space, andNataf
space, respectively.

xτ , zτ , sτ Datasets covering the period τ of points in
the physical space, latent space, and Nataf
space, respectively.

Fi(zi) cdf corresponding to the random vari-
able Zi.

NX , N , NC Dimensions of the physical space,
latent space, and classification space,
respectively.

p(x) Data distribution.

t , tM , tN , tDo1, tS , tShutDown1 Time variable, instants of
time.

Xi, Zi, Si Random variables describing
the distribution of
coordinates in the
physical space, latent
space, and Nataf space,
respectively.

xi, zi, si Data coordinates from
physical space, latent space,
and Nataf space,
respectively.

I. INTRODUCTION
Modern engineering systems are increasingly complex and
are expected to conform to rising standards of efficiency and
reliability [1]. These challenging trends are well illustrated by
the technological evolution of aeronautical systems, energy
conversion systems such as wind turbines (WTs), and large
industrial machines, among others [2], [3], [4]. The costs
and strategic importance of these assets justify the need
for advanced Condition Monitoring (CM) approaches. Such
approaches aim at continuously monitoring the condition
of assets, which in turn allows for optimized Operation
and Maintenance (O&M) planning and enhanced reliability,
in addition to providing economic benefits. Modern engi-
neering systems are equipped with a large variety of sensors.
The measures from such sensors provide a high-dimensional
multi-physics description of the condition of these systems.
The ever-increasing databases resulting frommodern systems
create new opportunities for CM. Data-driven approaches
based on artificial intelligence models such as Deep Neural
Networks (DNNs) receive a lot of attention from industry and
academia [5], [6].

Latent space representations are low-dimensional projec-
tions of high-dimensional physical spaces achieved through
an appropriate inference function. The Variational Autoen-
coder (VAE) model [7] is probably the most popular Latent
Variable Model (LVM) combining artificial neural networks
and Bayesian inference methods. Once this generative model
is trained, the encoder allows to project the input physical
space into a low-dimensional Latent Variable (LV) space.
Most importantly, the latent space reveals relations between
data points that are usually not evident in the original
high-dimensional physical space. Due to these capabilities,
the VAE model has proven results in a wide range of
applications. Furthermore, multiple variations of the VAE
model have been introduced to deal with specific data and
modeling characteristics [8], [9], [10], [11], [12].

The case of systems operating under multiple dis-
tinct conditions is of particular interest for latent space
representations. Indeed, variational encoding can isolate
different operating conditions, and will ultimately reveal
the relations existing between these conditions [13], [14],
[15]. Nevertheless, LVs corresponding to complex multiple
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condition systems are unsuitable for robust CM models due
to several restrictions. First, the latent space representation
of complex multiple condition systems is often intricate and
non-deterministic. Indeed, the spatial representation of LVs
is very sensitive to the model’s hyperparameters and changes
randomly for independent training instances. Finally, the
distribution of the healthy cluster is not known a priori.

Variations of the classical unsupervised VAE model in
the literature partially address the limitations of the classical
VAE in analyzing complex systems [16]. In particular,
supervised implementations of the VAE model exploit labels
such as binary classification (healthy or abnormal condition),
multiple-class categorization (healthy condition plus multiple
abnormal conditions), or regression (condition indicated by
a scalar) [8], [9], [11]. In [15], the authors show that the
embedding of the VAE model with a classification DNN
allows disentangling clusters in the latent space. In [17], the
VAE is embedded with a regression DNN. These supervised
learning models allow for disentangled clusters in the LV
representation, but the latent space still varies between
different instances of training.

The present paper aims to define a robust detection
approach for complex systems, and to that end, introduces
a new framework to achieve a latent space representation for
high-dimensional complex engineering systems. The solution
investigated herein consists in combining the LVs obtained
by the VAE with the Nataf Transform (NT) [18]. The NT has
been widely used among several reliability applications, such
as [19], [20], and [21]. The features of the complex system are
then projected from the original and intricate latent space into
the standard Nataf space. The latter representation overcomes
the limitations of classical latent space representations, which
allows to define a robust Health Index (HI).

The following are the original contributions of the present
paper:

• The NT is used to map an intricate latent space into the
standard Nataf space. It is shown that the standard Nataf
space overcomes the limitations of VAE-based latent
space representations of complex multiple condition
systems.

• A pair of complementary HI based on the standard
Nataf space are introduced. The performance of the
detection using the proposed HIs is demonstrated within
two application case studies.

• This work introduces two new cases supporting the use
of latent spaces as built-in visualization tools to enhance
the interpretability of DNN models.

The remainder of this paper is organized as follows:
Section II reviews latent space representations and anomaly
detection based on such spaces. Section III describes the
Nataf Transform. The proposed approach is introduced in
Section IV. Two case studies demonstrate the proposed
approach: the degradation of engines from the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS)
FD001 dataset, in Section V, and the degradation of WTs

from an operating North American wind farm, in Section VI.
Section VII summarizes and discusses the results from
the case studies. Finally, Section VIII concludes the
paper.

II. PROBLEM FORMULATION
A. LATENT VARIABLE MODELS
Let X = {x(i)}NXi=1 be a dataset of NX observed variables
collected from the same system S, whose unchanging
underlying true distribution p∗(x) is unknown. The obser-
vations x are assumed to be independently and identically
distributed (i.i.d.) [22], and can be considered as random
samples obtained from the unknown underlying process
x ∼ p∗(x). The objective of LVM is to describe the data
space distribution through a set of unobservable variables
Z = {z(i)}Ni=1 whose prior distribution p(z) is assumed to
be known [22], [23]. This latent space or manifold has no
physical meaning, but is very suitable for revealing and
disentangling the main relevant features from the entangled
space of data X. An important condition for this feature
extraction process and disentanglement is that the latent space
must have a lower dimension than the original space, i.e.,
dim(Z) = N < NX = dim(X).
The objective of the LVMs is to find the poste-

rior probability distribution function p(x) that gives the
best approximation of the true distribution of the data
p(x) ≈ p∗(x). The posterior data distribution p(x) is then
given through the conditional generative distribution pθ (x|z)
by p(x) =

∫
pθ (x|z)p(z)dz, where p(z) is not conditioned on

any observations, and is called the prior distribution over
z. The latent posterior distribution pφ(z|x) can be obtained
using the Bayes theorem for model inference through
pφ(z|x) = pθ (x|z)p(z)/p(x). To this end, two parametric
functions fφ and gθ are defined to sample X to the latent
space Z, and conversely from Z to X. The inference function
fφ , called the encoder, is used to map the data space to the
latent space z = fφ(x) and is employed to parameterize the
inference distribution pφ(z|x). The mapping of the data space
from the latent space is obtained by the generative function
x = gθ (z), called the decoder, which is used to parameterize
the generative distribution pθ (x|z).
The key idea of this process is to force the latent

prior distribution to follow a known distribution such as
the Gaussian distribution p(z) ≈ N (z; 0, I). The latent
Kullback-Liebler divergence loss is used to regularize the
inference function in order to enforce the encoding data into
the prior Gaussian latent space DKL(pφ(z|x) ∥ p(z)). Then,
the mapping of the data space obtained by the generative
function from the known prior distribution is forced to follow
the true data distribution p∗(x). Since the latter is unknown,
p∗(x) can explicitly be estimated by forcing the decoder to
reconstruct the data x̃ = gθ ( fφ(x)). A data reconstruction
loss, such as the L2 norm or the mean-squared error
Lθ,φ =

1
2∥x − x̃∥22, is then used to guide this reconstruction

process.
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FIGURE 1. Latent variable models: (a) The reconstruction process as a
suitable HI; (b) Training datasets include healthy and faulty samples;
(c) The proposed Nataf inference process is defined with respect to
healthy samples.

B. LATENT VARIABLE MODEL FOR FAULT DETECTION
It is important to note that when the two parametric
functions (gθ , fφ) are learned on a training dataset Xtrain

and the hyperparameters (θ, φ) are set, the posterior latent
distribution obtained bymapping a new data sampleXnew will
belong to the prior manifold p(z) even if p(xnew) ̸≈ p(xtrain).
The reconstruction data x̃new = gθ ( fφ(xnew)) obtained by
both transition functions will have a posterior probability
data distribution that somewhat approximates the training
probability distribution p(x̃new) ≈ p(xtrain). See Fig. 1(a).
This reconstruction process is very suitable for fault detection
if the LVMs learn the mapping of the healthy probability
distribution only.

For instance, let p(xhealthy) be the healthy data distribution
and p(xfaulty) the faulty distribution for a given anomaly
such as p(xhealthy) ̸≈ p(xfaulty). If the LVM has learned
to map only the healthy data space x̃healthy ∼ p(xhealthy),

the reconstruction process obtained for any faulty data will
give x̃faulty ∼ p(xhealthy). The divergence between the original
data distribution p(x) and the reconstructed data distribution
p(x̃) is then used as a suitable HI HI = L(x, x̃). This
concept is illustrated in Fig. 1(a), where the distribution
of the reconstructed faulty samples is shifted from the
original faulty data. Thus, exploiting the reconstruction error
is a simple and effective way of detecting any shift in the
probability distribution of the monitoring data space caused
by an anomaly.

The simplicity of reconstruction-error-based detection is
thanks to the fact that the model captures the characteristics
of a healthy state. Furthermore, it does not require analyzing
complex failure data, or any expert-dependent labeling. This
concept involving the calculation of the difference of the
residual outputs between monitoring and normal states has
been used as a system-wide HI in several papers [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33].

C. LIMITATIONS OF THE LATENT MANIFOLD
FOR FAULT DETECTION
In the case where only healthy data are inferred on the latent
manifold, the inference transition function is less sensitive
to anomalous data than is the generative transition function.
Indeed, in most papers in which the latent manifold is used
for fault detection, the main HI is a combination of the data
HI and the latent HI [34], [35], [36], [37], [38], [39], [40].

The main advantage of the inference process over the
generative process is that the latent manifold improves the
interpretability of the fault detection model. Indeed, the
disentangled latent manifold provides analysts and O&M
practitioners with a visual tool. The representation of the LVs
within time gives a graphical description for the evolution
of the system’s physical condition. Improving the sensitivity
of the latent manifold for fault detection is thus of foremost
importance.

Several latent manifold conceptual indicators could be
incorporated to improve the detection of any deviation from
the learned healthy state in the latent space [41]. These latent
conceptual indicators are the likelihood-based indicator,
the discriminative indicator, the statistical distance-based
indicator, the prototypical approaches, and the multivariate
signal processing approaches [41]. In [42], Balshaw et al.
conducted a comparative study evaluating several latent
manifold conceptual indicators. The authors concluded that
data space HIs outperform latent space HIs. It was also
highlighted that the temporal structure of the data must be
considered to increase the sensitivity of the latent space to
the anomalous data. This temporal preservation of the latent
manifold involves the use of a sliding time windowWt in the
latent space from which the latent HI is developed, i.e., the
Latent HI (LHI) can be written as LHI = F(zt ), where F(.) is
a latent manifold conceptual indicator and t ∈ [t1, t2]. The
temporal preservation of the latent variables demonstrated
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FIGURE 2. Illustration of a 2D LVM-latent space distribution for a multiple
condition database. ⊗: Cluster centroid.

better performance in detecting anomalies in vibration signals
than in the conventional static case [43].

Furthermore, to improve the interpretability of the latent
manifold, it would be more appropriate to include some
failure data during the learning process. This can be done
in a semi-supervised way, with the expert analyzing some
failure data before the learning process, or in an unsupervised
way, where the expert analyzes the clusters obtained by the
inference function (after the training).

One of the restrictions on the LVM is that the inference
process is unique to a given asset and very sensitive
to the obtained hyperparameters set during the training.
Moreover, the posterior latent distribution of the healthy
data is unknown. Because of these limitations of the LVM,
a universal LHI suitable for several assets cannot be defined.
As shown in Fig. 1(b), all the samples of the training set
(faulty and healthy) lie within the same manifold, while the
healthy distribution is not known a priori.

In addition, the posterior latent distribution could be
unsuitable for some of the conceptual indicators of the
manifold, as depicted in Fig. 2. Indeed, in this figure, it can
be noted that point P1 is equidistant to the centroids of the
clusters �A and �B, but P1 ∈ �A. Also, the Euclidean
distance is the same between the cluster �C centroid and the
points P1 and P2, even if P2 ∈ �C and P1 /∈ �C . Both cases
suggest that the relations between points and clusters in the
latent space cannot be described using solely the Euclidean
distance.

D. TOWARD AN ENHANCED LATENT MANIFOLD FOR
FAULT DETECTION
We introduce here an approach that leads to a standard and
known posterior healthy distribution. As described in this
section and illustrated further in this paper, our proposition
allows to overcome the limitations of classical latent space
representations. Ultimately, the enhanced representation
space is used in the definition of HI for the detection of
abnormal conditions in complex systems.

To achieve a standardized representation space, a second-
step inference transition function is introduced to map the
latent manifold into a new manifold, as shown in Fig. 1(c).
The inference function is the NT [18], [44], which is
presented in detail in section III.
The NT takes the healthy dataset from the latent space as a

reference. Let Zhealthy be the set of healthy data points in the
latent manifold. The NT maps Zhealthy into Shealthy such that
Shealthy ∼ N (0, I). Given a data point s(i) ∈ Shealthy, let d (i) =
||s(i)||2, where || · ||2 is the Euclidean norm, and D = d (i) is
the corresponding random variable. Since Shealthy ∼ N (0, I),
the random variable D follows the χ distribution with N
degrees of freedom χN . Specifically, the norm of points in
healthy condition in the standard Nataf space is characterized
by the density function fχN (d) and the cumulative distribution
function (cdf) FχN (d) [45]. This property allows to define HI
based on the comparison between the Nataf space projection
of datasets and the healthy reference condition. The latter
is the same for any asset. Therefore, the NT provides a
standard reference for defining a universal HI. Moreover,
standard and universal thresholds can be set to quantify
the degradation over time. Section IV presents a condition
monitoring approach based on the standard Nataf space
manifold.

III. NATAF ISOPROBABILISTIC TRANSFORM
The NT was introduced in [18] and is an important tool in
reliability analysis [46]. Its goal is to transform an intricate
probabilistic description into a more tractable one [47]. This
section briefly describes the NT.

Let the random vector Z = [Z1, . . . ,ZN ]T and the
correlation matrix RZ be the probabilistic model describing
the complex system, where each component corresponds to
one specific feature or measure. The NT maps Z into the
target description S = [S1, . . . , SN ]T ∼ N (0, I), where 0
is the null vector (with length N ), and I is the identity matrix
(with sizeN×N ). Fig. 3 depicts the NT for a two-dimensional
latent space.

The NT can be written as the composition of two
transformations T = T1 ◦ T2 [47]. First, T1 : Z 7→ U is
given by (1), where 8 is the cdf of the normal distribution
N (0, 1), and Fi : R → [0, 1] is the marginal cdf of Zi. The
function Fi is known a priori, or otherwise, can be estimated
from samples with a kernel density estimator.

Ui = 8−1(Fi(Zi)) i ∈ {1, . . . ,N } (1)

The random vector U resulting from (1) is assumed to be
a Gaussian vector with marginal distributions N (0, 1). The
components U1, . . . ,UN are characterized by the correlation
matrix RU ∈ RN×N , which is referred to as the fictive
correlation matrix. The transformation T2 maps U into the
random vector S with uncorrelated components. For this, let
the matrix L ∈ RN×N be the Cholesky decomposition of the
inverse of RU , as in:

LLT = R−1U . (2)
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FIGURE 3. The NT maps the latent space distribution Z = [Z1, Z2]T in
(a) into S = [S1, S2]T ∼ N (0, I) in (b). The cdf F (d ) of the distance metric
d is plotted (continuous orange line) against the χ2 cdf (dashed blue line)
for each space.

The transformation T2 : U 7→ S is given by (3), and the
space of the variable S is referred to as the standard Nataf
space:

S = LU. (3)

Estimating the fictive correlation matrix components
rUij = {RU }ij, i, j ∈ {1, . . . ,N }, is a key step in the definition
of T2. The appendix presents the numerical method allowing
to estimate rUij from the correlation coefficients rZij = {RZ }ij,
i, j ∈ {1, . . . ,N }. Also, as discussed in the Appendix, the
computation of rUij does not converge when the components
of the healthy cluster distribution are highly correlated,
i.e., rZij ≈ 1. In such a case, the NT fails to map the
initial distribution into a multivariate distribution with non-
correlated components [44].

IV. PROPOSED CONDITION MONITORING APPROACH
This section introduces a new CM approach aimed at the
early detection of abnormal conditions in complex systems.
The proposed approach is based on HIs defined from the

standard Nataf space representation. The implementation of
the approach comprises two phases: online and offline. The
offline phase defines the building blocks that later constitute
the online phase’s pipeline. Fig. 4 depicts these two phases
of the implementation with their respective steps, which are
described in detail in the following sections.

A. DATABASE DEFINITION AND LATENT SPACE
REPRESENTATION
We assume that the complex system is described by multiple
measures. Although LVMs such as the VAEs are capable
of processing many features and suit feature learning [7],
a feature engineering analysis is recommended to select the
pertinent measures. In particular, recent literature suggests
that the latent space representation is enhanced by restricting
the features to non-correlated measures with high informative
power [48]. The offline phase of the proposed approach
requires labeled data in two steps: first, training the VAE
model (or similar) and then defining the NT. In the training
process, the need for labels depends on the complexity of
the system and on the available measures describing the state
of the complex system. The final latent space representation
must be such that the healthy cluster is as disentangled as
possible from other condition clusters. For simpler systems
or high informative features, the unsupervised VAE can
eventually project the different conditions into disentangled
clusters. However, the VAE is usually not sufficient to
disentangle categorical clusters for complex real-life systems
or relatively noisy measures. To ensure the disentanglement
of clusters in the latent representation space for these cases,
supervised (or semi-supervised) implementations of the VAE
are recommended.

The latent space representation is strongly influenced by
the model hyperparameters, and therefore, these hyperpa-
rameters can be used to adjust the distribution of clusters in
that representation. Choosing suitable hyperparameters leads
to disentangled clusters in the latent space. Additionally,
to ensure the convergence of the NT, the healthy cluster coor-
dinates must be weakly correlated, i.e., have small correlation
coefficients rUij, i, j ∈ {1, . . . ,N }. This requirement is further
discussed in the Appendix.

In summary, to apply our approach, the database and its
latent space representation must verify three conditions to
ensure that the NT is successfully defined.

• The training database must be labeled, or at least,
the healthy data must be identified from the degraded
conditions.

• In the latent representation space, the cluster of healthy
points must be disjoint with respect to any other cluster.

• In the latent representation space, the healthy cluster
latent variable coordinates must be weakly correlated.

Overall, these requirements are easily met when the
appropriate model is chosen for the latent space projection.
As discussed later in this text, using the NT broadens the
range of suitable hyperparameters. In other words, the use
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FIGURE 4. Framework of the proposed condition monitoring approach for a system operating under multiple conditions. The offline phase comprises
three steps: (a) definition and labeling of the database, (b) training of the VAE embedded with Classification (VAEC) model, and (c) definition of the NT.
The online phase (d) estimates the condition status from the normalized dataset xτ = {x(t), t ∈ τ }.

of the NT mapping relaxes the requirements on the model
defining the latent space representation.

B. STANDARD NATAF SPACE REPRESENTATION
The NT is defined with respect to the healthy condition
cluster, as depicted in Fig. 4(c). It then maps any point in the
latent space into the standard Nataf space. Fig. 5 illustrates a
typical standard Nataf space for a multiple condition system.

From the latent space representation, the definition of the
NT comprises the following steps:

1) Characterize the healthy cluster in the latent space
database. Specifically, estimate the empirical cdfs cor-
responding to the LVs Z1, . . . ,ZN , and the correlation
matrix RZ between these LVs.

2) Estimate the fictive correlation matrix RU from RZ
using the algorithm presented in the Appendix.

3) Validate the NT. In the standard Nataf space, verify
that the healthy cluster approximates the multivariate
normal distribution and that the norm of all healthy
points approximates the χN distribution.

FIGURE 5. Illustration of a 2D standard Nataf space projecting a multiple
condition dataset. s = [s1, s2]T is a point and d (s) = ||s||2. The random
vector SHY describes the distribution of the reference healthy cluster.

If the computation of the fictive correlation matrix does not
converge, one should re-train the VAE-like model to obtain
non-correlated latent space variables.
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FIGURE 6. Projection of datasets in the standard Nataf space. Dataset A
represents a healthy dataset, whereas B and C correspond to two
patterns of degradation.

The Euclidean norm in the standard Nataf space is highly
representative of the relation between data points and the
reference dataset. For instance, points distributed similarly
to the reference condition in the physical space are mapped
by the NT within the reference cluster in the standard Nataf
space. More importantly, the projection of a healthy dataset
into the standard Nataf space gives a cluster distributed as the
healthy reference (see Dataset A in Fig. 6). For reference, the
healthy cluster radius is defined as the percentile P99 of the
χN distribution. In a 2D standard Nataf space, for example,
this radius is rHY = P99[χ2] ≈ 3.
Conversely, abnormal datasets projected in the standard

Nataf space are inconsistent with the normal multivariate
distribution of healthy conditions. Indeed, degraded datasets
can manifest in the standard Nataf space in two different
patterns: a sudden and rapid degradation, or continuous and
slow degradation. In the first type, illustrated by Dataset B
in Fig. 6, the complex system reaches failure within a few
time steps. In such a case, the norm of successive data points
goes rapidly from typical values to above the radius rHY.
The second degradation type is illustrated by Dataset C in
Fig. 6. This degradation pattern manifests as a shift in the
distribution of points in the standard Nataf space. In this
case, the norm of the projected points does not necessarily
go beyond the reference radius rHY.
Accordingly, we introduce below two complementary HIs

using the Euclidean norm of points in the standard Nataf
space: IM and IN . The HI IM aims at detecting outliers more
sensitive to rapid degradation with a fewmonitoring samples,
whereas the HI IN is an out-of-distribution detector more
sensitive to the slow degradation, but that needsmore samples
within sliding time windows.

C. HEALTH INDEX IM FOR OUTLIER DETECTION
The HI IM is the Euclidean norm of the point s(t) in the
standard Nataf space, as given by (4).

IM (t) = d(s(t)) (4)

The base alarm criterion for IM is defined by the threshold
rule IM (t) > DTM , where DTM is a detection threshold to be
set. Since the distribution of the norm statistics for healthy
datasets is known to be the χN , a general DTM value can
be set. For example, one can set DTM = P99[χN ], which is
valid for any kind of complex system. Also, for any system
whose data is projected in a 2D Nataf space (N = 2), DTM =
P99[χ2] = 3.0 is a suitable value. An alternative method for
defining the value of DTM consists in using historical data
from healthy systems. First, the IM is estimated for systems
known to be in healthy condition. Then, DTM can be set as a
percentile of the distribution of the estimated IM . This work
analyzes these two techniques to define DTM .
It is recommended to associate the base detection criterion

with a persistence criterion to limit the frequency of false
alarms. For example, (5) establishes that an alarm is triggered
when the base criterion is met four consecutive times.
In practice, the alarm base and persistence criteria should be
adapted to match the characteristics of the system of interest.

IM (ti) > DTM for i ∈ {k, k − 1, k − 2} (5)

By definition, IM allows detecting degradation modes
evolving within a few time steps. Depending on the domain of
the complex system under analysis, the detection anticipation
might not be sufficient to allow planning and action by O&M
analysts and practitioners. Nevertheless, the pertinence of
IM might be studied case by case. Conversely, the HI IN
introduced in the next section is expected to detect the onset
of degradation modes earlier than competing approaches.

D. HEALTH INDEX IN FOR OUT-OF-DISTRIBUTION
DETECTION
Many HIs in the literature are based on out-of-distribution
detection [15], [49], [50], [51]. To our knowledge, no previ-
ous work has exploited the out-of-distribution detection in the
standard Nataf space. The HI IN introduced in this section
was precisely designed to detect shifts in the probability
distribution of datasets in the standard Nataf space.

Let τ be a sliding period in which the complex system of
interest operates. Let Sτ be a random variable describing the
distribution of the projection of the dataset of interest in the
standard Nataf space, within the sliding period τ . Finally, let
Fτ (d) be the corresponding empirical cdf ofDτ = d(Sτ ). The
HI IN is defined as the area metric between the analytical
cdf FχN (d) and the empirical cdf Fτ (d), as given by (6)
and illustrated in Fig. 7. In practice, the area metric can
be estimated from samples of both distributions by using
the Wasserstein metric (or Kantorovich–Rubinstein metric)
[52], [53]:

IN (τ ) =
∫
+∞

0
|FχN (x)− FDτ (x)|dx. (6)

The definition of IN as the area metric between two
cdfs was motivated by the following considerations: (i) the
reference normal multivariate distribution exhibits a spherical
symmetry, and therefore, no pertinent information is lost
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FIGURE 7. Estimation of IN from the pdf of d (s) for the datasets (a) A and
(b) C from Fig. 6.

when the analysis is based on the norm of points; (ii) the
reference distribution FχN is well known; (iii) the proposed
IN does not depend on the dimension N of the latent space,
and (iv) the area metric is an interpretable HI.

The base alarm criterion for IN is given by IN (τ ) > DTN ,
where DTN is a detection threshold to be defined. The value
of DTN can be defined by considering the distribution of IN
estimated from systems known to be in healthy condition.
This distribution of IN depends on the space dimension N as
well as on the length of the period τ .
Combining this base criterionwith a persistence criterion is

important to prevent false alarms. The alarm criteria retained
for the HI IN is given in (7). Again, these criteria might be
modified according to the characteristics of the system under
analysis.

IN (τk ) < DTN and IN (τk ) > IN (τk−1) > IN (τk−2) (7)

E. ONLINE CONDITION MONITORING
The online phase is depicted in Fig. 4(d). The steps of the
online phase are as follows:

1) VAE embedded with Classification (VAEC) encoding
of the normalized SCADA dataset xτ into the set of
latent space points zτ .

2) NT-mapping of zτ into the standard Nataf points sτ .
3) Estimation of the two HIs from sτ .

• The HI IM is a point-wise index. It is estimated at
each time step tk ∈ τ .

• The HI IN takes sτ . It is estimated for each τ .
4) Application of alarm criteria on the estimated HIs IM

and IN . Combine both statuses with the ‘‘OR’’ logical
relation, i.e., an alarm is triggered when any of the
alarm criteria is met.

The online pipeline calculations are repeated periodi-
cally over periods defined by partitioning the timeline.
We assume that the system data is defined over the
time steps t0, t1, . . . A period of operation τ can be
identified by using its starting and final time steps:
τ (k, k + n) = {tk , tk+1, . . . , tk+n}. The corresponding nor-
malized dataset is then xτ (k,k+n) = {x(tk ), . . . , x(tk+n)}. The
partition of the timeline into datasets τ (k, k + n) must meet

two opposing requirements. On the one hand, the datasets
must be big enough to allow describing the probability
distribution of clusters in the latent and the Nataf spaces.
On the other hand, the promptness of the detection depends on
how rapidly new data points are fed into the online pipeline.
Overlapping datasets can be used to satisfy both conditions.
The partition of the timeline is then defined by the length of
the datasets and the lag time between the beginning of two
successive datasets. A sensitivity analysis is recommended
for an appropriate choice.

F. PERFORMANCE OF THE CONDITION MONITORING
APPROACH
To evaluate the performance of a detection approach, it is
customary to implement it on a selection of reference study
cases for which the ground-truth detection instants are
known. If multiple case studies of reference are available,
statistics such as accuracy, precision, F1 score, and Recall can
be estimated (see [54]).
However, very often, only a few case studies are available.

In such cases, one can prioritize case-specific evaluations.
One primary performance metric for detection approaches
is the anticipation of failure, i.e., the time between the
instant when the detection approach triggers an alarm and
the instant of failure [55]. Since the instant of failure is
rarely available, the anticipation is often estimated with a
reference approach. The anticipation interval of an alarm is
important for the viability of the detection approach. Indeed,
the alarm anticipation must be significant enough to allow
in-situ interventions, be it by shutting the system down,
inspecting it, or scheduling necessary repairs.

V. CASE STUDY I: ENGINE DEGRADATION FROM
C-MAPSS DATABASE
This section demonstrates the proposed detection approach in
the Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) FD001 dataset [56]. This dataset comprises
a run-to-failure time series of commercial aircraft turbofan
engines in cruise condition. C-MAPSS datasets are widely
used by the PHM community, and have indeed come
to constitute benchmarking datasets for multiple CM and
prognosis approaches, notably the Remaining Useful Life
(RUL) estimation [57]. In this case study, we apply the
proposed HIs to detect the onset of abnormal conditions
defined as a function of the ground-truth RUL values. The
RUL estimation itself is beyond the scope of the present
paper.

A. THE C-MAPSS FD001 DATASET
The C-MAPSS database comes from high-fidelity compu-
tational simulations of the operation of a large commercial
turbofan. This case study considers the FD001 dataset, which
comprises run-to-failure time series corresponding to the
degradation of the turbofan in cruise condition [58]. Sensors
indicate measures at the main turbofan sub-components,
namely the fan, the Low-Pressure Compressor (LPC), the
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FIGURE 8. Simplified diagram of the turbofan engine from NASA’s
C-MAPSS. Source: [59].

High-Pressure Compressor (HPC), the combustor, the High-
Pressure Turbine (HPT), the Low-Pressure Turbine (LPT),
and the Nozzle. These components are depicted in Fig. 8 [58].

The dataset comprises three kinds of data:

• Scenario descriptors: include major flight data such
as altitude, flight Mach number, and throttle-resolver
angle.

• Sensors: include 14 measurements covering tempera-
ture, total pressure, mass flux, and pressure ratio at
multiple sections of the turbofan.

• cycle counting from 1st cycle at the beginning of the
simulation until the failure cycle nfailure.

The RUL function is set as a piecewise linear degradation
curve. For each run-to-failure time series, it is defined
from the cycle counting data. Fig. 9 depicts the typical
RUL function RUL(n) = min{nfailure − n,RUL0}, where the
constant initial value is set as RUL0 = 125.

FIGURE 9. Target RUL and predicted RUL with the LSTM-VAE-Regression
model.

Moreover, to define the detection problem from the
C-MAPSS FD001 dataset, the critical RUL value RULc is
introduced as the threshold defining a degraded condition.
That means that the relation RUL < RULc indicates the onset
of a degrading condition. Indeed, ground-truth RUL functions
decrease linearly from this critical threshold. The reference
degradation initiation cycle is simply the cycle at which the

relation RUL < RULc is observed. For example, according to
this criterion, the degradation starts at the 45th cycle in Fig 9
with RULc = 115.

B. LATENT SPACE PROJECTION
The latent space representation of the C-MAPSS datasets
has been analyzed in works such as [17], [60], and [61].
The latent space projection introduced by [17] is suitable for
demonstrating the approach we propose in the present work.
Costa and Sanchez [17] introduced a DNN model consisting
of an LSTM-VAE embedded with a regression DNN. The
latent space is set with dimension N = 2. The resulting latent
space projection is such that the distribution of points is an
indicator of the RUL value. We refer the reader to the original
paper for details on the LSTM-VAE and the regression
DNN, as well as architecture and training parameters [17].
Nevertheless, the original model led to a cluster with
mostly correlated latent variable components z1 and z2,
thus hindering the definition of the NT. To overcome this
limitation, the loss function was modified by increasing
the weight of the Kullback-Liebler loss component. Fig. 10
depicts the resulting latent space projection of the training
database.

FIGURE 10. Latent space representation of the C-MAPSS FD001 dataset.
This 2D latent space corresponds to the LSTM-VAE-Regression model.

C. STANDARD NATAF SPACE AND DETECTION CRITERIA
The reference healthy operational condition dataset com-
prises the training points for which the threshold relation
RUL > RULc is met. This dataset is used as a reference for
the definition of the NT. Fig. 11 depicts the mapping of the
healthy dataset into the standard Nataf space.

The distribution of the norm of all points from the reference
healthy cluster in the standard Nataf space is depicted in
Fig. 12. It confirms a good agreement between the empirical
cdf and the χ2 cdf Fχ2 .
To define the detection threshold for the two HIs, IM and

IN , the distributions of these indices are estimated for the
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FIGURE 11. Standard Nataf space projection of the healthy condition
data (RUL > RULc ).

FIGURE 12. Distribution of the distance metric for the healthy condition
cluster in the standard Nataf space.

FIGURE 13. Distribution of the HIs calculated on the healthy dataset:
(a) IM and (b) IN .

healthy data points, and the detection thresholds are set as the
99th percentile P99 of each distribution. Fig. 13 depicts the
distributions for the two HIs obtained for the FD001 dataset.
According to these experimental results, the alarm thresholds
are respectively set as DTM = 3.1 and DTN = 1.1.
In this case, the standardization of the healthy condition in

the Nataf space eases the definition of DTM . For instance,
since the IM is strictly equal to the norm of points, the
HI IM evaluated on a healthy dataset follows the χN

FIGURE 14. HI IM , IN and the corresponding alarm status for turbofan 2
of the C-MAPSS FD001 dataset.

distribution, and thus, DTM can be set as a percentile of
the χN distribution. Given N = 2, the percentile P99 gives
DTM = P99[χ2] = 3.0, which is consistent with the value
from the empirical distribution of IM .

D. EARLY DETECTION OF ABNORMAL CONDITIONS
Once the LSTM-VAER model is trained and the NT defined,
new datasets can be projected into the standard Nataf space.
The estimation of the two HI IM and IN for engine 2 is given
in Fig. 14. The reference onset of degradation for this engine
occurred at the 143rd cycle. The alarm criteria led to the IM
alarm at the 140th cycle and the IN alarm was triggered at
the 130th cycle. Fig. 15 depicts the curves for IM and IN for
engine 50. The reference onset of degradation for this engine
occurred at the 56th cycle. The HI IM detected the abnormal
condition at the 53rd cycle and IN led to an alarm at the 38th
cycle.

Fig. 16 depicts the IM detection time versus ground-truth
degradation onset time for all the engines of the FD001
dataset. The HI IM led to the same detection instants as
the target values (ground-truth degradation initiation) for
most cases, with no significant anticipation. This result is
attributable to the characteristics of the degradation function.
As specified, we assumed that RUL < RULc indicated the
onset of degradation, and that the ground-truth RUL function
is a linear function of the cycle counting.

From Fig. 17, it can be seen that the detection by IN
anticipates the reference detection instants for almost all
engines. Considering all the engines of the C-MAPSS FD001
dataset and the degradation defined above, the HI IN led to the
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FIGURE 15. HI IM , IN and the corresponding alarm status for turbofan
50 of the C-MAPSS FD001 dataset.

FIGURE 16. Comparison between the reference degradation initiation
instant and the HI IM instants of detection.

early detection of degraded conditions, with an anticipation of
the reference degradation instant in 12 cycles on average.

VI. CASE STUDY II: WIND TURBINE CONDITION
MONITORING
This second case study demonstrates the implementation
of the proposed approach on a real-life database from a
North American wind farm. Modern WTs are by default
equipped with the Supervisory Control and Data Acquisition

FIGURE 17. Comparison between the reference degradation initiation
instant and the HI IN instants of detection.

(SCADA) system, which generates multiple data describing
the WT operation. Analyzing the high-dimensional and non-
linear physical spaces resulting from the SCADA sensors is
a challenging task. Latent space representations are widely
used in the WT CM literature [13], [15], [62], [63].

In particular, the authors of the present paper analyzed the
case of WT CM in [15]. Our previous proposition used the
Mahalanobis distance to define an HI from a latent space
representation. This definition allowed a good detection
performance, but required extra effort in the definition of a
convenient latent space. The selection of suitable hyperpa-
rameters can be tiresome and time-consuming for complex
systems such as WTs. Also, the lack of comparability
between independent training instances was pointed out as a
limitation. We show in the case study below that the approach
proposed in the present paper outperforms the previous
one and finally achieves a standardized low-dimension
representation for WTs by using the NT. This second case
study demonstrates the suitability of our approach to analyze
real-life industrial cases.

A. WIND TURBINE SCADA DATABASE
This case study uses a proprietary database from a North
American wind farm. This database contains data on over
100 onshoreWTs and covers operations spanning 2 years and
four months. The following are the specifications of theWTs:
horizontal axis; upwind; three-blade rotors; pitch-controlled;
rated power of order 2 MW; cut-in wind speed Vin = 3.5 m/s;
rated wind speed of Vr = 13 m/s, and cut-off wind speed
Vout = 20 m/s.
The database comprises three kinds of information:

measures from the built-in SCADA system, SCADA log
files, and O&M reports. The SCADA system is composed
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of sensors covering measures of geometrical, kinematic,
thermal, and electrical characteristics. For each measure,
the available data correspond to the average value over
10-minute periods, which is particularly appropriate for
performance monitoring [64]. It is worth mentioning that
vibration and acoustic measurements are not available for
the WTs under analysis. The log files indicate warnings and
alarms generated by the SCADA system usually based on
simple threshold rules. The O&M reports are completed by
the O&M practitioners based on in-field observations during
inspections and repairs.

Temperature-related abnormal conditions such as the
overtemperature of critical components were reported in the
database and are commonly investigated in the literature
using temperature measures from the SCADA system
([65], [66]). Table 1 lists the temperature-related conditions
analyzed in the present paper. The color codes are defined
for subsequent use in this text. The reader is referred to [55]
and [63] for illustrations of some of these degradation
modes.

TABLE 1. Temperature-related WT conditions with the respective color
codes.

In all, 35 SCADA measures were made available in the
database. The statistical analysis of the time series corre-
sponding to these measures revealed some variables with
little or no informative power, e.g., time series with mostly
non-numerical values, constant-value time series, as well
as sets of highly correlated time series. This work retained
the 11 measures listed in Table 2. The selection includes
multiple temperature measures that provide key information
on the characterization of the abnormal behaviors listed
in Table 1. The preprocessing of the SCADA measures
consists of clipping and min-max normalization of data
using the lower and upper bounds indicated in Table 2.
These values follow from the statistical analysis of measures
from all the WTs taken together. Data points with measures
falling outside the interval [LB,UB] are removed from
the database. The features are normalized into the [0, 1]
interval.

A labeled dataset is required for the supervised learning
of the retained LVM, the VAEC model. The labeling step
consists of a semi-manual selection of data points based on
the indications from the SCADA log files. This step was
guided by industry experts and used considerations of the
physical nature of each temperature-related condition. For
example, to build the dataset representing the GBX (Gearbox
oil overtemperature) condition, we analyzed the evolution
of the key measures WS, nROTOR, P, TGBX-BEA, TGBX-OIL,
TAMB, and TNAC. The starting point to select data points

TABLE 2. SCADA measures with the respective lower (LB) and upper (UB)
bounds.

corresponding to the GBX condition is the time period of
gearbox overtemperature reported in the SCADA log files.
Often, TGBX-BEA and or TGBX-OIL become increasingly high
even before the starting instant indicated in the SCADA log
files. Thus, the selected intervals were usually larger than the
intervals of abnormal conditions indicated in the SCADA log
files.

Given the large dispersion of the SCADA measures, many
data points are required to build statistically representative
datasets. Moreover, given an operating WT, only a few
degradation cases, if any, are observed. Thus, it is not possible
to build datasets for all conditions using data from only
one unit. To overcome this limitation, we build datasets by
gathering data points from multiple WTs. These WTs are
supposed to have similar degradation modes since they are
of the same model, are subject to the same manufacturing
standards, and operate under similar wind and environmental
conditions. In practice, the CM approach can be built
for a subset of units from a large wind farm. Dataset
augmentation techniques can be used if the number of data
points for any dataset is still insufficient. Fig. 18 displays
the datasets of interest in the normalized power curve. The
ICE cluster is well separated from the other conditions and,
therefore, can be detected directly from the power curve [67].
Nevertheless, the datasets corresponding to the other critical
conditions are mostly superposed, and their detection is not as

FIGURE 18. Distribution of the datasets of interest in two plots:
(a) normalized power curve, (b) normalized gearbox temperature versus
normalized rotor rotation speed.
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straightforward as for the ICE condition. The ICE condition
is included in this case study for validation of the proposed
approach.

B. VAEC MODEL ARCHITECTURE AND TRAINING
The proposed approach was implemented in Python (ver.
3.10). The VAEC model is built using the TensorFlow
library and the Keras API [68]. The supervised VAEC model
was adopted since the classical (and unsupervised) VAE is
not sufficient to obtain a latent space representation with
disentangled clusters [15]. In accordance with the data, the
input (and output) dimension is NX = 11 and the classifier
DNN has its output dimension NC = 5. The latent space
dimension is set to N = 2. This choice allows to easily
display the representation spaces in plots, thus defining a
built-in visualization. The retained architecture is described
as follows:
• Encoder: three hidden layers and one dropout layer. The
number of nodes per layer is, successively, 11 (input
layer), 32, 16, 8, and 2 (output layer). The input layer is
set with the ReLU activation function, and tanh is used
in the remaining layers of the encoder. Moreover, a 10%
dropout layer is placed after the 32-node layer to prevent
overfitting.

• Decoder: 2, 8, 16, and 32 nodes per layer. The decoder
output layer is set with the linear activation function.
The other decoder layers are set with the tanh activation
function.

• Classification DNN: the input of the classification DNN
is the latent space with dimension 2. The successive
hidden layers have a decreasing number of nodes: 128,
64, 32, and 16. The tanh activation function is used in the
input and in the hidden layers. Finally, the classification
output is a five-node layer using the Softmax activation
function.

The supervised training uses the Adam algorithm with a
learning rate of 0.0001, clip value of 0.3, number of epochs
1024, and batch size set to 128 [69].

C. SUITABLE MODEL HYPERPARAMETERS
AND NATAF TRANSFORM
One of the advantages of the proposed approach is that it
relaxes the requirements for the training hyperparameters.
To demonstrate this claim, this section describes the influence
of the loss function hyperparameters. The VAEC loss
function is given by (8), where LRE is the reconstruction
error loss, LKL is the Kullback-Liebler loss, and LCL is the
classifier loss. The coefficients βkl ≥ 0 and βcl ≥ 0 allow
to adjust the weight of each loss component in the VAEC
training:

LVAEC = LRE + βklLKL + βclLCL. (8)

The loss function coefficients are hyperparameters that
strongly affect the latent space distribution. For instance,
Fig. 19 depicts three training instances of the VAEC latent

FIGURE 19. Latent space and standard Nataf space for independent
training instances: (a-b) βkl = 0.001, βcl = 0.01, (c-d) βkl = 0.01,
βcl = 0.1, (e-f) βkl = 0.01, βcl = 0.1. In each cluster, the color gradient
indicates the probability density of points, with darker shades
corresponding to higher density.

space and the respective standard Nataf spaces defined
taking the healthy cluster HY as the reference distribution.
Note in Fig. 19(a), 19(c), and 19(e) that the latent space
representations are highly variable, and this is true even when
the coefficients are the same. On the contrary, the standard
Nataf space gives a standardized representation of the WT
healthy condition.

As a corollary, the range of suitable training hyperpa-
rameters is broader when using the NT, as compared to
the latent representation based solely on the variational
encoding of the data. It was indeed shown that different
loss function coefficient choices lead to very different latent
space outcomes, whereas in the Nataf space, the reference
data invariably follows the multivariate normal distribution.
The coefficients retained for the VAEC model training are
βkl = 0.01 and βcl = 0.1. Hereafter, we use the reference
standard Nataf space depicted in Fig. 19(e-f).
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D. DETECTION THRESHOLDS
The point-wise estimation of d(s(t)) gives a time series with
a 10-minute time step that is highly dispersed. In the WT
industry, it is common to use daily averages as a means
to regularize HIs [55]. The definition of the IM is adapted
accordingly, as follows:

IM (t) =
1

nDAY

∑
t∈DAY

d(s(t)). (9)

Regarding the estimation of the out-of-distribution HI
IN , a sliding period τ = 4 days is used with a lag
time 1lag = 1 day (overlap of three days between two
successive periods). The detection thresholds DTM and
DTN were set from a selection of ten datasets covering
the operation of WTs known to be in healthy condition.
Fig. 20 depicts the distribution for both HIs IM and IN
estimated from the selection of healthy datasets. As for the
C-MAPSS experiments, the detection thresholds were set as
the percentile P99 of each distribution, which corresponds to
DTM = 3.0 and DTN = 1.2, respectively.

FIGURE 20. Distribution of the HIs calculated on a selection of ten WTs in
healthy condition: (a) IM . (b) IN .

Fig. 21(a) and 21(b) depict the HI IM and IN for one of
the ten datasets considered in the estimation of the healthy
distribution. Both HI time series remain below the respective
detection thresholds. Thus, as expected, no alarm is triggered
for this healthy WT.

E. CONDITION MONITORING OF A WIND TURBINE
IMPACTED BY MULTIPLE ABNORMAL CONDITIONS
This case study covers the operation of one WT within the
period [t0 = 2019 Oct 1, tf = 2020 Aug 3]. The specificWT
was selected from thewind farm under analysis because it had
been reported to be suffering from multiple critical abnormal
conditions; in particular, blade ice accretion (ICE) and main
bearing overtemperature (BEA). Therefore, this WT allows
to demonstrate the capacity of the proposed approach in
detectingmultiple types of abnormal conditions. The timeline
of events was reconstructed with industry experts based on
information from the SCADA log files andO&M reports. The
following are the main events in the timeline:

• t0 = 2019 Oct 1: Beginning of the period of analysis.
• t∗ICE = 2020 Feb 11: SCADA alarm ICE condition.
• tDown1 = 2020 Feb 24: Shutdown labeled as ‘‘Grid
voltage fault’’, and then as ‘‘Communication Loss’’.
Three days later, an unsuccessful start-up attempt is
labeled by the SCADA system with multiple failure
modes, including the BEA condition. The unit is then
kept down with ‘‘Repair’’ status for more than 40 days.

• tStartUp = 2020 Apr 09: WT start-up.
• t∗BEA = 2020 Jun 22: SCADA alarm BEA condition.
• tDown2 = 2020 Aug 3: Shutdown due to BEA-related
failure.

• tf = 2020 Aug 3: End of the period of analysis.

Fig. 21(c) depicts the IM time series estimated from the
SCADA data using (9). The alarm criteria (given by (5)
with DTM = 3.0) lead to a first alarm at t = 2020 Feb 11.
This alarm superposes the occurrence of ice accretion on
blades that were indicated by the SCADA system. An IM
alarm is then triggered days later, at t = 2020 Feb 24,
suggesting the WT was in abnormal condition just before
it was shut down for repair. The SCADA system log files
report multiple possible causes for the degradation. This unit
remained shut down for 45 days with ‘‘Repair’’ status. The
actions undertaken during this period were not disclosed.
The WT starts operating again at tStartUp = 2020 Apr 09.
After this date, the IM values go above the threshold DTM
erratically. It is only after t = 2020 Jun 01 that IM becomes
persistent and, thus, triggers an alarm. The IM alarm at t =
2020 Jun 01 is 28 days before the SCADA alarm at t∗BEA.

The estimation of the HI IN over the period of interest gives
the IN (τk ) time series depicted in Fig. 21(d). As previously
mentioned, each τk covers four consecutive days of operation,
and the lag time between two successive datasets is of one day
(τ = 4 days, 1lag = 1 day). The alarm criteria (given by (7)
with DTN = 1.2) led to an alarm at t = 2020 May 22, which
is 31 days before t∗BEA and more than 2 months before tDown2.
Regarding the ICE episode in February 2020, although the

base criterion IN > DTN was met multiple times in the
freezing days around t∗ICE, the persistence criterion filtered
out any alarm during this month. Eventually, one could adjust
the alarm criteria or use specific control charts to enable
alarms for rapidly evolving degradation modes. Nevertheless,
in this work, the IN alarm criteria were set to prioritize the
detection of degradation evolving over the long term, i.e.,
within multiple days, in opposition to the HI IM alarm, which
focuses on degradation modes evolving over the short term.
The asset condition status results from the combination of the
two HIs with the OR logical relation. Fig. 22 indicates the
resulting alarm time series raised by the proposed approach
for the WT under analysis.

To illustrate the rationale of the HI IN in a real-life case,
the estimation of this HI is visually represented in Fig. 23
(See page 17). The steps for the estimation of IN are depicted
for the periods highlighted in Fig. 23(a), where the periods
τk , k ∈ {A,B,C,D}, are:

VOLUME 12, 2024 32651



A. Oliveira-Filho et al.: System CM Based on a Standardized Latent Space and the NT

FIGURE 21. For a healthy WT: estimation of (a) IM and (b) IN . For a WT with reported main bearing overtemperature: (c) IM and (d) IN with and the
respective alarms.

FIGURE 22. Timeline indicating dates of events and alarms in the case
study. Gray fill indicates WT shut down. The proposed approach detected
abnormal conditions starting at t = 2020 Feb 11 (coincides with t∗

ICE),
t = 2020 Feb 24 (which equals tDown1), and t = 2020 May 22 (which is
31 days before t∗

BEA).

• τA = τ (2019 Oct 31, 2019 Nov 04).
• τB = τ (2020 Jan 10, 2020 Jan 14).
• τC = τ (2020 Apr 18, 2020 Apr 22).
• τD = τ (2020 Jun 07, 2020 Jun 11).

Each row of Fig. 23 shows the evolution of the abnormal
condition over the four selected datasets. In the latent space
representation in Fig. 23(b), it is remarkable that the dataset

distribution evolves from the healthy cluster toward the main
bearing overtemperature cluster (BEA). This progression
is also visually evidenced in the standard Nataf space in
Fig. 23(c), and even more so in the area metric between the
empirical cdf and the χ2 cdf in Fig. 23(d).

Finally, Fig. 24(a) and 24(b) depict the time evolution
of the WT projection into the latent and Nataf spaces,
respectively. Each point in these plots is the centroid of the
projection of a four-day dataset. The timeline is indicated
with the color map, which gives the visualization of the WT
condition as a trajectory in the representation spaces. The blue
cluster corresponds to the healthy HY condition and the red
cluster to the BEA condition. Note that the transition from the
HY cluster toward the BEA cluster is evidenced in both plots.

F. COMPARATIVE ANALYSIS OF THE PERFORMANCE FOR
DETECTING MAIN BEARING OVERTEMPERATURE
This section focuses on the detection of the BEA condition
that raised the SCADA alarm at t∗BEA and led to the WT
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FIGURE 23. Estimation of the HI IN (τk ) for 4-day periods τk , k ∈ {A, B, C, D} indicated (a) in the TBEA time series; (b) Encoding of the datasets of
interest τk (in magenta) on the latent space; (c) NT of the datasets of interest τk on the standard Nataf space; (d) Estimation of the HI IN from the
empirical cdf.

shutdown at tDown2. To evaluate the performance, Table 3
summarizes competing detection approaches and gives the
respective detection dates for the dataset analyzed above.
The approaches from [55] and [70] detect main bearing

degradation exclusively. In [71], a classical unsupervised
VAE model is used.

From Table 3, the anticipation obtained from the pro-
posed approach outperforms that estimated using previous
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FIGURE 24. Projection of the case study main bearing overtemperature as
a trajectory in (a) the latent space and (b) the standard Nataf space.
(c) Timeline color-map.

works [15], [55], [70]. The gain in performance by IM is
mostly due to the use of the labeled database to train the
VAEC model. This supervised training allowed to have a
disentangled LVM latent space that was then mapped into
the standard Nataf space. The performance of the proposed
approach is further discussed in the next section.

VII. SUMMARY AND DISCUSSION
This section summarizes and discusses the results from case
studies I and II.

The success of the proposed approach in obtaining a
standardized LVM representation for complex systems was
evidenced within the two case studies analyzed in this paper,
which used latent space representations based on supervised
LVMs to achieve disentangled latent representations. The
LSTM-VAE-Regression model was chosen to project the

TABLE 3. WT main bearing overtemperature detection approaches.

C-MAPSS FD001 dataset into a 2D latent space. Turbofan
engines in this study case were considered as healthy or
degraded. For the second case study, WTs SCADA data were
projected into a 2D latent space using the VAEC model.
Its supervised training used a labeled database comprising
five conditions - the healthy condition plus four abnormal
conditions.

It is worth noting that the VAE model alone might be
sufficient to obtain a disentangled LV representation for
simpler systems or systems with highly informative features.
As long as the healthy condition is identified in the latent
space and the LVs are not highly correlated, the NT can
be defined. In most real-life complex systems, however,
supervised implementations of LVM might be necessary to
obtain a suitable LV representation, i.e., with disentangled
clusters. The complexity of the systems analyzed in the
case studies and the nature of the available measures guided
the choice of supervised LVMs. Fortunately, the labels are
required only in the offline phase. Once the LVM model and
the NT are set, the online phase relies only on the updated
features to give the condition output for the complex system
being monitored.
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The analysis in this paper used 2D representation spaces
(N = 2). This setting facilitates plotting and visualization.
It was shown that the resulting standard Nataf spaces verified
the expected properties in both case studies. Indeed, in both
cases, the healthy cluster follows the 2D normal distribution
and the norm of its points follows the χ2 distribution. The HIs
IM and IN were defined from the norm in the 2D standard
Nataf space. One could consider setting higher latent space
dimensions if needed. For higher N values, the properties of
the standard Nataf space and the definition of the two HIs are
essentially the same, except for the degree of liberty N of the
χN distribution.

As expected, the HIs IM and IN gave complementary
outcomes. The HI IM allowed to detect outliers of the normal
distribution. It was proven to be particularly suitable for
detecting abnormal conditions evolving within a few time
steps, such as the ICE condition in case study 2. In practice,
the margin of action for rapidly evolving degradation modes
is limited, and the detection of such events is of limited
interest. Nevertheless, the HI IM is retained in the proposed
approach to ensure the robustness of the combined HI
IM OR IN .

The two case studies revealed that the HI IN is suitable for
degradation modes evolving in the long term, and was able
to detect the onset of abnormal conditions long before these
conditions became critical. In the C-MAPSS FD001 engines
database, IN predicted the reference detection 12 cycles
in advance, on average, whereas IM gave results similar
to the ground-truth times of degradation initiation. In the
WT case study, IN anticipated the SCADA alarm for the
BEA condition in 31 days, outperforming the IM detection
and multiple competing approaches. The earlier detection of
abnormal conditions by IN is a promising result given that
the longer anticipations give more time for O&M planning
and interventions.

The choice of detection criteriamight be adapted according
to the application of interest and the accuracy and false
alarm rate requirements. Moreover, a sensitivity analysis
is recommended for optimal adjustments of settings such
as τ and 1lag. The persistence criteria chosen for IN in
this paper were such that the HI focused on degradation
modes evolving in the long term. That explains why no
IN alarm was raised for the rapidly evolving ICE condition
in February 2020. The association of the two HIs allowed
to maintain relatively simple base and persistence criteria.
Regarding the detection thresholds, the results from the two
case studies suggest that the definition of the threshold DTM
from the theoretical distribution χN is pertinent. Indeed,
the theoretical value DTM = P99[χ2] = 3.03 is very
close to the values obtained from the empirical probability
distribution for healthy engines (DTM = 3.1) and for healthy
WTs (DTM = 3.0). Analogously, similar DTN values were
estimated for the two case studies: DTN = 1.1 for the healthy
engines and DTN = 1.2 for the healthy WTs.

The enhanced performance of the detection based on the
standard Nataf space can be associated with two main aspects

of the proposed approach. First, supervised learning was
used in both case studies as a strategy to obtain disentangled
clusters in the LVM latent spaces. In this regard, the proposed
approach requires more information than the competing
approaches analyzed in section VI-F. Second, the NT can be
interpreted as a regularized zoom-in on the reference healthy
condition. As a result, shifts in the original physical space
are amplified in the standard Nataf space, leading to stronger
indications of the onset of degradation modes.

Plots of the 2D LVM latent space and of the standard Nataf
space supported the arguments and analysis presented in this
paper. It was shown that, for the C-MAPSS FD001 data,
the position in the latent space is related to the level
of degradation of the engine. For the VAEC latent space
trained to reproduce the WT SCADA data, the position in
the latent space suggested the condition to which a data
point belongs. The case studies showed that the standard
Nataf space preserves the capacity to visually represent
the evolution of the condition of complex systems. Finally,
in Fig. 24(a) and 24(b), it was shown that the evolution
of the system condition can be represented as a trajectory
in the LV and Nataf spaces. Where the LVM latent space
identifies multiple conditions, that can potentially provide
diagnosis information since abnormal points move toward
the corresponding abnormal condition clusters. Exploring
this aspect, as well as a quantitative assessment of the
improvements in interpretability, represents potential avenues
for future research.

VIII. CONCLUSION
This work addressed the LVM-based representation of
complex systems. The main contribution of this paper is
the introduction of a standardized latent space representation
for complex systems by using the Nataf isoprobabilistic
transform. It was shown that, contrary to the highly variable
LVM representation, the standard Nataf space preserves the
probability distribution of the healthy condition, namely,
the multivariate normal distribution. The proposed CM
framework can be applied to a variety of complex systems.
This versatility was demonstrated within two case studies
covering distinct technological domains.

The standardization of the LVM representation allows
to compare representation spaces corresponding to multiple
assets. Most importantly, two HIs, IM and IN , were defined
from the characterization of the standard Nataf space.
The proposed approach combines the two HIs to achieve
robust detection. IN allows to detect the onset of abnormal
conditions significantly earlier than competing approaches.
Complementarily, IM is a point-wise HI that captures
degradation modes evolving within a few time steps. For
example, in case study 2, IM detected ice accretion on
blades, which was not detected by IN . The two case studies
demonstrated the performance and potential of the proposed
detection approach.

As a secondary contribution, this paper introduced two
examples of applications for the emergent field of inter-
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TABLE 4. 7-Point Gauss–Hermite quadrature.

pretability of DNN models. For instance, the two case
studies illustrate how the LVM latent spaces and the standard
Nataf space can be used to visually represent the evolution
of complex systems. These visualizations complement the
condition status information and can, therefore, enhance
the interpretability and trust of the outcomes among O&M
analysts and practitioners.

APPENDIX. NATAF TRANSFORM
This Appendix presents the numerical method allowing to
estimate the fictive correlation coefficients rUij = {RU }ij of
the NT.

A. ITERATIVE COMPUTATION OF THE NATAF
CORRELATION COEFFICIENTS
Let rZij = {RZ }ij be the correlation coefficient between the
physical space variables Zi and Zj, i, j ∈ {1, . . . ,N }. The
relation between the correlation coefficients rUij and rZij for
given i, j ∈ {1, . . . ,N } is given by (10), as shown at the
bottom of the page. In this integral equation, µZi and σZi
are the average and standard deviation of Zi, respectively,
and ϕ2 is the probability density for a bi-variate Gaussian
distribution with correlation rUij, as given by (11), as shown
at the bottom of the page, [44].

The m-points Gauss–Hermite quadrature is employed for
the approximation of (10), which is given by (12), as shown
at the bottom of the page. The integral equation can then be
recursively solved by using Algorithm 1. It takes rZij as input
to estimate rUij. The settings are the error tolerance ϵtol > 0,
the maximum number of iterations Nmax ≫ 1, and the
Gauss–Hermite quadrature order m with the respective roots
and weights. For example, Table 4 gives the Gauss–Legendre
quadrature roots and weights for the order m = 7 [44].

Algorithm 1 Nataf Fictive Correlation Coefficient Evalua-
tion

Input: rZij
Settings: ϵtol, Nmax, Gauss–Hermite quadrature order m

with respective roots {s1, . . . , sm} and weights {p1, . . . , pm}
Output: rUij

1: t ← 0
2: r (t)Uij← rZij
3: ϵ ←∞

4: while |ϵ| > ϵtol and t < Nmax do
5: t ← t + 1

6: R(t)←

(
1 r (t−1)Uij

r (t−1)Uij 1

)
7: L̂(t)← Cholesky decomposition of R(t)

8:

(
u(t)i,ℓ
u(t)j,k

)
← L̂(t)

(
s(t)i,ℓ
s(t)j,k

)
, ∀ℓ, k ∈ {1, . . . ,m}

9:

(
z(t)j,k
z(t)j,k

)
← L̂(t)

(
F−1i [8(u(t)i,ℓ)]

F−1j [8(u(t)j,k )]

)
, ∀ℓ, k ∈ {1, . . . ,m}

10: r (t)Zij ←
∑m

ℓ=1
∑m

k=1 pℓpk
(
zi,ℓ−µZi

σZi

) (
zj,k−µZj

σZj

)
11: ϵ ← rZij − r

(t)
Zij

12: r (t)Uij← r (t−1)Uij + ϵ

13: rUij← r (t)Uij
14: if t ≥ Nmax then
15: r (t)Uij← NaN
16: print ‘‘Did not converge.’’
17: end

B. CONVERGENCE CONDITIONS
The joint probability density function (pdf) ϕ2(ui, uj, rUij)
is not defined when |rUij| = 1, i.e., when Zi and Zj
are correlated variables (See (11)). More generally, the
integral equation given by (10) is not guaranteed to have a
solution when the correlation coefficient is close to one [47].
In practice, Algorithm 1 does not converge in such cases,
which means that there is no uncorrelated set of variables
that is equivalent to the original set in terms of probability
description.

rZij = E
[(

Zi − µZi

σZi

)(
Zj − µZj

σZj

)]
= E

[(
F−1i (8(Ui))− µZi

σZi

)(
F−1j (8(Uj))− µZj

σZj

)]
=

1
σZiσZj

∫ ∫
R2

{
[F−1i (8(ui))− µZi][F

−1
j (8(uj))− µZj]ϕ2(ui, uj, rUij)

}
duiduj (10)

ϕ2(ui, uj, rUij) =
1

2π
√
1− r2Uij

exp

(
−
u2i − 2rUijuiuj + u2j

2(1− r2Uij)

)
(11)

rZij ≈
m∑

ℓ=1

m∑
k=1

pℓpk

(
zi,ℓ − µZi

σZi

)(
zj,k − µZj

σZj

)
(12)
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C. PARTICULAR CASE: NATAF TRANSFORM IN A 2D SPACE
Setting the representation space dimension as N = 2 allows
to easily plot these spaces, therefore defining a built-in visu-
alization tool. Moreover, the 2D NT requires the estimation
of only one correlation coefficient rU12. In this paper, the NT
is defined with respect to the healthy cluster projected into a
2D LVM space. Let ZHY

1 and ZHY
2 be the two coordinates

associated with the latent space distribution of the healthy
cluster. From ZHY

1 and ZHY
2 , one can estimate the empirical

cdfsF1(z1) andF2(z2), and the Pearson correlation coefficient
rHYZ12. Then, r

HY
U12 is estimated using Algorithm 1. For notation

simplicity, let ρ = rHYU12. Then, provided that ρ ̸= ±1, the
correlation matrix [1, ρ; ρ, 1] is invertible. Then, the NT is
completely defined by (13) and (14), where 8 is the cdf of
the normal distribution N (0, 1).(

u1
u2

)
=

(
8−1[F1(z1)]
8−1[F2(z2)]

)
(13)(

s1
s2

)
=

(
u1

ρu1 +
√
1− ρ2u2

)
(14)
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