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A R T I C L E  I N F O   

Keywords: 
Sustainable production 
Distributed permutation flow-shop scheduling 
problem 
Lagrangian relaxation 
Benders decomposition 
Heuristics 
Metaheuristics 

A B S T R A C T   

Recent advancements in production scheduling have arisen in response to the need for adaptation in dynamic 
environments. This paper addresses the challenge of real-time scheduling within the context of sustainable 
production. We redefine the sustainable distributed permutation flow-shop scheduling problem using an online 
mixed-integer programming model. The proposed model prioritizes minimizing makespan while simultaneously 
constraining energy consumption, reducing the number of lost working days and increasing job opportunities 
within permissible limits. Our approach considers machines operating in different modes, ranging from manual 
to automatic, and employs two real-time scheduling strategies: predictive-reactive and proactive-reactive 
scheduling. We evaluate two rescheduling policies: continuous and event-driven. To demonstrate the model’s 
applicability, we present a case study in auto workpiece production. We manage model complexity through 
various reformulations and heuristics, such as Lagrangian relaxation and Benders decomposition for initial 
optimization as well as four problem-specific heuristics for real-time considerations. For solving large-scale in-
stances, we employ simulated annealing and tabu search metaheuristic algorithms. Our findings underscore the 
benefits of the predictive-reactive scheduling strategy and the efficiency of the event-driven rescheduling policy. 
By addressing dynamic scheduling challenges and integrating sustainability criteria, this study contributes 
valuable insights into real-time scheduling and sustainable production.   

1. Introduction 

In today’s competitive landscape, manufacturing companies are 
increasingly striving to establish sustainable production systems that 
consider economic, environmental, and social criteria [1]. These inte-
grated manufacturing systems aim to seamlessly incorporate sustain-
ability dimensions while effectively addressing uncertainties and 
disruptions in production schedules. Consequently, manufacturing sys-
tems are placing a strong emphasis on incorporating task assignments on 
machines within their production scheduling processes, particularly to 
address uncertainties [2]. This approach allows them to enhance sus-
tainability practices and ensure optimal resource allocation in their 
operations. 

State-of-the-art technologies offer various machine operation modes, 
ranging from manual to highly automated processes. Consequently, 
production managers must carefully select the appropriate mode for 
each machine, considering economic, environmental, and social criteria 
[3]. These operation modes entail varying levels of human interaction. 
For instance, a machine can be manually operated, requiring significant 

human intervention, or function in automated modes that minimize the 
need for human involvement. Introducing a new operation mode or 
hiring new operators will impact the number of lost working days 
dedicated to training workers on machine operation, with variations 
depending on the selected mode [1]. 

The inherent flexibility in operating modes allows production cen-
ters to customize their processes to meet specific requirements, thereby 
optimizing efficiency. Unlike traditional production systems, where 
machines primarily function in manual mode, an Industry 4.0-based 
production system leverages technologies that incorporate advanced 
automatic modes derived from concepts such as the Internet of Things 
and cyber-physical systems [4]. Recent advancements in industrial 
informatics and Industry 4.0 have proven immensely valuable in man-
aging uncertainty in production scheduling [5]. Within an Industry 
4.0-based production system, uncertainties can be effectively addressed 
through real-time scheduling. This involves the integration of simula-
tions, optimization, and probabilistic theories with rescheduling stra-
tegies and policies [6]. Given the necessity for real-time optimization 
and the benefits of a sustainable production system, this study aims to 

* Corresponding author. 
E-mail address: lyne.woodward@etsmtl.ca (L. Woodward).  

Contents lists available at ScienceDirect 

Journal of Industrial Information Integration 

journal homepage: www.sciencedirect.com/journal/journal-of-industrial-information-integration 

https://doi.org/10.1016/j.jii.2024.100598    

mailto:lyne.woodward@etsmtl.ca
www.sciencedirect.com/science/journal/2452414X
https://www.sciencedirect.com/journal/journal-of-industrial-information-integration
https://doi.org/10.1016/j.jii.2024.100598
https://doi.org/10.1016/j.jii.2024.100598
https://doi.org/10.1016/j.jii.2024.100598
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2024.100598&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Industrial Information Integration 39 (2024) 100598

2

develop a comprehensive optimization model for a sustainable distrib-
uted permutation flow-shop, where each factory possesses multiple 
machines to process tasks in case of disruptive events. The primary 
objective is to minimize the makespan, representing the maximum 
completion time for all factories. 

According to the ISO 14000 standard [7], environmental sustain-
ability in the manufacturing sector is characterized by a decrease in 
carbon emissions and energy consumption. Regarding energy con-
sumption, a machine’s energy usage can vary based on its operational 
status and the selected mode of operation. In this study, machine energy 
consumption is evaluated across three statuses. The first status involves 
the machine actively processing a task. The second status pertains to idle 
time when the machine is powered but awaiting a task. The third status 
is ultra-low idle, where the numerical control device shuts down the 
servo system, resulting in the lowest power consumption level. When in 
idle status, a machine consumes a relatively high amount of energy 
compared to its ultra-idle status, with reported non-task-related energy 
consumption exceeding 40 % of the total [8]. Reducing energy con-
sumption during idle periods or minimizing idle time significantly im-
proves the energy efficiency of the production process. 

The ISO 26000 standard provides a framework for assessing the so-
cial performance of manufacturing companies, focusing on enhancing 
the quality of human life [9]. To this end, social sustainability is a key 
criterion for evaluating the impact of manufacturing practices on soci-
ety. In this context, the proposed comprehensive optimization model 
incorporates various factors, such as the number of created job oppor-
tunities and lost working days, as crucial performance indicators to 
assess social sustainability. Incorporating these metrics into the opti-
mization model enables the measurement and enhancement of the social 
impact of manufacturing operations, thereby contributing to a more 
sustainable and socially responsible approach within manufacturing 
systems. 

Social sustainability has a significant impact on people’s lives, 
particularly in countries where the industrial sector comprises a signif-
icant portion of the gross domestic product (GDP). For example, China 
has approximately 80 million employees in its manufacturing sector. As 
depicted in Fig. 1, in 2020, the agricultural, industrial, and service 
sectors accounted for 23.6 %, 28.7 %, and 47.7 % of the workforce, 
respectively. The industrial sector, which generated nearly 32.6 % of 
China’s GDP in 2021, was by far the largest contributor, followed by the 
wholesale and retail sectors (9.7 %) and the financial sector (8.0 %). 
Employment opportunities in the manufacturing industry are influenced 
by various factors. One of these factors is the mode of operation selected. 
For instance, in manual mode, more workers may be required compared 
to automated modes of production [1]. These factors emphasize the 
importance of employment opportunities as a social factor within the 
framework of Industry 4.0, especially in countries such as China, where 
the industrial sector presents extensive employment prospects. 

To assess social sustainability in the manufacturing industry, the 
number of workdays lost is a crucial factor from both economic and 
social perspectives. As noted by Fathollahi-Fard et al. [1], operators may 
face inability or restrictions in working due to various reasons. For 
instance, in 2020, the COVID-19 pandemic significantly impacted many 
workers in China’s manufacturing industry due to the high risk of con-
tracting the virus.2 Furthermore, changes in the work environment 
represent another cause for lost working days among operators. For 
example, the introduction of a new automatic operating mode involving 
an advanced programming system may necessitate worker training. 
Operators need training to handle machines in this new mode, while 
engineers and electricians must familiarize themselves with new pro-
gramming languages to ensure machine maintenance. Recognizing the 
number of lost workdays is crucial for assessing an essential aspect of 

social sustainability within the manufacturing industry. 
Scheduling machines and tasks often poses challenges due to un-

certainties like task arrivals, processing times, and machine break-
downs. Fortunately, recent advancements in Industry 4.0 technologies 
and industrial informatics have facilitated real-time monitoring and 
control of these uncertainties [5]. This capability enables production 
systems to swiftly react and rearrange tasks without interrupting oper-
ations. Real-time scheduling approaches [10,11] facilitate task reas-
signment in case of disruptions, such as sudden task arrivals within the 
planning horizon. Simulation techniques can map the makespan and 
production schedule based on disruptive events during this horizon [12, 
13]. Moreover, the arrival of new tasks due to the development of new 
products or changes in a machine’s operating mode creates uncertainty 
regarding task processing times. Estimating processing times can be 
achieved using fuzzy logic or stochastic theory. Machine breakdowns 
constitute another source of uncertainty, with their occurrence esti-
mated through probabilistic theories. To manage these uncertainties, 
this study employs real-time scheduling. It employs predictive-reactive 
and proactive-reactive scheduling strategies, alongside continuous and 
event-driven rescheduling policies, which are then implemented and 
assessed. By implementing these approaches, manufacturing companies 
gain improved prediction, control, and monitoring of disruptions, all 
while considering economic, environmental, and social criteria in their 
sustainable production systems. 

As widely recognized, permutation flow-shop scheduling problems 
are known for being NP-hard nature [14]. As a result, substantial efforts 
in literature have been devoted to developing various metaheuristic 
algorithms to tackle these complex challenges. In this paper, we not only 
tailor established metaheuristic algorithms, including tabu search and 
simulated annealing, and four problem-specific heuristics, but also place 
significant emphasis on reformulation techniques. 

Our reason for incorporating reformulation techniques alongside 
heuristics and metaheuristics is multifaceted. Firstly, these techniques 
empower us to leverage existing optimization solvers, such as CPLEX, 
which can often yield more efficient and effective results compared to 
developing entirely new metaheuristic algorithms from scratch [15]. 
Employing reformulation techniques allows us to establish lower bounds 
for resolving large-scale instances, serving as benchmarks to assess the 
quality of solutions generated by our metaheuristic algorithms. This 
efficiency conserves valuable time and resources, particularly when 
addressing complex scheduling problems [16]. Moreover, these tech-
niques provide invaluable insights into the problem underlying struc-
ture, helping identify crucial variables. This enhanced understanding 
informs more judicious decision-making when devising solution ap-
proaches [17]. Furthermore, reformulation techniques offer rigorous 
mathematical assurances regarding solution quality [16]. This aspect is 
particularly important in applications where solution quality is of 
paramount importance, especially in cases where heuristic and meta-
heuristic algorithms cannot guarantee optimality. Finally, while 
numerous solution methodologies exist for the distributed permutation 
flow-shop scheduling problem, our integration of reformulation tech-
niques, specifically Benders decomposition and Lagrangian relaxation 
alongside constructive heuristics, presents a robust and effective 
approach compared to our metaheuristic algorithms such as simulated 
annealing and tabu search. 

In conclusion, this study presents a comprehensive optimization 
model to minimize the makespan of a production system while inte-
grating sustainability concepts through constraints on energy con-
sumption, job creation, and lost working days. In addition, the proposed 
model addresses uncertainty within the framework of real-time sched-
uling. Given the complexities inherent in modeling this production 
scheduling system, efficient solution methods become imperative. The 
main highlights of this paper are summarized hereafter: 

2 http://www.china.org.cn/business/covid-19-economic-impact/node_801 
8307.html 
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• Development of a comprehensive optimization model for the 
distributed permutation flow-shop, incorporating sustainability 
criteria and real-time scheduling considerations.  

• Introduction of efficient reformulations using Lagrangian relaxation 
and Benders decomposition to manage the inherent complexity of 
the optimization problem.  

• Creation of problem-specific heuristics and utilization of two state- 
of-the-art metaheuristics to effectively solve this challenging 
problem. 

The subsequent sections of this article are structured as follows: In 
Section 2, a comprehensive review of relevant literature in production 
scheduling is conducted, with a specific focus on uncertainty, sustain-
ability, and distributed permutation flow-shops. Moving to Section 3, 
the proposed problem is defined, key assumptions are delineated, and 
the optimization model is introduced. Section 4 delves into the presen-
tation of solution methods, encompassing various approaches such as 
problem-specific heuristics, customized metaheuristic algorithms, 
Lagrangian relaxation, and Benders decomposition methods. Tran-
sitioning to Section 5, insights derived from computational tests, vali-
dation exercises, comparisons, and sensitivity analyses are presented, 
emphasizing diverse rescheduling policies and strategies. Lastly, in 
Section 6, the paper concludes by summarizing the main findings and 
recommendations, while highlighting potential avenues for future 
research. 

2. Literature review 

The field of production scheduling has witnessed extensive research 
over the past century, resulting in numerous significant contributions 
[18–20]. To elucidate the key contributions relevant to the sustainable 
distributed flow-shop scheduling problem within the Industry 4.0 

framework, the literature review is organized into four distinct sub-
sections. Initially, we examine primary models employed in the context 
of Industry 4.0, emphasizing the management of uncertainty in pro-
duction scheduling. Following this, we explore models and algorithms 
specifically designed for environmentally friendly and sustainable 
manufacturing systems. Subsequently, our focus shifts to studies con-
cerning distributed permutation flow-shop scheduling. Lastly, we iden-
tify research gaps that have motivated the undertaking of this study. 

2.1. Production scheduling models under uncertainty 

In the context of Industry 4.0, recent advancements in production 
scheduling are paving the way for smart production systems [21,22]. 
Drawing from empirical research, Rossit et al. [23] have elucidated the 
impact of Industry 4.0 concepts on production scheduling. In another 
insightful survey, Zhang et al. [24] gathered real-time data and assessed 
a range of job-shop scheduling models developed within the Industry 4.0 
framework. Additionally, Dolgui et al. [25] explored the application of 
optimal control in production scheduling, supply chain, and Industry 
4.0-based systems, emphasizing the importance of real-time scheduling 
in addressing uncertain production scheduling models. 

Among the notable contributions in the realm of real-time sched-
uling, Shen and Yao [26] proposed a multi-objective optimization 
approach for the flexible job-shop scheduling problem, integrating 
criteria like energy efficiency and task assignment stability. They 
employed an evolutionary algorithm to address this challenge. Simi-
larly, Gao et al. [27] utilized a two-stage artificial bee colony algorithm 
to this problem. The first stage of this algorithm generates an initial task 
schedule, while the second performs task rescheduling upon the arrival 
of new tasks. Rahmani and Ramezanian [28] focused on flexible 
job-shop scheduling, formulating a multi-objective optimization prob-
lem with tardiness and scheduling operation stability as objectives, and 

Fig. 1. Total employment in China from 2010 to 2020 for agriculture, industry (manufacturing sector) and services1.  

1 https://www.statista.com/ 
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used the variable neighborhood search algorithm to find solutions. 
Fu et al. [29] developed a flow-shop scheduling model aiming to 

minimize total makespan and tardiness. Within the context of Industry 
4.0, they incorporated the time required to train workers on new tech-
nologies and managed uncertainty using stochastic parameters for ma-
chine processing times and worker learning curves. They utilized a 
fireworks algorithm, comparing results with those obtained using a 
non-dominated sorting genetic algorithm, a multi-objective evolu-
tionary algorithm based on decomposition, and a multi-start simulated 
annealing algorithm. Additionally, Han et al. [30] proposed a blocking 
lot-streaming flow-shop scheduling model with stochastic processing 
time for an Industry 4.0-based system, employing a multi-objective 
migrating birds’ optimization algorithm to solve the model. 

Framinan et al. [31] introduced a permutation flow-shop scheduling 
problem incorporating variable processing times for machines. Their 
objective was to minimize the makespan, exploring two rescheduling 
policies, i.e., continuous and periodic rescheduling. In another study 
focusing on uncertain production scheduling, Gholizadeh et al. [32] 
addressed a robust optimization problem for the flexible job-shop, tak-
ing into account preventive maintenance. They employed a 
scenario-based genetic algorithm featuring new crossover and mutation 
operators. 

Recent studies have commonly addressed diverse disruptive events, 
encompassing random task arrivals and machine failures [2,6,33,39]. 
Shahrabi et al. [39] proposed a job-shop scheduling problem consid-
ering random task arrivals and machine failures, employing an 
event-driven rescheduling policy. They utilized the variable neighbor-
hood search algorithm enhanced by reinforcement learning to solve this 
problem. Liu et al. [33] devised a heuristic solution based on the tabu 
search algorithm, incorporating an event-driven rescheduling policy for 
a mixed-shop scheduling problem considering new task arrivals and 
machine breakdowns. Al-Behadili et al. [2] defined a multi-objective 
permutation flow-shop scheduling problem involving multiple disrup-
tion events. Their resolution algorithm utilizing a predictive-reactive 
approach combining randomization and the iterated greedy algorithm. 
Ghaleb et al. [6] addressed a flexible job-shop scheduling problem with 
random task arrivals and machine breakdowns, employing continuous 
and event-driven rescheduling policies. They minimized tardiness using 
a hybrid genetic algorithm incorporating three problem-specific heu-
ristics as decision rules. 

Engin and Yılmaz [34] presented a fuzzy logic-based approach to 
address the multi-objective hybrid flow-shop scheduling problem 
involving multi-processor tasks. This approach incorporated fuzzy pro-
cessing times and due dates. They proposed an efficient genetic algo-
rithm and compared its performance with the simulated annealing 
algorithm, demonstrating its practicality and effectiveness. In a related 
study, Engin and İşler [35] introduced a fuzzy hybrid flow-shop sched-
uling inspired by real apparel production. They developed a parallel 
greedy algorithm to address this problem, leveraging a fuzzy model to 
handle uncertainties in setup time, processing time, and due dates using 
triangular fuzzy numbers. 

In a separate study, Zhang et al. [36] proposed a user-friendly 
real-time data-driven approach for configuring a multi-objective 
evolutionary algorithm with minimal user intervention, applied to a 
flow-shop scheduling problem. Lastly, Luo et al. [37] tackled the 
multi-objective energy-efficient flexible job shop scheduling problem, 
considering machine breakdowns. They incorporated a rescheduling 
strategy to mitigate disruptions caused by breakdowns and introduced a 
knowledge-driven two-stage memetic algorithm to effectively address 
this challenging problem. 

2.2. Green and sustainable manufacturing systems 

Research on green and energy-efficient production scheduling has 
gained significance within the domain of sustainable manufacturing. In 
a review conducted by Gahm et al. [20], relevant works in sustainable 

scheduling where classified across three dimensions, i.e., energy supply, 
energy demand and energetic coverage. Energy supply encompasses the 
production and availability of energy sources, including electricity, fuel, 
and other forms of energy. It involves activities such as generation, 
extraction, refining, processing, and distribution of energy resources to 
meet demand. Energy demand refers to the amount of energy required 
by individuals, industries, or societies to support various activities and 
services. Energetic coverage signifies the extent of energy sources 
required to satisfy the energy demand of a specific area, region, or 
country. It indicates the availability and sufficiency of energy resources 
to meet the population’s energy needs. The authors findings highlighted 
a scarcity of models for energy-efficient job-shop or flow-shop sched-
uling problems, prompting researchers to develop practical optimization 
models. 

Mansouri et al. [38] introduced the first green flow-shop scheduling 
problem, considering the interaction between makespan and energy 
consumption. They defined a new heuristic for solving this problem and 
compared their results with those obtained using the exact solver from 
CPLEX software. Mokhtari and Hasani [40] developed a flexible 
multi-objective job-shop scheduling problem aimed at minimizing total 
completion time and total energy cost while maximizing overall 
manufacturing system performance. They utilized an enhanced version 
of the strength pareto evolutionary algorithm to solve their model. Wu 
and Sun [41] defined an energy-efficient flexible job-shop scheduling 
problem including energy-saving criteria, employing a non-dominated 
sorting genetic algorithm and a heuristic based on the Pareto concept 
for its solution. Wang et al. [42] formulated an energy-efficient identical 
parallel machine scheduling problem. Their focus involved machines 
with identical processing capabilities performing tasks simultaneously, 
potentially improving energy efficiency and reducing makespan. 

Wu and Che [43] addressed the energy-efficient parallel machine 
scheduling problem, incorporating dynamic speed-scaling techniques. 
They proposed a memetic differential evolution algorithm with a 
meta-Lamarckian learning strategy as local search heuristic and 
compared the results obtained by this approach to those of a 
non-dominated sorting genetic algorithm and those of a strength Pareto 
evolutionary algorithm. Dai et al. [44] proposed an energy-efficient 
flexible job-shop scheduling problem with makespan and energy con-
sumption objectives as well as transportation constraints, employing an 
enhanced genetic algorithm to generate Pareto solutions. Zhang et al. 
[45] proposed a hybrid flow-shop scheduling problem with energy ef-
ficiency and developed a three-stage decomposition-based 
multi-objective evolutionary algorithm. 

Tirkolaee et al. [46] introduced a variant of flow-shop scheduling 
that considers the possibility of outsourcing just-in-time delivery to 
simultaneously minimize total cost and energy consumption. They 
contributed a fuzzy model to handle uncertainty and developed a 
self-adaptive artificial fish swarm algorithm to solve their model. They 
compared their results with those obtained by the epsilon constraint 
method. Shukla et al. [47] proposed a bi-objective model incorporating 
type-2 fuzzy sets to address an uncertain energy-efficient parallel ma-
chine scheduling problem. They proposed an enhanced multi-objective 
evolutionary algorithm in comparison with the non-dominated sorting 
genetic algorithm. Sin et al. [48] proposed a green scheduling model 
considering electricity cost and preventive maintenance. They devel-
oped a hybrid multi-objective genetic algorithm to find a balance be-
tween total electricity cost and machine unavailability. Anghinolfi et al. 
[49] focused on minimizing makespan and total energy consumption in 
an identical parallel machine scheduling problem, employing a hybrid 
method combining a constructive heuristic proposed by Wang et al. [42] 
with local search heuristics using a greedy search. They compared their 
algorithm with non-dominated sorting genetic and decomposition-based 
multi-objective evolutionary algorithms. 

Hong et al. [50] proposed an energy-efficient flexible flow-shop for a 
multi-cell manufacturing system with objectives including makespan, 
energy consumption, and total handling distance. They presented an 
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enhanced version of a decomposition-based multi-objective evolu-
tionary algorithm and compared it with the original algorithm and other 
powerful methods from the literature. Marichelvam and Geetha [51] 
defined an energy-efficient flow-shop scheduling problem under un-
certainty, considering stochastic processing times. They developed a 
hybrid evolutionary algorithm with variable neighborhood search to 
solve the model. 

In addition, Jiang et al. [52] introduced an energy-efficient flexible 
job-shop problem, solving it with an improved artificial bee colony al-
gorithm and comparing it with the state-of-the-art methods. They 
demonstrated the applicability of their research to complex components 
of the aerospace industry in China. Li et al., [53] addressed the 
energy-efficient flexible job shop scheduling problem with the aim of 
minimizing both makespan and energy consumption. They introduced a 
novel approach named popular-based adaptive memetic algorithm. 

Collectively, these studies collectively contribute to advancing the 
understanding and development of energy-efficient and sustainable 
production scheduling methods, with implications for various industries 
and sectors. However, few studies have focused on contributing to 
energy-efficient and sustainable production scheduling methods for the 
distributed permutation flow-shop configuration. 

2.3. Distributed permutation flow-shop problems 

Naderi and Ruiz [14], considering the makespan as the optimization 
performance criterion, defined and modeled the first distributed per-
mutation flow-shop scheduling problem. Unlike more traditional 
flow-shop scheduling problems that focus on scheduling tasks to be 
performed in a single factory, this problem encompasses multiple fac-
tories in the production scheduling, thereby increasing its complexity. In 
this regard, they proposed two decision rules to heuristically assign tasks 
to factories, subsequently enhancing these solutions through variable 
neighborhood procedures. Furthermore, the same problem was 
addressed using various approaches, including a genetic algorithm 
based on local search strategies [54], a modified iterated greedy search 
algorithm [55], a scatter search heuristic [56] and another meta-
heuristic algorithm inspired by chemical reactions [57]. 

Fernandez-Viagas et al., [58] also studied the distributed permuta-
tion flow-shop scheduling problem, focusing on minimizing the total 
flow-time, which represents the sum of completion times across all 
factories. Pan et al. [59] addressed the same problem using local search 
heuristics, while Ruiz et al., [60] proposed a simplified version of an 
iterated greedy heuristic. Meng et al. [61] expanded the problem by 
incorporating the reception of orders from diverse customers. They 
developed an evolutionary swarm-based optimization algorithm to solve 
this modified problem. Allali et al. [62] introduced a multi-objective 
optimization problem in the context of distributed no-wait permuta-
tion flow shop scheduling, incorporating sequence-dependent setup 
times. Their objective was to minimize both makespan and maximum 
tardiness criteria simultaneously.They employed nature-inspired meta-
heuristics, including a genetic algorithm, artificial bee colony algorithm, 
and migratory bird optimization to solve this complex problem. Han 
et al. [63] presented an enhanced iterated greedy algorithm aiming to 
minimize makespan while considering sequence-dependent setup times 
within a distributed permutation flow-shop system. In a related context, 
Wang et al. [64] introduced a cooperative iterated greedy algorithm 
with the objective of minimizing the total tardiness time. 

The research on distributed permutation flow-shop scheduling has 
also delved into handling uncertainty. As an example, Baysal et al. [65] 
addressed the issue of uncertain processing times for jobs on machines 
by employing triangular fuzzy numbers to model a distributed permu-
tation flow-shop scheduling problem. They applied the artificial bee 
colony algorithm to solve this particular challenge. In their subsequent 
research, outlined by Baysal et al. [66], they extended their analysis and 
conducted further comparisons. Expanding on this theme, Başar et al. 
[67] introduced a distributed no-wait flow shop scheduling problem 

with fuzzy due dates. They tackled this challenge using a parallel kan-
garoo algorithm. 

Recent developments in this field have incorporated the concept of 
environmental sustainability. Wang and Wang [68] introduced an 
energy-efficient distributed permutation flow-shop scheduling model 
targeting the minimization of makespan and energy consumption. Fu 
et al. [69] approached this problem using a brainstorm optimization 
algorithm, while Wang et al. [70] applied a multi-objective whale 
optimization algorithm. Luo et al., [71] delved into a comprehensive 
framework, employing a multi-objective knowledge-driven evolu-
tionary algorithm based on decomposition. Their focus was on the 
energy-efficient scheduling of distributed permutation flow shop in 
heterogeneous factories, aiming to minimize both makespan and total 
energy consumption. Qin et al. [72] introduced an energy-efficient 
distributed hybrid flow-shop scheduling problem that incorporates 
blocking constraints. They presented an enhanced iterative greedy al-
gorithm geared towards optimizing the energy consumption within the 
job sequence. 

Incorporating a processing time penalty as a negative social factor, 
Lu et al. [73] expanded their energy-efficient distributed permutation 
flow-shop problem. However, addressing social sustainability, as per 
ISO 26000, encompasses various indicators such as job opportunities, 
lost working days, workplace injuries, and local social development. 
They employed a multi-objective memetic optimization method and 
compared the results with those of other well-known algorithms. 
Fathollahi-Fard et al. [1] developed a multi-objective sustainable 
distributed permutation flow-shop scheduling problem, aiming to 
minimize the makespan, energy consumption, and lost working days 
while maximizing job opportunities. They proposed a learning-based 
social engineering optimizer for their deterministic model. Lastly, Yue 
et al. [74] addressed energy-efficient scheduling in the printed circuit 
board manufacturing industry with a bi-objective mathematical model. 
They proposed a hybrid Pareto spider monkey optimization algorithm 
and compared its effectiveness with other multi-objective evolutionary 
algorithms. 

2.4. Research gaps and contributions 

To clearly identify the gaps in existing research that underlie the 
proposed approach, Table 1 illustrates the primary contributions found 
in the literature to date in comparison to those provided by this research. 
We identified the most relevant works as those considering multiple 
sustainability criteria or at least addressing uncertainty. This table cat-
egorizes these relevant works based on the configuration of the pro-
duction system, followed by sustainability criteria such as economic, 
environmental and social factors. Under the economic criterion, we 
defined makespan, flow-time and tardiness. The category of uncertainty 
encompasses various disruptive events, including random task arrivals, 
machine failures, variable processing times, and the utilization of 
rescheduling policies aimed at managing uncertainties. These resched-
uling policies may be continuous, periodic, or event-driven in nature. 
Additionally, the ability to select multiple operating modes on ma-
chines, a concept relevant to Industry 4.0-based systems, is considered. 
Lastly, the table includes algorithms and heuristics used to solve the 
problem. 

After analyzing the most relevant works in this field and organizing 
them in Table 1, several conclusions can be drawn:  

• Only Lu et al. [73] and Fathollahi-Fard et al. [1] attempted to 
consider all economic, environmental and social factors simulta-
neously. However, their models were deterministic and did not 
consider energy consumption, job opportunities and lost workdays as 
constraints. 

• No paper has considered a production system modeled as a distrib-
uted permutation flow-shop scheduling problem dealing with mul-
tiple uncertainties. 
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Table 1 
Most relevant studies related to the proposed approach with regards to sustainability and uncertainty.  

Reference Production 
configuration 

Sustainability criteria Uncertainties Operating 
mode 

Solution algorithm 
Economic Environmental Social Random 

task arrival 
Machine’s 
breakdown 

Variable 
process 
time 

Continuous 
rescheduling 
policy 

Periodic 
rescheduling 
policy 

Event-driven 
rescheduling 
policy 

Shen and Yao  
[26] 

FJS ✓ ✓ – ✓ – – – – – – MEA 

Gao et al., [27] FJS ✓ – – ✓ – – – – – – TSABC 
Rahmani and 

Ramezanian  
[28] 

FJS ✓ – – ✓ – – – – – – VNS 

Shahrabi et al.,  
[39] 

JS ✓ – – ✓ ✓ – – – ✓ – VNS with RL 

Liu et al., [33] MS ✓ – – ✓ ✓ – – – ✓ – TS 
Wang and Wang  

[68] 
DPFS ✓ ✓ – – – – – – – – KCA 

Fu et al., [29] FS ✓ – – – – ✓ – – – – MFS 
Han et al., [30] BFS ✓ – – – – ✓ – – – – MMBO 
Fu et al., [69] DPFS ✓ ✓ – – – – – – – – MOBSO 
Framinan et al.,  

[31] 
PFS ✓ – – – – ✓ ✓ ✓  – – 

Wang et al., [70] DPFS ✓ ✓ – – – – – – – – MOWOA 
Han et al., [72] BFS ✓ ✓ – – – – – – – – DEMO 
Lu et al., [73] DPFS ✓ ✓ ✓ – – – – – – – MOMOA 
Al-Behadili et al., 

[2] 
PFS ✓ – – ✓ ✓ – – – ✓ – MBRIG 

Ghaleb et al., [6] FJS ✓ – – ✓ ✓ – ✓ – ✓ – HGA and Heuristics 
Fathollahi-Fard 

et al., [1] 
DPFS ✓ ✓ ✓ – – – – – – ✓ LSEO 

Gholizadeh et sl., 
[32] 

FJS ✓ – – – – ✓ – – – – SGA 

Engin and Yılmaz 
[34] 

MS ✓ – – – – ✓ – – – – GA and SA 

Engin and İşler  
[35] 

MS ✓ – – – – ✓ – – – – Parallel greedy heuristic 

Luo et al. [37] FJS ✓ ✓ – – ✓ – ✓ – – – Knowledge-driven MEA 
Tirkolaee et al.  

[46] 
MS ✓ ✓ – – – ✓ – – – – Self-adaptive AFS 

Shukla et al.  
[47] 

JS ✓ ✓ – – – ✓ – – – – Enhanced MEA 

Marichelvam and 
Geetha [51] 

FS ✓ ✓ – – – ✓ – – – – Hybrid MEA and VNS 

Jiang et al., [52] FJS ✓ ✓ – – – – – – – – TSABC 
Yue et al., [74] FJS ✓ ✓ – – – – – – – – HPSMO 
Luo et al., [71] DPFS ✓ ✓ – – – – – – – – Multi-objective knowledge- 

driven evolutionary 
algorithm based on 
decomposition 

Qin et al., [72] DPFS ✓ ✓ – – – – – – – – Enhanced iterative greedy 
algorithm 

This study DPFS ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ Lagrangian relaxation, 
Benders decomposition, 
Heuristics, SA and TS 

*Abbreviations are DPFS: Distributed permutation flow-shop scheduling; KCA: Knowledge-based cooperative algorithm; MOBSO: Multi-objective brain storm optimization; MOMOA: Multi-objective memetic optimization algorithm; DEMO: 
Discrete evolutionary multi-objective optimization; BFS: Blocking flow-shop scheduling; MOWOA: Multi-objective whale optimization algorithm; LSEO: Learning-based social engineering optimizer; FJS: Flexible job-shop scheduling; MEA: 
Multi-objective evolutionary algorithms; TSABC: Two-stage artificial bee colony; VNS: Variable neighborhood search; FS: Flow-shop scheduling; MFS: Multi-objective firework algorithm; MMBO: Multi-objective migrating birds’ optimization; 
PFS: Permutation flow-shop scheduling; JS: Job-shop scheduling; RL: Reinforcement learning; MS: Mixed-shop scheduling; TS: Tabu search; HGA: Hybrid genetic algorithm; MBRIG: Multi-objective biased randomized iterated greedy; SGA: 
Scenario-based genetic algorithm; HPSMO: Hybrid Pareto spider monkey optimization algorithm; AFS: Artificial fish swarm algorithm;.  
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• None of the papers simultaneously studied all disruptive events, e.g., 
variable processing time, random task arrivals and machine failures. 

• Although one feature of Industry 4.0 is the use of advanced tech-
nologies in production systems, except for Fathollahi-Fard et al. [1], 
no study has considered the possibility of operating mode selection 
for machines.  

• Only a few studies have considered the rescheduling policies [2,6,31, 
33,39]. However, these studies did not integrate environmental and 
social criteria, two of the three criteria defining sustainability. 

To bridge these research gaps, this study develops a comprehensive 
optimization model for a sustainable distributed permutation flow shop, 
considering various dynamic factors crucial for real-time scheduling. 
Our aim is to contribute to the field by introducing an uncertain model 
and focusing on online optimization, distinguishing our research from 
our previous work [1]. 

In the literature review, Fathollahi-Fard et al. [1] presented a 
deterministic multi-objective optimization model for sustainable 
distributed permutation flow-shop scheduling using an adaptive 
memory-based SEO algorithm, offering valuable insights. Nevertheless, 
in this paper, we introduce several novel aspects that distinguish our 
research:  

• Unlike our previous deterministic approach, this paper adopts an 
uncertain model that accounts for various uncertainties in the pro-
duction process. The integration of real-time scheduling strategies 
allows adaptability to uncertainties, enhancing responsiveness and 
flexibility in production systems.  

• Alongside the uncertain model, we explore and compare continuous 
and event-driven rescheduling policies. This investigation aligns 
with established practices in production scheduling research, offer-
ing insights into the effectiveness of these policies in dynamic 
manufacturing environments.  

• To address the complexity of our optimization problem, we develop 
and assess efficient reformulations using advanced techniques like 
Lagrangian relaxation and Benders decomposition. These ap-
proaches help streamline the computational processes, particularly 
for managing large-scale instances.  

• We introduce problem-specific heuristics tailored to evaluate 
rescheduling policies, providing practical insights into the perfor-
mance of proposed scheduling strategies. 

• For solving large-scale instances, we employ well-known meta-
heuristics such as SA and TS. However, in contrast, Fathollahi-Fard 
et al. [1] used a metaphor-based algorithm utilizing social engi-
neering technique. 

In summary, while our prior work by Fathollahi-Fard et al. [1] laid 
the foundation for sustainable distributed permutation flow-shop 
scheduling, this paper significantly advances the field by focusing on 
uncertainty, real-time scheduling, and exploring a wide range of opti-
mization techniques. These contributions collectively contribute to 
deeper understanding of sustainable scheduling in dynamic 
manufacturing environments. 

3. Proposed problem 

The primary objective of the proposed problem is to determine the 
optimal sequence of N tasks distributed across F factories to be processed 
on M machines, each capable of operating in P different production 
modes. The sequence of these tasks performs O operations. In the 
following subsections, we formalize the mathematical descriptions of 
sustainability, real-time scheduling, and uncertainties. Then, the deci-
sion variables and the objective are defined. Finally, the main notations 
and formulation of the proposed optimization model are explained. 

3.1. Sustainability 

The proposed problem includes features related to economic, envi-
ronmental and social dimensions defining the concept of sustainability. 
This includes considerations such as energy consumption affecting both 
economic and environmental criteria, yield loss influencing the eco-
nomic aspect, and metrics related to job opportunities created and 
working days lost, linked to the social dimension. 

Given that machines predominantly consume non-renewable energy 
and contribute to carbon emissions, managing energy consumption 
within the production system is significantly important in this study. To 
address this, the energy consumed by machines is categorized into three 
levels corresponding to their operating states: ultra-low idle, idle, or 
processing states, denoted ECmpf , IECmf and UECmpf , respectively. These 
energy consumption levels must be adhere to predefined upper limits 
(UBEC). Additionally, machines can operate in manual or automatic 
modes, each associated with an error rate (RWmpf ). Typically, an auto-
matic operating mode generates fewer wastes than a manual mode. 

The social dimension of sustainability is accounted for by consid-
ering the number of job opportunities created and working days lost, 
aimed at enhancing workers’ quality of life and environment [1]. 
Depending on the production mode, each machine requires varying 
numbers of workers to process tasks (JOmpf ). Generally, manual opera-
tion demands more workers compared to automatic mode. From the 
point of view of social sustainability, a higher number of workers is 
favorable. Thus, a lower bound for the expected job opportunities 
created (LBJ) is defined. Moreover, the level of knowledge required by 
operators varies based on the chosen mode of operation. For example, 
machines operated in advanced automatic modes driven by program-
mable logic controllers (PLC) [76] or automatic position control (APC) 
systems [77] may require a training periods for operators. These training 
periods measured in days, contribute to the metric of lost working days 
(LDmpf ). Reducing this factor is advantageous from both economic and 
social perspectives. Hence, an upper bound (UBL) is set to limit the 
allowable number of lost working days, aligning with the goal of opti-
mizing economic and social criteria. 

3.2. Real-time scheduling 

Rescheduling refers to the process of updating a production schedule 
in response to disruptive events, involving three fundamental terms: 
strategies, policies and methods. A rescheduling strategy entails modi-
fying production plans in reaction to disruptive events, considering the 
sequence of tasks in the initial schedule. On the other hand, a resched-
uling policy delineates the specific criteria dictating when and how 
rescheduling is performed [31]. Finally, various rescheduling methods 
are used to update schedules. Table 2 outlines the classification of 
strategies, policies and methods used in real-time scheduling, as estab-
lished by Ghaleb et al. [6]. 

The literature review has identified three distinct rescheduling 
strategies, namely, completely-reactive, proactive-reactive, and 
predictive-reactive scheduling strategies. In the completely-reactive 
scheduling strategy, no pre-schedule is generated beforehand. Thus, 
real-time local decisions dictate schedule construction [31]. Conversely, 
both proactive-reactive and predictive-reactive strategies aim to estab-
lish an initial deterministic schedule assuming the absence of disruptive 
events. 

Within the proactive-reactive scheduling strategy, the initial task 
schedule is followed until a moment, t, when disruptive events occur. At 
this time, all possible scenarios for assigning the remaining tasks are 
considered to determine the optimal sequence for their assignment. On 
the other hand, in the predictive-reactive scheduling strategy, the 
optimal schedule is determined upon the announcement of an upcoming 
disruptive event, even before its occurrence (before t). This strategy 
involves rescheduling not only tasks after the disruptive event but also 
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includes all remaining tasks known from the moment the impending 
disruptive event is identified. 

All these strategies incorporate machine failures effects, utilizing 
fuzzy, stochastic, or probabilistic theory to estimate their durations. 
Within the context of production scheduling, predicting machine 
breakdowns is commonly referred to as preventive maintenance [32]. 
Prior research [6,31] confirms that both predictive-reactive and 
proactive-reactive scheduling strategies exhibit superior time efficiency 
compared to a completely reactive scheduling approach. 

In our real-time scheduling approach for the distributed permutation 
flow-shop system, we conduct an extensive analysis and comparison of 
predictive-reactive and proactive-reactive scheduling strategies. To 
effectively illustrate the nuances between these rescheduling strategies 

within our distributed permutation flow-shop scheduling, we employ a 
benchmarked numerical example from Fathollahi-Fard et al. [1]. This 
example involves two factories (F1 and F2), each equipped with two 
machines (M1 and M2) capable of operating in two distinct modes 
(manual and automatic modes). Four tasks (1 to 4, highlighted in blue, 
orange, green, and yellow respectively in Fig. 2) are to be scheduled. A 
machine breakdown whose duration (including the subsequent recovery 
period) is identified in purple in Fig. 2, is considered. Considering the 
distributed permutation flow-shop problem, tasks are allocated to spe-
cific factories, and once assigned, each task must undergo processing on 
all machines within the designated factory. In this context, 
Onmpf denotes the operation of task n on machine m using operating 
mode p in factory f. Before generating the sequence, an operating mode 

Table 2 
Real-time scheduling concepts.  

Strategies Policies Methods 
When-to-reschedule How-to-reschedule 

Fixed sequencing Rescheduling  

• Completely-reactive scheduling  
• Predictive-reactive scheduling  
• Proactive-reactive scheduling  

• Continuous rescheduling  
• Periodic rescheduling  
• Event-driven rescheduling 

Right shift rescheduling  • Partial rescheduling  
• Complete rescheduling  

• Dispatch rules  
• Optimization algorithms  
• Simulation-based scheduling  
• Machine learning-based scheduling  

Fig. 2. An example of our distributed permutation flow-shop for (a) optimal deterministic schedule (no disruptive event considered), (b) proactive and (c) predictive 
rescheduling strategies. 
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is assigned to each machine. Based on the benchmarked example from 
Fathollahi-Fard et al. [1], we allocate the manual mode to the first 
machine (M1) in the first factory (F1), while in the same facility, the 
second machine (M2) is designated with the automatic mode. In the 
second factory (F2), both machines are set to operate in automatic mode. 

In the absence of disruptive events, the deterministic schedule 
initially allocates tasks {1, 3} to the first factory and tasks {2, 4} to the 
second, resulting in a makespan of 12 units of time (Fig. 2(a)). However, 
at t = 4, a machine failure occurs with machine M1 in F2. For t < 4, tasks 
{1, 2} were respectively assigned to machines M1 in F1 and F2. The 
proactive-reactive strategy therefore aims to optimize the assignment of 
tasks {3, 4} to the factories considering a recovery time of two units for 
the broken machine (M1 in F2). The optimal makespan achieved by the 
proactive-reactive strategy (Fig. 2(b)) amounts to 14 units of time. Ac-
cording to the predictive rescheduling strategy (Fig. 2(c)), adjustments 
to the deterministic schedule are done before the occurrence of the 
disruptive event. In this example, we assume prior knowledge of the 
disruptive event from time t = 0. As a result, the whole task sequence is 
reconfigured, allocating tasks {4, 3} to the first factory and tasks {1, 2} 
to the second factory, resulting in a makespan of 12 units of time. 

As outlined in Table 2, three well-known types of rescheduling pol-
icies determine the timing of rescheduling activities, i.e., continuous, 
periodic and event-driven. A periodic rescheduling policy revises or 
creates schedules at set intervals, whereas an event-driven policy reacts 
to specific occurrences, such as rush order arrivals or order cancellations 
[2]. Existing literature highlights that an event-driven policy typically 
leads to a shorter makespan compared to a periodic rescheduling policy 
[31]. 

Furthermore, continuous rescheduling, a subtype of event-driven 
rescheduling, involves recalibrating the production schedule each time 
an uncertain event, such as task arrivals or machine failures, occurs 
[33]. It encompasses regular updates to the schedule based on real-time 
information. On the other hand, an event-driven rescheduling policy 
reacts to specific triggers or events necessitating a schedule update, like 
changes in task dependencies, resource availability, unexpected events, 
or disruptions. Our study compares the continuous rescheduling policy 
with the event-driven rescheduling policy. 

Regarding how-to-reschedule policies, various approaches exist for 
rescheduling tasks in response to disruptions. The right shift resched-
uling policy involves delaying each remaining operation to ensure 
schedule feasibility [26,28]. Partial rescheduling focuses solely on 
adjusting the affected operations while maintaining the remainder of the 
schedule unchanged [27]. Finally, full rescheduling entails recomputing 
the entire schedule using optimization algorithms. Generally, full 
rescheduling is expected to yield a better solution compared to partial 
rescheduling, as it optimizes the entire schedule, considering all tasks 
and their dependencies. Hence, this study uses a comprehensive opti-
mization approach to perform full rescheduling. 

Real-time scheduling can be achieved using several methods, 
including dispatch rules, optimization algorithms, simulation-based 
techniques, and machine learning-based algorithms. For instance, 
dispatch rules manage manufacturing systems by assigning tasks to 
available machines as they become accessible, without generating a 
production schedule [28]. Dispatch rules typically yield local optimal 
solutions, whereas optimization algorithms iteratively seek global 
optimal solutions [1]. However, unlike simulation-based and machine 
learning-based techniques, heuristics or metaheuristic algorithms, as 
well as dispatch rules, require defining an optimization problem. 

Generally, this paper employs a real-time scheduling approach that 
integrates two strategic scheduling methods, i.e., predictive-reactive 
and proactive-reactive scheduling strategies. Additionally, it in-
corporates two rescheduling policies, i.e., continuous and event-driven 
rescheduling policies. To effectively address the inherent complexities 
of real-time scheduling in the proposed distributed permutation flow- 
shop scheduling problem, a synergistic combination of metaheuristic 
and heuristic algorithms has been implemented. 

3.3. Uncertainties 

The model defined in this paper simulates an uncertain production 
system. To manage the uncertainties’ impact on the production system’s 
performance, it’s crucial to estimate processing time and predict dis-
ruptions, including new task arrivals and machine breakdowns. First, 
the variable processing time (PTnmpf ) of task n on machine m operated in 
mode p in factory f, can be estimated through pessimistic, realistic and 
optimistic scenarios, without considering the impact of machine 
breakdowns. Employing the fuzzy method proposed by Jiménez, et al., 
[78] and denoting PTpes

nmpf , PTrea
nmpf and PTopt

nmpf as pessimistic, realistic and 
optimistic estimations respectively, the expected processing time 
(EPTnmpf ) is defined as follows: 

EPTnmpf =
PTpesnmpf ,+2PTreanmpf + PToptnmpf

4
(1) 

To enhance our estimation, machine failure and repair rates are 
introduced into the processing time estimate. In this proposed distrib-
uted permutation flow-shop system, machines are classified into two 
states concerning their ability to process a task: machine m operating in 
mode p is either capable to process task n or requires repair. Referring to 
the studies of He and Sun, [79] and Mehta and Uzsoy, [80], random 
machine breakdowns follow an exponential distribution-based proba-
bilistic function [81]. It is assumed in this study that each machine m 
using operating mode p has fixed failure and repair rates denoted as γmp 

and δmp respectively. Consequently, the mean time to failure and the 
mean time to repair are 1

γmp 
and 1

δmp
respectively. Hence, the computation 

of the processing time (PCnmpf ) of operation (Onmpf ) involves adding the 
expected processing time (EPTnmpf ) and the production delay caused by 
machine breakdowns and the time required for repairs using the prob-
abilistic theory of Ghaleb et al., [6]: 

PCnmpf = EPTnmpf +
{(

TFnmpf +
1
δmp

)

×

(
e− γmpEPTnmpf

1 − e− γmpEPTnmpf

)}

(2)  

where TFnmpf as the failure time occurring within EPTnmpf is estimated as 
follows: 

TFnmpf =
1
γmp

(1 − e− γmpEPTnmpf ) − EPTnmpf e− γmpEPTnmpf

1 − e− γmpEPTnmpf
(3) 

In addition to estimating process and failure times, the machine 
state, denoted as MSmpft, is set to 1 if the machine is engaged in an 
operation. Otherwise, when the machine is not actively involved in an 
operation (MSmpft = 0), it allows for maintenance or repair activities. 
The variable RPmpft defines the duration during which a machine un-
dergoes repair, meaning the machine is not engaged in an operation 
(MSmpft = 0). On the other hand, AVmpft represents the time required for 
the machine to process a task, indicating the machine’s engagement in 
an operation (MSmpft = 1). Last but not least, task processing on a ma-
chine is feasible only if the machine is capable of processing it, which is 
represented by the variable Hnimpft . 

Thus, the proposed online model is designed to handle two distinct 
uncertainties encountered in production scheduling: machine break-
downs and the arrival of new tasks. Machine breakdowns are addressed 
by using probabilistic theory to estimate the downtime of machines. On 
the other hand, the handling of new task arrivals within a specific time 
horizon, starting at time t, falls under the purview of real-time sched-
uling. In this study, a deterministic schedule signifies a scenario where 
no real-time event occurs (t = 0). However, the model also covers sto-
chastic scheduling, which accounts for real-time events within the 
operational planning horizon (t > 0). Stochastic scheduling involves 
scenarios where one or more real-time events occur, such as random 
arrivals of new tasks. This allows the model to be flexible in adapting to 
various types of production environments, ensuring optimal scheduling 
under uncertain conditions. 
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3.4. Decision variables and objective function 

Two main decision variables are defined in the proposed problem:  

- The selected mode of operation for each machine (Ympf );  
- The assignment of tasks to machines (Xnimpft), defining their 

sequence; 

These two binary variables define the optimization problem’s search 
space . Moreover, four auxiliary decision variables are linked to these 
main decision variables: 

- The expected time at which a task commences processing on a ma-
chine (Simpft), aligned with the task sequence (defined by variables 
Xnimpft)  

- The expected number of tasks allocated to each factory (Aft), utilizing 
the task assignment variable (Xnimpft);  

- The completion time of each task (Cimpft), reliant on both the task 
assignment variable (Xnimpft) and the expected start time (Simpft);  

- The expected time for completing tasks in a factory (CTft), calculated 
using task completion times (Cimpft). 

The objective function is to minimize the expected total makespan 
across all factories (CMAXt), which relies on the expected time for 
completing tasks within these factories (CTft). This objective un-
derscores the primary goal of production scheduling, emphasizing the 
reduction of the overall time required for task completion [14]. How-
ever, the model accounts for social and environmental sustainability 
considerations, such as energy consumption, lost working days, and job 
opportunities. These factors are integrated into the scheduling model as 
constraints. While the model prioritizes minimizing makespan, it en-
sures, that schedules generated also adhere to these sustainability fac-
tors, treating them as essential constraints. Incorporating these factors as 
additional objective functions could overly complicate the optimization 
problem, making it challenging to solve. Additionally, the model might 
struggle to generate an optimal solution that satisfies all objectives 
simultaneously. By treating these sustainability factors as constraints, 
the optimization problem remains more manageable, increasing the 
likelihood of generating feasible and practical schedules. 

3.5. Notations and problem formulation 

Before establishing our optimization problem, all indices, parame-
ters and decision variables are briefly defined hereafter:  

Indices: 
f Index of factories, f ∈ F = {1, 2, …, F}; 
m Index of machines, m ∈ M = {1, 2, …, M}; 
n Index of tasks, n ∈ N = {1,2,…,N}; 
p Index of operating modes, p ∈ P = {1,2,…,P}; 
i Index of task positions in a schedule, i ∈ N = {1,2,…,N}; 
t The time at which a real-time event takes place; 
Parameters: 
B Maximum budget allowed for the installation of machines and operating 

modes in the production system, including the salary of workers (in $); 
COmpf Cost of operating machine m in mode p in factory f (in $); 
JOmpf Number of job opportunities created by the use of machine m according to 

mode of operation p in factory f; 
CJmpf Salary of workers operating machine m in mode p in factory f (in $) during 

the planning horizon; 
LDmpf Number of days needed to train the workers to operate machine m in a new 

operating mode p in factory f; 
MW Maximum waste ratio allowed in all factories; 
RWmpf Waste ratio of machine m when operated in mode p in factory f; 
Onmpf Operation defined as the process of task n by machine m operating in mode 

p in factory f; 
PCnmpf Expected processing time of operation Onmpf (in hours); 
UECmpf Amount of useful energy consumed by machine m operating in mode p in 

factory f (in KWh); 

(continued on next column)  

(continued ) 

ECmpf Amount of energy consumed by machine m in mode p in factory f during 
the total time period it is in the ultra-low idle status (in KWh); 

IECmf Amount of energy consumed by machine m in factory f during the total 
time period it is in the idle status (in KWh) 

UBEC Upper bound of energy consumption (in KWh); 
LBJ Lower bound of the number of job opportunities generated; 
UBL Upper bound of the number of lost working days; 
MSmpft Status of machine m whose operating mode p is selected in factory f at time 

t; it equals to 1 if the machine is processing a task; otherwise, 0; 
AVmpft Time (in hours) where a machine m whose operating mode p is selected in 

factory f at time t is necessary to process a task; it is a positive value if the 
machine is busy on an operation (MSmpt = 1); otherwise, 0; 

RPmpft Time (in hours) needed by machine m whose operating mode p is selected 
in factory f at time t to recover; it is a positive value if the machine fails at 
time t (MSmpt = 0); otherwise, 0; 

Hnimpft It gets 1 if machine m whose operating mode p is selected in factory f at 
time t is capable to process operation Onmpf ; otherwise, 0. 

Decision variables: 
Ympf If the operating mode p is assigned to machine m in factory f, 1; otherwise, 

0; 
STimpft Expected starting time (in hours) of task processing at position i on machine 

m whose operating mode p is selected in factory f at time t; 
Xnimpft If the task n is set at position i on machine m whose operating mode p is 

selected in factory f at time t, 1; otherwise, 0; 
Aft Expected number of tasks assigned to factory f at time t. This is an auxiliary 

variable depending on Xnimpft ; 
Cimpft Expected completion time (in hours) of a task at position i on machine m 

whose operating mode p is selected in factory f at time t. This is an auxiliary 
variable depending on Xnimpft and STimpft ; 

CTft Expected time (in hours) for completing tasks in factory f at time t. This is 
an auxiliary variable depending on Cimpft ;

CMAXt Expected makespan (in hours) for completing tasks in all factories at time t. 
This is an auxiliary variable depending on CTft for each factory f ∈ F .  

Using these notations, an online mixed integer linear programming 
model addressing the sustainability dimensions and uncertainties with 
real-time scheduling capabilities is now developed. 

Z = min
(
CMAXt =max

(
CTft

))
(4)  

s.t. 

∑M

m=1

∑P

p=1

∑F

f=1

(
Ympf × JOmpf ×CJmpf

)
+
∑M

m=1

∑P

p=1

∑F

f=1

(
Ympf ×COmpf

)
≤ B

(5)  

∑M

m=1

∑P

p=1

∑F

f=1

(
Ympf ×RWmpf

)
≤ MW (6)  

∑N

i=1

∑F

f=1
Xnimpft = 1, ∀n ∈ N ,m ∈ M , p ∈ P , time t (7)  

∑N

n=1

∑F

f=1
Xnimpft = 1, ∀i ∈ N ,m ∈ M , p ∈ P , time t (8)  

∑N

n=1

∑N

i=1

∑M

m=1

∑P

p=1

(
Xnimpft

)
= Aft, ∀f ∈ F , time t (9)  

∑N

n=1

∑N

i=1
Xnimpft < N × Ympf , ∀m ∈ M , p ∈ P , f ∈ F , time t (10)  

∑P

p=1
Ympf = 1, ∀m ∈ M , f ∈ F (11)  

Xnimpft ≤ Hnimpft ∀i, n ∈ N , m ∈ M , p ∈ P , f ∈ F , time t (12)  
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STi,m,pft ≥
∑N

n=1

(
Xnimpft ×

{
MSmpftAVmpft +

(
1 − MSmpft

)
RPmpft

})
, ∀i ∈ N ,m

∈ M , p ∈ P , f ∈ F , time t
(13)  

Cimpft ≥ STi,m− 1,pft +
∑N

n=1

(
Xnimpft ×PCnmpf

)
, ∀i ∈ N ,m > 1, p ∈ P , f

∈ F , time t (14)  

Cimpft ≥ STi− 1,mpft +
∑N

n=1

(
Xnimpft ×PCnmpf

)
, ∀i > 1,m ∈ M , p ∈ P , f

∈ F , time t (15)  

CTft ≥
∑I

i=1

∑M

m=1

∑P

p=1
Cimpft, ∀f ∈ F , time t (16)  

∑

m∈M

∑

p∈P

∑

f∈F

(
Ympf ×ECmpf

)
+
∑

m∈M

∑

p∈P

∑

f∈F

∑

n∈N
UECmpf × Ympf × PCnmpf

+
∑

m∈M

∑

f∈F
IECmf ×

(
∑

p∈P
Ympf

)

≤ UBEC (17)  

∑M

m=1

∑P

p=1

∑F

f=1

(
Ympf × JOmpf

)
≥ LBJ (18)  

∑M

m=1

∑P

p=1

∑F

f=1

(
Ympf ×LDmpf

)
≤ UBL (19)  

Aft, STimpft, Cimpft,CTft,CMAXt ≥ 0 (20)  

Ympf , Xnimpft ∈ {1, 0} (21) 

The objective function minimizes the makespan, i.e., the maximum 
completion time in all factories as given in Eq. (4) by adjusting the de-
cision variables which are bounded by Eqs. (20) and (21). The objective 
function is subject to the set of constraints (5) to (19), the meaning of 
which is provided hereafter:  

Meaning of constraints: 
Constraint (5) Costs of implementing an operating mode on a machine in 

addition to the salary of workers in all factories must not 
exceed the maximum budget; 

Constraint (6) The total ratio of broken products must be lower than a 
predefined ratio; 

Constraints (7) to 
(8) 

The schedule of tasks must be unique; 

Constraints (9) Calculation of the number of tasks assigned to each factory at 
time t; 

Constraints (10) Decision variables for the selection of operating modes on 
machines are linked to the decision variables for the 
assignment of tasks defining the sequence; 

Constraints (11) For each machine, an operating mode must be selected; 
Constraints (12) The assignment of tasks must be performed according to the 

capability of each machine to process the task; 
Constraints (13) The expected starting time of a task must be set once the time 

of operation or recovery (after a failure) has been completed 
on the machine; 

Constraints (14) and 
(15) 

The completion time of a task must consider the tasks 
schedules on machines; 

Constraints (16) The expected time for completing tasks in a factory is 
computed; 

Constraints (17) to 
(19) 

The amount of energy consumed by machines, the number of 
job opportunities created and the number of working days 
lost are bounded;  

The incorporation of sustainability and uncertainties in the proposed 
comprehensive optimization model renders it more complex compared 

to the traditional distributed permutation flow-shop scheduling model. 
This increased complexity arises from the inclusion of additional con-
straints, such as constraints (5), (6), (10) and (11) governing the selec-
tion of operating modes. Additionally, constraints (12) and (13) address 
disruptions, such as machine breakdowns and new task arrivals, while 
constraints (17) to (19) handle sustainability dimensions. This greater 
complexity motivates us to develop efficient reformulations and heu-
ristics, essential for effectively solving the proposed optimization 
problem. 

4. Proposed solution methods 

The most effective approach to handling a complex NP-hard model is 
through reformulation, aiming to decrease its overall complexity [82]. 
Here, two different types of reformulations are developed for this pur-
pose, i.e., Lagrangian relaxation and Benders decomposition. Although 
the proposed reformulation models are efficient for solving small-scale 
problems, they are still time-consuming when large-scale problems are 
tackled [15]. More specifically, reformulations can be used to find a 
deterministic schedule (without real-time event) while they are not able 
to deal with a stochastic schedule (essential for managing real-time 
events occurring at t > 0). To solve large-scale problems and find a 
stochastic schedule, we introduce simple and rapid heuristics. These 
heuristics are subsequently refined using two well-known metaheuristic 
algorithms. In what follows, we first explain our heuristics (Section 4.1) 
and metaheuristics (Section 4.2). Then, we present our Lagrangian 
relaxation (Section 4.3) and Benders decomposition (Section 4.4) 
reformulations. 

4.1. Heuristics 

This study proposes four different problem-specific heuristics for 
both scheduling tasks and rescheduling in the face of uncertainty. While 
our reformulations can only determine a deterministic schedule (t = 0), 
our heuristics are able of adapting to uncertainty by generating a new 
schedule whenever an event occurs (at t > 0). The first step in our 
approach involves selecting the operating mode of each machine (Ympf ). 
Then, we determine the task sequence (through the variable Xnimpft) to be 
processed on the machines both before and after the time (t > 0) when 
the disruptive event occurs. These binary variables build the search 
space of our optimization problem. Other non-binary decision variables 
are computed based on their dependencies on these two primary binary 
variables, derived from constraints (9), (10), (13), (14), (15) and (16). 

The proposed approach is exemplified through a scenario involving 
two production centers denoted by F1 and F2. Each center comprises two 
machines operating in different modes: M1 and M2 are located in F1, 
while M3 and M4 are located in F2. The proposed approach assigns 
operating modes and task sequences to each machine in response to a 
real-time event occurring at time t. Fig. 3 depicts a potential solution for 
this example, presented in two segments. Fig. 3(a) showcases the 
assignment of operating modes to the machines. In this example, M1 and 
M4 are set to operate in automatic mode, while M2 and M3 operate in 
manual mode. Fig. 3(b) shows the sequence of 10 tasks distributed 
among machines and factories. The allocation of tasks is correlated with 
the time when the real-time event occurs. For example, tasks 10, 4 and 6 
are assigned to the first factory (F1) following the occurrence of the 
disruptive event at time t. It is worth noting that the initial segment of 
the solution definition (Fig. 3(a)) remains consistent across all heuristics 
proposed in the study, while the latter segment (Fig. 3(b)) is obtained by 
different decision rules that vary based on the selected algorithm. 

The first step in any of the proposed heuristics is to select the oper-
ating mode on every machine in each factory. For this purpose, the 
following steps must be performed: 
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Step 0: For each operating mode, each machine, and each factory, 
compute the average processing time of jobs (

∑

n∈N
PCnmpf/N). 

Step 1: For each machine in every factory, select the operating mode 
(Ympf ) that leads to the lowest average processing time. 
Step 2: Verify the satisfaction of constraints (5), (6), (17), (18), and 
(19). If any of these constraints are found to be violated, the subse-
quent solution feasibility process should be implemented. Otherwise, 
proceed directly to Step 8. 
Step 3: If constraint (5) is unsatisfied, identify the machine with the 
highest implementation cost. Adjust the selected operating mode for 
this machine and see if the implementation cost decreases. Iterate 
this process for the machine with the highest implementation cost 
among those not yet tested until compliance with this constraint is 
achieved. 
Step 4: If constraint (6) is not satisfied, identify the machine with the 
highest waste rate. Change the chosen operating mode for this ma-
chine and evaluate if the waste rate diminishes. If improved, retain 
this selection. Otherwise, revert to the previously selected operation 
mode for this machine. Repeat this procedure for the machine with 
the highest waste rate among those not yet tested until the constraint 
is satisfied. 
Step 5: If constraint (17) is violated, identify the machine with the 
greatest total energy consumption (UECmpf + ECmpf + IECmf ). Change 
the operating mode for this machine and see if the total energy 
consumption decreases. Repeat until the constraint is satisfied. 
Step 6: If constraint (18) is not feasible, identify the machine 
requiring the fewest employed workers (JOmpf ). Change the oper-
ating mode for this machine and see if the number of employed 
workers increases. If enhanced, maintain this choice. If not, revert to 
the previous operating mode for this machine. Repeat this step until 
compliance with this constraint is achieved. 
Step 7: If constraint (19) is violated, identify the machine resulting in 
the highest number of lost working days. Modify the operating mode 
for this machine and assess if the number of lost working days de-
creases. If reduced, maintain this selection. If not, revert to the pre-
vious operating mode for this machine. Repeat until the constraint is 
satisfied. 
Step 8: In the absence of any violations in constraints (5), (6), (17), 
(18) and (19), proceed to use the determined decision variables for 
the operating mode selection (Ympf ) in the scheduling and resched-
uling phases of our heuristics. Otherwise, return to Step 2 to rectify 
any constraint violations. 

The scheduling phase of our heuristics is based on NR1 and NR2 
decision rules initially introduced by Naderi and Ruiz [14] for task 
assignment within a factory. The original definitions of these decision 
rules, NR1 and NR2, are as follows:  

• NR1: Assign task n to the factory that had the smallest makespan 
before including this task.  

• NR2: Assign task n to the factory that would have the smallest 
makespan once this task is included. 

In both rules above, the task is processed by the first available ma-
chine within the chosen factory. However, these decision rules are not 
directly applicable to our proposed sustainable distributed permutation 
flow-shop scheduling problem due to the inclusion of different operating 
modes and the stochastic nature of machine breakdowns and task 
rescheduling. 

In our heuristics, there exist two main phases: before and after time t, 
which marks the occurrence of a disruption. The decision rules NR1 and 
NR2 are applicable before time t. To delineate the task schedule after 
time t, we have created two decision rules, AF1 and AF2, centered 
around the failure recovery time (RPmpft) impacting the expected start 
time outlined in constraint set (13) at time t. These are outlined as 
follows:  

• AF1: In each factory, assign task n to the machine with the shortest 
failure recovery time and calculate the makespan without including 
task n.  

• AF2: In each factory, assign task n to the machine with the shortest 
failure recovery time and calculate the makespan including task n. 

In summary, by executing Steps 0 to 8 and using decision rules NR1 
and NR2 before time t, alongside AF1 and AF2 after time t, four distinct 
heuristics- designated as H1, H2, H3 and H4 - are formulated as follows: 

H1: Determine (Ympf ) from Steps 0 to 8. Before time t, apply NR1 to 
establish the task assignment sequence (Xnimpft) and compute the 
makespan (CMAXt). After time t, apply AF1 to determine the task 
assignment sequence and compute the makespan. 
H2: Determine (Ympf ) from Steps 0 to 8. Before time t, apply NR2 to 
establish the task assignment sequence (Xnimpft) and compute the 
makespan (CMAXt). After time t, apply AF1 to determine the task 
assignment sequence and compute the makespan. 

Fig. 3. Solution definition, i.e., (a) assignment of operating modes, (b) sequence of tasks assigned to each machine.  
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H3: Determine (Ympf ) from Steps 0 to 8. Before time t, apply NR1 to 
establish the task assignment sequence (Xnimpft) and compute the 
makespan (CMAXt). After time t, apply AF2 to determine the task 
assignment sequence and compute the makespan. 
H4: Determine (Ympf ) from Steps 0 to 8. Before time t, apply NR2 to 
establish the task assignment sequence (Xnimpft) and compute the 
makespan (CMAXt). After time t, apply AF2 to determine the task 
assignment sequence and compute the makespan. 

4.2. Metaheuristics 

Metaheuristic algorithms employ iterative random search proced-
ures to explore new neighboring solutions in the pursuit of finding the 
global optimal solution. In this study, we have implemented two well- 
established algorithms, i.e., simulated annealing (SA) and tabu search 
(TS). These algorithms are renowned for their robustness and have been 
extensively documented in the literature [75]. It is important to note 
that the solution representation and exploration of the search space in 
these metaheuristics align those used in our heuristics. In the following, 
we provide a description of the main loop of these metaheuristics along 
with their implementation details in our study. 

4.2.1. Simulated annealing 
SA, a metaheuristic algorithm inspired by the annealing process in 

metals, operates based on a neighborhood exploration approach [83]. 
This algorithm starts with an initial solution, selected in this study as the 
best solution resulting from our heuristics. During each iteration it ∈ {1,
2, …, MaxIt}, a new neighboring solution is generated. If this new 
solution is superior to the best solution found so far, it is accepted. 
However, if the new solution is not better, a probabilistic decision rule, 
influenced by the principle of temperature reduction observed during 
the annealing process, is applied. 

Let Solit and f(Solit) represent the solution and its corresponding 
makespan at iteration it, respectively. It is assumed that Solit is the best 
solution obtained so far (Sol∗) at iteration it (Sol∗ = Solit). New Solit 
denotes a new solution found through the neighborhood operator. If the 
value of f(New Solit) is greater than f(Solit), the SA decision rule is employed, 
involving the determination of the acceptance probability for this so-
lution, as outlined below: 

prob = e− Δ/Tem where Δ =
⃒
⃒f(New Solit ) − f(Sol∗)

⃒
⃒ (22)  

where Tem represents the current temperature and is iteratively updated 
using the equation: 

Tem = redu× Tem (23) 

The acceptance probability calculation incorporates the temperature 
damping factor (redu). If the calculated acceptance probability is lower 
than a randomly generated probability, the solution (Solit+1) is accepted 
as input for the neighborhood procedure. This procedure encompasses 
various operators such as swap, reversion, and insertion [84]. 

Fig. 4 illustrates the application of these operators to the solution 
depicted in Fig. 3, which serves as the initial solution for the neigh-
borhood procedure. In this instance, the swap operator interchanges the 

positions of tasks 10 and 1. Conversely, the reversion operator reverses a 
segment of the task sequence from {10, 4, 6, 8, 1} to {1, 8, 6, 4, 10}. The 
insertion operator, depicted in Fig. 4, inserts a task at the start of the 
selected sequence, shifting all subsequent tasks. Notably, the insertion 
operator demonstrates the repositioning of task 1 at the start of the 
sequence, before task 10. 

At each iteration, one of the neighborhood procedures depicted in 
Fig. 4 is randomly selected, resulting in the creation of a new neigh-
boring solution. In essence, the SA metaheuristic algorithm follows these 
key steps: 

Step 0: Configure the parameters of the SA algorithm and choose the 
appropriate dataset. 
Step 1: Execute the heuristics and set the best solution obtained from 
them as the initial solution (Sol0), updating the record of the best 
solution (Sol∗) attained. 
Step 2: Randomly select one of the neighborhood procedures and 
generate a new solution. 
Step 3: If this new solution surpasses the best solution obtained so 
far, update the best solution accordingly. Otherwise, employ the 
decision rule to determine whether to accept or reject the new 
solution. 
Step 4: Adjust the temperature for the decision rule. 
Step 5: If the maximum number of iterations is reached, output the 
best solution obtained so far. If not, proceed to the next iteration by 
returning to Step 2. 

4.2.2. Tabu search 
TS is a widely-used metaheuristic algorithm inspired by the cognitive 

processes of the human brain, designed to effectively avoid revisiting 
previously explored solutions [85]. Similar to other metaheuristic 
methods, the process begins with an initial solution, specifically derived 
in this study from the best solution obtained through our heuristics. 
Throughput each iteration, the algorithm randomly selects one of the 
neighborhood procedures as explained earlier in Fig. 4, and evaluates 
the solution by considering the tabu list. The TS maintains a restricted 
record of solutions within the tabu list. If the new solution already exists 
in the tabu list, it is marked as tabu, prompting the algorithm to generate 
an alternative neighboring solution [84]. Moreover, if this solution 
outperforms the best solution obtained so far, the algorithm updates the 
record of the best solution accordingly. Upon reaching the maximum 
number of iterations, the algorithm terminates, and the best solution 
attained so far is presented as the output. Generally, the main steps of 
the TS are as follows: 

Step 0: Configure the TS parameters and select the dataset. 
Step 1: Execute the heuristics and designate the best solution as the 
initial solution (Sol0), updating the record of the best solution (Sol∗) 
obtained so far. 
Step 2: Randomly select one of the neighborhood procedures and 
generate a new solution. 
Step 3: Cross-check the new solution with the tabu list. If the solution 
already exists in the tabu list, label it as tabu and generate an 
alternative neighboring solution. 

Fig. 4. Neighborhood procedures of our metaheuristic algorithms.  
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Step 4: If the new solution outperforms the best solution obtained 
thus far, update the record of the best solution accordingly. 
Step 5: If the maximum number of iterations is reached, output the 
best solution obtained so far. Otherwise, proceed to the next iteration 
by returning to Step 2. 

4.3. Lagrangian relaxation reformulation 

The Lagrangian relaxation reformulation aims to relax a set of hard 
inequality constraints from the original model by adding them into the 
objective function as soft constraints using Lagrange multipliers [86]. In 
the case of a minimization problem, the relaxed model provides a lower 
bound solution which is infeasible for the original problem. Two main 
criteria are defined to evaluate the quality of the solution obtained from 
a Lagrangian relaxation reformulation: the CPU time required to identify 
this lower bound solution and its optimality gap (OG) from the exact 
solution of the optimization problem [87]. Based on these criteria, the 
best reformulation in finding a lower bound is selected. Then, an itera-
tive algorithm updates the Lagrangian relaxation multipliers to improve 
this lower bound [17]. In this regard, this algorithm aims to minimize 

the deviation between the updated lower bound and a fixed upper 
bound. The fixed upper bound is established using the best solution 
derived from NR1 and NR2, which have the capability of identifying 
feasible solutions that meet all constraints without disruptive events. 
The iterative process ends upon discovering a feasible lower bound or 
upon reaching the maximum number of iterations. 

The most important step in finding an efficient Lagrangian relaxation 
reformulation is the selection of the set of constraints to be relaxed. If 
constraints (14) and (15) are considered to be relaxed with respect to the 
original model, the Lagrangian relaxation reformulation is as follows: 

LB = min

(

CMAXt +
∑N

i=1

∑M

m=2

∑P

p=1

×
∑F

f=1
πimpft

(

STi,m− 1,pft +
∑N

n=1

(
Xnimpft ×PCnmpf

)
− Cimpft

)

+
∑N

i=2

∑M

m=1

×
∑P

p=1

∑F

f=1
φimpft

(

STi− 1,m,pft +
∑N

n=1

(
Xnimpft ×PCnmpf

)
− Cimpft

))

(24)  

s.t.Constraints(5)to(13)and(16)to(21)

where πimpft and φimpft are the Lagrange multipliers. We call this refor-
mulation LG1. Other reformulations are defined in Table 3. These 
reformulations are established by relaxing hard constraints that have a 
significant impact on the computation time compared to the original 
model. Four sustainable distributed permutation flow-shop scheduling 
test problems from Fathollahi-Fard et al. [1] are used to assess and 
compare the performance of these Lagrangian relaxation reformula-
tions. All reformulations as well as the original problem are solved using 
the CPLEX3 solver. It should be noted that the application of the CPLEX 
solver only provides deterministic schedule. Hence, this comparison is 
undertaken with the assumption that no real-time events are occurring. 

To ensure a fair comparison, the initial values of the Lagrange mul-
tipliers were uniformly fixed at one across all reformulations. The CPU 
time was measured on a laptop equipped with an Intel(R) Core (TM) i7- 
10850H CPU @ 2.70 GHz, running at a speed of 2.71 GHz. 

The results are shown in Table 4, where CPU times are provided in 
seconds. The OG is expressed as the relative deviation of the lower 
bound found using the reformulation from the exact solution of the 
original problem. Thus, a lower value of OG means a better solution. 
Fig. 5 depicts the performance difference of the 8 reformulations con-
cerning CPU time and OG criteria. Notably, all reformulations demon-
strate better solvability compared to the original problem in terms of 
CPU time. Among these reformulations, LG1 emerges as the fastest, 
whileLG5 exhibits the slowest. Moreover, in terms of optimality gap, 
LG1 shows the best performance, while LG8 ranks as the least efficient 
model. In conclusion, LG1 stands out as the most efficient Lagrangian 
reformulation for solving our optimization problem. 

We propose four problem-specific heuristics aimed at providing an 
upper bound (UB) for our Lagrangian reformulation. Hence, the 
Lagrangian reformulation LG1 has four versions, each based on one of 
these heuristics. The Lagrange multipliers given in Eq. (24) are 
sequentially updated as follows: 

UB is a fixed upper bound, identified as the best solution among those 
obtained using heuristics H1 to H4. Moreover, LBit is the lower bound 
solution found at iteration it, while f it is a randomly generated scalar 
number between zero and two [88]. Interested readers who would like 
to have more details about the approach used for updating the Lagrange 
multipliers, are referred to Tautenhain, et al., [89]. 

4.4. Benders decomposition reformulation 

This study also proposes a Benders decomposition (BD) reformula-
tion [90] to address the original model using a mixed integer pro-
gramming approach.BD reformulation is applicable to an optimization 
model when it implies both continuous and integer variables. However, 
its application in the field of production scheduling [88] is limited due to 
the intricate nature of many auxiliary decision variables and constraints 
that are challenging to separate. The feasibility of BD implementation is 
enhanced when an optimization model has fewer decision variables and 
constraints. In a relevant study, Hamzadayı [16] proposed an efficient 
BD reformulation for the traditional distributed permutation flow-shop 

Table 3 
Lagrangian relaxation reformulations .  

Reformulation model Relaxed constraints 

LG1 Constraint sets (14) and (15) 
LG2 Constraint set (14) 
LG3 Constraint set (15) 
LG4 Constraints (5) and (6) 
LG5 Constraint set (17) 
LG6 Constraints (18) and (19) 
LG7 Constraints (17), (18) and (19) 
LG8 Constraints (5), (6) and (17) to (19)  

πit+1
impft = max

(

πitimpft + f it ×
(
UB − LBit

)

(
UB − LBit+1

)2 ×

[(

STi,m− 1,pft +
∑N

n=1
(Xnimpft ×PCnmpf

)

− Cimpft)

]

, 0

)

(25)  

φit+1
impft = max

(

φitimpft + f it ×
(
UB − LBit

)

(
UB − LBit+1

)2 ×

[(

STi− 1,m,pft +
∑N

n=1
(Xnimpft ×PCnmpf

)

− Cimpft)

]

, 0

)

(26)   

3 https://www.ibm.com/analytics/cplex-optimizer 
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scheduling problem. However, given the complexity of the proposed 
model in this study, the previously suggested BD reformulation is not 
applicable. Thus, we introduce a novel BD reformulation well-adapted 
to our complex optimization model. 

The original optimization model needs to be split into two separate 
models: the master problem (MP) and the primary subproblem (PS). 
Most notably, the PS subproblem will be solved using a linear pro-
gramming approach. In this regard, binary variables must be fixed. 
Consequently, all variables of the PS subproblem are non-negative and 
continuous. Formulated based on a feasible solution for Xnimpft, the PS 
subproblem is expressed as follows: 

PS = min
(
CMAXt =max

(
CTft

))
(27)  

s.t. 

Constraints (9), (13), (14), (15), (16), (20)

Aft, STimpft, Cimpft,CTft,CMAXt ≥ 0 (28) 

If Xnimpft is feasible, the PS subproblem is also feasible and so is its 
dual. For each constraint set of (9), (13), (14), (15), (16) and (20), a 

Fig. 5. Comparison of Lagrangian relaxation reformulations based on the criteria of (a) CPU time and (b) OG.  

Table 4 
Comparison of Lagrangian relaxation reformulations in their ability to find a 
deterministic schedule.  

Methods Tests T1 T2 T3 T4 
Size of tests (F 
× M × P × N) 

2 × 2 × 2 
× 4 

2 × 2 × 2 
× 8 

2 × 4 × 2 
× 20 

3 × 4 × 3 
× 30 

Exact 
solution 

CPU time (s) 10.98 14.75 34.72 65.74 

LG1 CPU time (s) 4.65 5.34 12.75 18.39 
OG 0.14 0.23 0.23 0.18 

LG2 CPU time (s) 7.95 8.74 23.33 26.11 
OG 0.14 0.29 0.34 0.32 

LG3 CPU time (s) 7.03 10.79 21.93 39.84 
OG 0.14 0.32 0.29 0.37 

LG4 CPU time(s) 9.33 12.68 26.04 55.22 
OG 0.43 0.56 0.49 0.52 

LG5 CPU time (s) 10.16 13.57 30.64 57.19 
OG 0.38 0.42 0.56 0.44 

LG6 CPU time (s) 8.89 11.94 28.12 53.24 
OG 0.52 0.75 0.68 0.71 

LG7 CPU time (s) 7.56 10.76 25.38 47.96 
OG 0.69 0.65 0.51 0.79 

LG8 CPU time (s) 6.54 7.91 19.32 25.74 
OG 0.82 0.86 0.94 0.78  

A.M. Fathollahi-Fard et al.                                                                                                                                                                                                                   



Journal of Industrial Information Integration 39 (2024) 100598

16

continuous decision variable is defined for the dual of PS (DPS). Based 
on this reformulation, an upper bound for the DPS formulation is defined 
as follows:  

An upper bound for the DPS is a lower bound for the PS subproblem 
(Eq. (29) is a lower bound for the PS subproblem). Thus, Eq. (29) is 
inserted into the MP subproblem to provide an optimality cut for the BD 
reformulation: 

MP = min(CMAXt) (30)  

s.t. 
Constraints (5), (6), (7), (8), (10), (11), (12), (17), (18), (19), (21)  

CMAXt ≥ 0 (32)  

where βimpft, εimpft and σimpft are fixed values obtained from the solution 
of the dual of the PS subproblem. After solving the MP subproblem, the 
variable Xnimpft is sent to the PS subproblem to update the optimality cut. 
In this respect, iteratively, the MP subproblem calls the PS subproblem 
and updates the optimality cut and the binary variables. It goes without 
saying that the MP subproblem provides an efficient BD reformulation 
for the original problem. In fact, each subproblem of this reformulation 

has fewer constraints than the LG1 reformulation presented in Section 
4.3, which makes the BD reformulation more efficient for solving large- 
scale test datasets. To the best of our knowledge, our comprehensive 

optimization model has not been studied before, and the proposed BD 
reformulation is introduced for the first time. 

5. Computational results 

In addition to the small-scale size test problems presented in Section 
4.2, we also consider in this section, medium and large-scale tests as 
benchmarked by Fathollahi-Fard et al. [1]. Table 5 presents the size of 
each test problem along with the initial values of the Lagrange multi-
pliers and the maximum allowable number of iterations employed for 
both the Lagrangian relaxation and the Benders decomposition refor-

mulations. The table further displays the adjusted values of parameters 
for our metaheuristic algorithms. Additionally, it should be noted that 
for the SA algorithm, the initial temperature was set at 10,000, with a 
damping ratio of 0.99. Due to space constraints in this journal, the 
calibration analyses of our SA and TS algorithms are not provided in this 
section. The range of values for each parameter benchmarked from 
Fathollahi-Fard et al., [1] and Ghaleb et al. [6] is shown in Table 6. It 
should be noted that the expected processing time is evaluated using 
Eqs. (1) to (3). 

In particular, our analyses are delineated into four distinct sections. 
Firstly, an evaluation of our heuristics, metaheuristics, and 

Table 5 
Size of test problems.  

Complexity 
level 

Number of 
test studies 

Size of the test Initial value of 
Lagrange 
multipliers 

Number of iterations 
for running the 
reformulations 

Time limit of our 
metaheuristic 
algorithms (seconds) 

Size of 
the 
tabu list 

Number of 
factories (F) 

Number of 
machines 
(M) 

Number of 
operating 
modes (P) 

Number of 
tasks (N) 

Small T1 2 2 2 4 1 10 50 10 
T2 2 2 2 8 1 10 50 10 
T3 2 4 2 20 1 10 50 10 
T4 3 4 3 30 1 10 50 10 

Medium T5 3 6 2 30 10 30 500 50 
T6 3 6 3 40 10 30 500 50 
T7 4 8 4 30 10 30 500 50 
T8 4 8 5 40 10 30 500 50 

Large T9 6 12 4 80 10 50 1000 100 
T10 6 12 5 100 10 50 1000 100 
T11 8 16 6 80 10 50 1000 100 
T12 10 16 6 100 10 50 1000 100  

DPS ≥

(
∑N

i=1

∑M

m=1

∑P

p=1

∑F

f=1
βimpft

(
∑N

n=1

(
Xnimpft ×

{
MSmpftAVmpft +

(
1 − MSmpft

)
RPmpft

})
)

+
∑N

i=1

∑M

m=2

∑P

p=1

∑F

f=1
εimpft

(
∑N

n=1

(
Xnimpft ×PCnmpf

)
)

+
∑N

i=2

∑M

m=1

∑P

p=1

×
∑F

f=1
σimpft

(
∑N

n=1

(
Xnimpft ×PCnmpf

)
))

(29)   

CMAXt ≥

(
∑N

i=1

∑M

m=1

∑P

p=1
βimpft

(
∑N

n=1

(
Xnimpft ×

{
MSmpftAVmpft +

(
1 − MSmpft

)
RPmpft

})
)

+
∑N

i=1

∑M

m=2

∑P

p=1
εimpft

(
∑N

n=1

(
Xnimpft ×PCnmpf

)
)

+
∑N

i=2

∑M

m=1

∑P

p=1
σimpft

(
∑N

n=1

(
Xnimpft ×PCnmpf

)
))

, ∀f ∈ F

(31)   
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reformulations is conducted in comparison to the precise solution of the 
original problem obtained using the CPLEX solver. Subsequently, with 
the identification of the optimal reformulation model, an in-depth 
sensitivity analysis is carried out to assess the effectiveness of our pro-
posed comprehensive optimization model in a detailed case study. 
Furthermore, a comprehensive examination of the capabilities of our 
heuristics and metaheuristics in facilitating real-time scheduling is 
presented. This analysis is further complemented by exploring various 
scheduling strategies and rescheduling policies in response to disruptive 
events. Finally, the study culminates with extensive discussions focusing 
on managerial insights and key findings derived from our comprehen-
sive results. It should be noted that all codes for our reformulations and 
heuristics are computed on a laptop with an Intel(R) Core (TM) i7- 
10850H CPU @ 2.70 GHz 2.71 GHz. 

5.1. Comparison of our solution methods 

Here, we conduct a comparative analysis of our reformulations to 
assess their individual performance. Utilizing the CPLEX software, we 
solved the original model and the two reformulations for the small-scale 
tests, within a reasonable time. As mentioned earlier, LG1 and BD 
reformulations can be applied to find a deterministic schedule (there is 
no real-time events in this case). However, in this comparison, heuristics 
and metaheuristics are able to generate a stochastic schedule in real- 
time whenever an event occurs at time t within a user-defined time 
range. Here, 0 < t ≤ 5, i.e. t = randi([1,5])*rand. Each metaheuristic 
algorithm was executed 10 times and the best, worst and average so-
lutions alongside the standard deviation of the solutions were reported 
in Table 7 for small-scale instances. 

It is obvious that the occurrence of these random events leads to a 

longer makespan compared to the one obtained by the deterministic 
schedules generated using our reformulations. However, the objective of 
comparing these random schedules with our reformulations is to assess 
the quality of the deterministic schedules. Moreover, the solutions 
derived from the LG1 and BD reformulations serve as a lower bound, 
while the solutions obtained from the heuristics act as upper bounds for 
the proposed problem. As reported in Table 7, the reformulations are 
compared with each other and with the exact solution of the original 
problem for small-scale tests. Results of heuristics and metaheuristics 
are also reported under the occurrence of a disruptive event. It should be 
noted that, for each test problem, the same disruptive event is simulated 
to ensure an unbiased comparison as the problem size increases. 

Fig. 6 illustrates a comparison of solutions based on CPU time and the 
identified best makespan. The results indicate that both reformulations 
are more efficient in solving compared to the original problem. Addi-
tionally, the BD reformulation exhibits a shorter solution time than the 
LG1 reformulation, as depicted in Fig. 6(a) and detailed in Table 7. 
Notably, the CPU time required to solve the LG1 reformulation is longer 
than the value indicated in Table 4. In this case, we apply an iterative 
algorithm using Eqs. (25) and (26), while the results in Table 4 were 
derived using a fixed upper bound. However, it is important to 
emphasize that Eqs. (25) and (26) have no impact on the determined 
lower bound; in other words, the lower bounds of LG1 remain consistent 
with those presented in Table 4. 

Additionally, the BD reformulation produces a stronger lower bound 
for our model since its solutions are closer to the exact solution, i.e., the 
optimality gap is lower as shown in Fig. 6(b). Although our proposed 
heuristics can provide an upper bound for the original model, there is 
little differentiation among them in this regard. The metaheuristic al-
gorithms, namely SA and TS, were allotted the same running time to 
ensure an unbiased comparison. Additionally, it is evident that our 
metaheuristic algorithms outperform our heuristics, as they effectively 
improve upon the best solutions identified by the heuristics. Notably, 
our metaheuristic algorithms successfully identified the optimal solution 

Table 7 
Comparison of our solution methods in small-scale tests.  

Solution 
methods 

Evaluation 
criteria 

Test instances 
T1 T2 T3 T4 

Original model 
using CPLEX 

Optimal 
makespan (h) 

58.55 121.62 638.43 1009.6 

CPU time (s) 10.98 14.75 34.72 65.74 
LG1 (t = 0) Lower bound (h) 50.31 93.63 491.5 827.87 

CPU time (s) 7.67 8.81 21.03 30.34 
BD (t = 0) Lower bound (h) 56.347 104.86 550.48 927.21 

CPU time (s) 3.93 4.51 10.78 15.55 
Heuristics 

(0 < t ≤ 5) 
Upper bound (h) 
for H1 

72.31 162.38 682.19 1039.17 

Upper bound (h) 
for H2 

58.55 145.76 675.32 1037.86 

Upper bound (h) 
for H3 

66.7 156.82 638.43 1042.42 

Upper bound (h) 
for H4 

62.56 132.4 645.56 1014.4 

SA (0 < t ≤ 5) Best solution for 
makespan (h) 

58.55 121.62 638.43 1012.65 

Worst solution for 
makespan (h) 

58.55 129.26 638.43 1014.4 

Average solution 
for makespan (h) 

58.55 125.47 638.43 1013.75 

Standard 
deviation 

0 9.55 0 1.946 

TS (0 < t ≤ 5) Best solution for 
makespan (h) 

58.55 121.62 638.43 1012.65 

Worst solution for 
makespan (h) 

58.55 130.57 638.43 1014.4 

Average solution 
for makespan (h) 

58.55 127.38 638.43 1014.12 

Standard 
deviation 

0 13.6082 0 2.06803  

Table 6 
Values of the parameters.  

Parameter Range 

PTopt
nmpf 

randi([2,4],N, M, P, F) 

PTrea
nmpf randi([4,6],N, M, P, F) 

PTpes
nmpf randi([6,8],N, M, P, F) 

COmpf randi([8,20],M, P, F)*104 

JOmpf randi([2,9],M, P, F) 
CJmpf randi([8,20],M, P, F) 
LDmpf randi([8,30],M, P, F) 
LBJ round (sum(JOmpf/3)) 
UBL 

round (sum(LDmpf ∗

(
2
3

)

)) 

RWmpf rand(M, P, F)*0.1 
IECmf (randi([8,12],M, P, F)+rand())*105 

UECmpf (randi([2,7],M, P, F)+rand())*105 

ECmpf (randi([20,40],M, P, F)+rand())*105 

UBEC 
round (sum((IECmpf + UECmpf + ECmpf ) ∗

(
2
3

)

)) 

B randi([round(sum(JOmtf . ∗ CJmtf + COmtf )/2), round(sum 
(JOmtf . ∗ CJmtf + COmtf ))]) 

MSmpft round(rand(M, P)*0.8) 
Hnimpft round(rand(N, I, M, P, F)*0.9) 
RPmpft ,AVmpft if MSmpt == 0 

RPmpft = normrnd (sum(Hnimpft ∗PCnmpf ), 2 ∗sum(Hnimpft ∗PCnmpf ))else 
AVmpft = exp(3 ∗sum(Hnimpft ∗PCnmpf )) end 

γmp 1
7 ∗ sum(Hnimpft ∗ EPTnmpf )

δmp 1
3
2
∗ sum(Hnimpft ∗ EPTnmpf )

MW if sum(RWmpf )>1 
randi([round(sum(RWmpf )/2), round(sum(RWmpf ))]) else 
rand()+(sum(RWmpf )/2)end 

*randi, rand, normrnd, round, sum, exp are taken from MATLAB function 
definitions. 
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Fig. 6. Comparison of reformulations for small-scale tests, i.e., T1 to T4 based on the CPU time (a) and optimal solutions of the different approaches (b).  
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in tests instances i.e., T1 and T3, matching the results obtained from the 
original model using CPLEX software. Among the two, it is observed that 
SA demonstrates greater robustness, indicated by the lower standard 
deviations compared to TS. 

Overall, our experiments demonstrate that the solution found by the 
BD reformulation is significantly closer to the exact solution than the 
one found by the LG1 reformulation. Moreover, BD reformulation so-
lution can be found in a shorter CPU time than the LG1 solution. BD 
reformulation is the best method in this comparison because its solution 
is closer to the optimal solution and it is found in a shorter time than 
when we solve the original problem. 

Further analysis for larger instances is presented in Table 8. In large- 
scale test scenarios, pinpointing exact solutions is often impossible. 
Hence, the BD reformulation serves as a reference point for evaluating 
and comparing the results of both our heuristics and metaheuristics. As 
displayed in Table 8, our heuristics demonstrate quicker processing 
times in comparison to the proposed BD reformulation. Moreover, there 
is no noticeable distinction among the CPU times of the four heuristics. 

Notably, heuristics operate in a single iteration, while metaheuristics 
follow an iterative approach. To ensure an unbiased comparison be-
tween TS and SA, we run these algorithms in the same maximum CPU 
time as given in Table 5. Furthermore, it is worth noting that while the 
BD reformulation (i.e., deterministic schedules) is expected to yield 
optimal solutions, our heuristics including H1, H2, H3, and H4 as well as 
the metaheuristics from literature including SA and TS are designed to 
be employed following the occurrence of real-time events. Fig. 7 illus-
trates the optimality gap calculations for the heuristics and meta-
heuristics, indicating that both SA and TS exhibit a smaller optimality 
gap when compared to the heuristics. 

The quality of the solutions obtained by our heuristics is measured by 
the optimality gap compared to the solutions derived from the proposed 
BD reformulation. To this end, the graph in Fig. 8 presents the means and 
errors of this quality evaluation, calculated at a 95 % confidence level 
using the Student’s t distribution. The vertical axis of this graph 
normalized OG values of our heuristics according to the fundamental 
schedules identified by the BD reformulation. It is important to note that 

Table 8 
Comparison of heuristics and metaheuristics with BD reformulation.  

Methods T5 T6 T7 T8 T9 T10 T11 T12 

H1 Makespan (h) 196.27 228.54 235.82 319.65 863.11 1093.6 1153.69 1485.95 
CPU time (s) 0.29 0.76 1.93 2.87 10.87 23.76 31.82 41.73 
OG 0.3494 0.1557 0.2861 0.2071 0.1042 0.113 0.1186 0.1357 

H2 Makespan (h) 158.35 226.87 198.288 305.75 874.32 1061.65 1136.23 1595.32 
CPU time (s) 0.52 0.98 1.87 3.16 9.64 25.43 36.23 44.62 
OG 0.0886 0.1475 0.0814 0.1546 0.1186 0.0804 0.1016 0.2193 

H3 Makespan (h) 167.27 220.55 221.34 285.84 844.28 1142.72 1185.54 1567.54 
CPU time (s) 0.58 1.15 1.52 3.25 12.76 27.97 37.43 48.54 
OG 0.1596 0.1197 0.2034 0.0756 0.0894 0.1633 0.1492 0.1932 

H4 Makespan (h) 157.75 213.88 202.81 297.54 856.75 1075.54 1169.5 1412.86 
CPU time (s) 0.67 1.71 2.24 4.89 14.44 28.18 35.89 46.35 
OG 0.084 0.0818 0.1075 0.1264 0.0949 0.0563 0.1394 0.0794 

BD Makespan (h) 145.44 197.75 183.36 264.8 781.6 982.56 1031.36 1308.32 
CPU time (s) 30.99 79.28 103.86 224.85 667.97 6391.69 9060.74 14,169.86 

SA Best solution for makespan (h) 157.3076 212.4125 195.864 284.52 829.1051 1012.867 1082.45 1350.868 
Worst solution for makespan (h) 157.75 212.993 197.6682 284.9721 842.5107 1057.081 1136.23 1397.145 
Average solution for makespan (h) 157.5431 212.6361 196.345 284.4666 837.5043 1032.128 1134.86 1378.429 
Standard deviation 0.3602 0.3064 0.7902 0.313364 5.3142 14.3021 3.8754 15.8024 
OG 0.000328 0 0 0 0.00032 0.000412 0.049537 0.003714 

TS Best solution for makespan (h) 157.3076 212.4125 195.864 284.52 829.1051 1012.867 1132.29 1350.868 
Worst solution for makespan (h) 157.75 212.993 197.6682 284.9721 844.28 1061.65 1136.23 1412.86 
Average solution for makespan (h) 157.6684 212.876 197.2445 284.7461 836.6926 1037.259 1134.26 1381.864 
Standard deviation 0.8564 0.5367 1.0671 0.395588 13.27804 42.68513 3.4475 54.243 
OG 0.000328 0 0 0 0.00032 0.000412 0.09649 0.003714  

Fig. 7. Optimality gap of the heuristics and metaheuristics compared to the BD reformulation.  
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while the OG values in Table 4 are based on the solutions of the original 
model, those in Table 8 are derived from the solutions of the BD refor-
mulation, representing a lower bound for the original problem. The 
primary observations from these computations indicate that H1 dem-
onstrates superior speed compared to the other heuristics. However, as 
depicted in Fig. 8, H4 showcases robustness and efficiency, out-
performing the other heuristics. Additionally, in this comparison, H2 
performs better than H3, while H1 is revealed to be the least effective 
among all algorithms. 

Furthermore, an analysis of the algorithms’ robustness is conducted 
based on the standard deviation of the solutions from our metaheuristic 
algorithms. This analysis is presented using a box plot with a 95 % 
confidence level derived from the Student’s t distribution in Fig. 9. 

Notably, the findings suggest that SA demonstrates greater effectiveness 
than TS in solving our optimization problems. 

5.2. Application of the proposed approach to a case study 

Based on the data provided by Wuhan Huazhong Numerical Control 
company, a case study was defined to verify the effectiveness of the 
proposed optimization model. The case study is the production of 
flanges as shown in Fig. 10 used in automobile construction. This pro-
duction consumes a non-negligible amount of energy resulting from the 
multiple levels of energy consumed by the machines according to three 
statuses i.e., ultra-idle, idle or processing. 

The production of a flange requires ten tasks of turning, milling, 

Fig. 8. Means plot with 95 % confidence level for the assessment of heuristics based on the base schedules found by the BD reformulation.  

Fig. 9. Box plot with 95 % confidence level for the assessment of metaheuristics based on the standard deviation.  
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drilling, tapping and grinding. These tasks are carried out using five 
different CNC machines located in two separate factories. Each of the 
five CNC machines can be operated under three different modes of 
production [89], i.e., a manual production mode (MAN) and two auto-
matic production modes based on two advanced operating systems (PLC 
or APC). In MAN mode, the CNC machine behaves like a conventional or 
standard machine. In this regard, the operator of a CNC machine is able 
to press buttons, turn handwheels, and activate switches to operate the 
process of tasks while improving its functional performance. However, 
in PLC or APC modes, all of these activities are performed automatically. 
In order to obtain more information on these CNC machine modes 
readers can refer to the Wuhan Huazhong Numerical Control Co.4 as 
well as studies by Alphonsus and Abdullah [76] and Shilyaev et al., [77] 
which describe PLC and APC systems respectively. 

The processing times (PTnmpf = (PTpes
nmpf , PTrea

nmpf ,PTopt
nmpf )) required by 

the machines to process these ten tasks according to their three different 
modes of production are shown in Table 9. Note that not every task can 
be processed on every machine. Thus, some rows of this table are empty. 
Other parameters such as energy consumption levels (IECmpf , UECmpf ,

ECmpf ) as well as economic and social factors (COmpf , CJmpf , JOmpf , 
LDmpf , RWmpf ) are given in Table 10. The case study is solved in the 
context where there is no disruptive event (t = 0). Thus, only a deter-
ministic schedule is provided where the BD reformulation is used to 
obtain an optimal makespan of 488.19 min in a computational time of 
8.45 s. 

In addition to highlighting the impact of key parameters, including 
the number of tasks (N) and factories (F), budget (B), upper limits of 
energy consumption (UBEC), number of working days lost (UBL), and 
the lower limit of job opportunities created (LBJ) on the results, a 
sensitivity analysis is conducted using various values for these param-
eters. The nominal value of each parameter is uniformly increased across 
four additional cases; for instance, the nominal value of 10 tasks is 
increased to 20, 30, 40, and then 50 tasks. For each case, the makespan is 
evaluated. Fig. 11 illustrates the variation in the makespan (in minutes) 
resulting from the alteration of these parameters. 

As shown in Fig. 11(a), an increase in the number of tasks signifi-
cantly increases the makespan while an increase in the number of fac-
tories reduces the makespan (Fig. 11(b)) as the number of tasks assigned 
to each factory is reduced. Fig. 11(c) shows that an increase in the upper 
bound of the budget can reduce the makespan. However, this 
improvement is limited. Fig. 11(d) reveals that increasing the allowable 

limit of total energy consumption can reduce the makespan. However, as 
with the upper bound of the budget, this improvement is limited. Fig. 11 
(e) confirms that the influence of the upper bound of lost working days 
on the makespan is generally the same as that of the maximum allowable 
energy consumption. Finally, as shown in Fig. 11(f), an increase in the 
lower bound of the number of job opportunities created does not lead to 
a reduction of the makespan. However, even if it increases the make-
span, its main objective is more of a social nature by offering more job 
opportunities. 

5.3. Comparison of scheduling strategies and rescheduling policies 

As previously discussed, the proposed real-time scheduling concept 
focuses on the incorporation of new tasks arriving at time t, alongside 
the estimated machine failure based on probabilistic theories. The 
implementation of predictive-reactive and proactive-reactive sched-
uling strategies facilitates this real-time scheduling process, with the 
evaluation and comparison of their performances based on the make-
span. These strategies diverge in the application of decision rules AF1 
and AF2 within our heuristics. In the case of an anticipated disruptive 
event at time t, the predictive-reactive scheduling strategy applies AF1 
and AF2 at time t-(PCmin), where PCmin denotes the minimum pro-
cessing time among all unassigned tasks. On the other hand, the 
proactive-reactive scheduling strategy employs the decision rules AF1 
and AF2 at time t. 

According to the results outlined in Table 11, the average makespan 
values obtained through the predictive-reactive strategy are notably 
shorter compared to those resulting from the proactive-reactive strategy. 
To compare the performance of the four heuristics, the makespan values 
of each test were normalized, and the normalized mean values are 
presented in Fig. 12 with a 95 % confidence level utilizing the Student’s 
t-distribution. For the predictive-reactive scheduling strategy (Fig. 12 
(a)), it was observed that the H4 heuristic emerged as the most effective 
optimization algorithm. Additionally, H2 outperformed H3, while H1 
exhibited the least favorable results within this strategy. Similarly, for 
the proactive-reactive scheduling strategy (Fig. 12(b)), the findings 
revealed that H4 and H1 were respectively the best and worst heuristics 
in this context. 

Another important concept is the cost of rescheduling referring to the 
time lost due to rescheduling. This cost is computed by the deviation of 
the makespan of the stochastic schedule from the makespan of the 
deterministic schedule. Table 12 reports the comparison of the contin-
uous rescheduling policy with the event-driven rescheduling policy. In 
each test problem case, we assume that a number of tasks corresponding 
25 % of the total number of tasks arrive as new tasks at time 
0 < t ≤ CMAXt . with CMAXt being the makespan at time zero (i.e., the 
makespan resulting from the deterministic schedule) found by the BD 
reformulation for each test problem. After generating 0.25 of the total 
number of tasks in each test problem as real-time events and applying 
heuristics, the rescheduling cost for each rescheduling policy is 
computed as the difference in hours between the makespan obtained 
using the rescheduling policy and the makespan of the deterministic 
schedule. Based on the results taken from Table 12,Fig. 13 shows that 
continuous rescheduling has a higher cost in terms of time than the 
event-driven rescheduling policy. Moreover, the behavior of the four 
heuristics for each of the policies is similar with respect to the solution 
found. 

In conclusion, the predictive-reactive scheduling strategy is more 
efficient than the proactive-reactive strategy in performing real-time 
scheduling for our proposed sustainable distributed permutation flow- 
shop system. Regarding the how-to-reschedule process, the event- 
driven rescheduling policy is more efficient than the continuous 
rescheduling policy. Finally, in all the analyses, our heuristic H4 in 
majority of analyses, shows the best performance among the other 
proposed alternatives. 

Fig. 10. The product and its processing tasks as provided by Wuhan Huazhong 
Numerical Control Co. 

4 https://huazhongcnc.en.made-in-china.com/ 
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5.4. Discussions and managerial insights 

In the realm of production scheduling, recent progress has empha-
sized the need to redefine task sequences in response to real-time events 
and uncertainties, such as new task arrivals and machine breakdowns. 
This shift aims to enhance adaptability and responsiveness in dynamic 
production environments. Concurrently, integrating sustainability 
criteria across economic, environmental, and social dimensions has 
emerged as a pivotal challenge. This study contributes to this evolving 
discourse by redefining a distributed permutation flow-shop in align-
ment with sustainability criteria. 

Our optimization model prioritizes makespan minimization while 
accounting for energy consumption, lost working days, and job oppor-
tunities within defined constraints. Real-time scheduling is achieved 
through predictive-reactive and proactive-reactive strategies, com-
plemented by continuous and event-driven rescheduling policies. These 
approaches serve as invaluable tools for production managers, enabling 
them to balance intricate scheduling objectives while responding 

effectively to dynamic events. 
The evaluation of reformulations, heuristics, and metaheuristics 

provides essential insights into their effectiveness in achieving sched-
uling solutions. Notably, the BD reformulation, among various refor-
mulations, exhibits exceptional speed and generates solutions 
approaching optimality. This underscores the potential of incorporating 
reformulations to significantly reduce computational time and establish 
robust lower bounds for our distributed permutation flow-shop system. 
The stochastic nature of our proposed heuristics offers varying degrees 
of efficiency, with the H4 heuristic standing out for its robustness and 
effectiveness. Among the metaheuristic algorithms, SA demonstrates 
noteworthy robustness compared to TS, evident from the analysis of 
optimality gaps and standard deviations. 

Summarizing the key results, Fig. 2 employs Gantt charts to provide a 
comparative visualization of the deterministic schedule and our 
rescheduling strategies. Figs. 3 and 4 illustrate potential solutions and 
the neighborhood procedure in our metaheuristic algorithms, respec-
tively. Performance comparisons highlight the superiority of the BD 

Table 10 
Parameters of our numerical example .  

Machine Operating mode IECmpf 

(kWh)
UECmpf 

(kWh)
ECmpf 

(kWh)
COmpf 

($) 
CJmpf 

($) 
JOmpf 

(Person) 
LDmpf 

(Days) 
RWmpf 

CNC 1-turning PLC 0.5 4.1 2.9 32.4 × 103 2 3 7 0.04 
APC 0.45 4.15 3 34.2 × 103 2 3 7 0.03 
MAN 0.52 4.3 3.2 20.4 × 103 1 8 2 0.14 

CNC 2- milling PLC 0.3 3.8 3.1 41.5 × 103 3 2 7 0.02 
APC 0.35 3.75 3.15 42.1 × 103 3 2 7 0.02 
MAN 0.57 4.5 5.2 28.5 × 103 1 6 2 0.12 

CNC 3- drilling PLC 0.2 2.6 1.8 31.2 × 103 3 4 7 0.02 
APC 0.3 2.75 1.9 32.4 × 103 3 4 7 0.01 
MAN 0.4 3.5 2.4 16.3 × 103 2 8 2 0.17 

CNC 4- tapping PLC 0.5 3.1 1.9 23.3 × 103 4 5 7 0.01 
APC 0.45 3.2 2 22.5 × 103 4 5 7 0.03 
MAN 0.75 4.5 3.2 11.7 × 103 2 6 2 0.15 

CNC 5- grinding PLC 0.3 2.6 1.3 32.1 × 103 4 4 10 0.02 
APC 0.35 2.65 1.4 31.7 × 103 4 4 10 0.03 
MAN 0.8 3.76 2.3 18.5 × 103 1 8 3 0.15  

Table 9 
Processing times of tasks (PTpes

nmpf , PTrea
nmpf , PTopt

nmpf in minutes) .  

Machine Operating 
mode 

Tasks 
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

CNC 1 
turning 

PLC (5.6, 5.5, 
5.4) 

(4.9, 4.8, 
4.7) 

– (5.2, 5.1, 
5) 

– – – – – (5.6, 5.5, 
5.4) 

APC (5.6, 5.45, 
5.35) 

(5, 4.9, 
4.8) 

– (5.3, 5.2, 
5.1) 

– – – – – (5.65, 5.5, 
5.35) 

MAN (6, 5.9, 5.7) (6, 5.8, 
5.7) 

– (6.8, 6.5, 
6.4) 

– – – – – (7, 6.7, 6.5) 

CNC 2 
milling 

PLC – – – – – (3.6, 3.5, 
3.4) 

(3.4, 3.3, 
3.2) 

(3.5, 3.4, 
3.3) 

– – 

APC – – – – – (3.7, 3.6, 
3.5) 

(3.5, 3.4, 
3.3) 

(3.6, 3.5, 
3.4) 

– – 

MAN – – – – – (6, 5.5, 5) (6, 5.7, 
5.5) 

(5.5, 5.3, 
5) 

– – 

CNC 3 
drilling 

PLC – – (4.7, 4.6, 
4.4) 

– – – – – – – 

APC – – (4.8, 4.7, 
4.6) 

– – – – – – – 

MAN – – (7, 6, 5.5) – – – – – – – 
CNC 4 

tapping 
PLC – – – – (3.9, 3.8, 

3.7) 
– – – – – 

APC – – – – (4, 3.9, 
3.8) 

– – – – – 

MAN – – – – (6, 5, 4) – – – – – 
CNC 5 

grinding 
PLC – – – – – – – – (4.2, 4.1, 

4) 
– 

APC – – – – – – – – (4.3, 4.2, 
4.1) 

– 

MAN – – – – – – – – (6.4, 5.8, 
5) 

–  
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Table 11 
Comparison of the makespan (h) of the scheduling strategies.  

Test problem Predictive-reactive scheduling Proactive-reactive scheduling 
H1 H2 H3 H4 H1 H2 H3 H4 

T1 80.87 66.07 77.34 65.13 95.27 76.25 92.16 72.22 
T2 173.29 156.54 160.15 135.64 187.54 164.19 172.62 145.39 
T3 690.36 684.77 647.47 652.06 704.21 693.33 662.34 657.23 
T4 1052.13 1050.48 1051.14 1024.66 1067.35 1060.32 1066.86 1033.88 
T5 220.88 164.15 176.28 166.92 228.66 170.25 191.65 180.33 
T6 242.75 233.09 235.71 223.81 252.58 245.85 247.51 236.84 
T7 248.6 216.45 240.59 214.82 258.82 227.38 248.34 225.05 
T8 333.94 324.67 303.3 310.58 346.07 331.51 316.53 322.19 
T9 879.18 879.49 857.23 871.12 887.95 890.22 866.44 881.97 
T10 1120.89 1068.46 1163.17 1080.45 1129.64 1082.63 1170.03 1096.38 
T11 1175.88 1155.64 1200.31 1171.67 1187.48 1169.33 1209.22 1182.15 
T12 1502.47 1603.35 1577.28 1425.15 1517.96 1610.84 1592.14 1438.57 
Average 643.436 633.596 640.83 611.834 655.294 643.583 652.986 622.683  

Fig. 11. Sensitivity analyses on key parameters.  
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reformulation (Fig. 6) and the top-performing heuristic H4 (Fig. 8). A 
detailed case study (Fig. 10) further demonstrates the practical appli-
cability of our approach, supported by efficiency data in Table 9. 
Sensitivity analysis (Fig. 11) and real-time scheduling assessments 
(Table 11) offer nuanced insights into critical parameters and resched-
uling policies. 

In conclusion, this study provides valuable managerial insights, 
showcasing the potential of integrating sustainability criteria into real- 
time scheduling. The comparison of methods emphasizes the effi-
ciency and robustness of reformulations and heuristics. Sensitivity 
analysis sheds light on the pivotal role of critical parameters, guiding 
decision-making for production managers and scheduling programmers. 
Scheduling strategy and rescheduling policy selection emerge as crucial 
factors, with recommendations favoring certain algorithms, such as SA 

over TS. Overall, this research equips production managers with prac-
tical tools and knowledge to enhance the efficiency and sustainability of 
their production systems. 

6. Conclusions, findings and future research avenues 

In summary, this paper introduces a comprehensive optimization 
model that addresses sustainability and uncertainty concerns within the 
context of a distributed permutation flow-shop scheduling problem. The 
primary objective is to minimize the makespan while incorporating 
constraints related to energy consumption, job opportunities, and lost 
working days. The model also accounts for the influence of different 
machine operating modes on social criteria, including the number of 
workers and training needs, along with three energy consumption levels 

Fig. 12. Normalized average values of the makespan obtained according to the scheduling strategies, i.e., (a) predictive-reactive scheduling and (b) proactive- 
reactive scheduling. 
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based on machine states. To address the uncertainty, real-time sched-
uling is employed, utilizing predictive-reactive, proactive-reactive, 
continuous, and event-driven rescheduling approaches. 

For solving the proposed optimization model, efficient reformula-
tions of the optimization model through Lagrangian relaxation and 
Benders decomposition are proposed, demonstrating superior solutions 
compared to an exact solver. To expedite the solution-finding process, 
four tailored heuristics (H1, H2, H3, and H4) and two powerful meta-
heuristic algorithms (SA and TS) are deployed, collectively enhancing 
the overall optimization process. 

Upon comparing algorithm efficiencies, sensitivity analyses high-
light the profound impact of key parameters on scheduling outcomes, 
emphasizing the need for resource-efficient practices. Factors such as the 
number of tasks, factories, and budget constraints significantly influence 
makespan, while estimating energy consumption limits, sustainable 
thresholds, job opportunity limits, and lost workdays underscore the 
broader societal implications of scheduling decisions. 

Analysis of predictive-reactive and proactive-reactive scheduling 
strategies reveals the former’s tendency to result in shorter makespans, 
indicating the effectiveness of anticipating real-time events. Moreover, 
the event-driven rescheduling policy outperforms continuous resched-
uling in terms of time savings, emphasizing the importance of responsive 
rescheduling to minimize disruptions. Heuristic H4 consistently emerges 
as the most efficient algorithm, showcasing robustness in handling dy-
namic scheduling scenarios and offering valuable insights for production 
managers optimizing processes while considering sustainability factors. 

While this study significantly contributes to efficient solutions for 
sustainable distributed permutation flow-shop scheduling under un-
certainties, certain limitations indicate potential avenues for future 
research. Integrating real-time events with probabilistic scenarios could 
enhance scenario-based robust optimization models. Considering addi-
tional criteria like task assignment stability and tardiness could trans-
form the model into a multi-objective optimization framework. 
Exploring metaheuristic algorithms beyond SA and TS, such as adaptive 
large neighborhood search, presents a promising direction for future 
research. Lastly, combining the proposed BD reformulation with ma-
chine learning tools may yield even more efficient solutions for the 
presented model. These avenues represent promising directions to 
advance the field and address the identified limitations. 
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Table 12 
Comparison of rescheduling policies based on the cost of rescheduling (h).   

Event-driven rescheduling Continuous rescheduling  
H1 H2 H3 H4 H1 H2 H3 H4 

T1 2.43 1.98 2.32 1.95 7.99 6.62 7.822 5.941 
T2 5.2 4.703 4.812 4.075 15.88 14.15 15.16 13.06 
T3 20.74 20.57 19.45 19.59 62.48 61.87 59.28 59.03 
T4 31.61 31.56 31.58 30.78 95.63 95.26 95.71 93.06 
T5 6.637 4.93 5.296 5.01 20.52 15.25 16.29 15.95 
T6 7.29 7.003 7.082 6.72 22.08 21.48 21.54 21.03 
T7 7.46 6.504 7.22 6.45 22.54 20.21 22.45 19.66 
T8 10.03 9.755 9.11 9.33 30.76 30.05 28.25 28.7 
T9 26.41 26.42 25.75 26.17 79.67 79.344 77.919 79.2 
T10 33.68 32.105 34.95 32.46 101.56 97.074 105.56 97.57 
T11 35.33 34.72 36.06 35.2 106.054 104.95 108.796 105.69 
T12 45.14 48.17 47.39 42.82 135.894 145.5 142.237 129.35 
Average 19.33 19.03 19.25 18.384 58.424 57.65 58.416 55.697  

Fig. 13. Rescheduling cost (in hours) of the heuristics according to continuous and event-driven rescheduling policies.  
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