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Simple Summary: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer in
North America, with a survival rate of 85%. Despite improved outcomes, many survivors experience
long-term side effects, including cognitive issues. This study investigates whether a brain imaging
technique called Magnetization Transfer Ratio (MTR) can detect changes in the brain’s white matter of
ALL survivors and if these changes are related to cognitive problems. Lower MTR levels in survivors,
indicating myelin damage, correlated with cognitive impairments. Additionally, a link between MTR
levels and the doses of certain chemotherapy drugs received was discovered. These findings improve
our understanding of ALL survivorship and highlight the importance of MTR in monitoring brain
health during and after cancer treatment.

Abstract: Acute lymphoblastic leukemia (ALL) stands as the most prevalent form of pediatric cancer in
North America, with a current five-year survival rate of 85%. While more children achieved ALL remission
and transition into adulthood, the prevalence of long-term treatment-related effects, especially neurocognitive
sequelae, remains significant. This study pursues two objectives. Firstly, it investigates if Magnetization
Transfer Ratio (MTR), a method assessing myelin integrity, is sensitive to white matter (WM) microstructural
changes in long-term ALL survivors and whether these relate to cognitive impairments. Secondly, it examines
the dose-related effects of chemotherapy agents on the MTR and its relationship to other risk factors such as
female sex, early age diagnosis, and cranial radiotherapy. Magnetization transfer imaging was utilized to
assess WM integrity in 35 survivors at a mean of 18.9 years after the onset of ALL (range since diagnosis:
6.9–26.8). Additionally, 21 controls matched for age, sex, and education level, with no history of cancer,
were included. MTR was extracted from both the entire brain’s WM and the corpus callosum through
semi-automated procedures. The results indicated lower MTR means in survivors, which is linked to
cognitive function. Negative associations between MTR means and intrathecal agents’ (MTX, cytarabine,
and hydrocortisone) cumulative doses received were highlighted. This study offers valuable insights into the
connections between myelin deterioration, cognitive impairment, and the implications of IT chemotherapy,
enhancing our understanding of ALL survivorship dynamics. It underscores MTR’s relevance in monitoring
neurotoxicity during oncological drug follow-up examinations.

Keywords: acute lymphoblastic leukemia; pediatric cancer; long-term survivors; neuropsychology;
neurocognitive sequelae; magnetic resonance imaging
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1. Introduction

Acute lymphoblastic leukemia (ALL) remains the most diagnosed pediatric cancer.
Fortunately, current treatments allow a 5-year survival rate as high as 80–90% [1]. Treatment
regimens are based on a combination of chemotherapeutic agents directed to the central
nervous system by intravenous and intrathecal routes and adjunctive cranial radiotherapy
when the risk of relapse is critical. Due to the high risk of cognitive sequelae, cranial
radiotherapy is increasingly being replaced by intensified systemic and intrathecal (IT)
therapy [1–3]. Over a period of about 2 years, the child diagnosed with ALL receives
aggressive treatments, which, given at a time when major developmental changes are taking
place, can disrupt brain development [4]. Therefore, treatments with or without irradiation
are associated with long-term neurocognitive sequelae in survivors expressed by reduced
scores on the neuropsychological assessment of intellectual and executive functioning [5–7],
as well as damage to brain tissue, mainly white matter (WM) [8–10]. Several risk factors
contribute to the development of neurocognitive complications: younger age at diagnosis,
female sex, cranial radiotherapy (CRT), and overall treatment intensity [11–14].

Part of the neurotoxicity of oncological treatments results in demyelination of the
WM [15]. Particularly in children, newly synthesized myelin is even more vulnerable due
to its higher metabolic activity and lower stability [4]. The emergence of late neurocognitive
impairments is thought to be influenced by the level of premorbid brain integrity and the
extent of neurotoxic effects, which involve direct WM impairments as well as disruption of
mechanisms that facilitate tissue remyelination and compensatory processes [16,17]. As
a result, survivors of ALL often show neurocognitive impairments such as WM volume
loss and disrupted WM integrity [18]. Various methods have been employed to capture
WM abnormalities in long-term ALL survivors’ brains. According to Wu et al., (2012) [19],
magnetization transfer ratio (MTR) is highly sensitive to myelin content and axonal density
and can detect subtle brain abnormalities that are not apparent in conventional magnetic
resonance imaging techniques. The extent to which the WM microstructural integrity at
adult age determines the ensuing cognitive functioning of ALL survivors remains unclear.

According to the foregoing, the aim of this study is to investigate WM structural
and microstructural integrity in long-term ALL survivors using volumetric investigation
and magnetization transfer imaging. WM volumes and MTR are investigated, on the one
hand, in relation to neuropsychological outcomes and, on the other hand, in relation to
neurocognitive risk factors (i.e., age at diagnosis, sex, and adjunctive CRT), cumulative
doses of corticosteroids (i.e., prednisone, hydrocortisone, and dexamethasone) and in-
trathecal chemotherapy agents (i.e., IT-cytarabine, IT-methotrexate, IT-hydrocortisone). In
addition to whole-brain measurements, particular interest was carried toward the corpus
callosum (CC). The CC is the largest WM fiber bundle connecting the two cerebral hemi-
spheres. The integrity of the interhemispheric connection pathways is essential for the
proper functioning of the brain. Several studies observed microstructural changes in the CC
following oncological treatments based on systemic chemotherapy [20–24]. However, very
few studies have focused on the MTR. This study will enable a comprehensive examination
of dose-related effects on magnetization transfer measures. We hypothesized reduced WM
volume and MTR means in long-term ALL survivors compared to the healthy control
group. Associations between neuroimaging measures, cumulative doses of chemotherapy
agents, and cognitive performance indices are expected. More specifically, we hypothesize
that the MTR may reflect neurotoxic damage in ALL survivors.

2. Methods
2.1. Study Design and Recruitment

This retrospective study is part of the PETALE research program at Sainte-Justine
University Health Center (SJUHC), Quebec, Canada, which was designed to identify and
characterize ALL long-term complication biomarkers. As described in Marcoux et al.,
(2017) [25], the PETALE cohort is composed of 246 ALLs diagnosed between age 0 and
age 17, treated with the Dana Farber Cancer Institute protocols 87-01 to 05-01, and at least
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5 years post-diagnosis at the data collection time point, without any history of refractory
ALL, disease recurrence, or hematopoietic stem cell transplantation. According to their
performance at the DIVERGT screening procedure [5,26], a sample of 35 ALL survivors
(age range (17–40)), aiming to represent all spectrum of cognitive performance found in
the initial cohort, was selected, tested using anatomical MRI studies and included in this
study. For comparison purposes, 21 age- and education-level-matched healthy controls
(age range (19–36)), representative with respect to sex, with no history of neurological,
psychological, or cancer disorders, were recruited within SJUHC Research Center and
within social networks. The complete recruitment procedure is detailed elsewhere [27].
The study was approved by the Institutional Review Board of SJUHC, and investigations
were carried out in accordance with the principles of the Declaration of Helsinki. Written
informed consent was obtained from study participants or parents/guardians.

2.2. Data Collection and Study Procedures
2.2.1. Neuroimaging Protocol

MRI was performed on a General Electric Discovery MR750 3 Tesla system at SJUHC.
MT spoiled gradient echo (MT-SPGR) [28] was used as acquisition method for magneti-
zation transfer imaging by means of the following imaging sequences: 3D T1-weighted
inversion–recovery magnetization prepared–ultrafast acquisition gradient echo (IR-FSPGR)
[repetition time (TR)/echo (TE): 8.16/3.18 ms, inversion time (TI): 450 ms, matrix:
256 × 256 × 188, field of view (FOV): 0.75 × 0.75 × 1.5 mm and flip angle: 9◦], 3D SPGR
(MT saturation pulse off) and 3D MT-SPGR (MT saturation pulse on) [TR/TE: 32/4 ms,
matrix: 256 × 256 × 104, FOV: 0.75 × 0.75 × 1.5 mm and flip angle: 10◦].

2.2.2. Neuroimaging Postprocessing

Images postprocessing was conducted using the FreeSurfer Software Suite v6 [29]
(http://surfer.nmr.mgh.harvard.edu/, accessed on 20 June 2022). Each participant’s MRI
data were processed independently to produce one mask per participant. This cortical
reconstruction pipeline includes non-parametric, non-uniform intensity normalization,
automated Talairach transformation, skull-stripping [30], segmentation of the subcortical
white matter [31], intensity normalization [32], tessellation, surface smoothing, inflation,
quasi-homeomorphic spherical transformation, and automated topology correction [33].
As a result, 256 axial slices without gaps covering the entire brain were obtained from both
3D SPGR and 3D SPGR-MT, thereby acquiring an unsaturated data set and a saturated
data set. Additionally, segmentation masks were generated from the 3D T1 IR-FSPGR
evenly processed data set. The segmentation of WM volumes of interest (VOIs) implied
automated and customized procedures. The segmentation of the whole brain subcortical
WM and its right and left hemispheres’ parcellation has been efficiently executed through
FreeSurfer’s automated process, although the CC segmentation required manual correction
due to the undesired inclusion of neighboring voxels, mostly from the fornix. CC was
divided into five equal sections along the length, enabling interhemispheric communication
that supports distinct cognitive functions—anterior, mid-anterior, central, mid-posterior,
and posterior sections correspond to the rostrum, genu, body, isthmus, anterior splenium,
and posterior splenium, respectively. Intracranial volume and cerebral WM volume in
mm3 were computed with FreeSurfer. Intracranial volume was estimated using an atlas
normalization procedure [34].

2.2.3. Magnetization Transfer Processing

To generate MTR data, each participant’s MRI data were processed independently
with an FSL pipeline (FMRIB Software v5.0). Images co-registration was performed using
the FLIRT [35] linear registration algorithm. Since SPGR data featured a higher defined
contrast, it has been selected as reference images. Hence, MT-SPGR data were normalized
to SPGR data to create a reference volume, which was then spatially co-registered to the
whole head high-resolution T1-weighted IR-FSPGR. To ensure a proper comparison, an
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optimized registration procedure involving a rigid body transformation with 6 degrees
of freedom was used. The resulting co-registered images were used to calculate the MTR
maps voxel-by-voxel via the fslmaths program according to the following formula: MTR =
(SPGR − (SPGR-MT))/SPGR. To extract MTR data from each VOI, a simple intersection
between the 3D MTR data maps and the segmentation masks was possible since the MTR
data volume and all MRI images of the same participant had been previously recalibrated
and standardized. The corresponding voxels were intersected with the VOIs’ coordinates
in the segmentation masks. An outlier’s correction fixed at ±1 standard deviation (SD)
was then applied to our voxel-wise MTR data set to avoid potential errors affecting the
MTR mean in CC VOIs due to imperfections in the CC segmentation and parcellation.
Mean MTR was computed and defined as the average MTR of all voxels in each 3D VOI:
whole brain WM, left hemisphere WM, right hemisphere WM, whole CC, anterior CC,
mid-anterior CC, mid-posterior CC, central CC, posterior CC.

2.2.4. Cognitive Assessment

All participants enrolled in the study were evaluated using a set of neuropsychological
tests covering intellectual and executive functioning. The neuropsychological evaluation
was conducted by a qualified examiner through a standardized testing protocol that is
already detailed in Boulet-Craig et al., (2018) [5]. Intellectual functioning was assessed
with the 10 core subtests of the Wechsler Adult Intelligence Scale 4th edition (WAIS-
IV) [36]. Age-adjusted scores of the domain-specific WAIS-IV subtests were summarized
and transformed into the four WAIS-IV indexes (i.e., Verbal Comprehension Index (VCI),
Perceptual Reasoning Index (PRI), Working Memory Index (WMI), Processing Speed
Index (PSI)) along with the Full-Scale IQ (FSIQ) and the General Ability Index (GAI). The
FSIQ encompasses overall intellectual functioning, while the GAI focuses specifically on
reasoning abilities. The WAIS-IV index scores, in addition to the FSIQ and the GAI, are
standardized to a mean of 100, with one standard deviation reflected in 15-point increments.
Executive functioning was assessed with a DIVERGT [26] equivalent battery, including
Digit Span [36], Verbal Fluency subtests [37], Trail Making Test [37], and Grooved Pegboard
Test [38]. Raw scores were converted to age-adjusted scaled scores (mean [M] = 10, standard
deviation [SD] = 3) based on nationally representative normative data. With the intention
of quantifying the extent of ALL-associated cognitive sequelae on a singular composite
score reflecting the most common executive deficits following ALL (i.e., working memory,
verbal fluency, cognitive flexibility, and visuomotor processing speed), a global index of
executive functioning was calculated for each participant. This Executive Functioning
Index was obtained by computing the arithmetic mean of the following subtests’ scaled
scores: Digit Span, Verbal Fluency—Condition 1, Trail Making Test—Condition 4, and
Grooved Pegboard—Dominant Hand.

2.3. Statistical Analysis

All analyses were carried out using IBM SPSS statistics 28. Initial group compar-
isons were conducted to ensure that ALL survivors and controls were matched on key
demographic factors. Fischer’s exact test was used to compare groups’ sex ratios. An
independent sample t-test and its nonparametric equivalent Mann–Whitney U test were
respectively run to test for differences between groups in age at assessment and number of
years of education.

Comparison of neuropsychological test results and neuroimaging outcomes between
ALL survivors and controls were made using independent samples t-tests or Mann–
Whitney U for non-normally distributed variables. Test results were examined for effect
sizes using Pearson’s correlation coefficient r. The magnitude of the observed effect was
considered small when r varied around 0.10, medium when r varied around 0.30, and large
if r reached 0.50 [39].

To examine the relationship between neuropsychological outcomes and cumulative
dose of the chemotherapy agents, we employed directional Pearson correlations, shedding
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light on potential dose-response effects. Neuroimaging outcomes were also examined
for associations with cognitive function using directional Pearson correlations, and their
covariation with the cumulative doses of chemotherapy agents. Where applicable, both
survivors and controls were included in correlational analyses.

To further explore the potential influence of the female sex as a risk factor, we con-
ducted additional two-way ANOVAs to investigate sex-group interactions, specifically
assessing their impact on cognitive and neuroimaging outcomes. ANOVAs’ effect sizes
were assessed using partial η2 (η2 partial), where 0.01, 0.06, and 0.014 correspond to small,
medium, and large effect sizes [40].

Finally, hierarchical multiple regression analyses were carried out to study the relative
contribution of the cumulative dose of chemotherapy agents among the risk factors (i.e.,
female sex, early age at diagnostic, and adjunctive CRT) in predicting MTR metrics in the
brain at adulthood. Regression models were adjusted for current age. Interactions between
dose and sex and between dose and age at diagnosis were also explored. Effects sizes
were interpreted using R2 as a percentage of variance explained, where 1%, 9%, and 25%,
respectively, indicated small, medium, and large effects [40].

Given the well-documented neurocognitive sequelae in ALL survivors and our a
priori hypothesis regarding their overall lower brain integrity compared to healthy controls,
we conducted one-tailed tests. Test results were examined for statistical significance
(p ≤ 0.05). To be aware of type 1 errors, the Benjamini–Hochberg false discovery rate (FDR)
procedure [41,42] was applied for multiple comparisons [43]. In correlational analyses,
the FDR correction was applied on a dependent variable-by-dependent variable basis.
Considering that the correction for multiplicity may increase the risk of type 2 errors [44],
uncorrected p-values are reported throughout the manuscript, and FDR-adjusted p-values
(FDR adj.-p) are also provided where appropriate. The FDR threshold was fixed at 0.05.

3. Results

Demographic variables and treatment characteristics are displayed in Table 1. ALL
survivors were assessed in neuropsychology and neuroimaging for the present study on
average at 18.90 ± 5.37 years post-diagnosis and are therefore considered very long-term
survivors. Neuropsychological outcomes are presented in Table 2. ALL survivors did
not differ from controls either on the working memory index (WMI) (p = 0.623) or on the
perceptual reasoning index (PRI) (p = 0.132). However, in comparison to the control group,
ALL survivors exhibit lower average scores for the full-scale IQ (FSIQ) (p = 0.008, FDR
adj.-p = 0.022), the general ability index (GAI) (p = 0.013, FDR adj.-p = 0.024), the verbal
comprehension index (VCI) (p = 0.008, FDR adj.-p = 0.022), and the processing speed index
(PSI) (p = 0.003, FDR adj.-p = 0.022). On the Executive Functioning Index based on DIVERGT
scores, survivors underperformed compared to controls (p = 0.012, FDR adj.-p = 0.024),
suggesting relative weakness in executive functioning. ALL survivors’ scores were inferior
to controls on the Trail making test condition 4 (p = 0.016, FDR adj.-p = 0.022) and on the
Grooved pegboard (p = 0.005, FDR adj.-p = 0.022), which may reflect more specific executive
weaknesses in cognitive flexibility and visuomotor processing speed. ALL survivors’ scores
on the Digit span (p = 0.465) and on the Verbal fluency condition 1 (p = 0.248) did not differ
from those of the controls.

Table 1. Demographics and clinical information.

ALL Survivors (n = 35) Controls (n = 21) p

Demographics
Sex, n (%)

Male 21 (60) 12 (57.1)
1.00 c

Female 14 (40) 9 (42.9)
Age at assessment 26.27 (6.39) 27.1 (4.7) 0.620 d

Years of education 12.63 (2.18) 15.00 [11.00–18.00] b 0.080 e

Treatment characteristics
Age at diagnosis a 7.37 (5.55) N/A -



Cancers 2024, 16, 1208 6 of 19

Table 1. Cont.

ALL Survivors (n = 35) Controls (n = 21) p

DFCI protocol, n (%)
87-01 5 (14.3) N/A -
91-01 11 (31.4) N/A -
95-01 13 (37.1) N/A -
00-01 3 (8.6) N/A -
05-01 3 (8.6) N/A -

Cranial radiation therapy, n (%)
Yes * 27 (71.1) N/A -
No 8 (22.9) N/A -

Chemotherapy cumulative doses
IT methotrexate (MTX) (mg/m2) 134.35 (54.42) a N/A -

IT cytarabine (mg/m2) 513.11 (197.65) a N/A -
IT hydrocortisone (mg/m2) 22.39 [8.20–268.67] b N/A -

IV methotrexate (MTX) (mg/m2) 6042.06 [1777.47–12,750.46] b N/A -
Effective corticosteroids dose (g/m2) 12,399.69 (5079.56) a N/A

a Mean (Standard deviation); b Median [Range]; c Fisher’s Exact Test; d Independent samples t-test;
e Mann–Whitney U; DFCI: Dana Farber Cancer Institute; * Median [range], 18 Gy [12–18 Gy]; IV: intravenous;
IT: intrathecal; N/A: Not applicable.

Table 2. Neuropsychological measures.

ALLs
(n = 35)

Controls
(n = 21) p FDR

adj.-p Effect Size r

WAIS-IV scales
FSIQ 94.14 (14.35) a 104.9 (13.7) a 0.008 c 0.022 0.35
GAI 99.66 (11.81) a 108.5 (13.5) a 0.013 c 0.024 0.33
VCI 98.23 (11.64) a 111 (83–123) b 0.008 d 0.022 0.35
PRI 101.20 (14.57) a 107.2 (13.8) a 0.132 c 0.182 0.20

WMI 94.40 (13.54) a 94 (76–137) b 0.623 d 0.623 0.07
PSI 90.42 (20.63) a 104.4 (12.7) a 0.003 c 0.022 0.39

DIVERGT scales
Executive Functioning Index 8.70 (2.50) a 10.10 (1.50) a 0.012 c 0.024 0.33

Digit span 7.00 [3.00–14.00]
b 8.86 (2.39) a 0.465 d 0.512 0.10

Verbal fluency condition 1 7.91 (3.02) a 8.86 (2.74) a 0.248 c 0.303 0.16

Trail making test condition 4 10.00 [1.00–15.00]
b

11.00 [8.00–14.00]
b 0.016 d 0.022 0.31

Grooved pegboard dominant hand 8.74 (3.36) a 11.24 (2.59) a 0.005 c 0.022 0.37
a Mean (Standard deviation); b Median [Range]; c Independent samples t-test; d Mann–Whitney U. Values in bold
where p ≤ 0.05 (Two-tailed).

Table 3 presents the correlation analyses between the cumulative doses of chemother-
apy agents received during treatments and the neuropsychological outcomes in adulthood.
At first sight, IT-MTX stands out through the substantial correlations observed between its
cumulative dose and several indices of cognitive performance (i.e., FSIQ, GAI, PRI, WMI,
EF index), suggesting a higher dose of IT-MTX is associated with poorer general intellectual
abilities, working memory and executive functioning. Nonetheless, the FDR correction led
to the loss of statistical significance for the associations with the WMI and EF index. Addi-
tionally, we found moderate to strong negative correlations between the total IT-cytarabine
dose and FSIQ, GAI, and PRI. After considering the multiplicity correction, these results
still demonstrated statistical significance. In contrast to the other IT agents, no significant
correlations were observed between IT-hydrocortisone dosage and neuropsychological
outcomes. Additionally, no evidence of associations was observed between the intravenous
MTX dose or the effective corticosteroids dose and the neuropsychological measures.

Table 3. Pearson’s r for correlations conducted between cumulative doses of chemotherapy agents
and neuropsychological indices.

FSIQ GAI VCI PRI WMI PSI EF Index

IT-MTX dose
−0.391 *
p = 0.010

padj = 0.033

−0.387 *
p = 0.011

padj = 0.027

−0.104
p = 0.276

padj = 0.380

−0.501 **
p = 0.001

padj = 0.005

−0.295 *
p = 0.043

padj = 0.215

−0.250
p = 0.080

padj = 0.183

−0.305 *
p = 0.037

padj = 0.125
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Table 3. Cont.

FSIQ GAI VCI PRI WMI PSI EF Index

IT-cytarabine dose
−0.375 *
p = 0.013

padj = 0.033

−0.397 **
p = 0.009

padj = 0.027

−0.131
p = 0.226

padj = 0.380

−0.486 **
p = 0.002

padj = 0.005

−0.221
p = 0.101

padj = 0.253

−0.276
p = 0.060

padj = 0.183

−0.282
p = 0.050

padj = 0.125

IT-hydrocortisone
dose

0.130
p = 0.479

padj = 0.479

−0.150
p = 0.476

padj = 0.476

−0.121
p = 0.311

padj = 0.380

−0.183
p = 0.226

padj = 0.377

−0.159
p = 0.258

padj = 0.323

0.134
p = 0.304

padj = 0.317

0.850
p = 0.365

padj = 0.426

IV-MTX dose
0.091

p = 0.302
padj = 0.378

0.027
p = 0.440

padj = 0.476

0.054
p = 0.380

padj = 0.380

−0.037
p = 0.417

padj = 0.417

0.153
p = 0.189

padj = 0.315

0.086
p = 0.317

padj = 0.317

0.033
p = 0.426

padj = 0.426

Effective
corticosteroids dose

−0.156
p = 0.186

padj = 0.310

−0.132
p = 0.225

padj = 0.375

−0.153
p = 0.189

padj = 0.380

−0.066
p = 0.353

padj = 0.417

−0.025
p = 0.444

padj = 0.444

−0.219
p = 0.110

padj = 0.183

−0.169
p = 0.166

padj = 0.277

IT: intrathecal; IV: intravenous; padj: FDR adjusted p-values. * Correlation is significant at the 0.05 level (One-tailed).
** Correlation is significant at the 0.01 level (One-tailed). Note: p-values adjusted for FDR separately for each
dependent variable (neuropsychological indices).

Brain volume outcomes are provided in Table S1 (Supplementary Materials). ALL
survivors evidenced a 6.7% smaller WM volume (t(54) = −1.87, p = 0.034, FDR adj.-p = 0.057,
r = 0.25) as well as a 5.3% smaller intracranial volume (t(54) = −1.81, p = 0.038, FDR
adj.-p = 0.057, r = 0.24) than controls. Intracranial volume is known as a proxy of the
maximal brain volume attained following development. Therefore, comparisons were
also made for WM volume fraction, which is the ratio between cerebral WM volume and
intracranial volume. WM volume fraction was 1.4% smaller in ALL survivors compared to
controls (t(54) = −0.78, p = 0.219, FDR adj.-p = 0.219, r = 0.11). Thereby, the WM volume
difference was not statistically significant after adjusting for intracranial volume. Otherwise,
the intracranial volume was not associated with age at the MRI time-point in ALL survivors
and controls combined, and neither was the WM volume. In an interesting way, there
was a trend between younger age at diagnosis and smaller intracranial volume (r = 0.266,
p = 0.061).

Table S2 (Supplementary Materials) presents the magnetization transfer imaging out-
comes. ALL survivors tend to exhibit lower MTR means compared to controls. The group
differences (ALL survivors < controls) reached the threshold of statistical significance in the
whole brain (t(54) = −1.74, p = 0.044, FDR adj.-p = 0.097, r = 0.23), the right hemisphere
(t(54) = −1.74, p = 0.044, FDR adj.-p = 0.097, r = 0.23), and the left hemisphere (t(54) = −1.67,
p = 0.050, FDR adj.-p = 0.097, r = 0.22), yet the multiplicity correction rendered the findings
statistically inconclusive. In addition, interestingly, differences in MTR means (ALL survivors
< controls) were on the borderline of statistical significance for two sections of the CC, the cen-
tral section (U = 272, z = −1.62, p = 0.054, FDR adj.-p = 0.097, r = −0.22) and the mid-posterior
section (t(54) = −1.67, p = 0.051, FDR adj.-p = 0.097, r = 0.22). The central and mid-posterior
sections of the CC cover the body, the isthmus, and the anterior splenium, carrying fibers
connecting the motor and premotor cortex, sensory cortex, association cortex, and visual
areas [45,46]. These interhemispheric connections support motor planning, initiation and
coordination, multimodal sensory processing, visual integration, and higher-order cognitive
functions such as memory, language, and problem-solving [47–51]. Microstructural damage
in these regions of the CC could possibly contribute to the cognitive weaknesses observed
in ALL survivors, especially visuomotor coordination and processing speed. Nevertheless,
our study did not yield a statistically significant difference in callosal regions’ mean MTR,
potentially attributable to limited statistical power.

Regarding the female sex risk factor, separate two-way ANOVAs were conducted
to test for sex-group interactions, with neuropsychological and neuroimaging outcomes
as dependent variables. No sex-group interaction was found to be significant. No main
effect of sex was found on the neuropsychological outcomes. However, we observed
a main effect of sex (females < males) on the WM volume (uncorrected for intracra-
nial volume) (F = 21.23, η2

partial = 0.290, p < 0.001, FDR adj.-p = 0.001), the intracranial
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volume (F = 20.51, η2
partial = 0.283, p < 0.001, FDR adj.-p = 0.001), and the CC mean MTR

(F = 8.23, η2
partial = 0.136, p = 0.006, FDR adj.-p = 0.018). Otherwise, no main effect of sex

was found on the whole brain mean MTR (p = 0.290, FDR adj.-p = 0.290) nor on the WM
volume fraction (p = 0.075, FDR adj.-p = 0.092). Indeed, men generally have larger head
sizes and tend to exhibit larger brain volume in comparison to women [52–54]. Thus, sex
differences in WM volume tend to disappear when considering intracranial volume. Fur-
ther, an effect of sex on the MTR of the corpus callosum has been reported in normal adults;
however, the literature remains inconsistent, with some studies suggesting that males
exhibit higher callosal MTR values than females. For example, Björnholm and colleagues
(2017) [55] found sex-related differences in all sections of the CC among 433 all-comer
adults (mean age = 26.50, SD = 0.51). However, other studies have found none [56,57].

Correlation analyses between neuroimaging outcomes and neuropsychological mea-
sures are presented in Table S3 (Supplementary Materials). Without adjustment for in-
tracranial volume, the MW volume was correlated to FSIQ (r = 0.227, p = 0.046, FDR
adj.-p = 0.108), GAI (r = 0.368, p = 0.003, FDR adj.-p = 0.009), VCI (r = 0.355, p = 0.004, FDR
adj.-p = 0.012), and PRI (r = 0.246, p = 0.034, FDR adj.-p = 0.075). After the FDR correction
for multiple comparisons, only the associations with GAI and VCI remained significant.
The WM volume fraction was correlated to GAI (r = 239, p = 0.038, FDR adj.-p = 0.038)
and VCI (r = 0.232, p = 0.043, FDR adj.-p = 0.043), and the findings were unaffected by the
FDR correction.

Moreover, the whole brain mean MTR was associated with GAI (r = 0.227, p = 0.046, FDR
adj.-p = 0.067) and VCI (r = 0.239, p = 0.038, FDR adj.-p = 0.057). The right hemisphere MTR mean
was associated to FSIQ (r = 0.234, p = 0.041, FDR adj.-p = 0.115), GAI (r = 0.241, p = 0.037, FDR
adj.-p = 0.067), VCI (r = 0.240, p = 0.037, FDR adj.-p = 0.057), and PSI (r = 0.260, p = 0.029, FDR
adj.-p = 0.125). The left hemisphere MTR mean was associated with VCI (r = 0.228, p = 0.046,
FDR adj.-p = 0.059). The mean MTR in the CC was correlated with GAI (r = 0.259, p = 0.027, FDR
adj.-p = 0.067) and VCI (r = 0.271, p = 0.022, FDR adj.-p = 0.057). Several statistically significant
correlations were also found for different callosal sections. The mean MTR in the anterior section
correlated with GAI (r = 0.228, p = 0.045, FDR adj.-p = 0.451). The mean MTR in the mid-anterior
section correlated with FSIQ (r = 0.244, p = 0.035, FDR adj.-p = 0.115), GAI (r = 0.282, p = 0.018,
FDR adj.-p = 0.067), VCI (r = 0.243, p = 0.035, FDR adj.-p = 0.057), and PRI (r = 0.249, p = 0.032,
FDR adj.-p = 0.239). The mean MTR in the mid-posterior section correlated with FSIQ (r = 0.232,
p = 0.043, FDR adj.-p = 0.115), GAI (r = 0.238, p = 0.039, FDR adj.-p = 0.067) and VCI (r = 0.278,
p = 0.019, FDR adj.-p = 0.057). The mean MTR in the posterior section correlated with
VCI (r = 0.258, p = 0.027, FDR adj.-p = 0.057). On the other hand, all these associations with MTR
means were no longer significant after the multiplicity correction.

Correlation analyses between neuroimaging outcomes and chemotherapy agents’
cumulative doses are presented in Table 4. No association between WM volume and
cumulative doses was found. The effective corticosteroid cumulative dose was associated
with smaller intracranial volume in survivors (r = −0.298, p = 0.041, FDR adj.-p = 0.068), yet
the multiplicity correction rendered those findings statistically inconclusive. No associa-
tion was found between intravenously administered MTX dosage and the neuroimaging
outcomes, suggesting less neurotoxicity from intravenous administration compared to IT
administration. In agreement with the above, cumulative doses of intrathecally adminis-
tered chemotherapy, including MTX, demonstrated substantial negative correlations with
the MTR means. Higher IT-MTX dose was associated with a smaller mean MTR in the
whole brain (r = −0.403, p = 0.008, FDR adj.-p = 0.015), the right hemisphere (r = −0.434,
p = 0.005, FDR adj.-p = 0.013), the left hemisphere (r = −0.347, p = 0.021, FDR adj.-p = 0.035),
the whole CC (r = −0.283, p = 0.050, FDR adj.-p = 0.083), and its anterior section (r = −0.351,
p = 0.019, FDR adj.-p = 0.048). The correlations between IT-MTX dosages and MTR means
maintained their statistical significance after the FDR correction except for the whole CC.
Similar results have been found for IT-cytarabine. The IT-cytarabine cumulative dose was
negatively correlated with the mean MTR in the whole brain (r = −0.405, p = 0.008, FDR
adj.-p = 0.015), the right hemisphere (r = −0.437, p = 0.004, FDR adj.-p = 0.013), the left
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hemisphere (r = −0.349, p = 0.020, FDR adj.-p = 0.035), the whole CC (r = −0.284, p = 0.049,
FDR adj.-p = 0.083), and its anterior section (r = −0.359, p = 0.017, FDR adj.-p = 0.048). These
associations survived correction for multiple comparisons except for the whole CC. As IT-
MTX and IT-cytarabine dosages were strongly related to each other in our sample (r = 0.954,
p < 001), it is unclear whether neurotoxic effects arise more from one IT agent or the other
or from both. The literature extensively documents MTX’s long-term neurotoxicity, ranking
it among the most neurotoxic chemotherapy agents, while recent findings raise concerns
about a potentially harmful interaction between IT-MTX and IT-cytarabine [58–62]. Fur-
thermore, the IT-hydrocortisone cumulative dose was negatively correlated with the mean
MTR in the whole brain (r = −0.533, p = 0.009, FDR adj.-p = 0.015), the right hemisphere
(r = −0.532, p = 0.009, FDR adj.-p = 0.015), the left hemisphere (r = −0.512, p = 0.013, FDR
adj.-p = 0.035), the whole CC (r = −0.398, p = 0.046, FDR adj.-p = 0.083), and its anterior
section (r = −0.405, p = 0.043, FDR adj.-p = 0.072), mid-anterior section (r = −0.465, p = 0.022,
FDR adj.-p = 0.110), and mid-posterior section (r = −0.393, p = 0.048, FDR adj.-p = 0.240).
After FDR correction, the dosage associations with the mean MTR in the whole brain, the
right hemisphere, and the left hemisphere maintained their statistical significance. Note
that the IT-hydrocortisone dosages were not correlated with the IT-MTX (p = 0.286) and
IT-cytarabine dosages (p = 0.320). Figure 1 displays the scatter diagrams of the relationship
between IT agents’ dosage and the MTR mean in the whole brain.

Table 4. Pearson’s r for directional correlations conducted between neuroimaging outcomes and
cumulative doses of chemotherapy agents.

Effective
Corticosteroids IV MTX IT MTX IT Cytarabine IT Hydrocortisone

MTR means

Whole brain
0.090

p = 0.303
padj = 0.379

0.020
p = 0.445

padj = 0.445

−0.403 **
p = 0.008

padj = 0.015

−0.405 **
p = 0.008

padj = 0.015

−0.533 **
p = 0.009

padj = 0.015

Right hemisphere
0.079

p = 0.326
padj = 0.408

−0.034
p = 0.422

padj = 0.422

−0.434 **
p = 0.005

padj = 0.013

−0.437 **
p = 0.004

padj = 0.013

−0.532 **
p = 0.009

padj = 0.015

Left hemisphere
0.097

p = 0.290
padj = 0.301

0.091
p = 0.301

padj = 0.301

−0.347 *
p = 0.021

padj = 0.035

−0.349 *
p = 0.020

padj = 0.035

−0.512 *
p = 0.013

padj = 0.035

Corpus callosum (CC)
0.009

p = 0.480
padj = 0.480

0.111
p = 0.263

padj = 0.329

−0.283 *
p = 0.050

padj = 0.083

−0.284 *
p = 0.049

padj = 0.083

−0.398 *
p = 0.046

padj = 0.083

Anterior CC
−0.045

p = 0.399
padj = 0.399

0.059
p = 0.369

padj = 0.399

−0.351 *
p = 0.019

padj = 0.048

−0.359 *
p = 0.017

padj = 0.048

−0.405 *
p = 0.043

padj = 0.072

Mid-anterior CC
0.084

p = 0.316
padj = 0.395

−0.011
p = 0.476

padj = 0.476

−0.241
p = 0.081

padj = 0.135

−0.241
p = 0.081

padj = 0.135

−0.465 *
p = 0.022

padj = 0.110

Central CC
0.052

p = 0.384
padj = 0.499

0.256
p = 0.069

padj = 0.345

−0.019
p = 0.457

padj = 0.499

0.000
p = 0.499

padj = 0.499

−0.104
p = 0.336

padj = 0.499

Mid-posterior CC
−0.021

p = 0.453
padj = 0.453

0.196
p = 0.130

padj = 0.248

−0.148
p = 0.198

padj = 0.248

−0.148
p = 0.198

padj = 0.248

−0.393 *
p = 0.048

padj = 0.240

Posterior CC
0.070

p = 0.345
padj = 0.411

0.039
p = 0.411

padj = 0.411

−0.260
p = 0.066

padj = 0.123

−0.250
p = 0.074

padj = 0.123

−0.365
p = 0.062

padj = 0.123
Volumes

White matter (WM)
−0.178

p = 0.153
padj = 0.255

0.381
p = 0.012

padj = 0.060

−0.097
p = 0.290

padj = 0.290

−0.103
p = 0.278

padj = 0.290

0.227
p = 0.125

padj = 0.255
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Table 4. Cont.

Effective
Corticosteroids IV MTX IT MTX IT Cytarabine IT Hydrocortisone

Intracranial volume
−0.298 *
p = 0.041

padj = 0.068

0.358
p = 0.017

padj = 0.068

−0.135
p = 0.219

padj = 0.219

−0.142
p = 0.208

padj = 0.219

0.413
p = 0.039

padj = 0.068

WM volume fraction
0.169

p = 0.166
padj = 0.345

0.157
p = 0.184

padj = 0.345

0.014
p = 0.469

padj = 0.495

−0.002
p = 0.495

padj = 0.495

−0.199
p = 0.207

padj = 0.345

CC: corpus callosum; WM: white matter; IV: intravenous; IT: intrathecal. * Correlation is significant at the 0.05 level
(One-tailed). ** Correlation is significant at the 0.01 level (One-tailed). Note: p-values adjusted for FDR separately
for each dependent variable (volumes and MTR means). padj: FDR adjusted p-values.
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Figure 1. Effect of cumulative dosage of intrathecal chemotherapy agents on the whole brain mean
MTR: linear regression analysis.

Based on the previous results, each of the IT agents (i.e., IT-MTX, IT-cytarabine,
IT-hydrocortisone) was included as an independent variable separately in the multiple
regression models with the mean MTR in the whole brain, and the mean MTR in the
CC as the dependent variables (six regression models). In the first step of the regression
models, current age (continuous variable), age at diagnosis (continuous variable), sex
(binary variable), and adjunctive CRT (binary variable) were introduced using an enter
method. In the second step, the cumulative dose of the chemotherapeutic agent (i.e., IT-
MTX, IT-cytarabine, IT-hydrocortisone) was introduced. In the models including IT-MTX
as a predictor, in the context of a sensitivity analysis, the cumulative leucovorin dose
was introduced in the next step because of its potential neuroprotective effect suggested
by previous studies [13,60]. The purpose of this sensitivity analysis was to determine
whether significant associations would be affected by the inclusion of the leucovorin dose
as an additional factor. In the last step of all models, interactions between the dose of
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chemotherapy agents and sex, as well as the age at diagnosis, were explored by adding
interaction terms. The sex variable was coded with a value of 1 for female sex and 0 for
male sex. The radiotherapy variable was coded with a value of 1 for treatment including
CRT and 0 for chemotherapy-only treatment. All continuous predictors included in the
regression models were centered around their mean, resulting in a transformation that set
their means to 0. Interaction terms were calculated from the mean-centered predictors.
Thus, beta coefficients should be interpreted as the average change in the outcome variable
for a one-unit change in the predictor from its mean value. Standardized beta coefficients
indicate the change in the outcome variable associated with a one-standard-deviation
change in the predictor, allowing for comparisons of the relative importance or strength of
the predictors in influencing the outcome variable.

The regression models and associated statistics are presented in Table 5 and Tables S4–S8.
In the first step of the models, controlling for current age, the combination of the risk factors
(i.e., age at diagnosis, sex, and CRT) explained, in a non-significant way, 18% of the variance
of the mean MTR in the whole brain (F4,30 = 1.623, p = 0.194), and in a significant way, 29%
of the variance of the mean MTR in the CC (F4,30 = 2.987, p = 0.035). No covariates were
significant in the models predicting the mean MTR in the whole brain. Sex was found to be
a significant covariate of the mean MTR in the CC (B = −0.009, β = −0.366, p = 0.039), with
female sex associated with a reduced callosal mean MTR. In the following step, separately,
the cumulative dose of IT-MTX, IT-cytarabine, and IT-hydrocortisone, respectively, added
a significant contribution of 16% (∆F1,29 = 7.244, p = 0.012, β = −0.704), 15% (∆F1,29 = 6.353,
p = 0.017, β = −0.582), and 14% (∆F1,29 = 5.917, p = 0.021, β = −0.696) to the prediction
of the mean MTR in the whole brain, and 11% (∆F1,29 = 5.228, p = 0.030, β = −0.574), 10%
(∆F1,29 = 4.536, p = 0.042, β = −0.471), and 11% (∆F1,29 = 5.016, p = 0.033, β = −0.606) for the
mean MTR in the CC. The inclusion of leucovorin did not impact the association between
IT-MTX dose and the mean MTR in the whole brain or the CC. No dose interactions were
found with sex or age at diagnosis.

Table 5. The relationship between age at diagnosis, sex, CRT, IT-MTX cumulative dose, and whole
brain mean MTR.

B β R R2 ∆R2 F ∆F t

Step 1 0.422 0.178 0.178 1.623
(p = 0.194) 1.623 (p = 0.194)

Current age 0.000 −0.187 −0.806
(p = 0.427)

Age at diagnosis 0.001 0.329 1.561 (p = 0.129)
Sex −0.003 −0.129 −0.710

(p = 0.483)
Cranial radiotherapy 0.008 0.281 1.634 (p = 0.113)

Step 2 0.585 0.342 0.164 3.018
(p = 0.026) 7.244 (p = 0.012)

Current age −0.001 −0.316 −1.463 (p = 0.154)
Age at diagnosis 0.000 −0.136 −0.526 (p = 0.603)

Sex −0.005 −0.200 −1.192 (p = 0.243)
Cranial radiotherapy 0.007 0.253 1.619 (p = 0.116)

IT-MTX dose 0.000 −0.704 −2.692 (p = 0.012)
Step 3 0.585 0.342 0.000 2.428 (p =

0.051) 0.001 (p = 0.974)

Current age −0.001 −0.316 −1.435
(p = 0.162)

Age at diagnosis 0.000 −0.135 −0.508 (p = 0.615)
Sex −0.005 −0.202 −1.094 (p = 0.283)

Cranial radiotherapy 0.007 0.254 1.584 (p = 0.124)
IT-MTX dose 0.000 −0.702 −2.586 (p = 0.015)

Leucovorin dose 0.000 −0.006 −0.033 (p = 0.974)
Step 4 0.585 0.343 0.000 1.694

(p = 0.147) 0.008 (p = 0.992)
Current age −0.001 −0.306 −1.103 (p = 0.280)

Age at diagnosis 0.000 −0.111 −0.295 (p = 0.770)
Sex −0.005 −0.203 −1.059 (p = 0.299)

Cranial radiotherapy 0.007 0.261 1.337 (p = 0.193)
IT-MTX dose 0.000 −0.692 −2.001 (p = 0.056)

Leucovorin dose 0.000 −0.010 −0.051 (p = 0.959)
IT-MTX dose × sex 0.000 0.011 0.041 (p = 0.968)

IT-MTX dose × age at diagnosis 0.000 0.026 0.101 (p = 0.921)

B: beta; β: standardized beta; ∆: variation.
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4. Discussion

Over the past decades, advancements in therapeutic strategies have increased the survival
rate of pediatric patients with ALL [63]. Despite these improvements, careful monitoring of
neurocognitive development is crucial for survivors treated with MTX, as the drug poses
a risk of both acute and chronic neurotoxicity [64]. The literature also provides insights
into the neurotoxicity associated with cytarabine [65–68] and hydrocortisone [69,70] in the
context of triple IT therapy, as well as other corticosteroids (dexamethasone, prednisolone,
and prednisone) [71–73], which can penetrate the blood–brain barrier and access the central
nervous system.

This study explored WM integrity in relation to neurotoxicity risk factors among adult
survivors of pediatric ALL. The findings further solidify the established link between WM
microstructural changes and IT-MTX exposure while also shedding light on the dose effects
of other IT agents, cytarabine and hydrocortisone [59,74]. This study provides further
evidence for the idea, which is well-supported in the existing literature that the extent of
WM microstructural changes is contingent upon the level of exposure to intrathecal MTX.
Additionally, this study highlights the dose effects of the other IT agents, cytarabine and
hydrocortisone. The cumulative dose of the different intrathecal chemotherapy agents is a
factor that aggravates the adverse consequences on the cognitive and cerebral development
of children treated for ALL. Moreover, it provides compelling evidence that the mean MTR
is a valuable biomarker of long-term neurotoxicity among ALL survivors.

To summarize the key findings of our study, we identified fairly strong negative
associations between MTR and dosages of IT agents among long-term survivors of ALL.
These findings suggest that MTR could serve as a sensitive indicator of WM microstructural
alterations in this population. Furthermore, lower MTR in the whole brain and CC, along
with reduced WM volume fraction, were associated with lower GAI, reflecting weaker
reasoning abilities. Regression analysis, controlling for relevant factors such as current
age, sex, age at diagnosis, and adjunctive cranial radiation therapy (CRT), confirmed the
relationship between IT dosages and MTR in both the whole brain and CC. These results
highlight the crucial role of MTR as a potential biomarker linking survivors’ cognitive
complaints with treatment-induced neurotoxicity.

MTR reflects WM tissue composition, especially myelin content, and is sensitive
to microstructural changes in myelin. Since in vitro studies, animal models, and post-
mortem investigations collectively suggest that chemotherapy-induced neurotoxicity leads
to demyelination [75], a decrease in MTR could be indicative of reduced myelination.
While MTR can be influenced by various factors, including myelin integrity and axonal
density, it is less sensitive to the spatial organization of WM tracts compared to Fractional
Anisotropy (FA) [76]. FA is a more specific measure of the directionality and coherence of
water diffusion along WM tracts, which reflects the spatial organization and alignment of
WM fibers [77]. FA has been extensively investigated in ALL survivors, revealing decreased
FA values in various regions, including the frontal lobe, the frontostriatal tracts, and the
CC [24,78]. In contrast, very few studies have investigated MTR to detect WM alterations
in ALL survivors. Yamamoto and coworkers (2006) [79] observed a decline in peak values
within MTR histograms after MTX administration. On the other hand, a more recent study
comparing magnetization transfer measures between ALL survivors and healthy controls
ended with inconclusive results [15]. To the best of our knowledge, our study is the first to
demonstrate the impact of cumulative doses of chemotherapy agents on MTR means.

In the ongoing quest for a neuroimaging measure sensitive to microstructural damage
associated with chemotherapy-induced neurotoxicity, MTR emerges as a promising lead.
We raise potential implications for both clinical practice and research. In clinical settings,
where treatment-induced neurotoxicity is typically identified through neurological symp-
toms like seizures, implementing regular follow-up neuroimaging assessments using MTR
could offer greatly improved monitoring of neurotoxicity. This heightened surveillance may
facilitate earlier detection and enable treatment adjustments to be tailored more precisely
according to the child’s individual response. In future research endeavors, the integration
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of MTR in imaging methodology could prove advantageous for exploring the cerebral
and cognitive consequences of oncological treatments. Moreover, validation studies will
provide valuable insights into the potential clinical implications of our findings and guide
the development of more targeted interventions to mitigate neurotoxicity in cancer patients
undergoing chemotherapy. The utilization of MTR may represent a compelling avenue
for targeting the optimal dosages, aiming to achieve maximum efficacy while minimizing
neurotoxicity and its ensuing consequences on the quality of life of cancer survivors.

Turning to another noteworthy observation, the difference in WM volume between
ALL survivors and healthy controls did not remain after controlling for intracranial volume.
We have not been able to demonstrate a volume loss specific to WM among ALL survivors
in this way. As in some previous studies [9,80,81], a group difference was detected in
intracranial volume, with survivors exhibiting a smaller intracranial volume compared
to the control group. As the intracranial volume is an index of the global brain volume
attained following development, it seems possible that the reduction in intracranial volume
somehow reflects the disruption of normal brain development processes in the context
of childhood ALL. While a relative loss of WM volume could not be demonstrated, we
identified a significant decrease in the mean MTR throughout the whole brain among
survivors compared to the control group and observed a trend in central-to-mid-posterior
CC sections.

Our control group was matched for the level of education attained, the age at the
time of the study, and sex. A common bias in studies of the neurocognitive status of ALL
survivors is the control group, which tends to have an average IQ higher than the mean
IQ of the normative population (100) [82]. Our recruitment efforts have allowed us to
form a control group that has an average IQ of 104.9, which does not differ significantly
from the normative population mean of 100 (t(20) = 1.622, p = 0.121). This achievement
has contributed to our confidence in presenting the imaging results, as our groups show
a considerable level of comparability. With the foregoing in mind, we have observed
certain cognitive weaknesses in the group of ALL survivors, highlighting specific cognitive
impairments associated with ALL treatments.

Our findings did not provide clear supporting evidence of sex having an impact
on the degree of neurocognitive impairment in this cohort of survivors. A trend was
observed toward lower MTR means in women compared to men, and a significant main
effect of sex was found on the mean MTR of the CC. It is plausible that a reduction in
MTR impacts women to a greater extent, given their lower MTR values compared to
men. However, the present study did not investigate this hypothesis. Yet, evidence
suggests that female sex carries an increased risk of neurocognitive impairment after ALL
treatment. Multiple studies have identified sex-related differences in cognitive outcomes,
revealing that female survivors tend to exhibit poorer cognitive functioning compared to
their male counterparts [12,83–85]. Congruently, studies indicate a heightened susceptibility
to structural and microstructural brain alterations in female survivors [4,73,78,86]. Girls
have been shown to exhibit a smaller increase in WM during childhood compared to
boys [87]. It is proposed that the variation in WM growth, along with hormonal differences,
may render girls more susceptible to the neurotoxic effects of chemotherapy [88].

MTX is widely considered the primary culprit, although other agents may also con-
tribute to neurotoxicity [89]. MTX-induced neurotoxicity arises from disruptions in folate
physiology and homeostasis, which are vital for neuronal and central nervous system cell
function, as they play critical roles in DNA and RNA synthesis, DNA methylation, and
maintenance of myelin [60]. More broadly, several mechanisms have been proposed to
explain the long-term neurocognitive damages resulting from ALL treatments based on
high doses of chemotherapy. There is chemotherapy-induced suppression of cell prolifer-
ation, neuroinflammation, the loss of phospholipids affecting white matter architecture,
and the disturbance of the developing neural networks in the immature brain [4,90]. In
addition, other mechanisms that may have an additive indirect effect on the neurocognitive
status of ALL survivors have been raised in the literature. For instance, ALL survivors are



Cancers 2024, 16, 1208 14 of 19

at increased risk for chronic cardiopulmonary conditions, which can impact cerebrovas-
cular health by altering cerebral perfusion and blood oxygenation [91,92]. We are also
listing metabolic and endocrine complications such as adrenal insufficiency (compromised
hypothalamic–pituitary–adrenal function), hypogonadism, hypothyroidism, and growth
hormone deficiency [91,93,94]. Systemic inflammation and oxidative stress are additionally
highlighted [86,95–98]. In future studies exploring the long-term effects of chemotherapy
agents on brain integrity and cognition, incorporating metabolic, oxidative, and inflamma-
tory factors would be of great interest.

Limitations should be considered in the interpretation of these results. Our study had
a relatively small sample size, which could have led to the analyses being underpowered.
Replicating these findings with a larger cohort of survivors will be informative. Twenty-
seven survivors out of the 35 included in this study received CRT. Of these, all received
18 Gy except one, which received 12 Gy. There is evidence to suggest that treatments
combining chemotherapy and CRT are associated with greater brain volume loss and
WM damage compared to chemotherapy-only treatments [99–101]. CRT is also known
to increase the permeability of the blood–brain barrier, which could allow neurotoxic
chemotherapy to penetrate the brain more effectively [102]. The combination of CRT
and chemotherapy may be associated with greater neurotoxicity [64]. Therefore, the
generalizability of the results to survivors treated only with chemotherapy is limited.

Limitations notwithstanding, our study provides sufficient indications that the MTR
can capture the neurotoxic signature of intrathecal treatments almost two decades after
pediatric ALL. Our results reveal a decrease in MTR in the whole brain WM and the CC
in the adult brain as a function of the cumulative dose received of the IT agents, MTX,
cytarabine, and hydrocortisone, during treatments.

5. Conclusions

In conclusion, this study elucidates the complex interplay between therapeutic interventions
and long-term neurocognitive outcomes in survivors of pediatric acute lymphoblastic leukemia
(ALL). Despite improved survival rates, ALL survivors are susceptible to neurotoxicity, particularly
associated with methotrexate (MTX), cytarabine, and hydrocortisone treatments. The study
underscores the significance of Magnetization Transfer Ratio (MTR) as a biomarker for assessing
white matter integrity and cognitive impairments in ALL survivors. Notably, lower MTR levels
were correlated with cumulative doses of intrathecal chemotherapy agents, highlighting the
importance of personalized treatment approaches. While limitations exist, including sample size
and the impact of cranial radiotherapy, these findings emphasize the need for continued research
into mitigating neurotoxicity in ALL survivors and optimizing long-term outcomes. Integrating
metabolic, oxidative, and inflammatory factors in future studies could provide further insights
into the multifaceted nature of neurocognitive sequelae in this population.
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