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ABSTRACT In the field of electrical machines maintenance, accurate and timely diagnosis plays a crucial
role in ensuring reliability and efficiency. Variational autoencoder (VAE) techniques have emerged as a
promising tool for fault classification due to their robustness in handling complex data. However, the inherent
nondeterministic aspect of the VAE creates a significant challenge as it leads to varying cluster locations for
identical health states across different machines. This variability complicates the creation of a standardized
applicable diagnostic tool and challenges for the implementation of effective real-time health monitoring and
prognostics. Addressing this issue, a novel approach is proposed wherein a desirability function-based term
is integrated into the cost function of the VAE. The enhancement achieved by this approach arises from the
standardization of classification, guaranteeing that analogous faults are assigned to identical geolocations
within a 2-D user-friendly space. This method’s efficacy is validated through two separate case studies: one
analyzing vibration data from two diverse designs of large existing hydrogenerators, and the other utilizing
vibration data sourced from an open-access dataset focused on bearing fault. The findings of both studies
show that the model can cluster 97% of similar faults into preset zones, compared with 40% when the
desirability term is excluded.

INDEX TERMS Desirability function, diagnosis, fault detection, large hydrogenerators, variational autoen-
coder (VAE), vibration.

I. INTRODUCTION
Electrical machines (EM), including induction machines
(IM), synchronous generators (SG), and salient pole syn-
chronous generators (SPSG), represent intricate systems that
involve multiple physical phenomena. It is essential to imple-
ment early-stage fault detection and diagnosis techniques to
maintain a stable and dependable energy supply while mini-
mizing economic losses. Different types of faults can manifest
in EM, notably affecting the rotor and stator windings, bear-
ings, or the stator core [1]. Electrical faults encompass rotor
interturn short circuit (RITSC), for example, while mechani-
cal issues include eccentricities (static, dynamic, or hybrid),

bearing faults (inner race fault, outer race fault, etc.), and
broken damper bar (BDB). These degradation phenomena,
whether occurring individually or in combination, have been
examined in prior studies, such as in [2] and [3]. In recent
years, various physical entities, such as the air gap flux [4],
line current [5], torque [6], vibration [7], acoustics [8], stray
flux [9], and more, have found applications in fault diagno-
sis. This trend has been notably highlighted in [1] and [10],
especially with the advent of artificial intelligence (AI) and
deep learning (DL) techniques that are summarized in [11]
and [12]. Through the integration of AI with these physical
entities, the approach leverages AI-based methods to achieve
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more precise and dependable fault diagnosis, with the added
advantage of adaptability to new data.

The existing literature underscores the significance of vi-
bration signals for fault diagnosis, primarily due to their
noninvasive nature [2], [3]. These signals have been employed
for detecting RITSC in small SPSG. This has been achieved
through a combination of experimental measurements and
numerical modeling, as demonstrated in studies such as [13]
and [14]. In addition, vibration signals have proven effective
in identifying eccentricities as in [15].

Recent research in the domain of large hydrogenerator
diagnosis has centered on the utilization of DL techniques,
specifically neural networks (NN), with a particular empha-
sis on the variational autoencoder (VAE), a derivative of the
conventional autoencoder (AE) introduced by Kingma [16].
The power of VAE to classify partial discharge sources and
patterns in large hydrogenerators has been proved in [17]
and [18]. Moreover, the VAE has demonstrated its ability to
detect faults at an earlier stage in comparison with statistical
monitoring techniques, particularly in the context of vibration
analysis, as highlighted in [19]. In [20], a novel approach was
adopted, combining VAE with sparse dictionary learning, to
achieve early anomaly detection based on the reconstruction
error of a model trained on real vibratory signals from large
hydrogenerators. Furthermore, this VAE-based approach has
been applied to assess various levels of RITSC severity within
large hydrogenerators, providing a user-friendly 3-D visual-
ization, as described in [7]. In addition, this model has been
used for the detection of diverse rotor faults, each exhibiting
varying degrees of severity, within a user-friendly 2-D space,
as explained in [7]. Notably, a novel monitoring metric based
on the Euclidean distance within the latent space was intro-
duced, proving its effectiveness in detecting faults at earlier
stages compared with alternative methods based on the root
mean square (rms) of the signal and the mean squared error
(MSE) of the model. It is also worth mentioning that it has
also demonstrated its ability to discern faulty data in scenarios
involving gearboxes, cutting tool machines, and bearings, as
exemplified in [21], [22], [23] and [24], respectively.

The above references emphasize the importance of vibra-
tion signals in health monitoring and fault diagnosis. Despite
ongoing attempts, models developed, notably for hydrogener-
ators, can only be applied to one machine design at a time.
When these models are applied to diverse machine designs,
inconsistencies in the locations of identical fault clusters are
detected due to the nondeterministic aspect of the latent space.
This difficulty not only hinders the development of a universal
diagnostic tool, but also impedes the implementation of real-
time health monitoring and future prognosis. As a result, the
creation of a standardized and relevant model is necessary.

Therefore, the focus of this research is building upon the
findings presented in [7] so as to refine the current diagnostic
approach reliant on vibration data and the VAE model for fault
detection and health monitoring.

To address these issues, the key contribution of the study
is the integration of the desirability function into the model’s
cost function, as described in [25]. This function uses

desirability scores calculated from the polar coordinates of
all places in the obtained reduced space to identify similar
fault clusters across several machines in a predetermined area.
As a result, a consistent model adaptable to many machine
types is used, which improves faults’ detection accuracy and,
ultimately, overall system dependability and performance.

As a result, two case studies are considered to emphasize
the importance of incorporating this term.

1) In an initial case study, two large hydrogenerators at
Hydro-Quebec, referred to as Machines 1 and 2 with
varying capacities, are under analysis. The vibration
dataset used is a combination of real vibration data gath-
ered onsite and faulty ones generated by the numerical
model of the machine.

2) Another case study revolves about vibration data from
an open-access bearings dataset that contains healthy
and faulty signals generated though experimentation.

The rest of this article is organized as follows. The
methodology applied in this work is presented in Section II.
Section III details the two case studies analyzed mentioned
above. The results are explored and discussed in Section IV,
highlighting findings with and without the incorporation of
the desirability term for both scenarios. Finally, Section V
concludes this article with a summary and highlights the sig-
nificant contributions of this study.

II. METHODOLOGY
A. VAE ARCHITECTURE AND TRAINING METHODOLOGY
A VAE model is used in a manner akin to the approach
outlined in [22]. The training and validating the model is
based on two distinct datasets, denoted as Set #1 and Set #2,
followed by an evaluation of its clustering performance using
Set #3. The model is built with Python 3.8.8 and visual studio
code 1.70.2, a user-friendly code editor with complete Python
support. The code executes the model using the Keras library,
linked with TensorFlow. The computational tasks are carried
out using a PC with a 3.6 GHz processor, 16 physical cores,
128 GB of RAM, and a 500 GB SSD hard drive.

The architecture of the VAE model is presented in Fig. 1.
Fig. 2 provides an overview of the overall architecture and a
detailed structure of the model.

1) The encoder is a deep neural network (DNN), with pa-
rameters φ, that maps the input data x (x ∈ Rn) into the
latent space of standard deviation σ and mean μ. The
encoder network consists of nine convolutional layers,
each with 128, 64, and 32 nodes, respectively. Every
hidden layer uses an activation function, which is cho-
sen according to the data set and the range of variance
in the input data (tanh, sigmoid, or ReLU). In addition,
a 10% dropout layer is added after the 32-node layer to
prevent over fitting.

2) The latent space is a dimensionally reduced space (Rp

where p is the latent space dimension, p = 2 or 3), con-
sisting of zi components, where ε is a variable following
a Gaussian distribution ε ∼ N (0, 1): a clustering can be
observed, as it can be seen in Fig. 1.
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(a) (b)

FIGURE 1. Training and validation process. (a) Latent Space-Machine 1.
(b) Latent Space-Machine 2.

FIGURE 2. Flowchart algorithm (inspired by [22]).

The two obtained latent spaces, in Fig. 1(a) and (b), cor-
respond to the application of the model on two different
Machines 1 and 2, respectively.

3) The decoder is a NN that decodes the latent representa-
tion to reconstruct the original input x̂, where θ is the set
of the decoder parameters. The decoder’s architecture is
constructed by mirroring the convolutional layers of the
encoder network.

4) A NN softmax classifier has been included to enhance
the distribution of the latent space. Its input is the latent
space variable zi (with dimension 2). The successive
hidden two conventional layers have 128 nodes each,
and the tanh activation function is used in the input and
the hidden layers. The output is the vector ŷ with dimen-
sion nc, where nc represents the number of classes.

Algorithm 1: RMS of the Latent Space Variables.

The training methodology uses time-variation signals and
an Adam optimizer algorithm [26], with an appropriate
learning rate, number of epochs, clip-value, and batch size,
depending on the study case.

The cost function LVAE is given by (1a) as a linear combi-
nation of different terms, where:

1) The first term, as defined in (1b), represents the re-
construction error (Lrec) and aims to maximize the
maximum likelihood estimates (MLE), as in [16].

2) The second term, as expressed in (1c), is the Kullback–
Leibler loss term (LKL) and serves to assess the simi-
larity between the encoded latent space and a Gaussian
distribution, where ns denotes the total number of sam-
ples, as introduced in [17].

3) The third term is the binary crossentropy cost function,
defined in (1d), and its objective is minimization. In this
context, the variable y is a result of the categorical one-
hot-encoding transformation, whereas ŷ corresponds to
the output of the classifier.

Typically, βKL = 10−3 and βCL = 10−1 are the usual val-
ues used to obtain balanced components [27].

LVAE = Lrec + βKLLKL + βCLLCL (1a)

Lrec = MSE (x, x̂) = 1

ns
(‖x − x̂‖2)2 (1b)

LKL =
ns∑

i=1

σ 2
i + μ2

i − log(σ 2
i ) − 1 (1c)

LCL =
ns∑

i=1

y log(ŷ) + (1 − y) log(1 − ŷ). (1d)

For the latent space, a more comprehensive analysis of the
latent space is conducted, when injected the signals of Set #3,
involving the computation of the rms for each latent variable
zi using Algorithm 1, where p represents the dimension of the
latent space (p = 2 in this study).

B. DESIRABILITY FUNCTION TERM INJECTION
As depicted in the latent spaces obtained in Fig. 1 of two
different machines, the clusters representing the same fault in

108 VOLUME 5, 2024



the two distinct machines are situated in distinct areas within
both latent spaces. This separation is the result of the inher-
ent nondeterministic nature of the latent space. Consequently,
it becomes imperative to devise a standardized method that
facilitates the merging of these clusters into a shared region
to facilitate the diagnostic and prognostic processes. Conse-
quently, the concept of desirability, a quantitative measure
frequently employed in probability and statistics, is used [25].
A desirability function is a mathematical tool utilized to quan-
tify the desirability or quality of a particular outcome or
solution in the context of an optimization problem [28], [29],
[30]. It assigns a numerical score to a solution, with higher
values signifying more desirable outcomes. To account for
this, a fourth term has been introduced to the cost function,
as defined in (2a).

LVAE = Lrec + βKLLKL + βCLLCL + βDLD (2a)

LD = 1

D + ε
(2b)

D = 1

n

n∑
i=1

DP (2c)

DP =
√
DRP

2 + DθP
2. (2d)

Every point, denoted as P(z1, z2), within the latent space
shown in Fig. 1(a), can be expressed in polar coordinates
using (3). For each combination of R and θ , there are two
corresponding desirability values, DRP for the radius R and
DRθ

for the angle θ . Separate graphs for DR and Dθ are gen-
erated for each health state, with their attributes determined by
predefined limits outlined in Fig. 3. These limits are defined
according to the specific requirements set forth by experts
involved in the analysis. Consequently, the desirability scores
DRP and DRθ

are computed based on this framework.

R =
√

z2
1 + z2

2 (3a)

θ = arctan

(
z2

z1

)
(3b)

Following (2d), the desirability of each point, denoted as
DP, is calculated. This process is iteratively applied to all
points within the latent space, and the overall desirability
score, denoted as D, is determined using (2c), where n repre-
sents the total number of points. Consequently, the desirability
term, denoted as LD, is computed as specified in (2b). This
specific formulation, denoted as Derringer desirability func-
tion [31], is chosen among numerous alternatives, as detailed
in [25]. In particular, the nominal-the-best formulation is
chosen, in which the predicted response value is expected
to approach a predetermined target value. The value of βD
should be set as high as possible to maximize the impact of
the desirability score obtained, aiming for it to be of a similar
magnitude as the other terms in the cost function. In addition,
the term ε is used to ensure method convergence, particularly

FIGURE 3. Predefined limits based on polar coordinates, radius R and
angle θ.

TABLE 1 Physical Characteristics of Machines 1 and 2

when the desirability value is close to zero. In this context,
ε is set to 2.24 × 10−16, in accordance with the IEEE754
standard.

The models are currently trained using the formulation pro-
vided in (2a), and the resulting latent representations of both
machines are displayed in Fig. 4, with the same fault for both
machines occupying a predefined region.

III. STUDY CASES
A. FIRST STUDY CASE—LARGE HYDROGENERATOR
1) DATASET
In this study, the vibration signals of two large hydrogener-
ators, installed in the parks of Hydro-Québec (QC, Canada),
are taken into consideration. The characteristics of these two
machines are summarized in Table 1.

Vibration measurements are conducted using an accelerom-
eter in a campaign organized by the utility company Hydro-
Quebec. These measurements have been preprocessed to
improve the data analysis. Initially, they are verified and
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FIGURE 4. Latent space clustering upon the injection of the desirability
term.

FIGURE 5. Preprocessing methodology.

cleaned. As a result, saturated and interrupted measurements
are eliminated, knowing that the correctness of the outputs is
dependent on the integrity of the input data. The first sec-
ond of the measured signal is then eliminated to avoid data
overlap with previous observations stored in the buffer. A
2 kHz low-pass filter is then used to filter out high-frequency
interference. The preprocessing methodology is illustrated in
Fig. 5, and it is composed of three steps: data acquisition, data
processing, and VAE feeding input signals.

The primary objective of this study is to collect a substantial
amount of data under various faulty conditions, which will be
used to train the AI model being developed. Obtaining actual
labeled faulty data was unfeasible due to the inability to shut
down a functioning hydrogenerator. As a solution, a numer-
ical model of an ideal hydrogenerator is created, based on
the specifications found in real plans and documentation [7].
This model is implemented using ANSYS WORKBENCH
software on a computer equipped with an Intel(R) Core(TM)
i9 − 12900KF , 3.2 GHz computer with 128 GB RAM.

One of the main factors contributing to vibrations in EM
is distortions in the magnetic field. The objective is to de-
rive the electromagnetic forces and moments acting on the

stator teeth from the electromagnetic model. These results
serve as input data for the mechanical model. Consequently,
a comprehensive model that integrates electromagnetism with
vibration dynamics has been designed and fine-tuned using
actual vibration measurements of the two machines.

To create an exhaustive database, various types of rotor
faults, including RITSC, BDB, and static eccentricity (SE) are
simulated to generate the fault pattern in the case of each fault.
In the scope of this study, the following faults are taken into
consideration, with only one degree of severity of each.

1) RITSC: The severity of the fault is represented by a
decrease in the number of turns in one pole of the nu-
merical model. In this study, 24% of the total number
of turns per pole were examined, which equated to four
short-circuited turns.

2) BDB: The material of the relevant bar is replaced with
one that has nearly zero conductivity. This study takes
into consideration 1BDB, which corresponds to one
BDB in the same pole of the numerical model.

3) SE: Depending on the severity level, the numerical
model shifts the rotor components by a specific percent-
age within the airgap. This study considers a 10% SE.

These patterns are injected into the actual healthy vibration
signals collected in situ from both machines: The database
of each machine now comprises data from both healthy and
faulty signals. More detailed description of the model can be
found in [7].

2) MODEL APPLICABILITY
Two distinct models are developed for each machine based
on datasets containing both healthy and faulty time-variation
signals. The input for each model is based on the length of a
single pole of the signal, with all signals being decomposed
accordingly. Hence, the database of each machine comprises
NH = 72 signals (including both healthy and faulty ones),
each containing ns = 1140 samples, and the sampling rate is
set at 5 kHz. The database is divided into three sets: Sets 1,
2, and 3, which are designated for training (Set #1), valida-
tion (Set #2), and testing (Set #3), respectively. The training
dataset is used to train the VAE and fine-tune its hyperpa-
rameter values. The validation dataset verifies the model’s
capacity to rebuild unknown data, which is measured by a low
reconstruction error. Furthermore, the test dataset is used to
map unknown inputs in the latent space and investigate data
clustering, hence, improving fault monitoring.

The parameters of each model are individually adapted to
suit their specific requirements, such as the input size and
the models’ hyperparameters: These variables are selected
following a sensitivity analysis of the training and validation
databases: the Adam algorithm is used with a learning rate of
0.0001, a number of epochs of 1024, and a batch size of 128.

Then, the same desirability function is incorporated into the
cost function of both models. The outcomes of this integration
are then executed and analyzed, as detailed in Section IV.
To further validate the proposed method, a crossvalidation
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TABLE 2 Predefined Limits for the Radius R and the Angle θ for Study
Case 2

performance test is conducted. During this test, all predefined
limits are interchanged between the models, and the results
are collected for a comprehensive comparison.

B. SECOND STUDY CASE - NASA BEARING DATASET
1) DATASET
To enhance the validation of the suggested methodology, the
publicly available NASA Bearing Dataset [32] is utilized. This
setup involved mounting four bearings on a shaft, which was
driven at a consistent rotational speed of 2000 RPM by an
AC motor connected with rubber belts. A radial force of 6000
pounds was exerted on both the shaft and bearings through a
spring system. The bearings were subjected to forced lubri-
cation. Consistent with the practices in [32], accelerometers
were installed on the housing of the bearings.

This study focuses on Bearing 2’s dataset. The dataset com-
prises NH = 30 signals, each containing ns = 980 samples,
and the sampling rate is set at 20 kHz. Before treating the
signals, they undergo verification and cleaning, ensuring the
removal of any saturation aberrations. The same preprocess-
ing steps, presented in Fig. 5, have been applied. The dataset is
divided into three subsets: Set A, Set B, and Set C. Each subset
includes a mix of healthy and faulty signals, with particular
attention given to inner and outer race defects.

2) MODEL APPLICABILITY
Set A is utilized for training the model, Set B for validation,
and Set C serves to evaluate the model’s clustering perfor-
mance. The model’s parameters have been optimized for this
particular study: These variables are selected following a sen-
sitivity analysis of the training and validation databases: the
Adam algorithm is employed with a learning rate of 0.0001, a
number of epochs of 256, and a batch size of 32.

The predefined limits adopted for this study case are pre-
sented in Table 2. Subsequently, the desirability function is
computed and integrated into the cost function. The results of
this integration are then evaluated against those obtained with-
out the integration of the desirability function, as elaborated in
Section IV.

IV. RESULTS
A. STUDY CASE - LARGE HYDROGENERATORS
1) TRAINING COST FUNCTION—DESIRABILITY FUNCTION
INJECTION
To address the issue where clusters representing the same
fault do not occupy the same region in both latent spaces, a
desirability term has been introduced into the cost function, as
outlined in (2). The computation methodology, as described in

FIGURE 6. Training’s cost function with desirability term included.

Section II-B, yields a desirability score of D = 0.689. Upon
its incorporation into (2b), this score will decrease. Given that
the objective is to maximize the D score, the parameter βD
has been set to 1.25. Consequently, both machine models have
now been trained using (2a).

The cost function obtained after training the model, which
includes the desirability term, is presented in Fig. 6. Notably,
the curve demonstrates a clear trend of convergence, where
the loss steadily decreases over the training iterations. This
convergence is a vital indicator of the model’s ability to fine-
tune its parameters and align its predictions with the desired
outcomes. It signifies that the model has reached a stable
state, indicating that further training may not yield significant
improvements, and the model is well-fitted to the data.

2) LATENT SPACE CLUSTERING
Following the methodology outlined in Section II-A, the la-
tent visualization of both machines in a 2-D space, without
incorporating the desirability term, is presented in Fig. 7(b).
Distinct clusters are visible, each distinguished by a unique
color representing various cases. The healthy cluster is de-
picted in shades of green, whereas the RITSC is indicated by
shades of red, SE by shades of blue, and BDB by shades of
magenta.

This visual representation of the clusters underscores the
technique’s effectiveness in capturing and segregating differ-
ent cases, even when faults share the same frequency pattern,
such as SE and RITSC, which are located in the same direc-
tion in the latent space. This observation aligns with findings
from the literature, confirming that these two faults have the
same frequency pattern in the vibration signal, as documented
in [13] and [33]. Moreover, despite sharing the same pattern,
these faults exhibit varying amplitudes, which the VAE suc-
cessfully clusters, as depicted in Fig. 7(b), highlighting the
VAE’s potential for fault clustering.

This study’s findings are consistent with previous research
and show a user-friendly diagnostic capability, distinguishing
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FIGURE 7. Latent space visualization (p = 2). (a) Without desirability term.
(b) With desirability term.

it from established methods such as the Kernel classifier, sup-
port vector machine (SVM), and NN employed in [34], [35],
and [36], respectively. These approaches have been applied
for IM or SG, or in the context of SPSG, as examined in [37],
where several classifiers including K-nearest neighbors, radial
basis function SVM, linear SVM, and multilayer perceptron
were evaluated.

However, while the latent space displays distinct clusters, a
comparison reveals that these clusters do not occupy the same
positions or regions. This poses a challenge for robust real-
time health monitoring of the machines and prognostics. It
indicates that the applied methodology may not be generalized
and may not be suitable for all types of large hydrogenerator
designs.

Hence, by considering the desirability term and following
the steps outlined in Algorithm 1, the resulting latent spaces
for both machines are depicted in Fig. 7(b). The following
conclusions can be drawn.

1) The healthy clusters of both machines (shades of green)
are centered at the origin.

2) The RITSC clusters of both machines (shades of red)
are situated in the zone between 0◦ and 80◦ at a distance
greater than 7, i.e., 10.

3) The SE clusters of both machines (shades of blue) are
located in the zone between 90◦ and 170◦ at a distance
greater than 7, i.e., 8.

TABLE 3 Cross-Validation Test Configurations for Rlim

TABLE 4 Cross-Validation Test Configurations for θlim

4) The BDB clusters of both machines (shades of magenta)
are positioned in the zone between 180◦ and 270◦ at a
distance greater than 7, i.e., 8.5.

These conclusions align with the predetermined constraints
outlined in Fig. 3, demonstrating the efficacy of the suggested
approach and its capability to cluster faults of the same type in
two distinct designs of large hydrogenerators within the same
region. Hence, the proposed method holds significant impor-
tance in improving the maintenance and operational efficiency
of these machines.

3) PERFORMANCE STUDY
To assess the efficacy of the proposed model, a crossvalidation
test is carried out. For each scenario, the pre-set Rlimits and
θlimits are interchanged according to the three configurations
outlined in Tables 3 and 4, respectively.

The results are presented in Fig. 8(a), (b), and (c), represent-
ing the three configurations. Each configuration consistently
showcases the model’s ability to classify faults in the areas
outlined in Tables 3 and 4. This uniform performance across
different configurations suggests that the model is dependable
and likely to yield satisfactory outcomes.

To further evaluate the model’s performance, the model
employed on Machine 1 is tested on Machine 2, both with and
without the desirability term injected. The two confusion ma-
trices obtained, shown in Fig. 9(a) and (b), is used to evaluate
and validate the model’s classification performance.

The detection performance is evaluated by computing the
F1 and Acc scores using (4a) and (4b), respectively. TP, TN,
FP, and FN are the numbers of true positives, true nega-
tives, false positives, and false negatives, respectively. TP
represents the number of defective signals correctly iden-
tified as anomalies; TN represents the number of healthy
signals misidentified as healthy data; FP represents the num-
ber of healthy signals incorrectly classified as anomalies; and
FN represents the number of faulty signals misidentified as
healthy data. These scores demonstrate the model’s ability to
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FIGURE 8. Latent space visualization for the different configurations (with
p = 2). (a) Configuration 1. (b) Configuration 2. (c) Configuration 3.

correctly identify unusual data.

F1 = TP

TP + 1
2 (FP + FN)

(4a)

Acc = TP+TN

TP+TN+FP+FN
. (4b)

The F1 and Acc coefficients indicate a result of 24.8% and
43.7%, respectively, for the model that does not use the desir-
ability, whereas a result of 98% and 95% when the desirability
is included. This means that the model that includes the desir-
ability term is able to accurately identify a large proportion of

FIGURE 9. Confusion matrix obtained. (a) No desirability included.
(b) Desirability included.

FIGURE 10. Training’s cost function. (a) Without desirability term. (b) With
desirability term.

TP and has a low rate of FP and FN, which proves the model’s
capacity to perform the classification.

B. STUDY CASE—NASA BEARING DATASET
1) TRAINING COST FUNCTION
The training and validation cost functions, both with and
without the inclusion of the desirability term, are shown in
Fig. 10(a) and (b), respectively. The curve distinctly exhibits
a converging pattern, where the loss consistently diminishes
through successive training iterations. This trend underscores
the model’s proficiency in refining its parameters and calibrat-
ing its predictions to match the targeted results.

2) LATENT SPACE CLUSTERING
Fig. 11(a) and (b) displays the latent space representations of
Set C’s signals, both with and without the desirability term.
These figures feature clearly defined clusters, each distin-
guished by unique color codes representing different cases.
The healthy state is shown in green, whereas the inner and
outer race defects conditions are indicated by red and blue,
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FIGURE 11. Latent space visualization (with p = 2). (a) Without
desirability term. (b) With desirability term.

respectively. Despite the evident clustering in the latent space,
as shown in Fig. 11(a), a comparison with the predefined
regions in Fig. 3 reveals a disparity in the positions and areas
occupied by these clusters. However, the introduction of the
desirability term in Fig. 11(b) demonstrates the effectiveness
of this approach, confirming its ability to cluster faults within
predetermined regions.

The calculation of the F1 score and Acc coefficient disclose
a 95% value for both, validating, therefore, the efficacy of the
proposed approach.

V. CONCLUSION
This study introduces a method for facilitating the detection of
faults in EM using the VAE technique and vibration measure-
ments. The challenge with VAE lies in its nondeterministic
nature, which results in different clustering of the same health
states in various machines. This variability challenges the
development of a universally effective diagnostic tool for real-
time health monitoring and prognostics.

To overcome this issue, the study suggests adding a Der-
ringer desirability function-based component to the VAE’s
cost function. This modification markedly enhances the tool’s
capability to uniformly classify identical fault types in a spe-
cific area of the 2-D space, thereby improving usability and
standardization. The improved diagnostic tool’s effectiveness
is demonstrated through two case studies. The first inves-
tigates the vibration data from two different types of large

hydrogenerators, whereas the second assesses bearing fault
data from a publicly accessible dataset. This method demon-
strates significant potential in streamlining and unifying fault
diagnosis in these scenarios.

REFERENCES
[1] M. Mostafaei and J. Faiz, “An overview of various faults detection

methods in synchronous generators,” IET Electric Power Appl., vol. 15,
no. 4, pp. 391–404, 2021. [Online]. Available: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/elp2.12031

[2] S. Nandi, H. Toliyat, and X. Li, “Condition monitoring and fault di-
agnosis of electrical motors–A review,” IEEE Trans. Energy Convers.,
vol. 20, no. 4, pp. 719–729, Dec. 2005.

[3] I. Sadeghi, H. Ehya, J. Faiz, and H. Ostovar, “Online fault diagnosis of
large electrical machines using vibration signal – A review,” in Proc. Int.
Conf. Optim. Elect. Electron. Equip. Int. Aegean Conf. Elect. Machines
Power Electron., 2017, pp. 470–475.

[4] H. C. Dirani, A. Merkhouf, A.-M. Giroux, B. Kedjar, and K. A.-Haddad,
“Impact of real air-gap nonuniformity on the electromagnetic forces of
a large hydro-generator,” IEEE Trans. Ind. Electron., vol. 65, no. 11,
pp. 8464–8475, Nov. 2018.

[5] Y. Merizalde, L. H.-Callejo, O. D.-Pérez, and V. A.-Gómez, “Di-
agnosis of wind turbine faults using generator current signature
analysis: A review,” J. Qual. Maintenance Eng., vol. 26, no. 3,
pp. 431–458, Oct. 2019. [Online]. Available: https://www.emerald.com/
insight/content/doi/10.1108/JQME-02-2019-0020/full/html

[6] A. Gao, Z. Feng, and L. Ming, “Permanent magnet synchronous genera-
tor stator current am-fm model and joint signature analysis for planetary
gearbox fault diagnosis,” Mech. Syst. Signal Process., vol. 149, 2021,
Art. no. 107331. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0888327020307172

[7] R. Ibrahim et al., “Non-invasive detection of rotor inter-turn short cir-
cuit of a hydrogenerator using AI-based variational autoencoder,” IEEE
Trans. Ind. Appl., vol. 60, no. 1, pp. 28–37, Jan./Feb. 2024.

[8] F. Dao, Y. Zeng, Y. Zou, X. Li, and J. Qian, “Acoustic vibration ap-
proach for detecting faults in hydroelectric units: A review,” Energies,
vol. 14, no. 23, 2021, Art. no. 7840. [Online]. Available: https://www.
mdpi.com/1996-1073/14/23/7840

[9] H. Bechara, R. Zemouri, B. Kedjar, A. Merkhouf, K. A.-Haddad, and
A. Tahan, “Non-invasive detection of rotor inter-turn short circuit in
large hydrogenerators by using stray flux measurement combined with
convolutional variational autoencoder analysis (CVAE),” IEEE Trans.
Ind. Appl., vol. 60, no. 1, pp. 196–205, Jan./Feb. 2024.

[10] T. Paul, “Review of condition monitoring of rotating electrical ma-
chines,” IET Electr. Power Appl., vol. 2, no. 4, pp. 215–247, 2008.

[11] B. A. Tama, M. Vania, S. Lee, and S. Lim, “Recent advances in the
application of deep learning for fault diagnosis of rotating machinery
using vibration signals,” Artif. Intell. Rev., vol. 56, pp. 4667–4709,
2023. [Online]. Available: https://link.springer.com/10.1007/s10462-
022-10293-3

[12] B. Rezaeianjouybari and Y. Shang, “Deep learning for prognos-
tics and health management: State of the art, challenges, and
opportunities,” Measurement, vol. 163, 2020, Art. no. 107929.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S026322412030467X

[13] M. Cuevas, R. Romary, J.-P. Lecointe, and T. Jacq, “Non-invasive detec-
tion of rotor short-circuit fault in synchronous machines by analysis of
stray magnetic field and frame vibrations,” IEEE Trans. Magn., vol. 52,
no. 7, Jul. 2016, Art. no. 8105304.

[14] G. L. Rødal, “Online condition monitoring of synchronous generators
using vibration signal,” Master’s thesis, Norwegian Univ. Sci. Technol.,
Trondheim, Norway, 2020. [Online]. Available: https://hdl.handle.net/
11250/2778212

[15] Y.-L. He et al., “Analysis of stator vibration characteristics in syn-
chronous generators considering inclined static air gap eccentricity,”
IEEE Access, vol. 11, pp. 7794–7807, 2022.

[16] K. Diederik and M. Welling, “Auto-encoding variational bayes,” Ma-
chine Learning Group, Universiteit van Amsterdam, Amsterdam, The
Netherlands, Tech. Rep., 2014.

114 VOLUME 5, 2024

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/elp2.12031
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/elp2.12031
https://www.emerald.com/insight/content/doi/10.1108/JQME-02-2019-0020/full/html
https://www.emerald.com/insight/content/doi/10.1108/JQME-02-2019-0020/full/html
https://www.sciencedirect.com/science/article/pii/S0888327020307172
https://www.sciencedirect.com/science/article/pii/S0888327020307172
https://www.mdpi.com/1996-1073/14/23/7840
https://www.mdpi.com/1996-1073/14/23/7840
https://link.springer.com/10.1007/s10462-022-10293-3
https://link.springer.com/10.1007/s10462-022-10293-3
https://www.sciencedirect.com/science/article/pii/S026322412030467X
https://www.sciencedirect.com/science/article/pii/S026322412030467X
https://hdl.handle.net/11250/2778212
https://hdl.handle.net/11250/2778212


[17] R. Zemouri, M. Lévesque, N. Amyot, C. Hudon, O. Kokoko, and
S. A. Tahan, “Deep convolutional variational autoencoder as a 2D-
visualization tool for partial discharge source classification in hydro-
generators,” IEEE Access, vol. 8, pp. 5438–5454, 2020.

[18] O. Kokoko, C. Hudon, M. Lévesque, N. Amyot, and R. Zemouri,
“Comparison of an automatic classification of partial dischage patterns
for large hydrogenerator,” in Proc. IEEE Int. Conf. Prognostics Health
Manage., 2021, pp. 1–6.

[19] R. Ibrahim et al., “Anomaly detection for large hydrogenerators using
the variational autoencoder based on vibration signals,” in Proc. Int.
Conf. Elect. Machines, 2022, pp. 1609–1615.

[20] R. Zemouri, R. Ibrahim, and A. Tahan, “Hydrogenerator early fault
detection: Sparse dictionary learning jointly with the variational au-
toencoder,” Eng. Appl. Artif. Intell., vol. 120, 2023, Art. no. 105859.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S095219762300043X

[21] G. S. Martin, E. L. Droguett, V. Meruane, and M. d. C. Moura, “Deep
variational auto-encoders: A promising tool for dimensionality reduc-
tion and ball bearing elements fault diagnosis,” Struct. Health Monit.,
vol. 18, no. 4, pp. 1092–1128, 2019, doi: 10.1177/1475921718788299.

[22] A. Proteau, R. Zemouri, A. Tahan, and M. Thomas, “Dimension re-
duction and 2D-visualization for early change of state detection in a
machining process with a variational autoencoder approach,” Int. J.
Adv. Manuf. Technol., vol. 111, no. 11, pp. 3597–3611, Dec. 2020,
doi: 10.1007/s00170-020-06338-y.

[23] M. Hemmer, A. Klausen, H. V. Khang, K. G. Robbersmyr, and T. I.
Waag, “Health indicator for low-speed axial bearings using variational
autoencoders,” IEEE Access, vol. 8, pp. 35 842–35 852, 2020.

[24] Y. Xiao, H. Shao, J. Wang, S. Yan, and B. Liu, “Bayesian variational
transformer: A generalizable model for rotating machinery fault diag-
nosis,” Mech. Syst. Signal Process., vol. 207, 2024, Art. no. 110936.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0888327023008440

[25] N. R. Costa, J. Lourenço, and Z. L. Pereira, “Desirability function
approach: A review and performance evaluation in adverse conditions,”
Chemometrics Intell. Lab. Syst., vol. 107, no. 2, pp. 234–244, 2011.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0169743911000797

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[27] A. Proteau, A. Tahan, R. Zemouri, and M. Thomas, “Predicting
the quality of a machined workpiece with a variational autoen-
coder approach,” J. Intell. Manuf., vol. 34, pp. 719–737, Aug. 2023,
doi: 10.1007/s10845-021-01822-y.

[28] Y. Mao, Y. Gao, Y. Gao, W. Cheng, and Y. Wang, “Simplified desirabil-
ity level metrics for estimation performance evaluation,” in Proc. 21st
Int. Conf. Inf. Fusion, 2018, pp. 877–882.

[29] K. Sonam, S. Sutavani, S. R. Wagh, and N. M. Singh, “Optimal control
of probabilistic boolean networks: An information-theoretic approach,”
IEEE Access, vol. 9, pp. 157 068–157 082, 2021.

[30] M. Zheng, J. Yu, H. Teng, Y. Cui, and Y. Wang, Extension of
Probability-Based Multi-Objective Optimization in Condition of the
Utility With Desirable Value. Berlin, Germany: Springer, Aug. 2023,
pp. 61–69.

[31] G. Derringer and R. Suich, “Simultaneous optimization of several re-
sponse variables,” J. Qual. Technol., vol. 12, pp. 214–219, 1980.

[32] NASA bearing dataset, 2006. [Online]. Available: www.kaggle.com/
datasets/vinayak123tyagi/bearing-dataset

[33] R. Ibrahim, R. Zemouri, B. Kedjar, A. Tahan, A. Merkhouf, and K. A.-
Haddad, “Rotor fault diagnosis in a hydrogenerator based on the stator
vibration and the variational autoencoder,” in Proc. IEEE Int. Electric
Machines Drives Conf., 2023, pp. 1–7.

[34] L. Wang, Y. Li, and J. Li, “Diagnosis of inter-turn short circuit of
synchronous generator rotor winding based on volterra kernel identi-
fication,” Energies, vol. 11, no. 10, Sep. 2018, Art. no. 2524. [Online].
Available: http://www.mdpi.com/1996-1073/11/10/2524

[35] M. E.-Saadawi and A. Hatata, “A novel protection scheme for syn-
chronous generator stator windings based on SVM,” Protection Control
Modern Power Syst., vol. 2, no. 3, pp. 1–12, Jul. 2017.
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