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A B S T R A C T   

Greenhouse energy modeling is a prevalent tool for optimizing greenhouse energy consumption. However, for a 
model to serve its intended use, it is imperative to have a high level of confidence in the precision of its pre
dictions. In this paper, a validated greenhouse energy model for a typical small-scale greenhouse in a cold climate 
is developed. The model is created using TRNSYS, a building performance simulation tool, with detailed energy 
modeling components and a user-defined crop model. The model is calibrated to fix uncertain parameters. A 
sensitivity analysis is used first to identify sensible uncertain parameters, followed by a multi-stage automated 
calibration. The automated calibration method uses a multi-objective genetic algorithm to adjust the uncertain 
parameters, calibrating the model for the measured indoor air temperature and relative humidity. The model 
performed well during the free-floating and ventilated stages (56 days) with a combined root mean square error 
(RMSE) of 1.6 ◦C for indoor air temperature and 8.3 % for the air relative humidity. The validation process 
involved assessing the applicability of the calibrated model using two additional datasets. For all the cases, 
comparing the simulation results with indoor environment measurements resulted in an RMSE of less than 2 ◦C 
for air temperature and less than 10 % for air relative humidity; these values compare favorably to the literature. 
The model achieved a 3.7 % mean relative error (MRE) in estimating monthly energy consumption for a 
minimally heated greenhouse. Given these results, the model is deemed sufficiently accurate and applicable for 
future investigations.   

1. Introduction 

Recently, a rising interest in year-round local food production solu
tions has emerged. Greenhouses effectively control indoor environment 
conditions to optimize crop growth. In cold climates, the economic 
viability of greenhouses is directly linked to the expenses associated 
with the energy required for cultivating crops under optimal conditions 
[1,2]. Building performance simulation (BPS) can generate high-quality 
data to improve energy efficiency without the time and investments 
associated with conducting real-life experiments. Dynamic greenhouse 
energy models can assist in decision-making regarding indoor environ
ment management, crop cultivation, greenhouse design, energy con
servation measures (EMC), investments, and policymaking [3–6]. 
Different modeling approaches have been proposed, such as using 
process-based greenhouse models. Process-based models explicitly 
simulate the phenomena and systems by underlying processes and 

mechanisms that drive the system’s behavior, such as the crop’s physi
ological processes and the energy balance within the greenhouse. Thus, 
process-based models are known for their high interpretability and often 
exhibit high accuracy [7]. 

Many process-based greenhouse energy models are developed using 
BPS tools like TRNSYS [8]. Between 2013 and 2023, at least thirty-two 
studies have used TRNSYS to create a greenhouse energy model [9]. 
TRNSYS has been effectively used to consider design features accurately 
across multiple types of greenhouses. The models yield acceptable re
sults when greenhouse-specific elements are added [10]. Indeed, 
TRNSYS supports implementing simplified and detailed modeling ap
proaches for thermal processes, such as 3D solar and thermal radiations, 
ground-coupling (Type 49/1244), and infiltration/ventilation 
(TRNFLOW). Additional components can be integrated into TRNSYS to 
address greenhouse-specific elements to model additional phenomena, 
such as crops’ evapotranspiration and condensation on the greenhouse 
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structure [11,12]. Although these components have been integrated 
individually in published TRNSYS models, none have combined all the 
detailed components simultaneously in one model [9]. 

Despite the numerous recent models, direct comparisons of model 
performance solely based on validation results have become chal
lenging, given the wide range of evaluation techniques. As Katzin et al. 
[7] and Beaulac et al. [9] noted, there are no standardized procedures 
for validating greenhouse energy models. Validation processes vary in 
terms of both data acquisition characteristics (validated variables, 
duration of the validation periods, sampling frequency, etc.) and metrics 
used. 

Validation is essential in developing the greenhouse energy model, 
as it instills confidence in its accuracy. However, greenhouse model 
validations are often limited. They frequently involve short-term as
sessments using hourly data or extended validation periods with a 
longer sampling frequency (e.g., monthly). This can result in an inade
quate representation of all operating modes [13]. Given the sensitivity of 
greenhouses’ thermal behavior to outdoor weather conditions, 
comprehensive validation across diverse meteorological conditions is 
essential to enhance confidence in the model’s ability to estimate the 
annual energy performance of the greenhouse. 

Validation poses additional challenges when dealing with process- 
based models, as they involve many parameters that depend on the 
level of detail in describing physical interactions. Parametrization, 
which consists of assigning values to these model parameters, typically 
draws from similar studies in scientific literature, established norms, 
standards, or field surveys. The values assigned to parameters may not 
faithfully represent their real-world counterparts due to the specific 
conditions under which they were initially determined. As a conse
quence, these values are regarded as possessing inherent uncertainty. 
Uncertain parameters can be calibrated by fitting the model’s estimated 
values with the measured data. Calibration helps fix uncertain param
eters of a greenhouse energy model to better represent the as-built and 
actual operating conditions, thereby enhancing accuracy. 

Calibration can be either manual or automated. Manual calibration 
typically requires iterative tuning of individual parameters and is time- 
consuming, whereas automated data-driven calibration supports tuning 
multiple parameters simultaneously [14]. In recent years, with the 
increased computational capabilities, automated calibration has gained 
popularity within the building energy simulation field due to its 
robustness, leading to a shift in calibration methods from manual to 
automated [15]. The automated calibration uses an optimization algo
rithm to minimize the difference between measured and simulated data. 
Automated procedures often include sensitivity analysis to reduce the 
number of inputs before applying an optimization algorithm to reduce 
the computing time. 

In greenhouse energy modeling, calibration is often manual, and the 
process is rarely described, thus replicable. Some of the reviewed 
TRNSYS models mentioned a calibration process [16–20], but it usually 
compared modeling approaches. For example, Rasheed et al. [19] 
assessed the impact of the tilted surface radiation models available in 
TRNSYS on validation metrics. Other greenhouse energy models used 
automated calibration, employing various optimization algorithms. 
Particle swarm optimization (PSO) has been used by [21–25], genetic 
algorithms (GA) by [21,26,27], and differential evolution (DE) algo
rithm by [24]. Another hybrid approach combined optimization and 
machine learning algorithms [4]. Chen et al. [21] compared GA and PSO 
with a novel hybrid approach combining adaptive PSO and GA (APSO- 
GA). The APSO-GA saved approximately 15 % of the optimization time 
and improved power and energy demand prediction accuracy by ~3 % 
compared to PSO and GA over a 3-day period. Guzmán-Cruz et al. [28] 
compared three global evolutionary algorithms (GAs, Evolution Strategy 
(ES) and Evolution Programming (EP)) and two local search methods 
(Least Squares (LSQ) and Sequential Quadratic Programming (SQP)). 
Based on the information presented in [28], the EP algorithm out
performed the others in predicting temperature and relative humidity 

over 7 days. The estimation of relative humidity by LSQ and SQP proved 
less accurate, possibly influenced by local minima. While comparing the 
performance of different calibration methods is informative, it is 
essential to highlight that it is difficult to assess their reliability without 
standardized validation methods. 

Despite the extensive body of research on greenhouse energy 
modeling, the above review highlights several key findings:  

1- Only a limited number of TRNSYS models included detailed 
modeling approaches for each greenhouse component.  

2- Using extensive validation processes, such as over extended periods 
with sub-hourly data, is not widely explored.  

3- Most TRNSYS models relied on uncertain parameters either fixed 
according to the literature or adjusted using manual calibration 
methods: automated calibration for detailed greenhouse models has 
not been thoroughly studied. 

This study aims to provide accurate predictions of the indoor envi
ronment conditions and energy consumption of a small-scale green
house in a cold climate. To attain this objective, a small-scale 
greenhouse energy model is developed using the BPS tool TRNSYS. This 
is completed according to the following three steps. First, the studied 
greenhouse is modeled in TRNSYS using detailed modeling approaches 
and user-defined components. Second, a multi-stage automated cali
bration is used to fix uncertain parameters of the initial model under 
different operating modes. Third, the calibrated model undergoes vali
dation using two periods to demonstrate its applicability. A validated 
process-based model developed in TRNSYS offers maximum flexibility 
to support research across multiple disciplines, including agronomy, 
economics, energy, greenhouse design, etc. 

This paper is organized as follows: Section 2 presents the method
ology to create the greenhouse BPS model; Section 3 details the energy 
modeling approach used in TRNSYS; Section 4 presents the calibration 
process; and Section 5 shows the results of the calibration and valida
tion. A discussion follows in Section 6. 

2. Methods 

This paper presents the creation process of a greenhouse energy 
model that is calibrated and validated using measured data. Measured 
data are monitored at two identical gothic arch greenhouses. Each 
greenhouse has a footprint of 250 m2 (10.7 m × 23.2 m), is oriented 40◦

to the Northeast, and is located in Victoriaville, Canada (Fig. 1). 
The main steps of model development are illustrated in Fig. 2 and 

include: (1) creation of the greenhouse energy model using a BPS tool, 
(2) automated calibration of the model’s uncertain parameters, and (3) 
validation of the calibrated model. 

2.1. Creation of the greenhouse energy model 

The model is developed using TRNSYS18 [8]. It is chosen based on 
(1) its ability to implement new models, such as a detailed crop model 
[29]; (2) its ease in enabling the implementation of detailed modeling 
approaches for solar radiation, thermal radiation, infiltration, ventila
tion, and conduction in the ground; and (3) its previous application to 
BPS of greenhouses by several authors [9]. The modeling of solar radi
ation and thermal exchanges considers the 3D shape of the greenhouse. 
For the ground-coupling model, a 3D ground discretization model is 
available. For infiltration and ventilation, an air network model, 
TRNFLOW, is integrated into the 3D construction [30]. Detailed models 
are preferred since they enable a finer resolution analysis of building 
energy performance, requiring fewer assumptions [31]. The greenhouse 
model is created according to data sourced from construction docu
ments, manufacturer’s manuals, operator interviews, field surveys, field 
experiments, and ongoing field measurements, as detailed in Section 3. 
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2.2. Automated calibration 

The automated calibration of uncertain parameters follows the 
approach proposed by Baba et al. [32]. Although initially designed for 
assessing overheating in commercial buildings, it is particularly relevant 
to greenhouses since they are prone to significant deviations from 
temperature setpoint due to being highly weather-dependent. Such 
temperature volatility can result in crops fatally overheating or freezing 
[33]. 

The calibration process includes: (1) identifying the uncertain pa
rameters; (2) conducting a sensitivity analysis to reduce the number of 
uncertain parameters to be used in the multi-stage calibration by fixing 
insensitive parameters, i.e., parameters that do not significantly affect 
the indoor environment conditions of the greenhouse; (3) conducting a 
multi-stage calibration. 

2.2.1. Identification of uncertain parameters 
A detailed TRNSYS greenhouse model contains numerous parame

ters from mathematical expressions of thermal processes. To identify 
which parameters should be included in the calibration process and 
which should be fixed, a selection of uncertain parameters must be done. 
The first screening of parameters relies on expert knowledge since it is 
evidence-based. The screening process follows three steps to identify the 
uncertain parameters of the model. 

First, all physicochemical properties of materials, heat transfer co

efficient, and operating parameters used in the greenhouse model are 
listed. Modeling approaches and construction specifications are 
considered as modeling development elements rather than parameters. 
Also, the construction specifications are based on documentation and 
are confirmed with a field survey. Second, the parameters are catego
rized using an adapted version of the source hierarchy outlined by [31]: 
(1) Common knowledge; (2) Data-logged measurements; (3) Spot mea
surements; (4) Benchmark studies, standards, guidelines, and design 
stage information. Categories 1 and 2 are regarded as having a lower 
level of uncertainty; thus, the parameters in these categories are fixed to 
documented values. On the other hand, the more uncertain parameters 
(categories 3 and 4) are proceeded to the next step. Third, the remaining 
parameters are clustered according to two conditions: (1) the parame
ters can be consolidated into a single parameter (e.g., α = λ

ρ*Cp), and (2) 
the parameters are mathematically correlated (e.g., τ + σ + ρ = 1). 
Finally, the remaining parameters are identified as the uncertain pa
rameters of the greenhouse model. 

2.2.2. Sensitivity analysis 
Sensitivity analysis helps identify which input parameters signifi

cantly impact the output variables and which parameters are less sen
sitive. It can be fixed in the model without affecting the accuracy [34]. 
The proposed approach aims to reduce the number of parameters 
adjusted during calibration. The identification of sensible uncertain 
parameters is completed using the global variance-based sensitivity 

Fig. 1. Monitored gothic arch greenhouses.  

Fig. 2. Flowchart of the greenhouse energy model creation process.  
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method (SOBOL) [35], which can estimate the interactions between the 
parameters and is widely used in building energy analysis [15]. Calcu
lated using the Monte Carlo method, it decomposes the variance of the 
model output into fractions attributable to individual inputs [35]. The 
global sensitivity index (STi) of individual parameters calculates the 
contribution of each input parameter and its interactions with any of the 
other input parameters on the output for nonlinear and non-monotonic 
models, as shown in equation (1) [34]. 

STi = 1 −
VX∼i

V(Y)
(1)  

where VX∼i indicates the effect of all parameters except Xi on the model 
output, and V(Y) is the total variance of the model output (variance of 
all parameters with all interactions). 

Samples are generated using the Saltelli sampler from the Python 
library SALib [36]. The sum of the global sensitivity indices will be equal 
to 1 when the model is purely additive, as there is no correlation among 
the inputs. The number of samples is considered sufficient if the sum of 
the global sensitivity indices is equal to 1, and if not, the number of 
samples needs to be increased. The parameter range influences the 
application of the SOBOL method. A uniform distribution is assumed for 
each parameter. 

2.2.3. Multi-stage calibration 
Calibration settings are crucial to identify the optimal solution. Three 

essential elements of the calibration process are described in this sec
tion: the optimization algorithm selected for altering model parameters, 
the objective functions and evaluation criteria, and the calibration 
periods. 

2.2.3.1. Multi-objective genetic algorithm. One of the evolutionary algo
rithms commonly used to generate high-quality solutions to optimiza
tion problems is a Genetic Algorithm (GA), as discussed by Chong et al. 
[15]. GA emulates the process of natural selection to evolve and improve 
a population of potential solutions across successive generations. Among 
the GAs, the Multi-Objective Genetic Algorithm NSGA-II (MOGA) opti
mization method is used. Multi-objective evolutionary algorithms are 
designed to find a set of solutions that represent the Pareto front. This 
front encompasses trade-off solutions that address multiple conflicting 
objectives simultaneously. 

Calibrating greenhouses is challenging due to the interdependence of 
two main variables, air temperature and humidity, which influence in
door environment performance. Given this interdependence, simulta
neous air temperature and humidity calibration are more appropriate 
than a single-objective approach. Hence, the MOGA calibration method 
is more suitable than the single-objective GA calibration. The Matlab 
function gamultiobj is used to apply the MOGA approach. A Matlab script 
is used to allocate the TRNSYS model code, specify the uncertain 
parameter ranges, and configure the MOGA settings to compute the 
objective functions. To configure the MOGA settings, Baba et al. [32] 
suggested a population size of 10 individuals to ensure diversity in novel 
solutions, with a maximum limit of 200 generations. The optimal solu
tion is deemed reached when there is no change in any Pareto solutions 
for five consecutive generations. The simulations are conducted on an 
AMD Ryzen 9 7950X 16-Core Processor 4.5 GHz with 128 GB RAM. 

2.2.3.2. Objective functions and selection criteria. As Katzin et al. [7] 
highlighted, there is no universally accepted statistical metric for eval
uating greenhouse models. Each metric has its strengths and weak
nesses. Therefore, using a combination of multiple metrics can offer a 
more comprehensive understanding of the performance of the model. 
Three metrics have been proposed as objective functions by Baba et al. 
[32]: Maximum Absolute Difference (MAD), Normalized mean Bias 
Error (NMBE), and Root Mean Square Error (RMSE) as defined by 
equations (2), (3) and (4). Each objective function will be computed 

separately for air temperature and humidity. Hourly metrics are used 
and calculated using the average of each timestep value over the last 
hour. This approach reduces the quantity of computed values while 
magnifying the impact of significant deviations. Normalized and relative 
metrics have been excluded from consideration due to their sensitivity to 
the average temperature, which exhibits substantial variability in an 
unheated greenhouse [7]. Furthermore, in an unheated greenhouse 
characterized by high daytime temperatures and cooler nights, the 
optimization of NMBE tends not to match daily temperature extremes, 
with lower daytime temperatures and higher nighttime temperatures. 
Therefore, instead of NMBE, the Mean Absolute Error (MAE) is used (5). 

MAD = Max(|ŷi − yi| ) (2)  

NMBE =

∑n
i=1(ŷi − yi)

n⋅y
(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(ŷi − yi)

√

n
(4)  

MAE =

∑n
i=1|ŷi − yi|

n
(5)  

where ŷi is the measured value and yi the simulation value for each hour 
i. 

As stated in Section 2.2.3.1, MOGA yields different Pareto front so
lutions, not necessarily converging a single solution that satisfies all 
objectives. Therefore, the 1 ◦C Percentage Error criterion is used to 
identify the Final Optimum Solution (FOS). The 1 ◦C Percentage Error 
criterion calculates the percentage of hours where the error between the 
simulated and measured indoor air temperature exceeds 1 ◦C over the 
calibration period. It is worth noting that the indoor temperature is the 
variable used for the FOS selection. It is a key performance metric in 
greenhouse energy simulation because of its direct relationship to 
heating consumption. For informational purposes, a 2 ◦C percentage 
error for indoor air temperature, a 5 % percentage error, and a 10 % 
percentage error for relative humidity are also evaluated. 

Interior radiation measurements are omitted as calibration variables 
due to significant discrepancies in the measurements. The small shadows 
cast by opaque structural elements impact the measured radiation levels 
at different locations within the greenhouse. Indeed, relying solely on a 
single radiation meter inside the greenhouse does not provide a 
comprehensive understanding of the overall solar radiation transmission 
throughout the greenhouse. 

2.2.3.3. Calibration periods. Analyzing measured datasets and estab
lishing calibration periods are crucial to calibrating building models 
[13]. Chong et al. [15] reported that calibrating data from a building 
under free-floating conditions is a significant aspect of multi-stage ap
proaches. This is because the number of uncertain parameters is reduced 
when there are minimal or no internal loads, such as occupancy, and 
when the HVAC system is not operating. 

In the greenhouse, actual free-floating conditions are seldom for 
extended periods due to positive pressure fans for morning dehumidi
fication, heating, and thermal blankets to cover and protect the culti
vated crops. However, the vents are kept closed for extended periods to 
prevent frost damage. As a result, the calibration is completed in three 
stages using data collected over three distinct periods (Table 1). Notably, 
no calibration is undertaken during the colder months because of the 
ongoing use of thermal blankets to cover and protect the cultivated 
crops. The three calibration stages are used to calibrate different sets of 
parameters. 

The first stage is used to calibrate sensible parameters, excluding the 
natural ventilation parameters. Natural ventilation plays a significant 
role in the energy balance. It is characterized by considerable uncer
tainty, primarily because it heavily depends on wind conditions, which 
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vary considerably over the data acquisition interval [37]. Ideally, me
chanical ventilation would also be turned off, but this is impossible due 
to ongoing greenhouse operations. Mechanical ventilation uses positive 
pressure fans, and their operating status is set as an input to the model. 
Thus, this first phase of calibration is not influenced by errors in 
modeling the control sequence. 

The second stage is used to calibrate the natural ventilation param
eters, and all the other parameters are set to values obtained during the 
first calibration stage. The operating status of the vents and fans is 
imposed as inputs to the model for each timestep. 

Finally, during the third stage of calibration, the control sequence is 
implemented in TRNSYS. This step confirms the calibration of the 
model, as the parameter values have already been calibrated. 

2.3. Validation of the calibrated model 

Once the greenhouse model is calibrated, the validation is carried out 
during a distinct period to ensure that the calibrated parameters perform 
effectively under different weather and operating conditions. Table 2 
presents the validation periods. 

First, the calibrated model will be assessed using data from the 
previous year (September and October 2021) for the same greenhouse. 
This serves as a validation of the calibration results and quantifies the 
impact of structural degradation. Second, the calibrated model is tested 
using data from an adjacent twin greenhouse. The twin greenhouse is 
minimally heated during winter using a propane air heater with a ca
pacity of 44 kW and an estimated efficiency of 58 %. The heating is 
considered a ventilation heat gain to the greenhouse airnode, delayed by 
one-timestep (5 min) interval to account for air circulation and the 
location of the temperature sensor. The temperature, humidity, and 
heating consumption are validated using data gathered throughout an 
entire harvest period (October 2022 to March 2023). 

Since heating consumption is an absolute scale unit, it can be eval
uated against ASHRAE Guideline 14-2014 [38] criteria, which recom
mends a monthly CV-RMSE (Eq. (6)) under 15 % and NMBE (Eq. (7)) 

under 5 % for accurate models prediction. 

CV(RMSE)(%) =
100
yi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ŷi − yi)
2

n

√

(6)  

NMBE(%) =
100
y

∑n
i=1(ŷi − yi)

n
(7)  

where y is the average measured value over the studied period. 

3. Description of the greenhouse energy model 

The greenhouse depicted in Fig. 1 features an envelope composed of 
double-layer polyethylene inflated films with the end walls being made 
of 6 mm clear polycarbonate panels. The greenhouse structure is made 
of 5 cm steel braces, resulting in a disposition such that the glazed 
surface of the envelope is about 93 % of the total surface. The green
house floor is covered with bare soil for cultivation. 

The greenhouse is cooled by natural and forced ventilation using side 
vents, and two independently controlled 2.03 m3⋅s− 1 positive pressure 
fans. The side vents are located 1 m above the ground and are 22 m long 
by 1 m high. They open gradually when the indoor temperature rises 
above the cooling set point. The first fan starts when the indoor tem
perature is above 15 ◦C and the second one if the indoor temperature is 
above 20 ◦C. The side vents are shut closed for temperatures below the 
freezing point. Additionally, four air circulation fans are used to 
continuously mix the air in the greenhouse, each having a flow rate of 
0.7 m3⋅s− 1 and dissipating 30 W of heat. Fig. 3 illustrates an overview of 
the greenhouse equipment. Additionally, the twin greenhouse shown in 
Fig. 1 is equipped with a propane air heater with a rated capacity of 44 
kW. 

3.1. Measured data 

The twin greenhouses are fully instrumented to monitor the on-site 
weather conditions and indoor environment conditions. A weather sta
tion is installed nearby, about 100 m away. Weather data listed in 
Table 3 are recorded and used as inputs to the greenhouse model. 
Additional information, such as cloud cover, is gathered from nearby 
meteorological station datasets. 

Indoor environment conditions are monitored using a Hobonet 
Remote Monitoring Station at 5-minute intervals. Details regarding the 
sensors, including their types and locations, are provided in Table 4. 
This instrumentation setup remains consistent across all datasets in the 
study. 

Data are recorded year-round, but in the greenhouses under study, 
which are dedicated to research, cultivation only occurs during the 
colder months, from September to March. The greenhouses are pri
marily used for harvesting leafy green vegetables. The crop growth stage 
and sizes are based on monitoring conducted by the greenhouse oper
ators. During the summer months, the greenhouses undergo a green 

Table 1 
Detail of each of the calibration stages.  

Calibration 
stage 

Description Dates Duration Measured 
user-imposed 
inputs 

1 Closed vents 
greenhouse 

November 8th 
to 15th 2022 
March 5th to 
12th 2023 

2 x 7 
days 

Fan actuators 

2 Ventilated 
greenhouse 

October 10th to 
31th 2022 

21 days Fan 
actuators, 
Vents 
actuators 

3 Ventilated 
greenhouse with 
modeled control 

September 19th 
to October 10th 
2022 

21 days   

Table 2 
Validation periods of the calibrated model.  

Validation 
period 

Description Dates Duration Validated variables 

1 Unheated 
greenhouse 
using the 
previous year’s 
data 

September 
18th to 
November 
1st 2021 

43 days Indoor air 
temperature and 
relative humidity 

2 Heated twin 
greenhouse 

October 1st 
2022 to 
March 1st 
2023 

162 days Indoor air 
temperature and 
relative humidity, 
Heating 
consumption  Fig. 3. Overview of the gothic arch greenhouse systems.  
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manure treatment, followed by covering the ground with a black tarp. 
This period does not represent the typical operating conditions of a 
greenhouse. Consequently, only data collected between September and 
March are used to complete the calibration of the model. 

During that period, the outdoor air temperature fluctuated between 
− 31 ◦C and 25 ◦C with an average value of 0.1 ◦C, while the outdoor air 
relative humidity was, on average, 79 %. In terms of PAR, it can reach a 
value of 1690 µmol⋅[m2⋅s− 1]− 1. The maximum indoor PAR is slightly 

different between the unheated (716 µmol⋅[m2⋅s− 1]− 1) and the heated 
(791 µmol⋅[m2⋅s− 1]− 1) greenhouses. The difference between the two 
greenhouses’ indoor temperatures is, on average, 1.4 ◦C when there is no 
heating or thermal blanket. 

3.2. Model creation 

An overview of the TRNSYS greenhouse model and the information 
flow is illustrated in Fig. 4. 

The model includes six main components: (1) the weather & oper
ating data; (2) the greenhouse construction; (3) the solar radiation (3D 
distribution); (4) the infiltration and ventilation (TRNFLOW air 
network); (5) the ground coupling; and (6) the crop. TRNSYS types or 
extensions used to simulate these components are listed in Table 5. The 
components of the TRNSYS model and the initial parameters are 
detailed in the Supplementary Material. 

Table 3 
Monitored on-site weather data.  

Measures Sampling 
interval 

Instrument Accuracy 

Dry bulb temperature 
(◦C) 

5 min Hobonet S-THB ±0.2 ◦C 

Relative humidity (%) 5 min Hobonet S-THB < ± 5 % 
PAR (PPFD) 5 min Hobonet S-LIA ±5 % 
Global horizontal 

radiation (W.m− 2) 
1 h Campbell Scientific 

ClimaVUE50 
±5 % 

Wind direction (◦) 1 h Campbell Scientific 
ClimaVUE50 

±5◦

Wind speed (m.s− 1) 1 h Campbell Scientific 
ClimaVUE50 

±3 % 

Atmospheric pressure 
(kPa) 

1 h Campbell Scientific 
ClimaVUE50 

±0.05 
kPa 

Snow depth (cm) 1 h Campbell Scientific 
SR50A 

±1 cm  

Table 4 
Monitored indoor environment conditions and operating variables of the 
greenhouse.  

Measures Location Instrument/ 
Source 

Accuracy Used for 
calibration 

Dry bulb 
temperature 
(◦C) 

Center, 1.5 m 
above the 
ground 

Hobonet 
RXW-THC 

± 0.2 ◦C  

Relative 
humidity (%) 

Center, 1.5 m 
above the 
ground 

Hobonet 
RXW-THC 

< ± 5 % ✔ 

PAR (PPFD) NW corner, 3 m 
above the 
ground 

Hobonet 
RXW-LIA 

± 5 %  

Ground 
temperature 
(◦C) 

Center, 0.1 m 
underneath the 
ground 

Hobonet 
RXW-TMB 

± 0.2 ◦C  

Vents actuators 
status  

Local 
controller  

✔ 

Fans actuactors 
status  

Local 
controller  

✔ 

Fuel 
consumption 
(m3)  

Local 
controller  

✔ 

Crop yield  Manually 
registered    

Fig. 4. Simulation overview.  

Table 5 
TRNSYS components used in the greenhouse model.  

Model 
component 

TRNSYS type or extension Information specified 

Weather & 
operating 
data 

User specified for model 
calibration with measured data 
(Type 9) 

5-minutes interval data 

Greenhouse 
construction  

⋅ TRNS3d plugin for SketchUp for 
the geometry 

Type 56 for construction 
materials and thermal 
characteristics  

⋅ Orientation 
Construction 

properties 
Windows physical 

properties 
Wall boundary 

conditions 
Solar radiation  ⋅ Type 16 – Solar processor 

Type 56 radiation distribution 
modes  

⋅ Perez et al. [39] model 
for the tilted surface 

Detailed beam 
radiation model 

Detailed diffuse 
radiation model 

Infiltration/ 
Ventilation  

⋅ TRNFLOW air network 
Type 971 for stages 1–2-3–4 

(side vents / side vents + fans 1 
& 2) for controls  

⋅ Wall averaged wind 
pressure coefficients 

Wind velocity profile 
around the greenhouse 

Airflow network and 
link definition 

Ground 
coupling 

Type 1224 – Slab on grade  ⋅ Soil nodding map 
Ground thermal 

properties 
Far-field and deep- 

earth boundary condi
tions 

Building underground 
perimeter insulation 

Crop User-defined model [11]  ⋅ Geometrical parameters 
of the cultivated crops 

Crop biological 
parameters  
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4. Model calibration 

The calibration of the greenhouse energy model encompasses several 
different steps, including the identification of uncertain parameters, a 
sensitivity analysis to reduce the number of uncertain parameters, and 
the calibration of the remaining uncertain parameters using the Multi- 
Objective Genetic Algorithm (MOGA) as described in Sections 4.1–4.3. 

4.1. Identification of the model uncertain parameters 

Identifying uncertain parameters involves three steps, as described in 
Section 2.2.1. After the first two steps, a total of 48 uncertain parameters 
remained. Subsequently, a clustering process is applied to a subset of 
these parameters, while others that cannot be effectively clustered are 
used individually. These include building capacitance, the fraction of 
transmitted solar radiation directly converted to sensible energy (FTSR), 
and the vents discharge coefficient. Details of the clustering procedures 
for each uncertain parameter are provided in the following paragraph, 
resulting in 16 parameters (Table 6) classified as uncertain. 

The thermo-chemical properties of the ground (thermal conductivity 
(λ), heat capacity (Cp), and density (ρ)) are consolidated under “ground 
diffusivity” (e.g., α = λ

ρ•Cp). A multiplicative factor is applied as an 
alternative to modifying the empirical equations for the surface’s con
vection coefficients. Hence, the empirical equations parameters are 
regrouped under the “convection coefficient factor”. For radiometric 
properties of the greenhouse surfaces, given that the sum of longwave 
transmissivity (τ), emissivity (ε), and absorptivity (σ) of surfaces equals 
1, they are consolidated into a single parameter, “surface longwave ra
diation (LWR) coefficient”. The “surface LWR coefficient” bounds listed 
in Table 6 pertain to the emissivity of the surface. The values of the other 
parameters are adjusted proportionally based on their weights. For 
example, for the initial values ε = 0.3, τ = 0.6 and σ = 0.1, the weight of 
τ (wτ = τ

τ+σ) is 0.857. Then, for an emissivity of ε = 0.4, τ = (1 − ε)Â⋅wτ =

0.514 and σ = (1 − ε − τ) = 0.086. This approach also applies to short
wave transmissivity, reflectivity (ρ), and absorptivity of the building 
surfaces (e.g., τ + σ + ρ = 1), which are grouped under “surface 
shortwave radiation (SWR) coefficient”. The “SWR coefficient” bounds 
for polyethylene (PE) and polycarbonate (PC) covers are represented by 
the transmissivity coefficients. In contrast, the opaque floor surface is 
defined by the absorptivity coefficient. All relevant parameters used to 
model the interaction between crops and their environment are grouped 
under “Crop size” because the equations describing the “big leaf” model 
(Section A.7 of the Supplementary Material) rely on the heat transfer 
surface area according to the leaf area index (LAI). All air links’ infil
tration coefficients and power law exponents are grouped for infiltration 

flow. The modified parameter for this group is the overall infiltration 
coefficient, with its bound values shown in Table 6. This adjustment 
affects the values of all air links infiltration coefficients, as described in 
section A.6 of the Supplementary Material, while the exponents remain 
fixed. Finally, for the wind pressure coefficients, all wind pressure co
efficients of every wall for all four wind directions (N-S-E-W) are also 
grouped. For this group, only the values of the windward wind pressure 
coefficient of each wall are altered, with all others remaining constant. 

4.2. Sensitivity analysis 

The sensitivity analysis involves calculating global sensitivity 
indices, as defined by Eq. (1), to provide insight into the contribution 
and significance of each parameter to the simulated output values dur
ing the calibration period, as shown in Fig. 5. A total of 2040 samples are 
used to compute the global sensitivity indices. This sample size has 
proven adequate to ensure the sum of the global sensitivity indices 
nearly equals 1. 

Parameters with a global sensitivity index higher than 0.02 for 
temperature and humidity are identified as sensitive. This choice de
viates from the suggested 0.05 value [32] to ensure sufficient parame
ters for the calibration process. Nine parameters meet the criteria for the 
temperature sensitivity index and eight for the relative humidity sensi
tivity index. The eight humidity-sensitive parameters are also 
temperature-sensitive, as illustrated in Fig. 5. These are building 
capacitance, ground diffusivity, cover internal convection coefficient, 
PE LWR coefficient, floor SWR coefficient, PE SWR coefficient, FTSR, 
crop size (LAI), and vents discharge coefficient. 

These parameters are assumed to be constant over time. However, 
the model uses an average LAI that is associated with the size of each 
crop. The average LAI varies over time in a greenhouse with irregular or 
non-uniform crop growth stages. LAI values are calibrated during each 
calibration stage to account for this variation. As a result, four different 
LAI values will be calibrated, considering that the first stage consists of 
two separate weeks. 

Fig. 5 shows that the vents discharge coefficient displays the highest 
sensitivity index for indoor air temperature. This reinforces the 
assumption of its significant impact and justifies conducting a multi- 
stage calibration process. The vents discharge coefficient will be cali
brated independently in the second calibration stage. 

4.3. Calibration of uncertain parameters 

Based on the sensitivity analysis, nine parameters have been iden
tified for the multi-stage calibration. The estimation of these parameter 

Table 6 
Uncertain parameters and bounds.  

Calibration period Parameter Units Initial value Bounds Step size 

Closed vents greenhouse Building capacitance kJ.K− 1 1100 [1100–1900] 100 
Ground diffusivity m2.s− 1 3.5E-7 [1E-7–1E-6] 1E-7 
Cover external convection coefficient factor. – 1 [0.5–2] 0.1 
Cover internal convection coefficient factor – 1 [0.5–2] 0.1 
Floor convection coefficient factor – 1 [0.5–2] 0.1 
Floor LWR coefficient – 0.90 [0.5–0.96] 0.02 
PE LWR coefficient – 0.60 [0.5–0.96] 0.02 
PC LWR coefficient – 0.89 [0.5–0.96] 0.02 
Floor SWR coefficient – 0.80 [0.6–0.96] 0.02 
PE SWR coefficient – 0.80 [0.6–0.96] 0.02 
PC SWR coefficient – 0.76 [0.6–0.96] 0.02 
FTSR – 0 [0–0.15] 0.01 
Crop size (LAI) m2

projected.m-2
cultivated 2.1 [0–6] 0.1 

Infiltration flow coefficient kg.s− 1 @1Pa 0.15 [0.05–0.25] 0.01 
Wind pressure coefficient – 0.70 [0.5–1] 0.02 

Ventilated greenhouse Vents discharge coefficient – 0.2 [0.1–0.6] 0.01 

Legend - PE: Polyethylene; PC: Polycarbonate; LWR: Longwave radiation; SWR: Shortwave radiation; FTSR: Fraction of transmitted solar radiation directly converted 
to sensible energy; LAI: Leaf area index. 
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values is performed using three datasets. It involves the minimization of 
six objective functions, with three metrics (MAE, RMSE, and MAD) for 
each variable (Ti and RHi). 

In the first calibration stage, eight uncertain parameters are identi
fied following the sensitivity analysis and are calibrated. However, since 
the calibration is conducted over two separate weeks where the green
house is only ventilated with positive pressure fans, the LAI is calibrated 
separately for each of the two weeks (November 8th to 15th, 2022 and 
March 5th to 12th, 2023), resulting in a total of nine parameters to be 
calibrated. In total, there are more than 8, 000,000,000 possible solu
tions. The Pareto solutions are obtained after 94 generations with 940 
simulations for this first calibration stage. From the Pareto solutions, the 
Final Optimum Solution (FOS) is for the lower percentage of hours 
where the error between the simulated and measured indoor air tem
perature exceeds 1 ◦C over the calibration period. 

Seven parameters are set to their previously calibrated values in the 
second calibration stage. Only the LAI and the vents discharge coeffi
cient are calibrated during this stage. As explained in previous sections, 
a new LAI value is calibrated for each period. The model is calibrated 
from October 10th to 31st, 2022. The Pareto front solutions are obtained 
after 70 simulations for the second calibration stage since only two 
parameters are calibrated (1650 possible solutions). 

In the third calibration stage, the model includes the control 
sequence, replacing the previously used input data for the status of the 
actuators of the vents and fans. The modeling of the opening of the vents 
and fan operation is described in Section A.6 of the Supplementary 
Material. The comparison covers the period from September 19th to 
October 10th, 2022. The only parameter calibrated during this period is 
the LAI. The calibration process extended over the minimal span of 50 
simulations (60 possible solutions). 

The calibrated model parameter values from the FOS in all three 
stages are presented in Table 7. These parameters remained constant 
throughout the simulation. The LAI values increased from 2.0 to 2.3 
between September and October, with a slight decrease to 1.8 in 
November. According to the greenhouse yield data, this is plausible as 
most crops are transplanted in September, with a portion harvested in 
October. 

These values appear to be well-distributed within the range, avoiding 
too many extremes, which confirms the appropriateness of the selected 
bounds [40]. The discharge coefficient of the vents is at the lower end of 

its range, suggesting that the insect-proof net mesh size is small and 
might be clogged. 

5. Results 

The results obtained following the calibration are first presented, 
followed by the model validation results. 

5.1. Calibration results 

The qualitative indoor temperature and relative humidity compari
son between measurements and simulation over all three calibration 
stages are shown in Figs. 6 and 7, respectively. 

Fig. 5. Global sensitivity indices of identified uncertain parameters.  

Table 7 
Values of the calibrated uncertain parameters.  

Calibration 
stage 

Parameter Units Lower 
bound 

Upper 
bound 

Value 

1 Building 
capacitance 

kJ.K− 1 1100 1900 1300 

Ground diffusivity m2.s− 1 1E-7 1E-6 1 E-7 
Cover internal 
convection 
coefficient factor 

– 0.5 2 1.5 

PE emissivity 
coefficient 

– 0.5 0.96 0.94 

Floor solar 
absorptivity 

– 0.6 0.96 0.72 

PE Solar 
Transmissivity 

– 0.6 0.96 0.80 

Solar-to-air 
fraction 

– 0 0.15 0.04 

LAI (November 
2022) 

m2
projected. 

m-2
cultivated 

0 6 1.8 

LAI (March 2023) m2
projected. 

m-2
cultivated 

0 6 1.4 

2 Vents discharge 
coefficient 

– 0.1 0.6 0.14 

LAI (October 2022) m2
projected. 

m-2
cultivated 

0 6 2.3 

3 LAI (September 
2022) 

m2
projected. 

m-2
cultivated 

0 6 2.0  
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5.1.1. Indoor air temperature 
The indoor air temperature, measured and simulated throughout all 

calibration stages, displays a similar pattern in the data most of the time. 
During the November calibration period, the prevailing overcast con
ditions led to minimal diurnal temperature fluctuations (Fig. 6(a)). On 
the contrary, the periods of September (Fig. 6(d)), October (Fig. 6(c) and 
(d)), and March (Fig. 6(b)) are characterized by sunnier conditions, 
facilitating the calibration of parameters related to solar radiation. The 
indoor temperature closely follows the fluctuation in outdoor tempera
ture and global irradiance. There is a variation in overestimating and 
underestimating the daytime temperatures, indicating that the calibra
tion process strives for equilibrium. The same behavior is observed 
during nighttime, with predicted temperatures sometimes over
estimated and sometimes underestimated. This suggests that it is not just 
one phenomenon that is not well modeled or omitted but instead arising 
from various sources of uncertainty, including parameter, model form, 
and observation uncertainty [15]. 

5.1.2. Indoor air relative humidity 
For the relative humidity, Fig. 7 presents the measured and simu

lated indoor air relative humidity across all the calibration stages, 
including the range of measurement uncertainty (shaded area). A 
discernible pattern persists, albeit less evident than the one observed for 
the indoor air temperature. Fig. 7(a) and (b) reveal disparities, with 
instances of both overestimation and underestimation. In the operating 
context of a greenhouse with uncontrollable parameters, predicting the 
humidity level becomes challenging [4]. During hotter periods when 
vents are frequently open (September and October), the simulated 
relative humidity aligns with measured data, as shown in Fig. 7(c) and 
(d). This follows the pattern of high relative humidity at night, 
decreasing during the day as the temperatures rise. Also, in Fig. 7(d), the 
simulated relative humidity is more accurate at the beginning of the 
period. Towards the end, there is an overestimation of relative humidity, 
which could be attributed to an overestimation of the LAI, which does 
not account for crop harvesting. The LAI value represents an average 

Fig. 6. Comparison of indoor air temperature between measurements and simulation results from (a) calibration stage 1 – Week 1; (b) calibration stage 1 – Week 2; 
(c) calibration stage 2; and (d) calibration stage 3. 
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value over the entire period, which is a simplification, overlooking crop 
growth and harvesting processes. According to the greenhouse yield 
data, this is plausible as most crops are transplanted in September and 
harvested in October. 

5.1.3. Overview of the multi-stage calibration 
The calibration criteria achieved with each stage FOS are presented 

in Table 8, providing a detailed breakdown of the performance in each 
calibration stage and the initial and calibrated model over all periods. 
The indoor air temperature and relative humidity simulations improved 

Fig. 7. Comparison of indoor air relative humidity between measurements and simulation results from (a) calibration stage 1 – Week 1; (b) calibration stage 1 – 
Week 2; (c) calibration stage 2; and (d) calibration stage 3. 

Table 8 
Hourly results for each of the calibration stages.  

Calibration stage Indoor air temperature Indoor air relative humidity Selection criteria 

RMSE 
(◦C) 

MBE 
(◦C) 

MAD 
(◦C) 

RMSE 
(%) 

MBE 
(%) 

MAD 
(%) 

1 ◦C Error (%) 2 ◦C Error 
(%) 

5 % 
Error 
(%) 

10 % 
Error 
(%) 

Initial model 2.9 1.3 9.8 8.5 − 2.7 29.8 48 33 14 4 
1 2.2 − 0.8 5.4 9.7 3.3 30.2 19 9 44 20 
2 1.5 0.4 4.5 7.2 4.4 27.7 29 15 50 9 
3 1.3 0.2 3.8 5.1 − 1.2 17.0 22 10 9 2 
Complete 1.6 − 0.01 6.8 8.3 − 1.0 44.9 24 13 19 5  
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from the initial model. The hourly root mean square error (RMSE) over 
56 days is reduced from 2.9 ◦C to 1.6 ◦C for the indoor temperature while 
slightly improving from 8.5 % to 8.3 % for the humidity. The predictions 
of the indoor environment conditions are more accurate in stages 2 and 
3, even though most parameters are calibrated during the first stage 
under different weather conditions and operating modes. This supports 
effective calibration of the parameters selected in the first and second 
calibration stages. 

Moreover, the increased accuracy of the predicted indoor tempera
ture and relative humidity compared to when the measured status of the 
actuators is provided confirms the successful implementation of the 
control sequence. Simulation errors are more critical when the input 
data forces the vent openings before the simulated temperature reaches 
the set point. 

Additional metrics found in the literature, such as the Coefficient of 
determination (R2) (equation (8)), the Coefficient of Variance of the 
Root Mean Square Error (CV-RMSE), and the Normalized Mean Bias 
Error (NMBE), are also tabulated (Table 9). Since there are no stan
dardized validation criteria, using these additional metrics enables a 
comparison of the model’s prediction with those of other models in the 
literature. 

R2( − ) = 1 −
∑n

i=1(ŷi − yi)
2

∑n
i=1(ŷi − yi)

2 (8)  

The calibration results meet the recommendation in ASHRAE Guideline 
14-2014 [38] for hourly calibration (R2 > 0.75; CV-RMSE < 30 %; 
NMBE < 10 %), except the R2 for the indoor air relative humidity during 
the first stage. Even the normalized metrics for the first calibration stage, 
where the average temperature of 7.8 ◦C does not capture the significant 
temperature variability over the period (min: − 5.7 ◦C and max: 22.9 ◦C), 
are within the recommended criteria. 

Globally, the results presented in Figs. 6 & 7, and Tables 8 & 9 
collectively demonstrate that the multi-stage calibration yielded satis
factory results across all periods for indoor air temperature and relative 
humidity. These results instill confidence that the calibrated parameters 
closely reflect real-world conditions and that the model accurately 
replicates observed thermal behavior. This level of accuracy and confi
dence justifies advancing to the validation stage. 

5.2. Validation results 

Following the multi-stage calibration, the calibrated model is vali
dated over two periods: (1) data from the preceding year (2021) for the 
unheated greenhouse, and (2) data, including the heating consumption, 
recorded over the whole operating season (October 2022 to March 
2023) for the minimally heated greenhouse. 

The validation period for the unheated greenhouse spanned 43 days 
in Autumn 2021, starting at the beginning of the harvest season in 
September and ending in the final days of October, as the use of thermal 
blankets typically begins after this period. The crop growth stages are 
assumed to be similar to those of 2022; hence, the previously calibrated 
LAI values are used. 

Fig. 8 compares the measured and calibrated model prediction of 

indoor air temperature (a) and the relative humidity (b) for the unheated 
greenhouse. The results show that the calibrated model has an overall 
high accuracy. However, discrepancies are observed during specific 
daytime periods since solar radiation gains influence daytime temper
atures. One potential explanation for these discrepancies is that the 
double polyethylene cover had a higher solar transmissivity coefficient 
in 2021, which degraded over time, previously observed in harsh 
weather conditions for polyethylene covers [41] and can annually 
decline by 2–4 % [42]. 

For the second validation, using data from the minimally heated twin 
greenhouse, a 44-kW air heater is added to maintain the indoor air 
temperature above the setpoints presented in Table 10. Section A.8 of 
the Supplementary Material details the air heater implementation. 

The validation period extended across 162 days of operation 
(October 2022 to March 2023). The crop growth stages, specified using 
the LAI, are assumed to be similar to those of the unheated greenhouse. 
Hence, the previously calibrated LAI values are used. For the periods not 
included as part of the calibration process, the LAI is fixed at 1.6, the 
average value over the November and March calibration periods. Fig. 9 
compares the measured and calibrated model prediction of (a) the in
door air temperature and (b) the relative humidity for the heated 
greenhouse for the week where there was a change in the heating set 
point from 6 ◦C to 2 ◦C. As illustrated in Fig. 9 (a), the indoor air tem
perature closely follows the heating set point during nighttime. Fig. 9 (b) 
shows that the model overestimates the indoor relative humidity during 
daytime periods. This discrepancy might be explained by the fixed LAI 
value used. 

Table 11 presents the statistical metrics for the calibrated greenhouse 
model, calculated using the complete calibration dataset, and for both 
validation periods, including the heating consumption for the second 
validation. The values for the initial models are those for the heated 
greenhouse from October 1st, 2022, to March 1st, 2023. Monthly 
heating consumption data are aggregated using a weather normalization 
technique and manually recorded measurements taken over irregular 
periods [43]. The heating consumption represents the amount of energy 
the air unit heater provides to maintain the required temperature in the 
greenhouse.The calibration improved the simulated indoor air temper
atures while ensuring the indoor relative humidity remained acceptable. 
For both validation periods, the RMSE over the indoor air temperature 
and relative humidity closely match reported data in the literature [7]. 
The results show a RMSE below 2 ◦C for temperature and below 10 % for 
relative humidity. However, a direct comparison may not be represen
tative due to disparities in validation periods and metrics. The metrics of 
calibrated value are similar to those obtained for the unheated and 
heated greenhouses, demonstrating the validity of the model. The in
door air relative humidity remains at the same acceptable accuracy 
level, close to the measurement accuracy of the sensor of 5 %; natural 
ventilation in the greenhouse results in the indoor humidity mirroring 
the outdoor levels. 

When comparing monthly heating consumption, the results are 
under the recommended range by ASHRAE Guideline 14–2014 [38]. 
The yearly measured and simulated heating consumption are 37.6 GJ 
and 38.9 GJ, respectively, which implies a relative error of +3.7 %. 
Fig. 10 shows the monthly heating consumption of the initial and 

Table 9 
Additional hourly statistical metrics for each of the calibration stages.  

Calibration stage Indoor air temperature (◦C) Indoor air relative humidity (%) 

Stage average CV-RMSE (%) NMBE 
(%) 

R2 (–) Stage average CV-RMSE (%) NMBE 
(%) 

R2 (–) 

Initial model 12.3 ◦C  23.9  11.0  0.64  85.7 %  9.9  − 3.2  0.68 
1 7.8 ◦C  28.1  − 10.7  0.88  86.8 %  11.2  3.8  0.24 
2 13.5 ◦C  11.4  2.7  0.92  80.3 %  8.9  5.5  0.81 
3 14.1 ◦C  9.0  1.1  0.94  88.1 %  5.7  − 1.4  0.88 
Complete 12.3 ◦C  13.2  − 0.01  0.92  85.7 %  9.7  − 1.2  0.76  
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calibrated model compared with the measured data. The calibrated 
model leads to good results in November and December, but the heating 
consumption is underestimated by 23 % in October and overestimated 
by 10 % in January and February. Ideally, the relative errors in monthly 

heating consumption should remain below 10 %. However, the simu
lation results effectively capture the subtle distinctions in monthly 
heating consumption between January and February (a 3 % gap), 
thereby reinforcing confidence in the trends observed in the obtained 
results. Furthermore, the observed variation in October is likely attrib
uted to low heating demands, with the system operating only 10 days 
throughout the month. A slight temperature overestimation during this 
period can potentially prevent the heating system from turning on. 

The calibration improved the predictions for the heating consump
tion. However, the initial model, which used parameters from the 
literature, appeared to underestimate the greenhouse’s heat loss, 

Fig. 8. Comparison of indoor air (a) temperature and (b) relative humidity between measurements and simulation results of the unheated greenhouse in 2021.  

Table 10 
Heating setpoints during the heated greenhouse validation period.  

Sequence Heating period Setpoint 

1 October 1st to November 21st 6 ◦C 
2 November 21st to February 28th 2 ◦C  

Fig. 9. Comparison of indoor air (a) temperature and (b) relative humidity between measurements and simulation results of the heated greenhouse for the week of 
20 to 27 November 2022. 
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resulting in lower heating consumption throughout all months, partic
ularly in October, November, and December. 

Ultimately, the statistical metrics and the trend comparison bolster 
confidence in the model’s applicability for future years under weather 
conditions like those prevailing during the validation process. 

6. Discussion 

This study aims to develop a small-scale greenhouse energy model 
using TRNSYS to provide reliable predictions for greenhouse indoor 
environment conditions and energy consumption to support future 
analysis. The model closely predicts the unheated and heated indoor 
environment conditions of the greenhouse. The RMSE of air temperature 
is lower than 2 ◦C, and the RMSE of relative humidity is lower than 10 %. 
These values are within the range of most greenhouse models [7]. 
Regarding heating consumption for the heated greenhouse, the monthly 
NMBE in model predictions (+3.7 %) is small, demonstrating that the 
model captures the heating profile, even in a minimally heated green
house. The monthly heating consumption accuracy is below the rec
ommended levels in building performance simulation [38]. 

The predictions of heating consumption could be further improved. 
The validation results are inconsistent compared to the calibration re
sults. There appears to be a misrepresentation of thermal interaction 
within the greenhouse during January and February. The presence of 
snow could explain this difference as it acts as an insulator for the bot
tom of the greenhouse, decreasing heat loss and infiltration. The con
ditions during the first calibration stage resemble those of the heating 
season, with lower temperatures and closed ventilation vents. However, 
extremely cold temperatures, limited sunlight hours, and substantial 
snowfall, characteristic of the winter in this area, are not accounted for. 
It suggests that the model might need to be calibrated over a typical 
winter period to identify more representative constant parameter values 
for all seasons. The lack of data during free-floating winter periods 
contributed to the observed overestimation. Maintaining constant pa
rameters throughout all seasons may not accurately reflect the dynamic 
nature of the system. It may be necessary to incorporate weather- 
dependent equations to adjust model parameters for improved 
representation. 

The model also exhibits a systematic error in simulating relative 
humidity. The observed discrepancy in simulated relative humidity 
compared to measured values could be attributed to the crop modeling 

approach. The crop model was initially developed for lettuce crops using 
data from plant factory conditions [44]. Therefore, its application under 
cold conditions, such as during nights with temperatures below 0 ◦C 
(March 6th to 7th), might not be appropriate, as it is used outside the 
conditions for which it was initially designed. It is worth noting that 
chilling injury from cold temperatures tends to affect the biological 
activity of crops [45]. Furthermore, the model parameter values are 
based on the lettuce experiments, potentially not accurately represent
ing the diverse varieties of leafy greens cultivated in the greenhouse. The 
crop model should be validated over a broader range of indoor envi
ronment conditions and crop variety. Despite accounting for the limi
tations inherent to the model development, the crop model performs 
effectively when combined with a calibration process. 

Compared to other greenhouse validation studies, the datasets used 
in this study are relatively long, lasting 43 days and 162 days. Ideally, 
validating a greenhouse energy model for annual energy analysis re
quires a complete year of data. However, reviews by Katzin et al. [7] and 
Beaulac et al. [9] revealed that greenhouse model validations often use 
considerably smaller datasets. Through extensive validation, various 
discrepancies in the model where identified, highlighting the impor
tance of an extended validation period that may uncover issues not 
apparent in a shorter timeframe. This suggests that short validation 
periods can show that the model is valid, even with discrepancies. It 
emphasizes that the model performances may vary across weather 
conditions and operating modes. The observed differences in simulated 
and measured heating consumption show the importance of having 
precise knowledge of the activities occurring within a greenhouse. 

One of the strengths of the study lies in the data used, which are 
sourced from a typical small-scale greenhouse in commercial operation. 
Katzin et al. [7] and Beaulac et al. [9] reviews also indicated that 
greenhouse model validations frequently rely on experimental green
house and research compartments data instead of commercially oper
ated greenhouses. The validation based on non-commercially operated 
greenhouses does not guarantee that the model will be applicable for 
assessing the performance of commercial greenhouses, including the 
associated operation uncertainties. In an operating greenhouse, in 
contrast to an experimental one where all operations are closely moni
tored, having a comprehensive understanding of ongoing operations is 
crucial. 

Nevertheless, despite the extensive validation conducted in this 
paper compared to existing literature, it relies on data measured at a 

Table 11 
Results of the validation of the greenhouse model.  

Validation data Indoor air temperature Indoor air relative humidity Heating consumption 

RMSE (◦C) MBE (◦C) 1 ◦C Error (%) RMSE (%) MBE (%) 5 % Error (%) NMBE (%) CV-RMSE (%) 

Initial model 2.4 1.5 48 7.3 2.2 30 − 18.6 20.0 
Calibrated 1.6 − 0.01 24 8.3 − 1.0 19 – – 
Unheated 1.8 − 0.5 18 5.3 1.5 18 – – 
Heated 1.9 0.5 29 8.4 3.4 32 3.7 9.3  

Fig. 10. Comparison of heating consumption between measurements and simulation results of the minimally heated greenhouse.  
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single site and with numerous parameters that had to be estimated and 
could not be directly measured. Using data from multiple greenhouses in 
different weather conditions and conducting a validation over an entire 
year could be used to evaluate further and improve the TRNSYS model. 
Extensive validation assures that the calibration does not merely 
compensate for modeling errors. 

The proposed calibration method attained satisfactory model pre
dictions, as reported results showed. The approach is time-consuming 
but proves worthwhile when applied to a typical greenhouse format 
that can be replicated and used for further analyses. In terms of 
computational power requirements, the sensitivity analysis demon
strated its effectiveness in reducing the number of parameters that 
needed adjustment, resulting in a smaller optimization domain, with the 
potential for the 8 ,000 ,000 ,000 possibilities to be even higher. 
Nevertheless, the calibration time could be optimized by selecting a 
higher sensitivity index criterion to include fewer sensitive parameters 
without affecting the results. 

The current calibration processes are typically ad-hoc, involving 
multiple manual iterations with user intervention based on expert 
judgment, lacking a well-defined, data-driven procedure. However, 
some literature studies have proposed methods for addressing calibra
tion issues. The proposed calibration method is well-detailed in this 
paper and replicable in other studies. While obtaining data for multi- 
stage calibration is not always feasible, single-stage MOGA is still 
recommended. 

Finally, key attributes of the model are its replicability and that it is 
developed in TRNSYS, where an important library of components is 
available, enabling the integration of various HVAC and renewable en
ergy systems. Including all the detailed modeling approaches available 
in TRNSYS and a crop hygrothermal interactions model, the model 
presents the current state-of-the-art practices in greenhouse energy 
modeling. 

7. Conclusions 

Considering the lack of extensively validated greenhouse energy 
models, this paper attempts to develop a detailed model using TRNSYS. 
The model included detailed energy modeling components available in 
TRNSYS and integrated a hygrothermal crop model. The TRNFLOW 
infiltration sub-model introduced a novel approach based on an on-site 
air leakage test. A sensitivity analysis was conducted to identify sensible 
parameters, followed by a multi-stage automated calibration method to 
calibrate the model’s uncertain parameters. The validation process was 
then conducted using two additional datasets to assess the applicability 
of the calibrated model. 

The case study was a typical small-scale ventilated greenhouse in 
Victoriaville, Canada. The comparison between the simulated and 
measured data during the multi-stage calibration process indicated that 
the model accurately replicated measured experimental conditions 
when the model parameters were adjusted to fit those indoor environ
ment conditions. Using the calibrated parameters, the greenhouse en
ergy model provided the same insight into the greenhouse environment 
conditions for the previous year in the same weather conditions. When 
assessing the model with data from a minimally heated twin greenhouse, 
the yearly heating consumption resulted in a relative error of 3.7 %. 

With this multi-purpose model, whose predictive capacity has been 
validated, numerous opportunities exist, such as analyzing various sce
narios for energy efficiency measures, renewable energy technologies, 
control algorithms, seeding schedules, subsidy applications, environ
mental policies, and regulations. The model can also study various 
performance metrics, including indoor environment conditions, energy 
consumption, carbon footprint, crop production, and operating costs. In 
a way, this project is a springboard to various possibilities aimed at 
developing greenhouse farming. In future studies, a plant growth model 
will be integrated to measure the productivity of the greenhouse and the 
influence of plant growth on energy consumption. 
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[28] R. Guzmán-Cruz, R. Castañeda-Miranda, J.J. García-Escalante, I.L. López-Cruz, 
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