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A B S T R A C T

Generalizing to out-of-distribution (OOD) data is a challenging task for existing deep learning approaches. This
problem largely comes from the common but often incorrect assumption of statistical learning algorithms that
the source and target data come from the same i.i.d. distribution. To tackle the limited variability of domains
available during training, as well as domain shifts at test time, numerous approaches for domain generalization
have focused on generating samples from new domains. Recent studies on this topic suggest that feature
statistics from instances of different domains can be mixed to simulate synthesized images from a novel domain.
While this simple idea achieves state-of-art results on various domain generalization benchmarks, it ignores
structural information which is key to transferring knowledge across different domains. In this paper, we
leverage the ability of humans to recognize objects using solely their structural information (prominent region
contours) to design a Structural-Aware Feature Stylization method for domain generalization. Our method
improves feature stylization based on mixing instance statistics by enforcing structural consistency across the
different style-augmented samples. This is achieved via a multi-task learning model which classifies original
and augmented images while also reconstructing their edges in a secondary task. The edge reconstruction
task helps the network preserve image structure during feature stylization, while also acting as a regularizer
for the classification task. Through quantitative comparisons, we verify the effectiveness of our method upon
existing state-of-the-art methods on PACS, VLCS, OfficeHome, DomainNet and Digits-DG. The implementation
is available at this repository.
. Introduction

Various recent studies (Hendrycks and Dietterich, 2019) have shown
he high sensitivity of deep learning models to domain shift, as well as
he significant drop in accuracy of such models when tested on out-
f-distribution (OOD) data. This is mainly due to the over-simplistic
ssumption of statistical learning algorithms, such as deep neural
etworks, that the training (source) and testing (target) data come
rom the same domain/dataset and that they follow the same inde-
endent and identically distribute (i.i.d.) distribution. In practice, this
ssumption may not hold, and ignoring the OOD nature of test data can
ead to catastrophic failure. The problem of domain generalization (DG)
as introduced (Blanchard et al., 2011) to learn domain shift without
aving access to samples of the target domain during training. In other
ords, the DG setup tries to train a model on related but distinct source
omains in such a way that the model can perform well on any other
nseen target domain at test time.

∗ Corresponding author at: LIVIA, ÉTS, Montreal, Quebec, Canada.
E-mail address: milad.cheraghalikhani.1@ens.etsmtl.ca (M. Cheraghalikhani).

1 These authors contributed equally to this work.

Early works on DG (Li et al., 2018c; Muandet et al., 2013; Li
et al., 2018b) are based on aligning the distributions of source do-
mains with the goal of learning a domain-invariant representation.
The motivation behind this technique is that features which are in-
variant to the source domains should also be robust to shifts in target
domains. Despite their initial success, these methods typically suffer
from over-fitting to source domains (Zhou et al., 2021a). Recently,
several DG approaches proposed to mitigate the limited number of
source domains in training, as well as the shift of target domains, by
generating samples from new synthetic domains. Based on this idea,
feature-based augmentation or stylization methods create samples by
transforming the latent representation of training examples so that
their semantic information (class label) remains the same but also
encode styles (e.g., textures, colors, etc.) that are different from those
of source domains. A simple yet powerful feature stylization method,
called MixStyle (Zhou et al., 2021b), mixes the feature statistics from
instances of different source domains to generate novel ones, and
then trains a model on the augmented set of samples. In Jeon et al.
(2021), this method is enhanced using a domain-aware supervised
https://doi.org/10.1016/j.cviu.2024.104016
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contrastive loss which minimizes the cosine distance between features
of same-class examples, regardless of their domains, while pushing
away same-domain examples from different classes. Although feature
mixing approaches like MixStyle achieve state-of-art performance on
various domain generalization benchmarks, it ignores the structural
information of images which is key to transferring knowledge across
different domains.

The method proposed in this paper is inspired by the natural abil-
ity of humans to recognize objects using only structural information
represented by the contours of prominent regions in the image. For
example, a child can recognize a dog from a simple, imperfect drawing
as well as from real images of the animal. Following this idea, we
design a Structure-Aware Feature Stylization method for DG which
improves feature stylization based on instance statistics by enforcing
structural consistency across different style-augmented samples. To-
ward this goal, our method leverages a multi-task learning model that
classifies original and style-augmented images while also reconstruct-
ing prominent edges in a secondary task. This reconstruction task helps
the encoder preserve important structural information during feature
stylization and acts as a regularization prior for the classification task.
The contributions of our work are the following:

1. We propose a novel feature stylization method for DG which
enforces both semantic information (class labels) and structural
information (prominent edges) consistency in style-augmented
features via a multi-task learning model.

2. Using the proposed method, we shows a robust and consis-
tent improvement in five popular DG benchmarks for classifi-
cation, PACS (Li et al., 2017), VLCS (Fang et al., 2013), Of-
ficeHome (Venkateswara et al., 2017), DomainNet (Peng et al.,
2019), and Digits-DG (Zhou et al., 2020b), outperforming several
recent DG approaches.

2. Related works

A wide range of deep learning methods have been proposed to
tackle the problem of DG. Recent approaches for this task can be
grouped in three broad categories (Zhou et al., 2021a): Data Aug-
mentation based methods, Self-Supervised Learning based methods and
isentangled Representation Learning based methods.
Data Augmentation (DA) In supervised learning, DA is commonly

sed to regularize the training of over-parameterized neural networks
o avoid over-fitting. This well-known technique uses a given set of
ransformations to augments original training pairs so that their label
s preserved. In DG, since the target domain data is not accessible in
raining, the transformation is applied to simulate domain shifts. This
an be achieved in three different ways: (1) learnable augmentation,
2) off-the-shelf style transfer, and (3) feature-based augmentation. The
irst approach uses an augmentation network to synthesize images from
ource samples so that the joint distribution of synthesized pairs is
ifferent from the one of existing source domains. The classifier is
hen trained with both source images and synthesized images. Based on
his idea, the Deep Domain-Adversarial Image Generation (DDAIG) (Zhou
t al., 2020a) method trains a domain transformation network such
hat the class label of transformed images can be recognized but not
heir domain label. Leveraging a similar approach, ADAGE (Carlucci
t al., 2019b) generates images from an agnostic synthetic domain
ith a Hallucinator network so that the domain cannot be recovered

rom the augmented image (pixels) nor its extracted features. Learning
o Augment by Optimal Transport (L2A-OT) (Zhou et al., 2020b) is
nother learnable augmentation method that generates pseudo-domain
mages by maximizing the distance between source domains and the
ew pseudo-domains, as measured by optimal transport (OT). Cycle-
onsistency and classification losses are used to preserve the semantics
nd global structure of generated images. Off-the-shelf style transfer
pproaches for DG exploit the recent advances in style transfer (Huang

nd Belongie, 2017) and try to map input images from one domain s

2

o another domain (Somavarapu et al., 2020) or even to external
tyles (Yue et al., 2019). As an example, the method in Somavarapu
t al. (2020) uses a transformation network based on AdaIN (Huang and
elongie, 2017) and, for each source domain, maps an input image to
he target style of randomly selected domain. In contrast to the above-
entioned approaches, which mainly operate on pixels, feature-level

ugmentation (Mancini et al., 2020; Zhou et al., 2021b) are motivated
y the fact that style-related information is captured in statistics of
NN features. MixStyle (Zhou et al., 2021b) introduced a plug-and-play
odule, inserted between CNN layers, that mixes the feature statistics

f two instances with a random convex weight to simulate new styles.
he Feature Stylization and Domain-Aware Contrastive Learning (Jeon
t al., 2021) approach instead supposes that instance-wise statistics
ome from a normal distribution characterizing the batch. They then
ompute the batch-wise statistics and sample a new distribution from
hese. Original features are decomposed into high-frequency and low-
requency components, and feature stylization is only applied on the
ow frequency one. To encourage semantic consistency, a loss maximiz-
ng the agreement between the model prediction for the original and
ugmented feature maps is also proposed. Unlike this approach, which
xplicitly adds high-frequency features over stylized low-frequency
nes, our method enforces structural consistency in a more flexible way
sing a secondary reconstruction task.
Self-Supervised Learning (SSL) Methods based on SSL seek to

ind a good representation by solving a pretext task that does not
equire any label (e.g., predicting the transformation applied to the
mage Gidaris et al., 2018 or whether two transformed images come
rom the same original one Grill et al., 2020). The driving hypothesis
f such technique is that the learned representation captures generic
ut useful features which help learn a downstream task, typically
n a fine-tuning step. In DG, SSL methods help avoid over-fitting to
omain-specific biases. As an example, Carlucci et al. (2019a) trained
n encoder to solve a Jigsaw puzzle problem in addition to a regular
lassification task, so that the network can learn features that are more
eneralizable across domains. In Bucci et al. (2021), authors combined
igsaw puzzle solving and rotation prediction tasks to increase the
obustness of encoded features to domain shift. Similarly, the DG
pproach in Albuquerque et al. (2020) combines rotation prediction
ith the task of predicting responses to Gabor filter banks to improve
eneralization. While our method also reconstructs prominent edges of
he image using a separate task, we do so in a consistency loss, jointly
ptimized with the classification loss, which preserves the structure of
mages for different feature-based augmentations.
Distangled Representation Learning (DRL) Instead of forcing

he model to learn a domain-invariant representation, DRL methods
plit it in a domain-specific part and a domain-agnostic part, the latter
ne used to extract domain-invariant features. In Ilse et al. (2019),
he authors train three independent encoders, the first for domain-
pecific features, the second for class-specific features, and the third for
apturing residual variations. The representations of these encoders are
sed to reconstruct the original input via a Variational Auto Encoder
VAE). Two adversarial classifiers, trying to predicting the domain and
lass of samples from their representation, are added to disentangle the
orresponding features.

. Method

Our framework follows a multi-task learning approach that im-
roves feature stylization based on instance statistics by enforcing
tructural consistency across different style-augmented samples. In this
ection, we first describe the baseline setup of multi-source domain gen-
ralization for image classification, then introduce our novel structure-
ware feature stylization method.

.1. Problem definition

For a classification task, denoting the input space as  and the target

pace as  , a domain is defined as the joint distribution of 𝑃𝑋𝑌 on
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Fig. 1. The overall architecture of the proposed method.
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× . For a specific domain, we denote as 𝑃𝑋 the marginal distribution
on  , 𝑃𝑌 |𝑋 the posterior distribution of  given 𝑋, and 𝑃𝑋|𝑌 the
class-conditional distribution of  given 𝑌 . In the multi-source domain
generalization setup, we have access to 𝑀 similar but distinct source
domains,  = {𝑆𝑖}𝑀𝑖=1. In general, we assume that the joint distribution
of each domain 𝑃 (𝑖)

𝑋𝑌 is different from that of others, 𝑃 (𝑖)
𝑋𝑌 ≠ 𝑃 (𝑖′)

𝑋𝑌 when
≠ 𝑖′. Each source domain consists of 𝑁𝑖 samples, 𝑆𝑖 = {(𝑥(𝑖)𝑗 , 𝑦(𝑖)𝑗 )}𝑁𝑖

𝑗=1.
he target domain, whose joint distribution is also different from source
omain ones, is denoted by  = {𝑥𝑗 }

𝑁𝑇
𝑗=1. The labels for the target

omain are unknown and need to be predicted. The goal is to find the
earning function 𝑓 ∶  →  estimating 𝑃𝑌 |𝑋 , by minimizing a given
oss function  ∶  ×  → [0,∞].

.2. Structure-aware feature stylization

The proposed framework for Domain Generalization is illustrated
n Fig. 1. Our Structure-Aware Feature Stylization model is added on
op of a baseline CNN classifier, composed of an encoder followed by a
lassification head. It boosts the classifier’s ability to generalize to new
omains by mixing the feature statistics of source images and forcing
he edge reconstruction of style-augmented samples to be similar to the
rue edges of original images. As baseline classifier, we train a neural
etwork 𝑓 ∶  → [0, 1]𝐾 which consists of a feature extractor 𝑔(⋅)
ade of multiple convolutional layers, followed by a classifier ℎ(⋅) with
single fully-connected layer and softmax output. Here, 𝐾 = || is

he number of classes, which is same for all domains. We train 𝑓 by
inimizing the cross-entropy loss,

𝑐𝑒 = − 1
𝑀

𝑀
∑

𝑖=1

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

𝐾
∑

𝑘=1
𝑦(𝑖)𝑗,𝑘 log 𝑓𝑘

(

𝑥(𝑖)𝑗
)

, (1)

here 𝑦(𝑖)𝑗,𝑘 = 1 if the class label of 𝑥(𝑖)𝑗 is 𝑘, else 0. The next sections
etail the feature stylization and structural consistency loss components
f our model.

.2.1. Feature stylization
While any other technique can be employed, our feature-based

ugmentation method is based on MixStyle (Zhou et al., 2021b). This
pproach is inspired by the adaptive instance normalization (AdaIN)
ethod for style transfer (Huang and Belongie, 2017), which replaces

eature statistics of a content image with statistics of a style image. For
eature stylization, we choose two random instances (𝑥, 𝑥̃) in a batch
nd compute feature statistics as

𝛾𝑚𝑖𝑥 = 𝛼𝜎(𝑥) + (1 − 𝛼)𝜎(𝑥̃)

𝑚𝑖𝑥 = 𝛼𝜇(𝑥) + (1 − 𝛼)𝜇(𝑥̃)
(2)

here 𝛼 are instance-wise weights sampled from the Beta distribution,
∼ 𝐵𝑒𝑡𝑎(0.1, 0.1), and 𝜇(𝑥), 𝜎(𝑥) are the mean and standard deviation
3

omputed across the spatial dimension within each channel of each
nstance, as follows:

𝑏,𝑐 (𝑥) = 1
𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝑥𝑏,𝑐,ℎ,𝑤

𝜎𝑏,𝑐 (𝑥) =

√

√

√

√
1

𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1

(

𝑥𝑏,𝑐,ℎ,𝑤 − 𝜇𝑏,𝑐 (𝑥)
)2

(3)

Finally, the mixed feature statistics are obtained as

𝜙(𝑥) = 𝛾𝑚𝑖𝑥
𝑥 − 𝜇(𝑥)
𝜎(𝑥)

+ 𝛽𝑚𝑖𝑥. (4)

As it requires no explicit image synthesis mechanism and can be applied
to any mini-batch training algorithm, this feature stylization method is
simple to design and implement. Yet, as shown in our experimental
results, it yields state-of-art performance when combined with the
proposed structural consistency loss.

3.2.2. Structural consistency loss
The human vision system strongly relies on structural cues to locate

and identify objects in a scene. From a young age, we can easily recog-
nize a broad range of objects from very sparse structural information,
for instance, a sketch with a few lines. Usually, these objects can still
be recognized when colors or textures are modified in complex ways
(e.g., changing the color of a giraffe from yellow to green).

Based on this idea, we define a loss to enforce structural consistency
between source images and their style-augmented version. Let 𝑥 be a
training image and 𝑥 = 𝜙(𝑥) its stylized version, where 𝜙(⋅) is a feature-
based augmentation function from a set . We extract the structural
information in 𝑥 using a Canny edge detector (Canny, 1986) which
comprises five steps: (1) removing the noise with a Gaussian filter, (2)
finding intensity gradients in the image, (3) using minimum cut-off
suppression of gradient magnitudes to thin out edges, (4) applying a
double threshold to remove spurious edge responses, (5) tracking edges
by hysteresis to suppress weak edges that are not connected to strong
ones. Compared to simple filter-based detectors, the Canny detector
produces a sparser edge response that better corresponds to the true
contours of objects in the image (Canny, 1986).

Denote as 𝑧 ∈ [0, 1]𝑊 ×𝐻 the edge map produced in an unsupervised
manner by the detector for an image 𝑥 ∈ R𝑊 ×𝐻 . To ensure that
structural information is preserved for different feature-based augmen-
tations 𝜙, we add a decoder 𝑑(⋅) that reconstructs 𝑧 from the output
f the feature extractor, 𝑔(𝑥). Let 𝑧𝜙(𝑥) = 𝑑

(

𝜙(𝑔(𝑥))
)

be the predicted
dge map for features stylized using transformation 𝜙. Our structural
onsistency loss is defined as

𝑠𝑐 = 1
𝑀

𝑀
∑

𝑖=1

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
E𝜙∼

[

𝓁
(

𝑧, 𝑧𝜙(𝑥
(𝑖)
𝑗 )

)

]

, (5)

where 𝓁(⋅) is a combination of Dice loss (Sudre et al., 2017) and
binary cross-entropy. We note that the edge reconstruction should also
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Table 1
Ablation study for our method on the PACS dataset, reporting the mean and standard deviation across three runs.

Method Accuracy (%)

Art Cartoon Photo Sketch Avg

Baseline 80.49 ±0.71 74.84 ±0.52 95.89 ±0.37 68.54 ±0.91 79.94
Only feature stylization 84.42 ±0.79 78.65 ±0.64 96.27 ±0.08 75.66 ±0.03 83.75
Only edge reconstruction 79.23 ±1.27 78.85 ±0.29 93.35 ±0.73 79.26 ±0.99 82.67

Both (Ours) 85.53 ±0.14 79.89 ±0.97 96.75 ±0.45 82.28 ±1.04 86.11
Table 2
Average accuracy of our method for the Sketch class of the PACS dataset, using different
values of hyper-parameters 𝜆 and 𝑝. Reported values are the mean and standard
deviation across 3 runs.
𝜆 𝑝

0.1 0.3 0.5 0.8

0.01 81.52 ±1.16 80.57 ±0.69 81.49 ±0.47 81.61 ±0.75
0.05 80.90 ±1.37 80.21 ±1.26 81.16 ±0.26 82.28 ±1.04
0.1 79.94 ±1.27 82.16 ±1.06 81.72 ±0.70 80.54 ±0.59
0.4 80.92 ±0.89 80.55 ±1.09 80.90 ±1.22 80.88 ±0.52
1.0 79.66 ±1.40 80.31 ±0.87 79.83 ±0.48 80.07 ±0.80

be accurate for the original images. To account for this, we define a
hyper-parameter 𝑝 ∈ [0, 1]. Then, with probability 𝑝, the feature trans-
formation function is drawn randomly from  and, with probability
1 − 𝑝, the identity function is used for 𝜙 (no stylization). Using a value
of 𝑝 = 0 thus encourages the features of source domains to encode struc-
tural information without explicitly considering their generalizability to
new domains, similar to the SSL approach in Albuquerque et al. (2020).

The structural consistency loss is optimized jointly with the classi-
fication loss, using the following total loss

𝑡𝑜𝑡 = 𝑐𝑒 + 𝜆𝑠𝑐 (6)

where hyper-parameter 𝜆 controls the trade-off between the two loss
terms.

4. Experimental setup

4.1. Datasets and evaluation

We validate our method using five popular DG benchmarks for
classification, PACS (Li et al., 2017), VLCS (Fang et al., 2013), Of-
ficeHome (Venkateswara et al., 2017), DomainNet (Peng et al., 2019),
and Digits-DG (Zhou et al., 2020b). PACS contains 9991 images of 7
classes belonging to four different domains, 𝑑 ∈ {Photo, Art, Cartton,
Sketch}. VLCS (Fang et al., 2013) is comprised of four different do-
mains, 𝑑 ∈ {Caltech101, LabelMe, SUN09, VOC2007}, five different
classes, and 10,729 different photos. OfficeHome (Venkateswara et al.,
2017) includes four domains, 𝑑 ∈ {Art, Clipart, Product, Real}, 65
lasses, and a total of 15,588 photos. DomainNet has 6 domains,
∈ {Clipart, Infograph, Painting, Quickdraw, Real, Sketch}, 345 classes

nd 586,575 photos. Digits-DG consists of four different domains,
amely MNIST (LeCun et al., 1998), MNIST-M (Ganin and Lempitsky,
015), SVHN (Netzer et al., 2011) and SYN (Ganin and Lempitsky,
015). In this dataset, images of different domains vary significantly
n terms of font style, color and background, making it a highly
hallenging benchmark for out-of-distribution scenarios.

We follow a leave-out-one-domain strategy to evaluate performance
or these datasets, where three domains are selected for training and
he remaining one is used for testing. The final results correspond to
he average accuracy calculated across the four different test domains.

.2. Implementation details

For our experiments, depending on the dataset, we use different
odel architectures and data augmentations. Specifically, for PACS
4

and Digits-DG, we employ a ResNet-18 model, while for the more
challenging VLCS, OfficeHome, and DomainNet datasets, due to their
pronounced domain shifts and size, we opt for ResNet-50 as our back-
bone. The feature stylization block is incorporated after the initial two
residual blocks of the encoder. For decoding, we employ residual blocks
similar to the encoder but use transposed convolution layers in lieu of
down-sampling layers. At test time, the decoder is omitted, retaining
only the encoder and classification head for inference.

During training, for all datasets, we apply random cropping and
horizontal flipping as transformations. Additionally, for VLCS, Office-
Home, and DomainNet, we used ColorJitter, RandomGrayScaling, and
ColorNormalizing transformations, following by the approaches in Do-
mainBed (Gulrajani and Lopez-Paz, 2020). All our models are optimized
using Stochastic Gradient Descent (SGD) with a momentum of 0.9
and weight decay of 0.0005, allocating 20% of the training data for
validation.

5. Results

We start by analyzing the proposed method by performing ablation
studies and evaluating the impact of varying its hyper-parameters. We
then provide visualization examples showing the ability of our method
to preserve structural information across different feature-based aug-
mentations. Finally, we compare our method against state-of-the-art
approaches for DG and show its superior performance.

5.1. Ablation and parameter impact studies

We conduct an ablation study on the PACS dataset, using the
ResNet-18 backbone, to evaluate the respective contribution to per-
formance of the structural consistency loss and feature stylization
components of our model. Four ablation variants are compared: the
Baseline model where these two components are disabled, the model
using only feature stylization (𝜆 = 0), the model with the edge recon-
struction task but no feature stylization (𝑝 = 0), and the proposed model
combining both components.

As reported in Table 1, both the feature stylization and the edge
reconstruction task yield significant improvements compared to the
Baseline, when used by themselves. Using only feature stylization in-
creases the average accuracy by 3.81% on PACS. Similarly, adding edge
reconstruction without any feature-based augmentation raises average
accuracy by 2.73%.

Not surprisingly, we observe that improvements brought by edge re-
construction is highest for domains with strong structural information,
such as the Cartoon (improvement of 4.01%) and Sketch (improve-
ment of 10.72%) domains. Additionally, improvements compared to
using only feature stylization or edge reconstruction are statistically
significant with p < 0.05 based on a paired t-test.

Next, we study the impact on performance of two important hyper-
parameters, 𝜆 and 𝑝, respectively controlling the weight of the struc-
tural consistency loss of Eq. (5) and the ratio of samples on which
feature stylization is applied. Table 2 shows our method’s accuracy for
the Sketch domain of PACS using different values of hyper-parameters
𝜆 and 𝑝. As can be seen, our method gives a good accuracy for a wide
range of values, but generally works well with lower 𝜆 and higher 𝑝
values.
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Table 3
Comparison of our method with other state-of-the-art (SOTA) methods across three datasets: PACS (using Resnet-18 as the backbone), and
VLCS and DomainNet (using Resnet-50 as the backbone). The table also provides the average performance across the three datasets. For other
methods, results for PACS, are sourced from Kim et al. (2021); results for VLCS, OfficeHome and DomainNet, they are sourced from Cha et al.
(2021).

Algorithm PACS VLCS OfficeHome DomainNet Avg.

InfoDropa (Shi et al., 2020) 82.2 – – – –
EISNeta (Wang et al., 2020) 82.2 – – – –
L2A-OTa (Zhou et al., 2020b) 82.8 – – – –
DSONa (Seo et al., 2020) 85.1 – – – –
pAdaINa (Nuriel et al., 2021) 82.5 – – – –
FSDCLa (Jeon et al., 2021) 85.9 – – – –
DMG (Chattopadhyay et al., 2020) 81.5 – – 43.6 –
MetaReg (Balaji et al., 2018) 81.7 – – 43.6 –
mDSDI (Bui et al., 2021) – 79.0 69.2 42.8 –
MMD (Li et al., 2018b) 84.6 77.5 66.4 23.4 63.0
Mixstyle (Zhou et al., 2021b) 83.7 77.9 60.4 34.0 64.0
IRM (Arjovsky et al., 2019) 83.5 78.6 64.3 33.9 65.1
GroupDRO (Sagawa et al., 2019) 84.4 76.7 66.0 33.3 65.1
ARM (Zhang et al., 2021) 85.1 77.6 64.8 35.5 65.8
VREx (Krueger et al., 2021) 84.9 78.3 66.4 33.6 65.8
CDANN (Li et al., 2018d) 82.6 77.5 65.7 38.3 66.0
DANN (Ganin et al., 2016) 83.6 78.6 65.9 38.3 66.6
RSC (Huang et al., 2020) 85.2 77.1 65.5 38.9 66.7
MTL (Blanchard et al., 2021) 84.6 77.2 66.4 40.6 67.2
Mixup (Yan et al., 2020) 84.6 77.4 68.1 39.2 67.3
MLDG (Li et al., 2018a) 84.9 77.2 66.8 41.2 67.5
ERM (Vapnik, 1998) 85.5 77.3 66.5 40.9 67.6
SagNet (Nam et al., 2021) 86.3 77.8 68.1 40.3 68.1
CORAL (Sun and Saenko, 2016) 86.2 78.8 68.7 41.5 68.8
SelfRegb (Kim et al., 2021) 86.5 77.8 67.9 43.1 68.8
SWAD (Cha et al., 2021) 82.9 79.1 70.6 46.5 69.8
DNAb (Chu et al., 2022) 83.1 79.0 71.2 47.2 70.1

Ours 86.1 80.7 70.2 46.1 71.0

a Methods marked are sourced from Jeon et al. (2021).
b Results for methods marked are sourced from their original paper.
Table 4
Comparison to the state-of-art on the Digits-DG dataset, reporting the mean accuracy and standard deviation across three runs.
Source: Results of other methods are taken from Zhou et al. (2021b).

Accuracy (%)

Method MNIST MNIST-M SVHN SYN Avg

Baseline 95.8 58.8 61.7 78.6 73.7
JiGen (Carlucci et al., 2019a) 96.5 61.4 63.7 74.0 73.9
CCSA (Motiian et al., 2017) 95.2 58.2 65.5 79.1 74.5
MMD-AAE (Li et al., 2018b) 96.5 58.4 65.0 78.4 74.6
CrossGrad (Shankar et al., 2018) 96.7 61.1 65.3 80.2 75.8
L2A-OT (Zhou et al., 2020b) 96.7 63.9 68.6 83.2 78.1
MixStyle (Zhou et al., 2021b) 96.5 63.5 64.7 81.2 76.5
SWADa (Cha et al., 2021) 97.30 ±0.17 61.36 ±0.76 63.81 ±0.94 87.24 ±0.31 77.43
DNAa (Chu et al., 2022) 97.46 ±0.05 62.41 ±0.63 62.77 ±1.16 87.75 ±0.92 77.60

Ours 98.10 ±0.16 65.12 ±0.22 71.29 ±0.13 91.24 ±0.06 81.44

a Methods were evaluated over three runs using the same backbone as in the original implementation of MixStyle.
.2. Edge reconstruction analysis

We demonstrate that our consistency loss helps preserve structural
nformation by comparing the true edge map of a non-stylized image
o the reconstructed output of the same image after feature stylization.
s shown in Fig. 2, the quality of reconstruction increases with higher
alues of hyper-parameter 𝜆, since more importance is then given

to the edge reconstruction task. Although small differences in the
reconstructed edge map are observed across different augmentations,
the outputs are globally consistent.

5.3. Comparison to the state-of-the-art

We present a detailed comparison of our method with leading
domain generalization approaches in Table 3 for datasets PACS, VLCS,
5

OfficeHome, DomainNet, and their average. Additionally, our results
on the Digits-DG dataset are provided in Table 4.

For the Digits-DG dataset, we adopted the experimental setup
from Zhou et al. (2021b) to ensure a fair comparison.

Our results indicate that while our approach may not always rank
first for every dataset, it demonstrates stable and strong performance
across varied domain shifts. For example, our method handles changes
in style in datasets like PACS and DomainNet and also could adjusts
to different environments and contexts in datasets such as VLCS and
OfficeHome. As a result, our method achieves the best average accuracy
when compared to other models.

In our comparison, we included various domain generalization tech-
niques ranging from data augmentation methods like L2A-OT (Zhou
et al., 2020b), pAdaIn (Nuriel et al., 2021), and Mixstyle (Zhou et al.,
2021b) to regularization approaches like RSC (Huang et al., 2020).
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Fig. 2. Comparison of decoder output for original input and 4 random feature stylized
input when model trained with different 𝜆 and 𝑝 = 0.5 on Sketch as target domain.

These comparisons further highlight the consistent performance of our
method across different challenges and benchmarks.

6. Conclusion

In this paper, we proposed a novel approach for domain generaliza-
tion based on structure-aware feature stylization. Our approach enables
the network to simulate domain shift in the latent representation by
mixing instance-wise statistics of features in the encoder. It preserves
structural information across different feature-based augmentations us-
ing a consistency loss that imposes reconstructed edge maps of stylized
images to be similar to the true edges of the original, non-stylized ones.
Experimental results showed that our multi-task setup regularizes the
network by exploiting domain-invariant cues related to structure in the
representation. Consequently, the classifier trained with our structure-
aware stylization framework can better generalize to unseen domains.
Our results also demonstrated the outstanding performance of our
method compared to state-of-art approaches for DG, in particular for
large domain shifts where preserving structural information is crucial.

CRediT authorship contribution statement

Milad Cheraghalikhani: Conceptualization, Methodology, Soft-
are, Writing – original draft. Mehrdad Noori: Conceptualization,

Methodology, Software, Writing – original draft. David Osowiechi:
Software, Writing – review & editing. Gustavo A. Vargas Hakim:
Software, Visualization, Writing – review & editing. Ismail Ben Ayed:
Supervision. Christian Desrosiers: Supervision, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

we have shared the link to our code repository in supplementary
material document.
6

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cviu.2024.104016.

References

Albuquerque, I., Naik, N., Li, J., Keskar, N., Socher, R., 2020. Improving out-of-
distribution generalization via multi-task self-supervised pretraining. arXiv:2003.
13525 [cs].

Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D., 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Balaji, Y., Sankaranarayanan, S., Chellappa, R., 2018. Metareg: Towards domain
generalization using meta-regularization. Adv. Neural Inf. Process. Syst. 31.

Blanchard, G., Deshmukh, A.A., Dogan, Ü., Lee, G., Scott, C., 2021. Domain
generalization by marginal transfer learning. J. Mach. Learn. Res. 22 (1), 46–100.

Blanchard, G., Lee, G., Scott, C., 2011. Generalizing from several related classification
tasks to a new unlabeled sample. In: Advances in Neural Information Processing
Systems, vol. 24, Curran Associates, Inc..

Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F.M., Caputo, B., Tommasi, T., 2021.
Self-supervised learning across domains. arXiv:2007.12368 [cs].

Bui, M.-H., Tran, T., Tran, A., Phung, D., 2021. Exploiting domain-specific features to
enhance domain generalization. Adv. Neural Inf. Process. Syst. 34, 21189–21201.

Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. (6), 679–698.

Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T., 2019a. Domain gen-
eralization by solving jigsaw puzzles. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Carlucci, F.M., Russo, P., Tommasi, T., Caputo, B., 2019b. Hallucinating agnostic images
to generalize across domains. In: 2019 IEEE/CVF International Conference on
Computer Vision Workshop. ICCVW, pp. 3227–3234. http://dx.doi.org/10.1109/
ICCVW.2019.00403.

Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y., Park, S., 2021. SWAD:
Domain generalization by seeking flat minima. Adv. Neural Inf. Process. Syst. 34,
22405–22418.

Chattopadhyay, P., Balaji, Y., Hoffman, J., 2020. Learning to balance specificity and
invariance for in and out of domain generalization. In: European Conference on
Computer Vision. Springer, pp. 301–318.

Chu, X., Jin, Y., Zhu, W., Wang, Y., Wang, X., Zhang, S., Mei, H., 2022. DNA: Domain
generalization with diversified neural averaging. In: International Conference on
Machine Learning. PMLR, pp. 4010–4034.

Fang, C., Xu, Y., Rockmore, D.N., 2013. Unbiased metric learning: On the utilization
of multiple datasets and web images for softening bias. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 1657–1664.

Ganin, Y., Lempitsky, V., 2015. Unsupervised domain adaptation by backpropagation.
In: International Conference on Machine Learning. PMLR, pp. 1180–1189.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marc-
hand, M., Lempitsky, V., 2016. Domain-adversarial training of neural networks. J.
Mach. Learn. Res. 17 (19), 1–35.

Gidaris, S., Singh, P., Komodakis, N., 2018. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al., 2020. Bootstrap your own
latent-a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst.
33, 21271–21284.

Gulrajani, I., Lopez-Paz, D., 2020. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434.

Hendrycks, D., Dietterich, T., 2019. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv:1903.12261 [cs, stat].

Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive
instance normalization. arXiv:1703.06868 [cs].

Huang, Z., Wang, H., Xing, E.P., Huang, D., 2020. Self-challenging improves cross-
domain generalization. In: European Conference on Computer Vision. Springer, pp.
124–140.

Ilse, M., Tomczak, J.M., Louizos, C., Welling, M., 2019. DIVA: Domain invariant
variational autoencoders. arXiv:1905.10427 [cs, stat].

Jeon, S., Hong, K., Lee, P., Lee, J., Byun, H., 2021. Feature stylization and domain-
aware contrastive learning for domain generalization. In: Proceedings of the 29th
ACM International Conference on Multimedia. pp. 22–31.

Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J., 2021. Selfreg: Self-supervised con-
trastive regularization for domain generalization. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9619–9628.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Le Priol, R.,
Courville, A., 2021. Out-of-distribution generalization via risk extrapolation (rex).
In: International Conference on Machine Learning. PMLR, pp. 5815–5826.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2324.

Li, Y., Gong, M., Tian, X., Liu, T., Tao, D., 2018c. Domain generalization via conditional
invariant representation. arXiv:1807.08479 [cs, stat].

https://doi.org/10.1016/j.cviu.2024.104016
http://arxiv.org/abs/2003.13525
http://arxiv.org/abs/2003.13525
http://arxiv.org/abs/2003.13525
http://arxiv.org/abs/1907.02893
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb3
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb3
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb3
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb4
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb4
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb4
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb5
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb5
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb5
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb5
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb5
http://arxiv.org/abs/2007.12368
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb7
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb7
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb7
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb8
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb8
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb8
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb9
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb9
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb9
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb9
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb9
http://dx.doi.org/10.1109/ICCVW.2019.00403
http://dx.doi.org/10.1109/ICCVW.2019.00403
http://dx.doi.org/10.1109/ICCVW.2019.00403
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb11
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb11
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb11
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb11
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb11
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb12
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb12
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb12
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb12
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb12
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb13
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb13
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb13
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb13
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb13
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb14
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb14
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb14
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb14
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb14
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb15
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb15
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb15
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb16
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb16
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb16
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb16
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb16
http://arxiv.org/abs/1803.07728
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb18
http://arxiv.org/abs/2007.01434
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1703.06868
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb22
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb22
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb22
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb22
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb22
http://arxiv.org/abs/1905.10427
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb24
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb24
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb24
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb24
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb24
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb25
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb25
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb25
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb25
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb25
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb26
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb26
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb26
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb26
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb26
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb27
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb27
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb27
http://arxiv.org/abs/1807.08479


M. Cheraghalikhani, M. Noori, D. Osowiechi et al. Computer Vision and Image Understanding 244 (2024) 104016
Li, H., Pan, S.J., Wang, S., Kot, A.C., 2018b. Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 5400–5409.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D., 2018d. Deep domain
generalization via conditional invariant adversarial networks. In: Proceedings of
the European Conference on Computer Vision. ECCV, pp. 624–639.

Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M., 2017. Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 5542–5550.

Li, D., Yang, Y., Song, Y.-Z., Hospedales, T., 2018a. Learning to generalize: Meta-
learning for domain generalization. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 32.

Mancini, M., Akata, Z., Ricci, E., Caputo, B., 2020. Towards recognizing unseen
categories in unseen domains. arXiv:2007.12256 [cs].

Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G., 2017. Unified deep supervised
domain adaptation and generalization. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 5715–5725.

Muandet, K., Balduzzi, D., Schölkopf, B., 2013. Domain generalization via invariant
feature representation. arXiv:1301.2115 [cs, stat].

Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D., 2021. Reducing domain gap by reducing
style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 8690–8699.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., 2011. Reading digits
in natural images with unsupervised feature learning.

Nuriel, O., Benaim, S., Wolf, L., 2021. Permuted AdaIN: reducing the bias towards
global statistics in image classification. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9482–9491.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B., 2019. Moment matching
for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 1406–1415.

Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P., 2019. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731.

Seo, S., Suh, Y., Kim, D., Kim, G., Han, J., Han, B., 2020. Learning to optimize
domain specific normalization for domain generalization. In: European Conference
on Computer Vision. Springer, pp. 68–83.

Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S., 2018.
Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.
10745.
7

Shi, B., Zhang, D., Dai, Q., Zhu, Z., Mu, Y., Wang, J., 2020. Informative dropout
for robust representation learning: A shape-bias perspective. In: International
Conference on Machine Learning. PMLR, pp. 8828–8839.

Somavarapu, N., Ma, C.-Y., Kira, Z., 2020. Frustratingly simple domain generalization
via image stylization. arXiv:2006.11207 [cs].

Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M., 2017. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Springer, pp. 240–248.

Sun, B., Saenko, K., 2016. Deep coral: Correlation alignment for deep domain adap-
tation. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, the Netherlands,
October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer, pp. 443–450.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley-Interscience.
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S., 2017. Deep hash-

ing network for unsupervised domain adaptation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5018–5027.

Wang, S., Yu, L., Li, C., Fu, C.-W., Heng, P.-A., 2020. Learning from extrinsic
and intrinsic supervisions for domain generalization. In: European Conference on
Computer Vision. Springer, pp. 159–176.

Yan, S., Song, H., Li, N., Zou, L., Ren, L., 2020. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677.

Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.,
2019. Domain randomization and pyramid consistency: Simulation-to-real gener-
alization without accessing target domain data. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 2100–2110.

Zhang, M., Marklund, H., Dhawan, N., Gupta, A., Levine, S., Finn, C., 2021. Adaptive
risk minimization: Learning to adapt to domain shift. Adv. Neural Inf. Process. Syst.
34, 23664–23678.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C., 2021a. Domain generalization in vision:
A survey. arXiv preprint arXiv:2103.02503.

Zhou, K., Yang, Y., Hospedales, T., Xiang, T., 2020a. Deep domain-adversarial im-
age generation for domain generalisation. Proc. AAAI Conf. Artif. Intell. (ISSN:
2374-3468) 34 (07), 13025–13032. http://dx.doi.org/10.1609/aaai.v34i07.7003.

Zhou, K., Yang, Y., Hospedales, T., Xiang, T., 2020b. Learning to generate novel
domains for domain generalization. In: European Conference on Computer Vision.
Springer, pp. 561–578.

Zhou, K., Yang, Y., Qiao, Y., Xiang, T., 2021b. Domain generalization with MixStyle.
arXiv:2104.02008 [cs].

http://refhub.elsevier.com/S1077-3142(24)00097-3/sb29
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb29
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb29
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb29
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb29
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb30
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb30
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb30
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb30
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb30
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb31
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb31
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb31
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb31
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb31
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb32
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb32
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb32
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb32
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb32
http://arxiv.org/abs/2007.12256
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb34
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb34
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb34
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb34
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb34
http://arxiv.org/abs/1301.2115
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb36
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb36
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb36
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb36
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb36
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb37
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb37
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb37
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb38
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb38
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb38
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb38
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb38
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb39
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb39
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb39
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb39
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb39
http://arxiv.org/abs/1911.08731
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb41
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb41
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb41
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb41
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb41
http://arxiv.org/abs/1804.10745
http://arxiv.org/abs/1804.10745
http://arxiv.org/abs/1804.10745
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb43
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb43
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb43
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb43
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb43
http://arxiv.org/abs/2006.11207
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb45
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb46
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb46
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb46
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb46
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb46
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb47
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb48
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb48
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb48
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb48
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb48
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb49
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb49
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb49
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb49
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb49
http://arxiv.org/abs/2001.00677
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb51
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb52
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb52
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb52
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb52
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb52
http://arxiv.org/abs/2103.02503
http://dx.doi.org/10.1609/aaai.v34i07.7003
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb55
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb55
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb55
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb55
http://refhub.elsevier.com/S1077-3142(24)00097-3/sb55
http://arxiv.org/abs/2104.02008

	Structure-aware feature stylization for domain generalization
	Introduction
	Related Works
	Method
	Problem Definition
	Structure-Aware Feature Stylization
	Feature Stylization
	Structural Consistency Loss


	Experimental Setup
	Datasets and Evaluation
	Implementation Details

	Results
	Ablation and Parameter Impact studies
	Edge Reconstruction Analysis
	Comparison to the state-of-the-art

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Supplementary data
	References


