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1 Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame St W,
Montreal, Quebec H3C 1K3, Canada
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Abstract
The telescoping ballbar is widely utilized for diagnosing accuracy and identifying faults in
machine tools and industrial robots. Currently, there are no established standards for
determining the optimal feed rate for ballbar tests. This lack of clear guidelines results in time
inefficiency in measurements and inconsistencies in dynamic measurements, which complicates
the comparison of ballbar test results under various conditions or across different machine
platforms. To mitigate dynamic variations in ballbar results, an updated ballbar data processing
method that integrates the unscented Kalman filter (UKF) and particle swarm optimization
(PSO) was developed and validated using real ballbar data measured at multiple feed rates and
simulated data with varying vibration magnitudes generated through the Renishaw ballbar
simulator. Experimental results revealed that the dynamic components extracted from the
ballbar results were observed to increase in correlation with the vibration measured at different
feed rates and from the simulations. Moreover, the variations in the results measured at different
feed rates after PSO-UKF processing were significantly reduced. The findings confirm the
effectiveness of the proposed method in minimizing the dynamics of the ballbar results.
Ultimately, this approach enhances the efficiency and accuracy of ballbar testing and offers a
general method for improved diagnostics.

Keywords: dynamic components, telescoping ballbar, unscented Kalman filter (UKF),
particle swarm optimization (PSO)
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Nomenclature

UKF unscented Kalman filter
PSO particle swarm optimization
GD gradient descent
GA genetic algorithms
DC dynamic component
DTW dynamic time warping
CD circular deviation
HMC hexapod machining cell
CCW counter-clockwise
CW clockwise
RMS root mean square

1. Introduction

As a fundamental component in the contemporary manufac-
turing industry, computer numerical control (CNC) machine
tools are extensively utilized to produce high-quality parts
encompassing diverse materials, shapes, and dimensional tol-
erances. In recent years, significant attention has been focused
on accuracy assessment and error compensation of machine
tool errors, aiming for a deeper understanding and enhance-
ment of machine tool accuracy [1]. Geometric error measure-
ment commonly employs tools such as laser interferometer
systems, laser trackers, ballbars, R-tests, and a combination of
2D artifacts and 3D ball plates with touch-trigger probes [2].
The choice of error measurement method depends on the geo-
metry of the machine tool and specific measurement object-
ives. However, the ballbar is unparalleled in terms of min-
imizing measurement time and simplifying the measurement
procedure.

The telescoping ballbar, first proposed and patented by
Bryan in 1982 [3], revolutionized the measurement of radial
changes in circular motion using an accurate linear scale
sensor. Since their introduction, ballbars have been extens-
ively applied in circular tests [4, 5], calibration of rotary axes
[6, 7], assessment of the thermal or geometrical behavior of
five-axis machine tools [8, 9], kinematic calibration of paral-
lel kinematic machines [10], and industrial robots [11]. As an
efficient automated tool conforming to ISO 230-4 standards,
the telescoping ballbar excels in error detection in machine
tools and industrial robots, ensuring precise error identification
[12]. It evaluates the accuracy of circular contouring by mon-
itoring machine axis movements along a predetermined circu-
lar trajectory, and presents results in a polar format for easy
interpretation [13]. When integrated with commercial ballbar
analysis software, such as Renishaw Ballbar 20, this tool can
identify various error sources, such as backlash, scale mis-
match, and squareness, thereby enhancing its utility and reli-
ability. This comprehensive analysis aids in improving the
positioning performance of machine tools. The velocity of a
machine impacts its dynamics, particularly at different feed
rates, influencing the vibrations detected in a ballbar test.
At lower speeds, the dynamic load is minimal owing to the
machine’s high stiffness, resulting in negligible vibrations but
potentially longer measurement times, particularly with larger

ballbar radii [14]. Conversely, higher feed rates reduce the
testing time but may introduce significant vibrations that affect
ballbar accuracy. Renishaw suggested guidelines for select-
ing feed rates, whereas the B5.54 standard [15] recommends
using 10% and 80% of the machine’s maximum feed rate for
ballbar tests. Higher feed rates are advantageous for detect-
ing servo-dynamic errors, such as following errors, servo mis-
match errors, and reversal spikes, as they facilitate quicker
axis velocity changes. These rates are also effective for assess-
ing the capability of a machine to rapidly interpolate small
circular features. On the other hand, lower feed rates dimin-
ish servo-dynamic errors, providing a clearer insight into
geometric errors, such as squareness, scaling, and straight-
ness. Considerable flexibility remains in choosing lower speed
ranges, although DCs persist in ballbar results, which cur-
rent commercial ballbar software tools cannot decompose.
Furthermore, the magnitude of the DCs within the standard
ballbar results remains unknown. To enhance the reliability of
ballbar outcomes and minimize variations in the results meas-
ured at different feed rates, an updated ballbar data processing
method with dynamic error decomposition is crucial for pro-
cessing ballbar results.

Various methods are available to measure and decompose
dynamic-related errors. One approach involves using addi-
tional hardware. For example, Liu et al [16] employed a
stepped-feature workpiece to correlate the geometric errors of
a machine tool with workpiece features. Through on-machine
measurements and calibration using a coordinate measure-
ment machine, they successfully identified seven geometric
and dynamic errors. Similarly, Andolfatto et al [14] effectively
utilized a capball-based method to decompose both quasi-
static and dynamic geometric errors in multiaxis machine
tools. Another strategy employs advanced algorithms, such as
the Kalman filter, to estimate the dynamic errors in robots
and machine tools. Notably, the kinematic parameters and
vibrations of an industrial robot were efficiently estimated
and reduced using the Kalman filter proposed by Elvira-Ortiz
[17]. Brecher extended this approach by applying the UKF to
model various machine tool errors, effectively addressing non-
linearity and noise issues [18]. Kalman-related techniques are
particularly noteworthy for their good integration into data-
processing workflows, obviating the need for supplementary
hardware. This makes them a practical option for tackling the
DCs in ballbar results. While the conventional Kalman fil-
ter is suitable for systems with linear equations, the UKF is
more suitable for nonlinear real-world scenarios, demonstrat-
ing its wider applicability and effectiveness in complex envir-
onments.

PSO was originally proposed by Kennedy and Eberhart
[19, 20], since then it has been used as a promising approach
for optimization problems in different areas [21]. PSO is
a stochastic optimization technique inspired by avian flock-
ing behaviors [22], and is acclaimed for its straightfor-
ward implementation and adaptability in diverse applica-
tions such as parameter tuning, function optimization, and
feature extraction [22]. Notable implementations of this
method include the fine-tuning of covariance matrices in
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the prediction of lithium-ion battery performance using the
Extended Kalman Filter [23] as well as the adjustment of
noise covariance matrices in ballistic target tracking with the
UKF [24]. Compared with other optimization method such as
the GD and GA, PSO works as a highly versatile optimiza-
tion method that balances efficiency, accuracy, and rapidity
across both one-dimensional andmulti-dimensional problems.
Its simplicity in concept and implementation, combined with
the robustness against the complexity of the optimization task
makes PSO extremely popular. While GA and GD have their
strengths in certain scenarios, PSO’s ability to adaptively nav-
igate through diverse search spaces without the need for gradi-
ent information positions it as a preferable option, particularly
when dealing with, multi-dimensional optimization problems.

To mitigate the impact of DCs on ballbar measurements,
this study introduces an updated ballbar data-processing meth-
odology that leverages the UKF and PSO. By recognizing the
influence of the setup parameters on UKF’s performance of
the UKF, the PSO method was incorporated for optimal para-
meter tuning. The effectiveness of the proposed PSO-UKF
method was assessed using real ballbar test data gathered at
varying feed rates and simulated data with different vibration
levels. Subsequently, a reliable PSO-UKF-based ballbar pro-
cessing method was validated, demonstrating its applicabil-
ity in shop floor environments for precise machine accuracy
measurements. The proposed method not only facilitates the
decomposition of DCs at varying feed rates, but also enhances
the stability of the ballbar results across different speeds. The
structure of the paper is as follows: sections 2 and 3 detail
the ballbar measurement device and the proposed methods for
decomposing the DCs, respectively. The experimental setup
is outlined in section 4. An analysis of the results is presented
in section 5, followed by a discussion in section 6. The paper
concludes with a summary of the findings.

2. Ballbar technology for machine-tool accuracy
assessment

The principles used for ballbar measurements are illustrated in
figure 1, where three common setups are shown. For a given
machine tool, the origin can be expressed as P0(X0, Y0,Z0):
During the ballbar measurement, this origin was established at
the center of the circular interpolation. The ball attached to the
spindle then undergoes circular motion with a defined radius
R (figure 1). The central controlled position of the spindle is
P1(X1, Y1,Z1), and the radius (R1) of the circular movement
can be expressed as:

R1 =

√
(X1 −X0)

2
+(Y1 −Y0)

2
+(Y1 −Y0)

2 (1)

For an ideal machine tool, the kinematic chain has no
errors, that is, R1 = R. In contrast, real machine tools exhibit
various errors in the kinematic chain on both the origin
and spindle sides. Then, the real position of the origin and
the spindle’s central controlled position can be expressed as
P ′
0(X

′
0,Y

′
0,Z

′
0) and P ′

1(X
′
1,Y

′
1,Z

′
1), respectively. Errors at P0

Figure 1. (a) Explanation of coordinates and error vectors in ballbar
measurement, using a standard 100 mm radius setup (applicable to
all ballbar sizes); (b) Overview of two different setups with different
circular radii.

and P1 can be represented by the vectors
−→
E0 = (Ex0, Ey0,Ez0)

and
−→
E1 = (Ex1, Ey1,Ez1), respectively. In this case, the dis-

tance between the centers of the two balls is not constant and
changes with the angular position during the circular move-
ment. Let the change in radius be∆R (positive extension). The
real radius during the ballbar measurement can be calculated
by

R+∆R=

√(
X ′
1 −X ′

0

)2
+
(
Y ′
1 − Y ′

0

)2
+
(
Z ′
1 − Z ′

0

)2
=

√√√√ [(X1 +Ex1)− (X0 +Ex0)]
2 + [(Y1 +Ey1)− (Y0 +Ey0)]

2

+[(Z1 +Ez1)− (Z0 +Ez0)]
2 .

(2)

When substituting equation (1) and ignoring the second-
order terms of the errors, ∆R can be calculated as

∆R = [(X1 −X0)(Ex1 −Ex0)+ (Y1 −Y0)(Ey1 −Ey0)
+(Z1 −Z0)t(Ez1 −Ez0)]

/
R.

(3)
For simplifying the above eqs, let:

(X1 −X0,Y1 −Y0,Z1 −Z0 ) = (X,Y,Z)

(Ex1 −Ex0,Ey1 −Ey0,Ez1 −Ez0 ) = (Ex,Ey,Ez) (4)

∆R= (ExX+EyY+EzZ)/R. (5)

Equation (5) represents the fundamentals of the ballbar
measurement. Using this equation, the ballbar results can be
correlated with the error vector (Ex,Ey,Ez). This error vector
reflects the measured ballbar radius related to the nominal one,
expressed as the difference between

−→
E0 and

−→
E1, and is calcu-

lated by the sum of all the machine error parameters in the 3D
space, It can be utilized for machine tools and industrial robot
error modeling. Conversely, commercial ballbar software uses
∆R as an input to compute machine error parameters such as
CD, backlash error, out of squareness, and straightness error.

The general ballbar data analysis process is shown in
figure 2. This procedure aligns with the ISO 230-4:2005
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Figure 2. (a) Ballbar data processing flowchart; (b) meaning of CD.

standard [12]. First, the raw data collected from the ballbar
were adjusted considering the nominal radius to compute the
actual coordinates of the circular trajectory. Following this,
the true center of the circular path was identified using a
least-squares fitting method. Concurrently, the radial distances
between the actual circular path positions and their true centers
were calculated. The subsequent step involved determining the
radial error, which was defined as the discrepancy between the
measured and nominal ballbar radii. Finally, the range of vari-
ation of the radial error was computed to quantify the CD [25].
In addition to the radial deviation, other parameters such as
backlash, straightness error, and out-of-squareness can be cal-
culated using commercial ballbar software. For more details,
please refer to [26].

3. Updated ballbar data processing method

In the present work, following the acquisition of the ball-
bar raw data, it underwent refinement through the applica-
tion of the UKF and PSO methods, as illustrated in figure 3.
UKF processing is designed to preserve the frequency com-
ponents that are crucial for determining the static error state
of the machining platform. The refined data, characterized by
reduced DCs, were then analyzed using the standard ballbar
processing model. Subsequently, the CD and other machine-
error parameters were calculated. A comparative assessment
of radial errors and CDs, both before and after the applica-
tion of PSO-UKF processing, enables the identification of DC.
These DCs can subsequently serve as secondary tools to verify
the accuracy and effectiveness of the proposed technology.

3.1. Definition of DCs

The DCs on the ballbar are represented by the differ-
ences between the original and filtered radial errors by the

Figure 3. Updated ballbar data processing for decomposing
dynamic components.

PSO-UKF. They were quantified by three parameters: (1)
differences in CD (DC1), (2) peak-to-peak value of differences
in RE (DC2), and (3) the mean absolute value of differences in
RE (DC3). The corresponding Eqs of the DCs are processed
with MATLAB functions as follows:

DC1 = CD1 −CD2, (6)

DC2 = peak2peak (RE1 −RE2) , (7)

DC3 = rms (RE1 −RE2) . (8)

3.2. DCs calculation using UKF and PSO

The Kalman filter, established by Rudolf E. Kalman, is an
indispensable tool for state estimation in dynamic systems
[27]. Although highly effective in systems that exhibit lin-
ear relationships, their application is limited in this context.
To address this shortcoming, the development of the UKF
has been instrumental, providing substantial enhancements
[18]. Unlike the conventional Kalman filter, the UKF demon-
strates a superior performance in managing nonlinear systems.
The UKF further enhances accuracy by eliminating the errors
associated with Jacobians and linearization. Its applications
extend across various domains including navigation, robot-
ics, economics, and biology. Nonetheless, the UKF, akin to
other Kalman filters, requires meticulous tuning, particularly
in terms of the noise covariance and scaling parameters.

PSO is versatile, capable of addressing both one-
dimensional and multi-dimensional optimization challenges.
Configuring PSO for multi-dimensional problems is straight-
forward, allowing for the integration of additional tuning
parameters without fundamentally altering the model. This
flexibility makes PSO a method with potential for future
enhancements in ballbar data processing. Conversely, alternat-
ive methods like Grid Search or GA, which are typically more
focused on single-parameter optimization, would necessitate
the development of new mathematical models.

Owing to their exceptional efficacy and advantages, both
the UKF and PSO have been selected as principal methodolo-
gies for the calculation of DCs.

3.2.1. UKF application for ballbar data processing. Given
its better ability to approximate Gaussian distributions
compared to other nonlinear filters like the extended Kalman
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Figure 4. Process of UKF [32].

filter and robust extended Kalman filter, the UKF is chosen as
the primary tool for processing ballbar measurements [18].

The steps of the UKF processing are summarized in
figure 4. The UKF data processing focuses on two main
phases: prediction and estimation (measurement update),
which are crucial for state estimation in nonlinear dynamic
systems. For the ballbar measurement results, they can be
described by equations (9) and (10):

Xk = f(Xk−1)+wk−1, (9)

Yk = f(Xk)+ vk, (10)

where k stands for the discrete time step, Xk represents the
unobserved state of the ballbar system, which is a known exo-
genous input, and Yk is the observed measurement result of the
ballbar system.

In the prediction phase, the process noise, denoted as
Wk, and the observation noise, Vk are both presumed to be
white Gaussian noise processes with the respective covariance
matrices Qk and Pk. When considering the state vector at the
k− 1 step, which has an anticipated mean of X̂k−1 and Pk−1

covariance, the statistics of xk can be computed by applying
the unscented transformation. This involves the calculation of
a set of sigma points χ i

k (a set of strategically chosen sample
points used in the UKF to capture the mean and covariance of
the state distribution), each paired with corresponding weights
Wi. The calculation of sigma points involves the state estim-
ate vector (x) and the state covariance matrix (P). The num-
ber of sigma points and their specific values depend on the

dimensionality of the state vector (L) and chosen parameters
that control the spread of the points.

The spread of the sigma points around the mean state value
is controlled by three scaling parameters α, ƙ and β. The rela-
tionship betweenα and ƙ is connected by an UKF parameter λ
which is used in sigma point calculation, expressed as α2(L+
ƙ )− L. The scaling parameter α (figure 4, step-5), influences
the distribution of sigma points around the mean x̄ and its typ-
ical range lies between 0 and 1. The parameter L stands for the
dimension of the state vector and the secondary scaling para-
meter, ƙ, was customarily set to zero. As for the parameter
λ, it is described in [28–30]. In addition to setting ƙ = 0, λ
could change with α since L is relatively stable for a given
state vector. The third scaling parameter β (figure 4, step-5) is
employed to integrate prior knowledge regarding the distribu-
tion of x, with β = 2 selected optimal for Gaussian distribu-
tions, as substantiated by [31]. Once the predicted state mean
and covariance are estimated by the propagated sigma points,
process noise is integrated to accommodate uncertainties in
system dynamics [30].

In the second phase, the predicted sigma points are pro-
cessed through the measurement model to estimate expec-
ted measurements. The resulting points allow the calcula-
tion of the measurement mean and covariance with incor-
porated measurement noise for observation uncertainties.
Subsequently, the Kalman gain is calculated to weigh model
predictions against new measurements. Then, the model pro-
gressively refines the state estimate by assimilating new obser-
vations, thereby improving accuracy iteratively. For a compre-
hensive understanding of the UKF methodology, the reader is
encouraged to consult [30, 32].
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Figure 5. Flowchart for tuning UKF using PSO method for ballbar
application.

Based on the above UKF analysis, the key parameters for
unscented transformation include λ (affected by α, ƙ and L),
α, ƙ and β. In this work, ƙ was selected 0 and β was selected
as 2. While α is tuned using PSO method from 1× 10−5 to 1.
For a given dataset, L is fixed, so the tuning of α has the same
effect as the tuning of λ. Additionally, tunable factors such
as state covariance, process noise, and measurement noise
impact UKF performance. These can be selected from literat-
ure recommendations or empirically adjusted tomeet perform-
ance objectives. In this study, based on the data processing res-
ults, their values were set to 0.01, 0.001, and 1, respectively.

3.2.2. PSO for UKF tuning. PSO is a general optimiza-
tion algorithm inspired by the social behavior observed in
birds and fish, and it can be effectively applied to both 1-
dimensional (single-objective optimization for unimodal or
multimodal) and multi-dimensional (multi-objective optim-
ization) problems [20]. PSO processing involves evaluating
potential solutions, calculating assessment values, and meth-
odically converging to the global optimum until termination
criteria are met. Its suitability for different types of optimiz-
ation problems depends on the specific characteristics of the
problem, such as the complexity of the objective function, the
presence of local optima, and the dimensionality of the search
space. Employing PSO enhances the ability to uncover diverse
parameter sets suitable for theUKF, enabling fine-tuning of the
UKF parameters for each ballbar data processing scenario.

A comprehensive visual representation of the PSO work-
flow for the UKF tuning is shown in figure 5. When apply-
ing PSO to a UKF, three primary steps are vital. Firstly,
the establishment of the UKF processing frame simplified as
equation (11), where BFn represents the UKF-filtered ballbar
data acquired with different conditions, Bn are the ballbar raw
data measured under relevant conditions and x1,x2, . . . ,xn1 are
the tunable UKF parameters for example, λ, α, K or β, where
n1 stands for number of these tunable parameters. The second
step involves formulating a fitness function represented as
f(x1,x1, . . . ,xn1)n (equation (15)). The specifics of this function

are described in Eqs from 12 to 14, and n stands for the iter-
ations of the particle when it seeks the optimal solution. Its
design mainly relies on three components-two similarity para-
meters including the Fréchet distance (δF (BFn, RBn)) [33] and
the DTW parameter (DTW(BFn,RBn)) [34], and one para-
meter indicating the change rate of CD,

BFn = fUKF (Bn,x1,x2, . . . ,xn1) (11)

δF (BFn, RBn) = inf
p,σ

max
t∈[0,1]

∥BFn (p(t))−RBn (σ (t))∥ (12)

DTW(BFn,RBn) =
√ ∑

(i,j)∈τ

(BFn−RBn)
2 (13)

CD(n)Diff = [|CDF−CDR|/CDR]⩽ 0.1 (14)

f(x1,x2, . . . ,xn1)n

=
DTW(BFn,RBn)+ δF (BFn, RBn)+CD(n)Diff√

(DTW(BFn,RBn))
2 +(δF (BFn, RBn))

2 +(CD(n)Diff)
2

(15)

The Fréchet distance (equation (12)) measures the curve
similarity by considering both point arrangement and posi-
tion. In equation (12), p and σ are two reparameterization
functions of the unit interval [0,1]. Set t be the time para-
meter, at time t, the sampling point on curve BFn is BFn (p(t)),
similar for RBn. p,σ: [0, 1] → [0, 1] range over all con-
tinuous and non-decreasing functions with p(0) = σ (0) = 0
and p(1) = σ (1) = 1 [35]. Ideally, a zero value signifies a
perfect curve alignment. Meanwhile, the DTW parameter
(equation (13)) evaluates the pattern similarity in the time-
series data or between two curves. Again, a zero value indic-
ated a perfect match between the curves. For this equation,
τ stands for an alignment path with a length of k1 and this
path contains k1 index pairs ((i0, j0), (i1, j1), …, (ik1−1, jk1−1)).
To well match the curves of BFn and RBn, many admissible
paths will be generated and the DTW finds the best alignment
between BFn and RBn that minimizes the total distance. For
a comprehensive understanding of DTW, please refer to [36].
In this context, these two parameters are used to assess the
similarity between the UKF-filtered ballbar data and the low
feed rate reference ballbar data. A downsampling process was
applied to high-speed ballbar measurements to ensure a sim-
ilar data length to that of the reference ballbar data. In addition,
equation (14) introduced the rate of change for CD (CD(n)Diff)
which addresses the issue of non-convergence in the optimiz-
ation function under the selected setup conditions. Successful
UKF fitting was indicated when the rate of change is below
0.1. RBn is the reference data from a slower feed rate, CDR is
the CD measured at a low feed rate, n stands for the number of
the iterations for fitness function. Using the three components,
fitness function equation (15) is aiming to achieve the global
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minimum, which would represent an optimal set of UKF para-
meters (x1,x1, . . . ,xn1) that aligns theUKF-filtered ballbar data
closely with the reference data (RBn), ensuring both pattern
and curve similarity while maintaining a low rate of change
for critical parameters.

The third step covers the parameter setup for PSO
method. In this study, the ‘particleswarm’ function of PSO in
MATLAB was utilized to automate the UKF fine-tuning pro-
cess. The PSO algorithm requires the selection of key para-
meters, such as the number of tuning targets, their value ranges
(minimum and maximum limits), and the self-adjustment and
social-adjustment weights. The setup parameters for PSO
function ‘particleswarm’ are as follows: one tuning target of
scaling parameter α for the UKF was selected and other tun-
able parameters, ƙ and β, were chosen as 0 and 2 respect-
ively. Under this configuration, adjusting α is equivalent
to adjusting λ, as the dimension of the referenced ballbar
data remains constant. It is acknowledged that these selec-
tions might potentially affect the performance of the UKF.
Nonetheless, in real-world applications, these settings have
consistently yielded practical and satisfactory results. In addi-
tion, the objective function comprises three primary paramet-
ers: the Fréchet distance, the DTW parameter, and the CD
change rate. When using Fréchet distance for paths or tra-
jectories similarity processing, an optimization process can
indeed encounter multiple local optima while DTW is gener-
ally designed to avoid local optima and find a path that repres-
ents the global optimum. From this point, the objective func-
tion still has the local optima problem. Furthermore, the PSO,
developed with this 1-dimensional setup, can be easily exten-
ded to more dimensions or to more complex versions of the
problem without significant modifications to the optimization
algorithm. Therefore, the selection of the tuning target is con-
sidered feasible. Based on the components of equation (15),
the global best model for PSO was selected because it is better
suited for complex, multimodal landscapes where the global
optimum is hidden among many local optima. In addition,
the number of particles is set as 50, the iterations are selec-
ted as 150 and the social adjustment weight is selected as
1.5, respectively. Finally, an indepth study of the PSO can be
found in [19].

4. Experimental setup

Movements in the machine components can induce vibrations,
thereby affecting the precision of the machining platform. The
DCs are influenced by various factors, including feed rate [37],
trajectory errors [37] and acceleration/jerk [38]. To investig-
ate the effects of dynamic errors, general ballbar tests were
conducted at multiple feed rates in a HMC. Furthermore, ball-
bar tests under different vibration levels were simulated using
the Renishaw simulator, which can replicate testing platforms
with diverse error states and varying vibration scenarios. These
two sets of data were instrumental in validating the proposed
technology.

Figure 6. Ballbar measurement setups: (a) a robotic machining cell
utilizing industrial hexapods (FANUC F-200iB), (b) a Renishaw
ballbar featuring a 50 mm nominal radius.

4.1. Ballbar measurement at HMC

The ballbar test was conducted within a hexapod-based
machining cell outfitted with two FANUC F-200iB hexapods,
a bench clamp, an electric spindle, and a supporting mechan-
ical frame. The employed Renishaw QC20-W telescopic ball-
bar boasts an accuracy of 0.1 µm at 20 ◦C and a measurement
range of ±1.0 mm (figure 6(b)) [39]. It was observed that the
utilization of this sampling rate configuration in commercial
Renishaw software cannot fully capture the complete extent
of dynamic errors. Therefore, a custom ballbar data acquisi-
tion strategywas developed using Renishaw-providedAPI and
employed for this work, featuring a consistent maximum rate
of 1000 Hz.

For the HMC (figure 6(a)), the tool cup was mounted on the
electrical spindle of the floor-mounted hexapod, and the pivot
assembly magnet base was fixed to the workpiece in the wall-
mounted hexapod vise. The scanning balls were connected to
a tool cup and pivot assembly. During the ballbar measure-
ment, the hexapod mounted on the floor executed a circular
trajectory within the YZ plane, whereas its counterpart on the
wall remained stationary.Measurements were captured in both
CCW and CW movements at the chosen position and speed,
with a 1000Hz sampling rate. For stable ballbar measurements
at a consistent feed rate, a 180-degree overshoot was selected
to help in achieving the required feed rate and decelerating
before feed out [40], as depicted in figure 7. As for the detail
of ballbar measurement, please refer to figure A1.

Before the ballbar test, the HMC was preheated by rapidly
moving its motors for an hour, a procedure that was consist-
ently followed in all subsequent tests. Given the feed rate of the
testing platform, nine typical machining speeds were selected
for the ballbar tests: 300, 600, 1200, 1800, 2400, 3000, 3600,
4800, and 6000 mm min−1. Each speed was repeated twice
to ensure the accuracy. The ballbar measurements were taken
at a randomly chosen position, with the mechanical system’s
coordinate origin set at [0 mm, 0 mm, 870 mm] relative to the
base frame system.

Throughout the ballbar test, vibrations were recorded
using a triaxial accelerometer (Model number: 356B21,
manufactured by PCB Piezotronics) attached to the elec-
trical spindle. This sensor features a 2048 Hz sampling
frequency of 0.125 Hz spectral resolution, and a sensitivity of
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Figure 7. Ballbar measurement techniques: a solid line connects two
green dots, symbolizing the arc of ballbar data, while a dotted line
links red and black dots, representing the overshoot before and after
formal ballbar test. The depiction of a spiral path ensures a circular
motion without any overlap, and it is only used for diagrammatic
purposes [40]. For the true ballbar measurement, a circular path
with a nominally fixed radius was used. In subfigure (a), there is a
180-degree overshoot demonstrated in a counter-clockwise (CCW)
direction for ballbar measurement, whereas in subfigure (b), the
180-degree overshoot is shown in a clockwise (CW) direction.

100 mV g−1. The LMS-SCADAS (Model: SCM01) mobile
data system was utilized to capture the vibration data, which
were subsequently analyzed in the time domain via RMS
values.

4.2. Ballbar measurement simulation

The Renishaw software includes a simulation module, the
Renishaw Ballbar simulator [41], which generates simulated
ballbar data by adjusting parameters, such as test details, geo-
metry errors, play errors, and dynamic errors (figure 8). These
parameters can be used to define the accuracy of a virtual test-
ing platform and the simulator allows for the creation of ball-
bar data with varying dynamic errors, eliminating the need for
actual machining tests. The details of these parameters could
be found at [40]. The detail flowchart for ballbar data simu-
lation could be found at figure 8. With the exception of the
‘Vibration pk-pk’ parameter, all other parameters can be selec-
ted based on the real ballbar results from an HU-40 T five-axis
machine tool (option-1) or randomly selected (option-2). By
adjusting the vibration magnitude value (abbreviated as Vib
pk–pk at the dynamic error interface), simulated ballbar data
with varying dynamic errors can be generated.

The selected error parameters for the Renishaw simulator
is outlined in appendix tables A and B. To assess the stabil-
ity of the UKF and PSO, six diverse datasets were chosen for
testing. The first four datasets were obtained from actual meas-
urements originating from the HU-40 T five-axis machine tool
on different days under various conditions. The remaining two
datasets were randomly selected. For the six dataset, the Vib
pk–pk varied as 0, 5, 10, and 15 µm were selected.

Figure 8. Flowchart for ballbar measurement simulation. Two
options could be used for non-dynamic-error-parameter selection.

Figure 9. Relationship between the scaling parameter, target
function and CDs, and the blue dot of figure (a) stands for the
optimal scaling parameter and the light blue plane stands (b) for the
control limit (decided by equation (14) for CD).

5. Results and analysis

5.1. PSO-UKF processing for ballbar measurement

According to the Renishaw guidelines, lower feed rates are
optimal for measuring the geometric errors. Consequently, the
ballbar data obtained at a feed rate of 300 mmmin−1 served as
a reference for subsequent PSO analysis. The results captured
at a speed of 1200 mm min−1 were employed to demonstrate
the effectiveness of the proposed UKF and PSO methods for
DC calculations. The value of the target function decreased
with the scaling parameter. The local minimum was found at
a value close to 1. Meanwhile, under the range of scaling para-
meter of 0–1 with the interval of 1 × 10−5, the change range
of CD was around1.5 µm (figure 9). For this case, the scaling
parameter was selected as 0.0442, and the CD values before
and after UKF were 46 µm and 45 µm, respectively. This
change indicates the effect of DCs on CD. Using the same data
processing, the CDs of the ballbar measured at different feed
rates containing fewer DCs can be calculated.

8
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Figure 10. (a) Ballbar raw data measured with feed rate of 1200 mm min−1 before and after UKF filtering; (b) differences of ballbar raw
data before and after UKF processing.

Figure 11. Radial error patterns of hexapod (floor) at a feed rate of 1200 mm min−1 at the CCW (a) and CW (b) direction, No F stands for
the none filtering operation for the ballbar raw data.

5.2. Results of ballbar measurement from HMC

Considering the measurement precision and efficiency, the
ballbar results at this speed were used to showcase the gen-
eral processing results of the proposed UKF (figure 10). To
show the differences before and after UKF processing, the
difference of the ballbar raw data before and after UKF was
calculated (figure 10(b)) and the maximum difference was
found to be than 3 µm. In addition, the main shape of the
ballbar raw data is well preserved after filtering. The radial
error curves in the CCW and CW directions also maintained
their main curve shapes after filtering (figure 11), indicat-
ing the minimal dynamic errors was found at a feed rate
of 1200 mm min−1. The impact of the DCs on the ball-
bar results is shown by the calculated parameters DC1, DC2,

and DC3 in figure 12. It is theorized that dynamic errors
can be influenced by feed rate. The optimal indicator for
DCs should exhibit smaller values compared to the CDs,
and should increase with higher feed rates. After filtering,
DC1 and DC3 both accounted for 5% of the CDs measured
with the highest feed rate, while DC2 represented approx-
imately 87% of that of CD. Remarkably, a relatively stable
increasing tendency was observed with DC1 when measur-
ing feed rates of 1800 and 2400 mm min−1, but DC2 and
DC3 at these speeds clearly demonstrated distinct dynamic
characteristics (see figures 12(c) and (d)). Consequently, DC3

performed better than DC1 in capturing DCs in ballbar meas-
urements. Ultimately, these results validate the effectiveness
of the proposed method for calculating DCs. Because the DC
is closely related to the vibration, the proposed method was
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Figure 12. CDs and DCs of ballbar measured with different feed
rates in the CCW and CW directions before and after UKF
processing, (a) CDs of ballbar tests measured with different feed
rates, DC1, DC2, and DC3 of ballbar measurement using the
proposed PSO-UKF are shown at (b)–(d), respectively.

also validated by analyzing the synchronous vibration tests
during ballbar measurements. The statistical results of the
vibration data during the ballbar tests, as shown in figure 13,
reveal a clear upward trend in the RMS and Peak2peak
parameters.

It is worth noting that the results presented in figures 10
and 11 appear similar, a similarity attributable to the relat-
ive relationship between the DCs and the CDs. During ballbar
measurements at low feed rates, the DCs are comparatively
minor but increases with the feed rate. A peak in the DC is
observed at a feed rate of 6000 mm min−1, as illustrated in
figure 12.

Figure 14 illustrates the correlation between the accelera-
tion and DC2/DC3. A clear upward trend can be seen in DC2

and DC3 processed using the UKF when the feed rate is over
1200 mm min−1. This result indicates the efficiency of the

Figure 13. Vibration signal statistical results (X, Y, and Z axes)
during ballbar measurement at varying feed rates.

Figure 14. Relationship between DC2/DC3 and RMS of
acceleration measured at the Y-axis direction under feed rate from
300 to 3000 mm min−1.

proposed filtering technology in determining the impact of
DCs on ballbar results. However, the accuracy of the proposed
method cannot be determined based solely on the ballbar res-
ults obtained at varying feed rates.

Figure 15 presents a statistical comparison of CDs meas-
ured at different feed rates before and after UKF processing.
The mean and standard deviation (SD) of all the CDs were cal-
culated. Post-PSO-UKF processing shows reduced CDs in the
CCW and CW directions (figure 15(a)). This means that the
DCs were decomposed by general ballbar processing. A lower
SD value indicates an enhanced stability during the ballbar
measurement process with the UKF. For varying feed rates, the
SDs of the CDswere below 1µm,with a clear reduction in SDs
after UKF processing as the feed rate increased (figure 15(b)).
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Figure 15. Statistical analysis of CDs (a, mean of CDs and b, SDs)
of measurements before and after PSO-UKF processing.

Figure 16. Comparison of radial error curve pattern before and after
UKF processing in simulation 1, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

Therefore, the stability of the ballbar measurement results can
be improved using the proposed method.

5.3. Results of simulated ballbar measurement from
Renishaw simulator

Figure 16 illustrates the radial error curve pattern obtained
from the simulated ballbar data (simulation 1) before and after

Figure 17. Comparison of CD and DCs parameters before and after
UKF in the simulation 1, (a) CDs of ballbar tests, (b) DC1 and DC2

of ballbar measurement, (c) DC3 of ballbar measurement and (d)
effects of Vib and DCs on CDs.

the UKF processing. Despite varying the Vib pk–pk values, the
main shapes of the radial deviation curves with different vibra-
tion magnitudes were well preserved after UKF processing
(figure 16).

The CDs of the CW and CCW directions are comparable
to the CD measured at Vib pk–pk = 0 µm, with a maximum
difference of 1.6 and 1.7 µm respectively (figure 17). DCs
increased with vibration. However, the DCs did not change
in sync with the input vibration (figures 17(b) and (c)), indic-
ating that the simulated vibration did not have the same effect
as the extracted DCs on the CD. This was validated using the
Renishaw ballbar simulator. The change in CD under various
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Figure 18. Comparison of radial error curve pattern before and after
UKF processing in simulation 2, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

vibrations relative to the CD measured at zero vibration was
also calculated and is referred to as the effect of vibration on
CD. Ideally, this change should match the DC parameters if
the UKF performs optimally. Figure 17(d) shows the effect
of vibration and DCs on the CDs in the CW and CCW direc-
tions. The effect of the vibration and DCs on the CD was close
to the maximum differences of 1.6 µm. This slight change
may have been caused by the selection of parameters in the
UKF. Similar results were obtained in simulation 5 (appendix
figures B5 and B6).

The results of simulation 2 showed a change in the radial
error curve pattern as the vibration states increased from 5 to
15 µm (as depicted in figure 18). This deviation was signific-
antly different from the pattern observed in Simulation 2 with
no vibrations. After undergoing UKF processing, the CD for
vibration states between 5 and 10 µm remained close but saw
a marked change for states of 15 µm. On the other hand, the
DCs showed an increase with increasing vibration states (as
shown in figures 19(b) and (c)). There were notable changes
in the impact of DCs and vibration on the CDs (as seen in
figure 19(d)), especially for the vibration state of 15 µm. This
indicates that the UKF still has the ability to extract dynamic
effects, but struggles to accurately capture the DCs present in
the ballbar results.

The UKF ballbar data processing produced similar results
in simulation 6. Unlike simulation 2, the machine error para-
meters in simulation 6 were randomly chosen, and the number
of readings per full circle was increased from 360 to 1000.
This resulted in the acquisition of more data for each cir-
cular movement. The radial error curve pattern in figure 20
mostly remained consistent with Vib pk–pk values of less than

Figure 19. Comparison of CD and DCs parameters before and after
UKF in the simulation 2, (a) CDs of ballbar tests, (b) DC1 and DC2

of ballbar measurement, (c) DC3 of ballbar measurement and (d)
effects of Vib and DCs on CDs.

10 µm, but significant changes were observed at a Vib pk–pk
value of 15 µm.

After UKF processing, the CDs of the simulated ball-
bar data with Vib pk–pk less than 15 µm were consistent
(figure 21(a)). The DCs increased with the Vib pk–pk values
(figures 21(b) and (c)), demonstrating that UKF still effect-
ively extracts DCs from the ballbar results. A similar effect of
vibration and DCs on CDs was observed at Vib pk–pk values
ranging from 5 to 15 µm (figure 21(d)), indicating that UKF
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Figure 20. Comparison of radial error curve pattern before and after
UKF processing in simulation 2, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

has stable precision in processing simulation data with Vib
pk–pk values less than 10 µm. However, when the Vib pk–pk
values become too high, the UKF performance decreases.
Comparing simulations 2 and 6, we found that the CDs of the
primary data with zero vibration were smaller than those with
added vibration, and that the number of readings per full circle
was different.

Despite these differences, the UKF performed similarly
in both the simulations. When the vibration is less than the
primary CD value, DCs can be accurately calculated; how-
ever, when the vibration exceeds the primary CD value, UKF’s
performance of the UKF in ballbar data processing decreases.
However, using a higher number of readings per full circle
may result in a slight improvement in the UKF performance.
The validity of the findings was confirmed through simula-
tions 3 and 4 (as shown in appendix figures B1–B4. Both
simulations used the same machine error setup, but simu-
lation 4 had a higher number of readings on a full circle
(1000) than simulation 3 (360). The processing results for
both simulations are presented in appendix figures B3 and B4.
Simulation 4 demonstrated better preservation of the radial
error curve pattern under various vibration states than simu-
lation 3. It was noted that for simulation 3, the actual radial
error curve pattern deviated slightly from the pattern meas-
ured under zero vibration owing to the limited number of read-
ings. However, the UKF processing in simulation 4 showed an
improved performance with CDs closer to the zero-vibration
measurement. The results also showed that the UKF perform-
ance can be improved by increasing the number of readings
or the sampling rate. Furthermore, when the dynamic errors
expressed through vibration are smaller than those in the

Figure 21. Comparison of CD and DCs parameters before and after
UKF in the simulation 2, (a) CDs of ballbar tests, (b) DC1 and DC2

of ballbar measurement, (c) DC3 of ballbar measurement and (d)
effects of Vib and DCs on CDs.

normal ballbar test CD, the UKF performs better. However,
when the vibration is significantly large, the performance of
the UKF is variable, and the impact of DCs on the ballbar
measurement cannot be accurately determined.

6. Discussion

As the main components of the updated ballbar processing
method, the performance of the UKF and PSO in reducing
dynamic errors was validated with experimental ballbar data

13



Meas. Sci. Technol. 35 (2024) 085601 K Xing et al

from the HMC and simulated data from the Renishaw ballbar
simulator. The proposed technology was evaluated using the
following criteria. First, the radial error curve pattern before
and after the UKF processing was evaluated using the fitness
function. Second, the correlation between the DCs and the
vibrations related to feed rates and Vib pk–pk for the simu-
lation setups was evaluated. Finally, the CDs before and after
the UKF processing were compared. Using the proposed tech-
nology, the radial error curve displayed consistent patterns in
both the pre- and post-UKF processing. DCs rose in sync either
because of vibrations in the ballbar measurement or because
of the Vib pk–pk in the simulation. Additionally, the fitted ball-
bar results closely matched our reference (measured at a feed
rate of 300 mm min−1), confirming the effectiveness of the
UKF and PSO in reducing DCs at high feed rates. After the
UKF and PSO processing of real ballbar data taken at vari-
ous feed rates, both the mean and standard deviation of the
results significantly decreased compared to the original data.
A reduced standard deviation indicates a more stable ballbar
measurement.

However, the performance of the UKF and PSO can vary
based on factors such as the target function, ballbar measure-
ment sampling rate, and the relationship between DCs and
the machine’s accuracy state. The target function value was
expected to converge as a single scaling parameter. However,
as demonstrated in this study, ballbar measurements may not
always converge in this manner. Therefore, a secondary con-
dition, expressed by equation (14), was used to select the
optimal scaling parameter. A scaling parameter smaller than
the optimal value can still be effective, resulting in only a
minor change in the final CDs value. Given this minimal
impact, slight adjustments to the scaling parameter did not sig-
nificantly affect the reduction in DCs in the ballbar results.
Given a similar relationship between DCs and the accuracy
state of the machine, simulations 3 and 4 demonstrate that
a higher sampling rate enhances the reduction of DCs in the
ballbar results. The simulation tests clearly highlight the sig-
nificance of the relationship between DCs and the accuracy
state of the machine. If the DCs exceed the accuracy level of
the machine (represented by CD), the proposed UKF and PSO
might not completely extract the DCs from the ballbar results.
The lower the DCs, the better the performance of the UKF and
PSO. For ballbar tests conducted at feed rates between 300
and 6000 mmmin−1, the calculated DCs were minimal with a
peak of 6 µm (represented byDC1). This is much smaller than
the referenced CD at a feed rate of 300 mm min−1, indicating
that the UKF- and PSO-based ballbar processing methods per-
formed effectively at these feed rates. Therefore, by selecting
the optimal target function and higher sampling rate, the pro-
posed method can achieve better performance. Furthermore,
expanding the optimization scope to include all scaling para-
meters α, ƙ, and β presents a potential avenue for future
work.

To implement the proposed methodology on a new test-
ing platform, a reference ballbar measurement with a low

feed rate is essential because it can serve as a baseline for
scaling parameter selection when the target function does
not converge. The choice of this feed rate can be referenced
by the findings of this study, which identified a minimal
DC value at approximately 300 mm min−1 or even smal-
ler. The ballbar measurement captured fewer DCs when a
lower feed rate was employed. While a ballbar with a radius
of 50 mm yields an acceptable measurement time, a lar-
ger ballbar radius (e.g. 100–400 mm) results in a substan-
tial increase in the measurement time. To enhance ballbar
measurement efficiency and precision, a relatively higher feed
rate might be preferred in ballbar measurements, where the
suggested methodology can be applied. Furthermore, under-
standing the DCs of typical ballbar measurements is essen-
tial. The existing commercial ballbar processing tools lack this
capability, whereas the proposed ballbar processing method
can directly address this limitation. Finally, as a dependable
method for decomposing DCs, analyzing the dynamic aspects
arising from amachine’s regular movements can provide valu-
able insights into its relationship with machine design and
maintenance.

7. Conclusion and future work

This study proposed an updated ballbar processing method
to decompose the DCs contained in ballbar measurements
using the UKF and PSO methods. This is helpful for min-
imizing the dynamic errors contained in normal ballbar tests
under different feed rates. The effectiveness of the proposed
technology was verified using real experimental data obtained
from the HMC and simulated ballbar data generated using a
Renishaw ballbar simulator. Experimental ballbar tests were
performed at various feed rates. The dynamic error in the sim-
ulated data was modeled with the peak-to-peak vibration (Vib
pk–pk) ranging from 0 to 15 µm, and the other machine para-
meters were either based on measurements from the HU40-
T machine tool or selected randomly. The results of the
experimental and simulated ballbar tests yielded the following
conclusions.

1. The DCs extracted from the ballbar results using PSO-UKF
demonstrate a synchronized rise corresponding to the vibra-
tion levels observed at different feed rates. Consequently,
the PSO-UKF offers a potential solution for comprehend-
ing and decomposing the DCs within standard ballbar
measurements.

2. The proposed updated ballbar processing method, based
on the UKF and PSO methods, can effectively reduce the
DCs in ballbar measurements taken at varying feed rates.
This enhances both efficiency and precision, especially at
higher feed rates for ballbar measurements. As a universal
approach, it is applicable for ballbar tests across different
manufacturers and testing machines.
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3. The performance of the UKF and PSO in processing ball-
bar data can be improved by selecting the optimal target
function of the PSO and sampling rate of the ballbar. A
higher sampling rate can enhance the precision of the ball-
bar measurements measured at a higher feed rate.

For the next step of this work, the performance of the pro-
posed method is verified using data measured from general
machine tools. The DCs extracted using our proposed method
for scheduling the maintenance of the machining platform are
also considered. Additionally, expanding the optimization tar-
get to include all scaling parameters, α, ƙ, and β, could poten-
tially enhance the performance of both UKF and PSO.
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Appendix

Figure A1. Flowchart for ballbar measurement at the hexapod
machining cell.

Owing to the close proximity of the radial error curve pat-
terns in the CW and CCW directions for Simulations 3, 4, and
5, only the CW pattern is presented for clarity.
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Figure B1. Comparison of radial error curve pattern before and after UKF processing in simulation 3, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

Figure B2. Comparison of CD and DCs parameters before and after UKF in the simulation 3, (a) CDs of ballbar tests, (b) DC1 and DC2 of
ballbar measurement, (c) DC3 of ballbar measurement and (d) effects of Vib and DCs on CDs.
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Figure B3. Comparison of radial error curve pattern before and after UKF processing in simulation 4, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

Figure B4. Comparison of CD and DCs parameters before and after UKF in the simulation 4, (a) CDs of ballbar tests, (b) DC1 and DC2 of
ballbar measurement, (c) DC3 of ballbar measurement and (d) effects of Vib and DCs on CDs.
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Figure B5. Comparison of radial error curve pattern before and after UKF processing in simulation 5, (a) Vib pk–pk = 0 µm; (b) Vib
pk–pk = 5 µm; (c) Vib pk–pk = 10 µm; (d) Vib pk–pk = 15 µm.

Figure B6. Comparison n of CD and DCs parameters before and after UKF in the simulation 5, (a) CDs of ballbar tests, (b) DC1 and DC2

of ballbar measurement, (c) DC3 of ballbar measurement and (d) effects of Vib and DCs on CDs.
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Table A. Setup of machine error parameters for the Renishaw ballbar simulator.

Main items Parameters Simulation-1 Simulation-2 Simulation-3 Simulation-4 Simulation-5 Simulation-6

Test details

Feed rate
(mm min−1)

1001 998 998.6 1000 100 100

Test radius (mm) 50 150 150 150 100 100
Number of readings
in a full circle

360 360 360 1000 1000 1000

Geometry
errors

Scaling error-x (ppm) −36.5 18.3 −30.5 −30.5 −36 −18
Scaling error-y (ppm) −15.3 −16.4 26.9 26.9 8 8
Squareness 16.2 −15.8 −24.3 −24.3 −32 28
Straightness-X −16.8 −1.8 −19.4 −19.4 18 −8
Straightness-Y 2.0 −0.5 8.7 8.7 −24 2
Cyclic error-X (µm) 3.9 (right) 0.9 (right) 3.7 (right) 3.7 (right) 0 0

5.8 (left) 0.8 (left) 6.0 (left) 6.0 (left)
Cyclic error-Y (µm) 13 (up) 0.8 (up) 6.2 (up) 6.2 (up) 0 0

5.9 (down) 0.6 (down) 2.5 (down) 2.5 (down)
Cyclic pitch-X (mm) 12 38.1 50 50 0 0
Cyclic pitch-Y (mm) 18 44.45 50 50 0 0

Play errors

Backlash-X (µm) −5.2 (right) 0.1 (right) −0.3 (right) −0.3 (right) 4 (right) 1 (right)
11.1 (left) 0.7 (left) 5.6 (left) 5.6 (left) −5 (left) −3 (left)

Backlash-Y (µm) 1.9 (up) −0.2 (up) −2.4 (up) −2.4 (up) 5 (up) −3 (up)
4.2 (down) 0 (down) −0.6 (down) −0.6 (down) −8 (down) 7 (down)

Backlash
compensation-X (µm)

0 0 0 0 0 0

Backlash
compensation-Y (µm)

0 0 0 0 0 0

Lateral play-X (µm) 7.3 (right) −1.4 (right) 15.5 (right) 15.5 (right) 0 0
14.1 (left) 1.1 (left) −6.2 (left) −6.2 (left)

Lateral play-Y (µm) −64.2 (up) −0.2 (up) 9.4 (up) 9.4 (up) 0 0
58.2 (down) 0.4 (down) 1 (down) 1 (down)

Dynamic
errors

Vibration pk–pk (µm) 0/5/10/15 0/5/10/15 0/5/10/15 0/5/10/15 0/5/10/15 0/5/10/15
Servo mismatch (ms) 0.02 0 0.22 0.22 0 0
Reversal spikes-X (µm) 4.0 (right) 2.5 (right) −1.3 (right) −1.3 (right) 0 0

3.1 (left) 1.1 (left) 2.4 (left) 2.4 (left)
Reversal spikes-Y (µm) 3.2 (up) 1.8 (up) 1.1 (up) 1.1 (up) 0 0

−2.2 (down) 1.8 (down) 1.6 (down) 1.6 (down)

Table B. Setup of machine error parameters for the Renishaw Ballbar Simulator.

Main items Simulation-1 Simulation-2 Simulation-3 Simulation-4 Simulation-5 Simulation-6

Circular deviation
(CD) (µm)

43.5 (CW) 7.3 (CW) 20 (CW) 18 (CW) 36.5 (CW) 9.8 (CW)
43 (CCW) 7.8 (CCW) 24 (CCW) 23 (CCW) 48.8 (CCW) 9.77 (CCW)
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