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A B S T R A C T

Next generation networks will be largely based on monitoring and telemetry tools that are essential for
maintaining optimal performance, ensuring security, managing costs, and performing fault detection and
resolution. An integral part of the overall monitoring strategy is alerting, which provides administrators with
the necessary information to proactively or reactively manage and optimize network services. However, when
monitoring systems generate an excessive number of alerts, many of which may not be actionable or may not
represent critical issues, the phenomenon of alert fatigue occurs. Alert fatigue refers to a situation where
the volume and the speed of the continuous influx of alerts becomes so overwhelming that the network
administrators become desensitized and do not respond to them. To this end, and inspired by recent trends in
network automation, where human intervention tends to be minimized, we introduce an alert fatigue mitigation
mechanism in monitoring focusing on cloud computing infrastructures. In particular, a composite machine
learning methodology is proposed in order to select which alerts will be hidden and which ones will be
presented to the administrators. Additionally, to personalize the results, the proposed approach considers
the level of users’ experience along with the alert features to further optimize the accuracy of the alert
filtering mechanism. The research has been conducted in a realistic environment of a leading monitoring
enterprise, Netdata, which provided two datasets for testing our approach. Furthermore, the attained results
of the filtering mechanism were evaluated by expert engineers of the company that verified the output of the
proposed framework. Specifically, the outcomes confirm that our proposed methodology mitigates the alert
fatigue problem with an accuracy that surpass 90% in most cases.
1. Introduction

Cloud computing has gained significant momentum over the last
two decades. The majority of the daily services and applications used
nowadays are offered through the various available cloud comput-
ing service models. Given the importance of this technology, several
system and network administrators are responsible for providing a
certain level of Quality of Service (QoS) to the cloud users [1], satisfy
the availability, reliability and the recoverability of software plat-
forms and hardware [2]. Hence, to ensure that the cloud platform
and its applications perform as expected, the use of monitoring solu-
tions is required [3]. Typically, software-driven tools are tasked with
‘‘monitoring’’ a distributed computing system and conveying pertinent
information in an easily understandable format to administrators. This
is done through the use of graph charts, pies, gauges, or just simple
numeric variables.

Monitoring systems and tools, and especially the data that they
generate, will be one of the core components of the next generation
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networks [4]. Specifically, these future networks, will be based on a
collaborative decision making process between network administrators
and artificial intelligence techniques, that will leverage telemetry data
generated by monitoring probes that can be placed in critical points
of presence in the infrastructure [5]. Through this collaboration the
necessary network assurance could be achieved, while also reducing
the need for constant human intervention [6].

An inherent part of monitoring systems is the alerting system.
While alerts may manifest in diverse forms [7], they share certain
common morphological characteristics. For instance, an alert must be
distinguishable by a name and should include information about the
system component triggering the alert, along with its status and the
metric value responsible for the alert. In this context, two types of
alerts are mostly under consideration. The first type refers to threshold-
based raised alerts, indicating that a metric has surpassed a predefined
threshold, accompanied by a ‘‘status’’ indicating whether the alert is
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critical or merely a warning. Alternatively, an alert may originate from
an unsupervised machine learning model, which detects anomalous
behavior and notifies administrators for corrective action or root cause
analysis.

Accordingly, the alerting systems in large cloud infrastructures run-
ning many services may produce a significant amount of alerts of
different priority and criticality, inundating administrators with vast
amounts of information that can be proven challenging to manage [8].
This could cause a significant challenge called ‘‘alert fatigue’’. Specifi-
cally, alert fatigue occurs when an excessive volume of alerts desensi-
tizes the network administrator who is responsible for addressing them,
resulting in overlooked or dismissed alerts and delayed responses. The
primary issue in monitoring cloud systems, lies in the sheer quantity of
alerts. Responding to a single alert is manageable, even if it disrupts
the working routine of an on-call administrator. However, handling
a succession of a dozen alerts becomes more challenging, and as the
number increases, there is a growing likelihood that the administrator
may overlook something crucial.

The situation becomes even more difficult for new administrators of
the monitoring tools who try to navigate through thousands of metrics
and alerts. For instance, a normal software platform deployed on the
premises of a cloud provider is expected to have around 4 000 metrics
and around 80−100 different types of alerts. Additionally, a production
ystem could have a number of metrics ranging from 10 000 to 20
00 and the alerts could be in the order of several hundreds. These
igures reflect real data provided by our industrial partner organization,
etdata, that provides a flexible and modular real time monitoring
nd alerting tool [9]. Thus, it becomes clear that the administrator
ould be largely assisted by an automatic mechanism that can filter
nd prioritize critical events that could compromise the performance
ver less important alerts. The latter, motivated us to propose a novel
lerting system, leveraging machine learning techniques to classify and
ilter the alerts that will end up to the administrators, with the ultimate
oal to minimize the so called alert fatigue.

It is to be noted that Netdata have observed the phenomenon of alert
atigue also in experienced users.1 In more detail, as an infrastructure
s running its production workflows, alerts will be raised from the
onitoring system, and in turn, presented to the system administrators.
he more these administrators are exposed to alerts, the more likely it is
or them to develop tolerance to those that are most commonly raised,
ormalizing their severity and ultimately ignoring them. This fact,
hat users with different levels of experience and different behavioral
atterns suffer from alert fatigue, also motivated us to enhance the
roposed machine learning methodology by including multiple binary
lassifiers corresponding to the multiple levels of user experience.
t should be emphasized that our approach goes beyond of simply
pplying a machine learning model to a dataset to mitigate the alert
atigue problem. In contrast, we propose a composite and adaptive
achine learning model that leverages the level of user experience,
rovides a feature selection technique among hundreds of available
onitoring metrics, and is fortified by a human-assisted assessment.
ore precisely, the contributions of this paper can be summarized as

ollows:

• We present how a monitoring and alerting system works in a
distributed computing environment and introduce the problem of
alert fatigue in such a system.

• We propose and evaluate a lightweight alert filtering methodol-
ogy that leverages the user experience to select only alerts that
are important to each different level of user.

1 Throughout this article, the terms ‘‘system administrator’’ and ‘‘user’’
re used interchangeably, reflecting the common scenario where the network
dministrator also functions as the user of a monitoring system.
2

• We introduce and use two real datasets gathered by Netdata en-
gineers from different time periods containing monitoring alerts
of a real cloud environment.

• We conduct a human-assisted corroboration assessment, by solic-
iting the knowledge of expert engineers to assess the output of
our results.

The rest of the paper is organized as follows. Section 2 highlights
the related work regarding monitoring and alerting systems. Section 3
presents the main building blocks of how a monitoring and alerting
system works. Section 4 proposes a machine learning methodology for
alert selections based on the level of user experience in monitoring
systems. Section 5 illustrates the results and the efficiency of the
proposed methodology using two real datasets and one evaluation with
human annotators. Finally, Section 6 concludes the paper giving some
future directions in next-generation networks.

2. Related work & background

Our exploration of related work encompasses three key domains.
In Section 2.1, we delve into the contemporary landscape of mon-
itoring and alerting systems, explaining the imperative need for an
alert filtering mechanism. Moving forward to Section 2.2, we scrutinize
existing alert filtering techniques found in the pertinent literature, elu-
cidating their constraints and limitations. Subsequently, in Section 2.3,
we spotlight machine learning models poised to address these limita-
tions effectively. Finally, in Section 2.4, we delineate our approach to
mitigating the current monitoring and alerting systems limitations by
employing an alert filtering mechanism that leverages a random forest
model.

2.1. Monitoring & alerting systems

In the pertinent literature, monitoring systems are defined as ap-
plications that can provide awareness and observability over a given
infrastructure of one or more processing and storage nodes [10]. They
scale according to the infrastructure’s size, meaning that they can
monitor any number of machines and provide the desired metrics for
each of them [10,11]. Such monitoring solutions can be either made
in-house, or provided by dedicated providers to developers and system
administrators. Each have their own set of features and limitations, due
to design, or due to a paywall feature model [11]. Certain limitations in
systems like these include the limitation of centralizing and streaming
the time-series data and the amount of retention on each node. This
retention concerns the time-frame that the data will be stored on each
monitored node in order for a user to be able to go back in time and
examine the time-series [7].

In order for such systems to be functional and effective, they have
to be able to emit alerts towards the system administrator in case of
certain incidents. This behavior is referred to as an ‘‘alerting system’’.
Its existence in a monitoring solution is critical, since even when the
data retention capability of the monitoring tool is unlimited and the
data is centralized on a parent node, a human user cannot decode the
vast amount of timeseries that are provided [12]. With an alerting
system the limitation of retention can be managed, by summarizing
time-frames into meaningful alerts. Such alerts are accompanied by
a message with the health state of the node (either binary or with a
string representation), and various attributes about the time-series that
triggered the alert [13].

Monitoring systems are able to collect metrics from various different
points in a system. For instance, in a medium-sized production infras-
tructure that we had access to there were 10 million metrics and from
them came 200 pre-configured alerts that any of the nodes could raise
as its own alert entry. These numbers are dynamic as the infrastructure
evolves, and the users can even define their own alert entries with

custom rules and thresholds. Thus, when a new node or individual
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Table 1
Netdata’s alerting integrations.
Alerting integration Subscription type

Email free
Discord free
Netdata Mobile App paid
Amazon SNS paid
Mattermost paid
Microsoft Teams paid
Opsgenie paid
Pagerduty paid
Rocket.Chat paid
Slack paid
Splunk paid
Splunk VictorOps paid
Telegram paid
Webhook paid

user policies are added to the infrastructure, alerts are produced. This
behavior will then affect the inbox of the system admin responsible
for reacting to alerts. Due to usually functioning with thresholds, all
alerts can be in either ‘‘critical’’ or ‘‘warning’’ status, without any
grading between a system-breaking alert or a normal time-sync alert
on the clock of a node. In this case, the phenomenon of alert fatigue
appears, which is known in cyber security [14] and even more in health
care [15]. Hence, important alerts, which are blended with trivial and
unimportant ones, can be missed inside an over-congested inbox. The
term ‘‘inbox’’ represents the integration with which the user will receive
the alert. For reference and as presented in Table 1, Netdata supports
a host of alerting integrations, depending on the subscription type
that the user has. Namely alert notifications are supported via: the
Netdata mobile app, through Discord, Microsoft Teams, Slack, Splunk,
Pagerduty and more. Furthermore, a manual grading on the alerts is
not always available as it happens in cybersecurity [8], because each
user has a different reaction pattern for a given alert.

2.2. Alert filtering

The alert fatigue problem from monitoring and alerting systems can
be mitigated by creating a filtering mechanism. The concept of alert
filtering has also been used in many different applications. For instance,
email spam detection is a sector that can be greatly benefited from alert
filtering mechanisms. In such a context, machine learning techniques
can be used to leverage prior user reactions to alerts in order to filter
new ones. As an example, the authors in [16] conducted research in
the field of alert filtering and machine learning, by proposing the use
of the Naive Bayes classifier, albeit in a smaller and less broad dataset.
Additionally, alert filtering has been used along with machine learning
in network intrusion detection systems [17], for filtering false positive
alerts using a kernel density estimator. Lastly, there have also been
applications in the field of software as a service that use text weighing
techniques to extract information from textual alerts over the period of
one day in order to filter security alerts [18].

In our previous preliminary work [19], we presented a methodology
where a machine learning model is trained against the alert features
and the reactions of users, and then provide an alert criticality predic-
tion mechanism to fight the alert fatigue. From the experimental results
of this previous work, we found out that the performance had low
accuracy because inexperienced users’ interactions were not separated
from the experienced ones, resulting in poor predicting ability. The
focal point of this setback is that users might have different reactions
to the same alert and status due to workflow dissimilarity and overall
experience with the tool. Furthermore, when training on a dataset of
users’ reactions, while they are already experiencing alert fatigue, the
reaction patterns might have a big amount of noise in them.

To address the above limitations of our previous work and by
identifying the lack of alert fatigue mitigation mechanisms in a cloud
3

Fig. 1. Difference between traditional and proposed user-experience based alert
filtering approach.

computing environment from the literature, we have reached out to
Netdata to reinforce and enhance our preliminary findings. Specifically,
based on extended discussions with Netdata we have learnt that ex-
perienced users have more stable and opinionated reactions to alerts
while inexperienced users have more random reactions. For example,
they might check every single alert or worse, not check any alert due
to already experiencing alert fatigue. This made us to leverage the user
experience level [20] to build a process in which we can dissect the
learning workflow for groups of users on different experience levels.

2.3. ML & random forest

In different fields the issue of alert fatigue has been addressed with
machine learning and specifically random forest models. For instance,
such machine learning solutions have been applied to Clinical Decision
Support Systems (CDSSs) where the aim is to minimize medication
prescription errors, and to increase patient safety. As [21] presents,
in these monitoring systems for patients, doctors get alerts about the
effects of disease medication on patients, and react to them. Similarly
to our case, doctors tend to under-react or have very hasty reac-
tion patterns on an alert-fatigued inbox. Under-reacting means that
they miss important alerts inside their congested –from unimportant
alerts– program, and do not react to them, while the hasty reaction
is recorded when the doctors react on repeated alerts without really
paying attention to the alert details. The latter increases the chances of
missing an important alert or a non-ordinary alert value [21,22]. The
immediate and radical solution that some institutes chose was turning
off the alerting system completely, as presented at [22]. Thus, for less
radical solutions, random forest models and artificial neural networks
among others were used to predict the reactions of the doctors to the
alerts, with an aim to help the doctors with their responses on disease
medication alerts from a CDSS [21].

2.4. Synopsis & beyond the related work

The synopsis from the literature is that the current monitor and
alert filtering systems present significant drawbacks, while there is
as a considerable lack of such systems in a cloud computing setting.
Firstly, monitoring and alerting systems are inefficient, if the amount
of monitored instances is vast and their behaviors are not identical.
Secondly, basic alert filtering can help with alert fatigue, but does not
provide optimal prediction performance due to user dissimilarity in
experience and in workflow scenarios. For instance, all related works
found use one classifier for all the alerts triggered by the monitoring
system as depicted on the left of Fig. 1. As a result, the current
alert filtering techniques are able to adapt to certain patterns that the
monitored object has, but not to patterns that the alert responders
follow based on their experience.

To overcome the above identified limitations, our work contributes
to the field of network engineering by proposing a method that ac-
curately presents relevant alerts to network administrators taking into
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Fig. 2. Netdata architecture.
consideration their level of experience. To the best of our knowledge,
this is the first work that adopts smart alert filtering mechanisms to
the specific requirements of cloud monitoring systems. A significant
contribution of our work lies in the introduction of a composite alerting
model that incorporates multiple binary classifiers. When a new alert
is triggered, it is directed to one of the binary classifiers based on
the network administrator’s level of experience. As illustrated on the
right side of Fig. 1, our proposed model operates differently from
other machine learning models explored in the related work. In more
detail, our composite model learns from user experience and alert
features, outperforming other examined alert filtering methods, as we
will present in the subsequent sections.

3. Cloud monitoring & alert system

A cloud monitoring tool tracks, analyzes, and observes the per-
formance, health, and parameters of cloud resources, aiming to offer
real-time insights for administrators to identify issues, optimize re-
sources, ensure security, and maintain system reliability, which are
crucial for cloud infrastructure management. Hence, in this section, we
present a typical architecture of a cloud monitoring tool following the
Netdata paradigm. Subsequently, we focus on the alert system, which
is the main topic of this work, and finally we position the alert fatigue
notion within the cloud monitoring systems.

3.1. Architecture of a monitoring system

In this subsection, the architecture and main building blocks of a
monitoring system are presented. It is to be noted, that the presented
architecture is based on the Netdata tools used in the particular work,
for reasons of consistency. Nonetheless, the same monitoring principles
apply to other monitoring tools.

For instance, a monitoring system can be decomposed into two main
functioning parts. The first part is normally installed on the node that
we want to monitor, and has the role of collecting metrics of interest in
the form of time-series data. That collection in most of the cases has to
happen in a light (passive) way and also in some cases in an agnostic
way too. For example, it may collect the count of queries in a database,
but it should not read the query itself for privacy and security reasons.
Another reason for this functioning part to be lightweight is to better
support a wide variety of operating systems and working hardware.
4

The second functioning part is the visualization aspect of a moni-
toring system. It is responsible for presenting the collected metrics in a
way that makes sense to a human user. In Netdata, this is accomplished
by applying a classification over the time-series on their type and origin
(e.g., metrics coming from a database, metrics coming from a network
interface, etc.), on the topology (e.g., metrics grouped by the node
from which they were collected, etc.) and many other groupings. This
hierarchical classification is applied on the central metrics dashboard of
Netdata and is the same for all the users. Also, as the metrics are time-
series, many mathematical functions can be applied to them (i.e., mean,
min, max etc.) to aid the needs of the user.

A high-level monitoring architecture of the Netdata tool is presented
in Fig. 2 comprising of three main entities:

• Node. A node contains all the working services of a setup and it
has a Netdata Agent that is responsible for:

– Collecting data from various points of the node.
– Retaining a time-series DB, for storing metrics locally and

allowing the user to access them at any time.
– Providing a Health monitoring mechanism that produces

alerts that notify a particular user.

• Netdata Parent. A Netdata Parent is essentially another node that
centralizes metric collection from its children. It provides:

– Increased data retention, by storing the children’s data for
longer periods of time.

– High availability by being a server used for centralizing
the metrics, while also being available as long as no other
workload is generated at this machine.

– Infrastructure isolation by not allowing metrics to leave
the infrastructure and to be stored in an outside system
maintained by a third party.

• Netdata Cloud. A platform provided by Netdata that provides
remote access to:

– Infrastructure level dashboards, visualizing data from all
nodes of an infrastructure in intuitive ways.

– Centrally dispatched notifications, that can be identified by
a certain ‘‘infrastructure ID’’ or so called ‘‘Netdata Space’’,
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helping users know what went wrong and on which node/
deployment.

– User management interfaces, allowing administrators to
provide or limit access to certain dashboards and functions
of the UI.

It is important to note that any Netdata Agent can be a Netdata Par-
ent and vice versa. Additionally, all metric data are stored exclusively
on premises, and Netdata Agents can delegate any of their functions
(DB, Queries, Machine Learning, Health) to their Parents, to ease the
load on that particular node.

3.2. Alert system

The primary goal of alerting, within the monitoring system, is
to promptly notify administrators or relevant stakeholders about po-
tential issues, anomalies, or critical situations that may impact the
performance, security, or reliability of the cloud infrastructure. The
key aspects of alerting in the monitoring of cloud infrastructures are
provided below.

Threshold-based Alerts: Alerts are often triggered when monitored
etrics (such as CPU usage, memory utilization, network latency, etc.)

urpass predefined thresholds. These predefined rules stand as policies
stablished by experienced developers to impose sensible default limits
n the metrics associated with the alerts within the network. The alerts
re then defined in script files, which can be further edited from the
nd-users in order to better fine-tune them for their own workflow.
or instance, a script could implement a policy dictating that an alert
hould be triggered if the CPU usage surpasses a specified percentage
r if response times exceed predefined acceptable limits.

Anomaly Detection: Some alerting systems utilize machine learn-
ing and anomaly detection algorithms to identify unusual patterns or
deviations from normal behavior within the cloud infrastructure. This
helps in detecting issues that may not be apparent through threshold-
based approaches.

Event-driven Alerts: Some alerts can be triggered based on specific
events or incidents, such as the failure of a server, a security breach,
or the depletion of available storage space.

Critical Incident Notification: Alerts are prioritized based on
everity levels, ensuring that critical incidents receive immediate atten-
ion. This allows administrators to focus on the most important issues
irst.

Multi-Channel Notification: Alerting systems typically support
arious notification channels, including email, SMS, instant messaging,
nd integration with collaboration tools. This ensures that administra-
ors receive alerts through their preferred communication channels.

Escalation Policies: In case an initial alert is not acknowledged
r addressed within a specified timeframe, escalation policies can be
onfigured to notify additional personnel or teams. This ensures that
ritical issues are addressed even if the initially assigned personnel are
navailable.

Integration with Incident Management: Alerting is often inte-
grated with incident management systems, facilitating a structured
approach to incident resolution. This includes tracking, documenting,
and analyzing incidents for continuous improvement.

Alerting plays a crucial role in maintaining the reliability, availabil-
ity, and security of cloud infrastructures by enabling rapid response to
potential issues. It is an integral part of the overall monitoring strategy,
providing administrators with the information needed to proactively
manage and optimize cloud-based services. An alert system, is a mech-
anism that many monitoring tools use in order to notify a certain user
about the state of a node. Typically, they operate with ‘‘Statuses’’ in
which the alert can be better described such as ‘‘warning’’, ‘‘critical’’
etc. Such systems often report:

• The alert’s name
• The value that triggered the alert
5

• The current value of the metric that produced the alert
• The timestamp that the alert was triggered in a human readable

form
• How long the alert has been in the reported status
• The identifier of the node that the alert belongs to
• The nature of the metric that raised the alert (e.g., Web Server,

Database etc.)

All this information can then help the recipient to pinpoint what
went wrong in their infrastructure and think of possible solutions. It is
normal that all the metrics that are monitored from the software to be
also accompanied by at least one alert, but the relationship between
the two tends to be 𝑁 alerts bound to 1 metric.

Furthermore, each alert operates with one or several threshold
systems, that upon being exceeded triggers the alert into the status that
the threshold specifies. There are also mechanisms in place to prevent
small fluctuations of the metric around the threshold to trigger the
alert. The interval that the alert is checked can normally be configured
by the user, and its default value is dependent on the nature of the alert.
Some alerts need to be checked every minute, for example alerts that
are not mission-critical, while others that have utmost importance in
an infrastructure, such as core temperature and free RAM for example,
might need to be checked every single second. Once an alert is trig-
gered, the administrator gets a notification from one of the available
channels and can then run various helper functions to troubleshoot and
take corrective actions.

3.3. Alert fatigue in cloud monitoring systems

As monitoring software scales to cover every possible metric that
might provide valuable data to the users, so will the amount of alerts
that will come with those metrics. As described before, this can cause
an ‘‘alert fatigue’’ that can be triggered by the following reasons:

High Volume of Alerts: Cloud environments can generate a large
number of alerts due to the sheer complexity and scale of the infrastruc-
ture. If these alerts are not effectively managed or filtered, the volume
can become unmanageable.

Repetitive or Redundant Alerts: Continuous alerts about the same
or similar issues without meaningful variations can lead to a sense
of redundancy. Administrators may start to ignore or dismiss alerts,
assuming they are not indicative of new or critical issues.

False Positives: If monitoring tools produce alerts that do not
ccurately represent actual problems or if they frequently trigger false
larms, it can erode trust in the alerting system. This can lead to ad-
inistrators questioning the validity of alerts and potentially ignoring

hem.
Lack of Prioritization: When alerts are not appropriately priori-

ized based on the severity or impact of the issues they represent, it
ecomes challenging for administrators to discern which alerts require
mmediate attention.

Notification Overload: Alert fatigue can result from an excess of
otifications through various channels (e.g., emails, messages, etc.),
aking it difficult for administrators to effectively prioritize and man-

ge their response.
Ineffective Alerting Policies: Poorly defined or overly aggressive

lerting policies can contribute to alert fatigue. Setting overly sensitive
hresholds or generating alerts for non-critical events can overwhelm
dministrators.

As a simple example, an alert may be triggered when a node runs
n ad-blocker and its blocker list has been expired 10 days ago. Let
s assume that this type of alert has been pre-specified by default as

‘critical’’. In this node, some time later, there is a Denial of Service
ttack being monitored and an alert about free system RAM is triggered,
lso in ‘‘critical’’ status. This may result in the following behavior. The
dministrator will receive two ‘‘critical’’ alerts, but their importance is
owhere near the same.
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Fig. 3. Monitoring & alerting system.
If we extrapolate this example in an even small cloud infrastructure
with few dozens of servers, which can host few thousands containers,
each having its own metrics and alerts, the administrators could not
know at every instant if the alerts they see on the screen are actually
important or not. This creates a certain uncertainty if the administrator
should click the alert and investigate it more or if they should flag it
as a false positive and note to better configure that alert’s threshold.

To mitigate alert fatigue, a filtering mechanism should be deployed,
as shown in Fig. 3. In this way, only the important alerts are presented
to the network administrator. Possible alert filtering strategies that may
be followed are:

1. Smart Alerting: Implementing intelligent alerting mechanisms
that prioritize critical issues and reduce the number of non-
actionable alerts.

2. Threshold Optimization: Fine-tuning alert thresholds to en-
sure alerts are triggered only when there is a genuine concern,
reducing false positives.

3. Consolidation and Correlation: Grouping related alerts or cor-
relating events to provide a more holistic view, preventing the
generation of redundant alerts.

4. Regular Review and Adjustment: Periodically reviewing and
adjusting alerting policies based on the evolving nature of the
cloud environment and organizational priorities.

Items 2, 3 and 4 come with many drawbacks compared to smart
alerting, and are time consuming. Threshold optimization often hap-
pens inside configuration files and for the Netdata tool the configura-
tion is on an 1:1 relationship with the alerts. Having hundreds of alerts
would require a lot of man hours in order to properly configure them.
Consolidation and Correlation in cloud environments that host various
different applications, each with their own lifecycles in the system,
cannot happen efficiently and holistically, while it also requires user
input to have a sensible grouping. Regular Review and Adjustment is
possible, but the main drawback is that it proposes editing the alert
behaviors, which might in turn affect user reaction to the alerts. It
also follows the previous pattern in which considerable man hours are
needed in order to check and adjust the alerts, and as stated before,
with the alert definition count being vast, a real infrastructure might
be cumbersome to review in its entirety. These facts made us to design a
machine learning perspective that can enable a smart alerting strategy.

4. Proposed methodology

Our proposed methodology resolves the problem of alert fatigue by
using a filtering mechanism that provides the user with a score for
each alert, in the form of a probability. The decision of the user to
click an alert or not declares the user reaction. In order to build this
filtering mechanism, we follow a supervised machine learning approach
where the training is based on the alert features and the reactions of
the users and the inference provides the probability of an alert to be
clicked. Our methodology includes a group of models, where each one
of them corresponds to the user’s experience in monitoring and alert
systems. Specifically, our methodology aims to leverage the fact that
new and less experienced users often tend to have a more random
6

behavior when selecting which alerts to see, in contrast intermediate
users have more guided patterns in their reactions, while expert users
have even more specific patterns. Thus, we have proposed a composite
model that utilizes many sub-models to satisfy all the different user
groups we define. In the following subsections, we provide the details
of each component of the proposed solution.

4.1. Training stage

At the training stage, the model first receives a dataset consisting
of alert features such as metric value, alert status, metric classification,
and family of alerts. These features describe the system’s state for a
given alert domain, and reactions that indicate the users’ interest to
open these alerts. Then, the data gets preprocessed and forms sub-
datasets, directly linked with the above-mentioned user groups. Each
of them are represented with different feature vectors. New users will
have fewer alert reactions and consequently less features to represent
them than experts. The historical user interactions with the alerting
system are vectorized and grouped in the sub-datasets in order to train
the corresponding random forest models.

4.1.1. App interaction and creation of the dataset
The Netdata Console monitors the cloud infrastructures and pro-

duces alerts to the owners of the infrastructure as shown in the first
component of Fig. 4. The users will take then the decision to open
and consult the notifications or not. This behavior gets monitored and
logged in an internal database that is then ingested by the proposed
model.

4.1.2. Preprocessing
The preprocessing stage, illustrated in the second component of

Fig. 4, begins once the training dataset has been generated. Initially,
using feature importance ranking measure [23], a subset of features
is selected from the dataset in order to be processed. Then the data
features that are of string type are factorized, in order to use them as
distinct values and to be able to interpret them as numbers inside the
model. The purpose is to reform the data into several feature vectors,
which provide a personalized aspect to each entry, giving past reactions
of the user on the specific alert. New users will not have a broad history
and will form smaller vectors, while experienced users will form larger
vectors. Moreover, the timestamp and user_id features inside each alert
entry are used, in order to group them per user and sort them by time.
This pivot is vital for the Feature Vectorization mechanism and its sub-
components, as it will be later described, along with the Overflowing
and Backfilling mechanisms used during the preprocessing.

Overflowing mechanism. The overflowing mechanism is responsible for
enriching potentially sparse data of the training sub-datasets with data
that might not be directly applicable to each of them. With the use of
this mechanism, an entry that fits in one feature vector sub-dataset,
can be truncated to fit into the rest of the smaller feature vector sub-
datasets, contributing this way to their final data size. This approach is
safe to do, since as the size of the sub-datasets increases, so does the
experience of the users. In this case, there is no risk of ‘‘polluting’’ a
sub-dataset with data from inexperienced users.
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Fig. 4. Training stage.
Feature vectorization mechanism. This mechanism (component 3 in
Fig. 4) is responsible for creating different sub-datasets that accept
feature vectors of data that are personalized and are fed into the model
for training. Each feature vector type has a numbered prefix indicating
its feature representation. The 𝑖th feature vector type will have 𝑖 − 1
complete alert entries (features plus their label), and the features of
the alert that is up for prediction. So the 3 feature vector type will have
three alert entries and two reaction labels. The amount of sub-datasets
we create is based on differentiating the users’ experience levels into
many grades. For instance, a feature vector of 2 alerts will have: (i) an
alert’s feature-set along with the user’s reaction to that alert and (ii) an
alert’s feature-set without a reaction.

That final missing reaction is the label that the model will give
a prediction for. With this process, the data are grouped so that the
model does not train on just one interaction per entry, but on a feature
vector of data. For instance, in the third component of Fig. 4, a user
has two interactions on a particular alert, and his third reaction can be
predicted by taking into consideration the two previous reactions and
every individual alert’s features.

The filling of these sub-datasets is performed for every status of
every alert the user has reacted upon. If an alert appears first as critical
and then as a warning, then there will be two separate entries in a given
sub-dataset for a user. At the end of the preprocessing there will be 𝑛
amount of sub-datasets, each populated with a user experience level,
going to be inputted into one of the respective binary classifiers of the
composite model.

Backfilling using a similarity function. The backfilling mechanism works
by using a similarity function in order to not ignore users that do
not meet the feature vector type data criteria for a sub-dataset. It is
presented in the component 4 of Fig. 4. A user might only have two
interactions while the sub-dataset might be requesting for three. In that
case, a hard-coded similarity criterion is used to be able to fill the rest
of the required data with context-similar reactions from the user on
other alerts.

By using this mechanism, we ensure to empower some sub-datasets
that might not have a lot of data to train on, due to the origin of the
dataset or due to the 𝑛 features of the feature vector at hand. The
particular challenge can be modeled as a neighborhood problem. In
a human analogy, if we cannot find the owner of a house, we will
knock on the neighbor’s door, and if no one is there either, we will go
knock on a wider range of neighborhood. Similarly, for our problem
7

at hand, when a user does not have enough alert reactions for a sub-
dataset, our framework will search at that alert’s closest neighbors,
which alerts belong to the same family. For example, all CPU related
alerts have the flag of ‘‘CPU’’ family, network interface related ones
have ‘‘Network’’ and so on. Thus, if few entries are found but the
feature size of the vector is still not met, we will try to look at a wider
neighborhood, searching for alerts of the same classification as the alert
under consideration.

4.1.3. Composite model
The purpose of utilizing a composite model instead of applying a

simple machine learning model, is to be able to give a prediction for
each user scenario, while also leveraging the amount of user’s reactions.
Applying a simple model, would mean that it should be trained on all
the alert entries from the whole dataset unconditionally, and would not
be able to adapt to all the different levels of user experience. In contrast,
taking into consideration the level of user experience, their previous
selections and the alert features, the proposed composite model can
give a prediction which a common model cannot provide.

The composite model works by accepting each sub-dataset of data
coming from the preprocessing stage, and provides a binary classifier
for each. This procedure is illustrated in the fifth component of Fig. 4.
Each binary classifier is trained based on the data of the corresponding
feature vector of 𝑛 features. Random Forest models are used for every
binary classifier and are being trained against the input data. The
amount of sub-models can vary as a different amount of sub-datasets
means that there can be any number of binary classifiers, while the
training set can also have different lengths in the dataset depending on
the numbers of features of each feature vector.

4.1.4. Random forests
We chose random forests [24] as our binary classification model

for the alert filtering task. Random forests belong to the ensemble
family of classification models. Such methods advocate using multiple
models instead of just one to achieve greater accuracy and minimize
overfitting. This strategy is particularly suitable for our situation, where
diverse behaviors of users are more accurately predicted using these
methods. Random forests work by generating multiple decision trees
during training. They utilize a technique known as ‘‘bagging’’ to form
various training datasets from a single sample dataset, to then input
them into different trees. Afterwards, each tree makes a prediction, and
the most common prediction among the forest becomes the model’s
final decision.
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Table 2
Features that describe an alert.
Feature name Description

timestamp The processed timestamp for the alert.

user_id A unique identifier for each user.

name The alert’s name (e.g., ‘‘CPU usage’’), which is a string containing the name of the alert in the
notification.

family The alert’s family (e.g., ‘‘CPU’’ family of alerts), which refers to the category/group of alerts that a
particular alert belongs to.

prev_status The alert’s previous status, meaning the state (‘‘critical’’, ‘‘warning’’ or ‘‘clear’’) that the alert was
before
it got raised in the current state.

duration The alert’s duration (e.g., 15 min, in second format), which signifies how long this alert has been in
the reported state.

non_clear_duration The alert’s non-clear duration (e.g., 5 min, in second format), which covers the case where an alert
in its previous state was not clear, for example an alert first gets raised as ‘‘warning’’, and then gets
escalated to ‘‘critical’’, this value would be the total duration that the alert is raised.

role The user’s role, for example ‘‘sysadmin’’, ‘‘dbmaster’’ etc.

status The alert’s status, which can be any from ‘‘critical’’, ‘‘warning’’ or ‘‘clear’’.

value The alert’s value (e.g. ‘‘99’’), which is typically an integer value, indicating the alert’s value, that will
be
accompanied by a unit.

warning_count The infrastructure’s total count of ‘‘warning‘‘ alerts (e.g., ‘‘3’’ warning alerts in total).

critical_count The infrastructure’s total count of ‘‘critical‘‘ alerts (e.g., ‘‘7’’ critical alerts in total).

classification The alert’s classification (e.g., ‘‘Utilization, ‘‘Latency’’, Error’’ etc.),
which refers to the nature of the alert.

units The alert’s units (e.g. ‘‘%‘‘, ‘‘Errors’’, ‘‘Mbits/s’’) indicating the units that accompany the value of the
raised alert.

Reaction A Boolean value indicating whether or not the user clicked the notification, ‘‘1’’ clicked, ‘‘0’’ not
clicked.
Table 3
The seven models included in the composite model.

Model Model description based on the number of users alerts

Model-2 Beginner users with two interactions with the alerting system for a given alert
Model-3 Beginner users with three interactions with the alerting system for a given alert
Model-4 Intermediate users with four interactions with the alerting system for a given alert
Model-5 Intermediate users with five to nine interactions with the alerting system for a given alert
Model-10 Intermediate users with ten to fourteen interactions with the alerting system for a given alert
Model-15 Experienced users with fifteen to nineteen interactions with the alerting system for a given alert
Model-20 Experienced users with more than twenty interactions with the alerting system for a given alert
4.1.5. User experience & alert features
We employ random forest models for inference, trained on datasets

tailored to users’ experience levels. These models process alert features
and historical user responses to generate precise outputs. This differ-
entiation is crucial, as what may constitute a critical alert for one user
could be considered a routine stressor for another. NetData can monitor
hundreds types of metrics, all of which could serve as potential features
for an alert filtering mechanism. Following discussions with NetData
engineers, we identified the 150 most relevant metrics. Subsequently,
by utilizing Feature importance [25] with a forest of trees, we deter-
mined the 13 key features outlined in Table 2, while the last feature
‘‘Reaction’’ refers to the labels of the dataset. The users’ experience
level is quantified based on their historical engagement, specifically the
number of interactions they have had with alerts via clicks within the
monitoring tool, as presented in Table 3.

The different feature vectors of data that are created ensure that
all the levels of experience with individual alerts are captured. As the
experience of a user increases so does the stability in the type of alerts
they click, depending on values, statuses, classification and more. This
enables the composite model to be trained differently per experience
level. Thus, on an alert that has a ‘‘warning’’ status but the users’
reactions render it unimportant, the model will be expected to give a
low probability to click, to indicate that the user does not normally click
8

this particular alert with the features at hand. The prediction needs to
be in a form of recommendation, so that the user is not funneled or
instructed to a specific behavior.

4.2. Inference stage

The inference stage consists of the steps required to produce a
prediction for a certain sample of data. It is presented on Fig. 5, with
the preprocessing component being the same as in Fig. 4. Similarly to
the training stage, when the monitoring and alerting system outputs
a potential alert, the alert’s features get sent to the composite model
(component 1). The data gets inputted and prepossessed by the pre-
processing component (component 2). Finally, the composite model
ingests the feature vector and inputs it in the right binary classifier.
A prediction is then produced, giving a binary result for the alert
(components 3–7).

This result can also be visualized back to the user as a percentage
of the importance of the alert, so it is better understood. Such a
visualization can be found in the component 7 of Fig. 5. As an example,
if an alert emerges and the model predicts that the user should click the
notification with a high but not an absolute percentage, the prediction
will be rendered, for the sake of the example, as ‘‘86% probability’’
that this alert should be of interest. Obviously, this is a quantitative
example, in real next generation networks and following trends of

network automation more qualitative values could be used as ‘‘high’’,
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Fig. 5. Inference stage.
Table 4
Comparison among Different Machine Learning models.

Accuracy Precision Recall NPV Specificity Fall-out F1-Score

DNN 0.424 0.424 1 0 0 1 0.596
Random forest 0.706 0.732 0.771 0.667 0.617 0.382 0.751
Decision tree 0.669 0.720 0.694 0.605 0.634 0.365 0.707
Naive Bayes 0.552 0.664 0.449 0.481 0.692 0.307 0.536
Logistic Regression 0.578 0.587 0.895 0.513 0.149 0.850 0.709
‘‘medium’’, etc. [6], prompting the user to act upon only in very critical
scenarios.

5. Experimental evaluation

5.1. Experimental setup

To experimentally evaluate and compare our proposed methodol-
ogy, two comprehensive datasets were gathered in collaboration with
Netdata, while one human-assisted evaluation took place by network
experts. The first dataset was made through an internal log of the
alert notifications sent to users over the course of September 2022 to
May 2023, referred to as the ND2022 dataset. The second dataset was
made from interactions after May 2023, referred to as ND2023 dataset.
The ND2023 dataset would be used for further experimenting with the
architecture of the composite model and for evaluation purposes. More
specifically, we tried training the composite model with the ND2022
dataset and then testing it against the ND2023 dataset. In addition,
during the gathering of ND2023 various major updates in the user
interface and the alert presentation were made in the Netdata interface.
The use of a different Netdata user interface in the constructing of
ND2023 dataset compared to the ND2022 dataset adds value to the
evaluation of the generality of our proposed methodology.

The datasets were organized to include a binary ‘‘click’’ label in-
dicating whether the administrator clicked on the alert notification
or not. This facilitates the prediction of administrator behavior based
on the features embedded in the alert. Consequently, it becomes pos-
sible to model how frequently administrators with similar features
and system states respond to a given alert. As a result, there is a
conceptualization of integrating a new element into the alerting system,
capable of assessing the significance of an alert by analyzing how a user
of certain experience typically responds to such alerts.

The ND2022 dataset had a length of 150,000 entries with a size of
411𝑀𝐵. It was generated from 13,072 individual real users and had
an even split between the two target labels. The ND2023 dataset had a
length of 75,000 with a size of 206𝑀𝐵, generated by 7819 unique users
with the same label split characteristics. The two labels are the label-
0 which represents not-clicked alerts and the label-1 which represents
the clicked alerts. In those datasets we had equal amounts of label-0
and label-1 instances in order to not bias the model in a certain action,
9

as the outcome of the interaction on an alert is based heavily on the
preferences and the experience of the user.

Since the alert notification is one of the main functionalities in a
monitoring and alerting system we want to have an accurate filtering
on the alerts for the different types of users. Through a series of
experiments and by trying out various approaches in terms of alerts
grouping, users grouping, and personalization methods, we are able to
create a methodology that generalizes very well. While experimenting,
we tried to test different personalization techniques, such as trying
to cluster the input data into groups and then making a model per
cluster. That proved to be inefficient and it was better to have only
one model and to not dissect the users into clusters. The main cause
was that some clusters were having too few data compared to others,
making an inferior model in terms of prediction performance. Another
personalization technique we tried was to group the data and make
models for different alerts, but that proved to not be optimal, as
different users do not react in a similar way to alerts. User A might
click the alert because it is vital for his setup, while User B might not
click the alert as it is an expected alert in his pipeline.

To further evaluate the performance, we utilized human experts to
annotate a dataset that would then be tested on the composite model.
Essentially, a human engineer would react to an array of alert entries,
as if they were in a realistic scenario. With this behavior they would
be keen on clicking some alerts, while not so interested on looking at
others. Then a dataset would be built, and it would be inputted into
the trained composite model for a prediction to be made.

5.2. Evaluation metrics

In order to evaluate and compare the performance of our proposed
model we should firstly discern the positive from negative predictions
and whether the prediction is true or positive. Specifically, positive
predictions refer to alerts that are clicked by the users, while negative
predictions refer to alerts ignored by the users. True positive or (𝑡𝑝)
refers to how many predictions the model classified as 0 with them
actually being 0. False positive (𝑓𝑝) refers to how many predictions
were classified as 0 but in reality they were belonging to the 1 label.
True negative (𝑡𝑛) refers to how many predictions the model classified
as 1 with them actually being 1 and finally false negative (𝑓𝑛) refers
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Table 5
Evaluation and comparison between the baseline and composite model with two datasets and human evaluation.

Performance
metrics

Baseline model
ND2022 Train &
Test

Composite model
with only name alert
ND2022 Train & Test

Composite model
ND2022 Train &
Test

Composite model
ND2022 Train &
ND2023 Test

Human
evaluation

Accuracy 0.706 0.756 0.922 0.939 0.826
Precision/PPV 0.732 0.614 0.838 0.953 0.826
Recall 0.771 0.614 0.935 0.886 0.843
NPV 0.667 0.822 0.968 0.931 0.826
Specificity 0.617 0.822 0.916 0.972 0.808
Fall-out/FAR 0.382 0.177 0.083 0.027 0.190
F1-Score 0.751 0.614 0.884 0.918 0.830
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to how many predictions were classified as 1 but in reality they were
of 0 label.

The metrics applied in the testing part of the dataset are the
following [26]:

• Accuracy, (𝑡𝑝 + 𝑡𝑛)∕(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛), which is the percentage of
correct predictions that a model was able to achieve.

• Precision, 𝑡𝑝∕(𝑡𝑝 + 𝑓𝑝), which presents the proportion of positive
predictions that were actually positive.

• Recall, 𝑡𝑝∕(𝑡𝑝+𝑓𝑛), which shows what proportion of real positives
was actually classified as positive.

• Negative Predictive Value (NPV) 𝑡𝑛∕(𝑡𝑛 + 𝑓𝑛), which presents the
proportion of negative predictions that were actually negative.

• Specificity 𝑡𝑛∕(𝑡𝑛 + 𝑓𝑝), which is the proportion of true negatives
that were correctly predicted.

• F1-score (𝑡𝑝)∕(𝑡𝑝 + (1∕2 ∗ (𝑓𝑝 + 𝑓𝑛))), which is defined as the
harmonic mean of precision and recall.

• Fall-out 𝑓𝑝∕(𝑡𝑛 + 𝑓𝑝), which is the proportion of negative predic-
tions incorrectly identified as positives.

.3. Outcomes

The composite model utilizes seven sub-datasets of different feature
ectors in order to train the seven different models presented in Ta-
le 3. Each model represents a different level of user experience in the
lerting system based on the number of clicks on the alert notifications.
he sequence of these models was the most inclusive in terms of users
eing eligible to get a prediction, while also being the most accurate
mong multiple combinations that were tried. Table 4 presents the
omparison among various machine learning models using the ND2022
ataset. The goal of this evaluation is to corroborate our selection of
andom forest against other available ML algorithms and to justify its
ntegration in the proposed composite model. The results show that
ndeed the random forest model is the most accurate and the most
ppropriate for our problem at hand.

Our proposed methodology is also compared against a generic ma-
hine learning filtering method and a prediction method that is based
nly on the alert names and the levels of user experience. We call
he former as baseline model and the latter as composite model with
lert name. The baseline model relies on one simple random forest as
roposed in our previous work [19] and it does not utilize any user
rouping or feature vectorization techniques. In addition, this model
oes not leverage the levels of user experience. The baseline model is
ble to score a 75.1% in the F1 metric and 70.6% in the accuracy metric
s can be observed in the second column of Table 5. Using a method
hat takes only the alert name as input feature and also the reactions
f the users for every level of experience a 61.4% F1-score and 75.6%
ccuracy can be attained as noticed in the third column of Table 5.

Next, the proposed composite model is evaluated and its results
re summarized on the fourth column of Table 5. As can be noticed,
he performance is considerably high using the ND2022 dataset for
esting and the particular outcomes confirm the applicability of our
roposed composite model. The F1-score metric lies at 88.4%, which
s a 17.33% improvement from the baseline model. Regarding the
10

e

omputational overhead of the filtering mechanism in the Netdata tool,
e made multiple tests and measured that the average response time
as close to 35 msec for a batch of one hundred alerts, which renders
ur framework practically as a real-time model.

For the next set of experiments, the generalization of our approach
as evaluated, when testing in the ND2023 dataset. For this reason,

he composite model was first trained with the entirety of the ND2022
ataset, and then tested with the ND2023 dataset. The outcomes are
ummarized in the fifth column of Table 5. The allocation of data
as a 70%–30% split in terms of entries between the datasets. From

his experiment, we ensure that our model is not being overfitted over
he ND2022 dataset. Additionally, we want to show if our model is
erforming well on a dataset where there are time periods that new
sers are coming in, while old ones are becoming more experienced
nd many user interface changes were made. Since many users moved
rom the beginners group to more experienced ones, the performance of
he F1-score metric was increased at 91.8% and the accuracy at 93.9%.

Furthermore, the evaluation also focus on how each separate binary
lassifier included in the composite model performs. For the particular
valuation the composite model was trained on ND2022 and tested on
D2023. Table 6 summarizes the evaluation metrics. As illustrated,

he accuracy is higher than 90% in all binary classifiers and also
here is an observed pattern where the accuracy tends to increase
ith the rise in user experience level. This outcome is expected, since

he models benefit from more historical data in each feature vector
ength increment and because of the fact that as the users become
ore experienced in the monitoring tool the behavior in selection of

he alerts becomes more predictable.
In order to compare the Random Forest architecture with other

achine learning methods, we did the same experiment on ND2023
sing a Long Short-Term Memory layer model. The results were 0.910
n the F1-score metric, a slight decrease from the Random Forests, but
he major difference was found in the response time, with the model
aking 400 msec, more than 1000% increase from the architecture using
he Random Forests. Thus, such results prove our method is better in
erms of prediction ability, but most importantly in terms of model
esponse time.

Finally, we evaluated the performance of the model with human
nnotators that used Netdata and the proposed personalized filtering
ystem. The human annotators had a specific reaction profile. They
ould react on specific alerts that would correspond to a certain
orkflow scenario, and not react to others that they were not important

or their workflow (even if the alerts were critical). This was done
o simulate various roles of monitoring users, like a Web Server Ad-
inistrator, a Database Administrator and a Network Administrator.
he total amount of human annotated reactions was 200 alerts. These
lerts were pooled out of real alert samples in a random way, in order
o give to the annotators alerts of all kinds. The goal was to use the
rained composite model to predict the annotators’ very specific and
emanding behavior, to then observe the usability of the model. As an
xample, Network Administrators would not click on alerts related to a
atabase or a virtualization technology. They would only react on alerts
ased around the infrastructure’s network setup. The outcomes of this
valuation are presented in the sixth column of Table 5. The F1-score
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Table 6
Evaluation and comparison for each model of composite model (training with
ND2022 & testing with ND2023)

Binary
classifiers

Accuracy Precision Recall F1-Score

2 0.929 0.945 0.909 0.930
3 0.904 0.945 0.780 0.855
4 0.985 1.0 0.918 0.957
5 0.968 0.944 0.809 0.871
10 0.991 1.0 0.928 0.962
15 0.968 1.0 0.875 0.933
20 0.974 0.956 0.977 0.967

metric was 83.0% and the accuracy was 82.6%, two very good results
on an evaluation test with very specific user scenarios.

It should be noted that the performance of the experiment with
the human annotators had an expected drop in performance, when
compared to the previous experiments of Table 5. Firstly, it is important
to note that the annotators were initially excluded from the training
datasets, as they were internal engineers, and we chose to not include
them in the sampled datasets ND2022 and ND2023, thus their personal
behavioral patterns were not used for training. This decision was made
in order to not pollute the dataset with reactions from developers
of the software, that might have testing environments producing a
lot of alerts, or themselves behaving in a testing manner. Secondly,
the engineers that used the alerting system along with the composite
model, were aware of the situation and gave a certain amount of
attention to all alerts that they were required to annotate. Thus, their
behavioral patterns were different from those of a user that operates
a monitoring system in his daily workflow, leading to this accuracy
discrepancy.

5.4. Discussion

Commercial monitoring and alerting systems do not provide more
personalized information like user locations, applications types or web-
site behavior data. Therefore, we cannot use well-established per-
sonalization methods and we concluded that the most appropriate
information to personalize and improve the performance of the alert
filtering is the level of user experience. The investigation on the histor-
ical monitoring data showed that the user experience can be measured
better by the number of clicks on alerts than any date/chronological
information.

In terms of applying our framework to the monitoring tool, the
results of the model can be visualized in the user interface of the
Netdata tool, in two major ways. Firstly, alerts with predictions that
have very low probability to get clicked can be hidden behind a
button with a counter that indicates only their population count. In
contrast, the high probability alerts can be presented in a sorted manner
according to the probability that a particular user would have clicked
them. Different color codes according to the severity of the alert can
also be used for better reaction and sorting from the user.

Regarding the selection of the random forest models, this was
justified from the results obtained in Table 4. In more details, this
table presents the outcomes from various machine learning models
with a simpler model architecture using the same dataset for training
and testing as our composite model. Deep learning models, based on a
feed-forward model, were not able to distinguish the binary prediction
(Specificity was 0%) thus being able to only achieve 42% accuracy.
The Naive Bayes classifier and the Logistic Regression models were
performing on a very average score, with an accuracy of less than 60%
accuracy. The decision tree model was the closest in performance, but
was lacking against the random forest model in almost all metrics.

Additionally, we should take into consideration that an alerting and
monitoring system should not add considerable overhead to the infras-
tructure. In edge and cloud computing environments the processing
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resources are valuable and they should be mainly used by the real
applications hosted in the infrastructure, minimizing their utilization by
the management and orchestration services. This is the reason that we
avoided complicated deep learning models and we resorted to classic
machine methods such as random forests. The experimental comparison
in terms of response time confirms our assumptions, as evidenced by
the average inference time for a batch of one hundred alerts being
35 ms for our approach and 400 ms for the LSTM approach.

With this as a starting measure, we decided to use the random forest
model in order to build a more complete architecture for the problem
at hand. Such an architecture can be leveraged by a smart alerting
system and help new users that get flooded with alerts, enabling them
to focus on the important tasks and alerts instead of those that can
adversely impact their concentration and cause an alert fatigue. This is
crucial since especially new users can get easily confused when facing
an enormous number of alert messages, which can discourage them
from continuing the learning process and the use of the monitoring tool.
Additionally, it can also increase the productivity of more experienced
users by indicating if an alert at hand should be checked or not. The
model would be essentially capable of detecting false positives in the
monitored infrastructure, making it easier for system administrators to
know what the state of their deployment is.

The above discussion and the applicability of our proposed model
are confirmed experimentally by the second set of experiments per-
formed. In particular, as shown in columns 4 and 5 of Table 5 the
evaluation metrics of the composite model have been improved in all
aspects compared to column 2, which is the baseline model. Specif-
ically, the accuracy metric that indicates the overall ability of the
model to predict correctly has increased by 22.3% from the baseline
model. Furthermore, the model has very good precision score or PPV,
meaning that it can classify well the class of the alert being clicked
(true positive). A high Recall score also means that the model is able
to not incorrectly classify samples as positives with a ratio of 88.6%.
In contrast to Precision or PPV, Negative predictive value, NPV is also
high, meaning that the model can classify well on the class of the alert
not being clicked (true negative). Specificity can be explained as the
true negative rate. For instance, the closest it is to 1, the better the
model’s ability is on predicting negative labeled samples. Finally, a low
Fall-out score indicates that the model is capable to not mistakenly
classify negative-labeled samples as positive class.

It is also worth mentioning the accuracy improvement achieved in
the 5th column of Table 5 compared to the 4th column. The accuracy
achieved when using the ND2022 dataset for both training and testing
is lower than training the model on the entire ND2022 dataset and then
using the ND2023 dataset as a test set. This embraces the personaliza-
tion definition in this paper, since in the ND2023 dataset the users are
more experienced both by using the software, but also from the user
interface updates that enhanced their experience when dealing with
alerts. Therefore, the less experienced users on the ND2022 dataset
have a degree of unpredictability in their behavior, that is lessened
on the ND2023 dataset. Experience, and its product, predictability are
the main reasons the model benefits on performance with the ND2023
dataset, as there is more history to the reactions of the users but also
the behavior of the users themselves is more predictable due to their
increased experience.

In addition, the performance achieved in the 5th column of Table 5
can be justified by the fact that the users became more experienced over
the coarse of time. This shows, that the composite model did generalize
well on these new samples and users. Users having more experience
means that their behavior is stable and has sense, in contrast with the
inexperienced users that have mostly random and unpredictable behav-
ior. Furthermore, the feature set of Table 2 remains a good selection to
represent the state of the alerts for both datasets. In contrast when we
tried different other feature combination (i.e., by incrementally adding
features for training) there was a significant drop in the performance.

As an example, the third column of Table 5 shows the drop in the
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accuracy when the same methodology is kept but only the name of the
alert is used as feature. Similar evaluation outcomes were observed for
different combinations of features.

Another interesting topic of discussion arises from the findings of
the sixth column of Table 5. In the particular experiment, the model
was trained with the ND2022 dataset considering alerts annotated by
human experts. These experts were simulating demanding and specific
decisions in their reaction patterns during their annotation. The results
show that the model only dropped 8% on the F1-score metric, which is
very acceptable, given that the reaction patterns of the users were not
previously observed on the training set, but they were original to this
human evaluation.

Given that alerts can be organized hierarchically, the alerting tool
can provide the capability to users to view all similar alerts within
the same hierarchy with a simple click when an alert is presented.
An example of such hierarchies includes the grouping of alerts, where
issues related to CPU are designated under the ‘‘CPU’’ hierarchy, and
those concerning networks are grouped in the ‘‘Network’’ hierarchy.
Furthermore we tried to leverage the potential of these hierarchies
for constructing a machine learning model that utilizes hierarchical
representations. We delved into the historical datasets however, our
examination revealed that user interactions were too sparse to support
the development of a hierarchical machine learning model. On the con-
trary, employing a feature vector representation proved to be a viable
alternative, particularly when augmented by the overflow mechanism.

6. Conclusions & future work

Alert fatigue is an increasingly pivotal topic in cloud monitoring
tools which cannot be easily addressed by setting thresholds in the hun-
dreds of monitored metrics from both beginners and experienced users.
Alert filtering can be reduced in a binary classification problem that
takes decision if an alert should be presented or not to the user based
on some features that describe the alerts. Furthermore, in our research
we have seen that groups of users with similar levels of experience in
the monitoring tools have similar patterns of behavior and selection
of the alerts. We leveraged this observation and we built an ensemble
of binary classifiers. These classifiers correspond to the different levels
of user experience. In this way our proposed methodology filters and
presents to the users only the alerts that they would have selected if
they had carefully inspected all of them. For the binary classifiers a
random forest approach was adopted, by demonstrating their superior
accuracy compared to other machine learning methods and without
incurring prolonged training and inference times seen in more complex
approaches like deep learning techniques.

Future endeavors aim to integrate the accurate alerting system in
a next-generation network architecture, which will have as a goal
to further automate the monitoring system. In particular, we aim to
incorporate our proposed smart monitoring tool, as a means to achieve
the necessary network assurance following the intent based networking
paradigm to further reduce the intervention of network administra-
tions, and thus to alleviate the alert fatigue problem. Thus, we aim to
enhance our proposed methodology, by including fault compensation
techniques, in order to reduce any hectic manual labor associated
with monitoring, configuration and management of next-generation
networks.
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