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ABSTRACT This study aimed to investigate the application of label propagation techniques to propagate
labels among photoplethysmogram (PPG) signals, particularly in imbalanced class scenarios and limited
data availability scenarios, where clean PPG samples are significantly outnumbered by artifact-contaminated
samples. We investigated a dataset comprising PPG recordings from 1571 patients, wherein approximately
82% of the samples were identified as clean, while the remaining 18% were contaminated by artifacts. Our
research compares the performance of supervised classifiers, such as conventional classifiers and neural
networks (Multi-Layer Perceptron (MLP), Transformers, Fully Convolutional Network (FCN)), with the
semi-supervised Label Propagation (LP) algorithm for artifact classification in PPG signals. The results
indicate that the LP algorithm achieves a precision of 91%, a recall of 90%, and an F1 score of 90% for the
‘‘artifacts’’ class, showcasing its effectiveness in annotating a medical dataset, even in cases where clean
samples are rare. Although the K-Nearest Neighbors (KNN) supervised model demonstrated good results
with a precision of 89%, a recall of 95%, and an F1 score of 92%, the semi-supervised algorithm excels
in artifact detection. In the case of imbalanced and limited pediatric intensive care environment data, the
semi-supervised LP algorithm is promising for artifact detection in PPG signals. The results of this study are
important for improving the accuracy of PPG-based health monitoring, particularly in situations in which
motion artifacts pose challenges to data interpretation.

INDEX TERMS Motion artifacts, imbalanced classes, label propagation algorithm, machine learning
classifiers, photoplethysmogram (PPG) signals.

I. INTRODUCTION
Machine learning, a sub-field of artificial intelligence [1],
has emerged as a transformative technology in various
domains, including healthcare. With its ability to analyze
large amounts of data [2], it has the potential to improve
healthcare outcomes, help doctors make better decisions [3],

The associate editor coordinating the review of this manuscript and

approving it for publication was Ganesh Naik .

and revolutionize medical research with models that aim
to predict injuries [4], detect heart disease earlier [5] and
mortality [6]. Additionally, machine learning algorithms can
contribute to drug discovery and development, optimizing
drug efficacy and predicting potential adverse reactions [7].
Machine learning can extract all the necessary information
from various types of healthcare data, such as electronic
medical records [8], medical images, and physiological
signals.
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Despite its potential, the integration of machine learn-
ing into healthcare comes with challenges and consid-
erations. Privacy and ethical implications must be taken
into account [9]. The data acquired must respect patient
privacy and confidentiality and also require standardization
and centralized collection for ease of management and
consistency, ensuring harmonization [10]. Onemajor concern
is the availability of high-quality data for training and
testing these algorithms [11]. To evaluate the performance
of the algorithms implemented, it is necessary to have
access to a ground truth. Accessing ground truth for
evaluating algorithms is challenging, often requiring expert
input and large, complete datasets, particularly due to
class imbalances in medical data. This further complicates
model training, necessitating rebalancing while preserving
medical value, with erroneous, missing, or imprecise data
exacerbated by artifacts from patient motion or clini-
cal interventions posing additional obstacles to accurate
predictions.

During a patient’s stay in the hospital, it is important to
constantly monitor vital signs. One of these vital signals
is the PPG signal, which is frequently captured during
different types of movements, introducing motion noise and
interfering with the accuracy of the signals. This noise
is irregular and causes high-amplitude fluctuations within
the PPG signals [12]. Motion artifacts can result in the
pulse oximeter either misinterpreting movement as the actual
signal or masking the true signal with unwanted interference,
leading to incorrect readings, false alarms, and missed
important alarms [13]. The main objective of this work is
to detect motion artifacts in PPG signals obtained from the
Pediatric Intensive Care Unit (PICU) database of the CHU
Sainte-Justine Hospital (CHUSJ). The cleaned PPG signals
will be used to construct clinical decision systems (CDSS) at
CHUSJ’s PICU. Specifically, annotated signals will be used
in screening and identifying various health-related concerns
in children. For example, changes in blood pressure in
children are significant indicators for identifying patients
who require immediate care and admission to the PICU.
Invasive methods, like catheter insertion for continuous blood
pressure monitoring, offer precise real-time data but come
with significant risks such as bleeding and infection [14].
On the other hand, conventional cuff-based measurements,
though less invasive, provide only intermittent readings
and may not capture sudden clinical changes effectively.
Therefore, predicting blood pressure from PPG waveforms
has emerged as a successful approach [15] for comprehensive
CDSS applications.

This study contributes to the field in three main ways.
Firstly, we compare resampling methods commonly used
in medical data analysis to address the imbalance between
clean PPG samples and artifact-contaminated ones. Sec-
ondly, we validate the efficacy of the LP algorithm for
motion artifact detection within PPG signals, offering
insights into its performance in scenarios with limited
labeled data. Lastly, we present a detailed performance

comparison between traditional supervised algorithms and
the semi-supervised LP approach, highlighting the advan-
tages of leveraging unlabeled data in artifact classification
tasks.

II. RELATED WORK
Numerous methods have already been developed to detect
motion artifacts in PPG signals. First, the traditional methods
are easy to implement. In [16], the authors used statistical
analysis to compare the values of three statistics calculated
for each pulse of the PPG signal to determine which pulses
are noisy. This method will be used in the labeling step
for the rest of the project. Adaptive filtering is another
method of artifact detection [17]. The adaptive filter uses
an algorithm that continuously updates its coefficients to
obtain an error signal as close as possible to the original
PPG signal. Both approaches have the advantage of being
easy to implement but are notably sensitive to empirical
thresholds. Among other popular methods, the wavelet
transform uses cascaded high-pass and low-pass filters to
obtain the desired signal decomposition. Once the signal
has been decomposed, the coefficients are analyzed to
identify any artifacts [18]. Empirical mode decomposition,
like the wavelet transform, is a time-frequency analysis of
the signal [19]. When these modes are obtained, the objective
is to calculate the instantaneous frequency for each mode to
detect modes that have a frequency close to the harmonics
of a PPG signal and modes characteristic of motion artifacts.
So, these methods have the advantage of being fast and
simple, which is useful, but when used alone, they have
limited adaptability and may not work as well with complex
movements or unexpected scenarios. A summary table with
the review activity is presented in Table 1. Therefore,
we decided to use a combination of signal processing
algorithms for the preprocessing part and machine learning
models.

Regarding machine learning models, in [20], the authors
explore using semi-supervised models to classify temporal
data. These models are based on a graphical approach like
the LP algorithm. The algorithm’s results are evaluated
on different datasets of varying lengths, including ECG
(electrocardiogram) signal data. The results show that
semi-supervised models are accurate for classifying time
series data. However, these algorithms have not been applied
to artifact detection. Semi-supervised learning is widely used
as a classification algorithm in cases where not all data is
annotated. Active learning is also a powerful semi-supervised
classification method that has proven effective for temporal
data [21]. In our scenario, the LP algorithm is effective
because the availability of labeled data is limited, and there
is a large amount of unlabeled data [22]. Considering this
information, the LP algorithm was implemented for this
project.

In the first part of the project, the LP algorithm is
used for data annotation. First, an expert annotated a small
proportion of data, and a statistical analysis algorithm was
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TABLE 1. Summary table of the literature review.

used to validate the annotations. Then, the LP annotates all
data using only a small proportion of previously annotated
data. Our medical data are unbalanced, with around 80%
of pulses free of artifacts and only 20% with artifacts.
This means that to have an accurate labeling algorithm,
a rebalancing of the classes in the training part needs to be
done. Several methods are available for this: oversampling,
undersampling, and both oversampling and undersampling.
It must be remembered that medical data is being worked
with, so samplingmethodsmustmakemedical sense, whether
by randomly duplicating data or by removing it. Medical data
involves intricate relationships among data elements, such as
patient demographics, medical history, symptoms, diagnoses,
treatments, and outcomes [23].

Another aim of this project is to compare classifiers to
the LP algorithm, used as a classifier, to accurately detect
artifacts. In health care, classifiers are a real help in decision-
making [24]. The spectrum of classifiers is very wide: from
traditional classifiers like KNN, Support Vector Machine
(SVM), Decision Tree (DT), and Naive Bayes classifier (NB)
[25], to classifiers using neural networks, such as MLP or
Transformers. A comparison of the results of each type
of classifier with the semi-supervised LP algorithm will

be presented. The effectiveness of these two streams is
analyzed by the experimental results (in section V) from
the comparative analysis of semi-supervised LP (with KNN
kernel) and fully-supervised learning, including conventional
machine learning classifiers (KNN, Support Vector Clas-
sification (SVC), DT, Random Forest (RF), GaussianNB,
MultinominalNB, and Logistic Regression (LR)), MLP, and
Transformers. Then, the best classification method will be
presented, followed by a conclusion on artifact detection.

The paper is structured as follows. In section III, data
characteristics, preprocessing, methodology, labeling, and
classification are introduced. In section IV, the implementa-
tion of experiments is presented. Section V is used to evaluate
the results with different metrics and present a comparison
of experimental result tables. In section VII, the results are
interpreted, and the limitations are discussed.

III. MATERIAL AND METHODS
This study was conducted following ethical approval from the
research ethics board at CHUSJ (protocol number 2023-4556,
accepted January 18, 2023). The detailed workflow of the
various work stages is shown in Fig. 1. Specifically, the
workflow of the proposed method for detecting motion
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artifacts in PPG signals begins with the input of a 30-second
PPG signal. This signal undergoes data preprocessing,
which includes filtering, segmentation, resampling, and
normalization to prepare the data for analysis. Next, a labeling
and classification step is performed using a label prop-
agation algorithm to identify and classify segments of
the signal. Finally, the process outputs artifact detection,
highlighting the portions of the signal affected by motion
artifacts.

A. DATA COLLECTION
This project aims to detect motion artifacts in PPG signals.
The eligible study population includes all children aged
0 to 18 years, admitted between September 2018 and July
2022 inclusive, for whom electrocardiogram (ECG), PPG,
and arterial blood pressure (ABP) waveform records are
available. In this population, specific exclusion criteria have
been established to avoid bias. Data collected beyond the
fourth day of hospital stay will be disregarded to prevent
potential bias from a few patients who may have prolonged
stays with arterial lines. Patients on extracorporeal membrane
oxygenation (ECMO) treatment will also be excluded from
the analysis. Furthermore, if a patient is readmitted to the
PICU multiple times, only data from the first stay will be
analyzed.

FIGURE 1. Workflow of the proposed method for detecting motion
artifacts in PPG signals.

A PPG signal is recorded using a sensor called the pulse
oximeter. This device is placed on a patient’s skin, for

children, on a fingertip or earlobe. A PPG sensor emits light
into the skin, partially absorbed by the blood vessels. Changes
in blood flow during the cardiac cycle cause variations
in light absorption. The sensor detects the reflected light,
measuring its intensity modulated by blood volume changes.
This varying intensity is converted into an electrical signal,
creating the PPG waveform. Blood pressure signals are
recorded using an invasive and continuous method, i.e., the
catheter, and a non-invasive and discontinuous method, i.e.,
the blood pressure cuff. ECG is continuously recorded by
placing electrodes on the patient’s chest. The Sainte-Justine
University Hospital PICU utilizes a high-resolution research
database (HRDB) [26], [27] that has been approved by
the ethical committee. The HRDB links biomedical signals
extracted from the different devices, displayed through
patient monitors, to the electronic patient record continuously
throughout their stay in the unit [28].

Between 2018 and 2022, 1571 patients met the inclusion
criteria. For each patient, four physiological signals were
extracted: ECG, PPG, blood pressure from the catheter, and
blood pressure from the cuff. Each signal was extracted over
96 hours (4 days). Signal values are grouped together in a
tablewith the date and time of acquisition. For the PPG signal,
640 values are acquired every 5 seconds, corresponding to
a sampling frequency of 128 Hz. For blood pressure and
ECG signals, 2560 values are acquired every 5 seconds, with
a sampling frequency of 512 Hz. For the duration of the
extraction, a fixed 30-second window of PPG signals will be
used for further processing.

B. PREPROCESSING
The raw PPG signal is preprocessed to increase its quality,
remove unwanted noise, and make it more suitable for
subsequent processing steps [29]. The different steps are
described below:

1) Filtering: each signal window is filtered using a
band-pass Butterworth filter; the cut-off frequencies
are 0.5 and 5 Hz, corresponding to a heart rate between
30 and 300 bpm. A forward-backward filtering is used
to avoid phase distortions. The objective is to remove
baseline wander and high-frequency noise.

2) Pulse segmentation: a function to find all local minima
by comparing samples is used. The aim is to divide
the preprocessed PPG signal into smaller segments or
windows to detect the artifacts present for each pulse.
In our case, a segment is a pulse. The size of each
segment may vary depending on the characteristics
of the PPG signal and the specific application of the
signal pulses. A pulse is considered to lie between two
minima.

3) Resampling: the duration of a cardiac cycle for chil-
dren is between 0.3 and 1 second. A pulse represents
a cardiac cycle. Therefore, not all pulses have the
same number of samples. Each pulse is uniformly
oversampled in time to contain 256 samples, corre-
sponding to a heart cycle of 1s. A linear interpolation
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function [30] is used to create the missing points for
each pulse. Linear interpolation is favored for signals
due to its simplicity, computational efficiency, and
ability to estimate values between known data points.
It maintains signal continuity and linearity, making it
suitable for signals with relatively smooth and linear
variations.

4) Normalization: the data are normalized to have a unit
variance and zero mean. This normalization ensures
that all features or variables in the data have the same
scale, preventing certain features from dominating
the learning process simply because they have larger
numerical values.

5) Data transformation: each PPG pulse, essentially a
waveform representing blood volume changes over
time, can be represented as a data point in a column
containing 256 values. These values are equally spaced
points obtained using step 3 of the preprocessing.
At the end of preprocessing, a vector of 256 points is
obtained, representing a pulse of the PPG signal. The
number of vectors depends on the number of pulses.
This method allows us to work with PPG data in a
structured manner suitable for various applications,
from statistical analysis to machine learning.

FIGURE 2. Example of a 10s segment of a 30s raw PPG signal in the top
image, filtered signal in the middle image, and segmented signal in the
bottom image.

Fig. 2 shows the first 10 seconds of a raw PPG signal, when
the signal has been filtered, and finally when the pulses
have been segmented. The effect of the bandpass filter can
be seen in the second figure. The filter has smoothed the
signal by removing the extreme frequency components. The
signal waveform is preserved, and the filter does not introduce
resonances or significant ripples in the desired frequency
range. Note that the first pulse has not been segmented. This
is because the function could not detect the two minima
that make up a pulse and, therefore, could not segment
it. The signal does not start at the first low point of the
pulse.

FIGURE 3. Example of a 10s segment of a 30s raw PPG signal. Inside the
blue box are all the pulses containing motion artifacts.

C. DATASET ANNOTATION
First, after preprocessing the data, the aim is to build
a ground truth for future evaluation of the classification
algorithms. To this end, one human expert annotated 10%
of the database. Annotation is visual, comparing pulses with
each other and binary classifying each pulse as good or
as containing artifacts. To avoid involving another human
expert, in consideration of time and specialist resources,
we implemented an automated algorithm to handle additional
annotations. This algorithm, acting as a surrogate expert, was
developed to recheck the entirety of the 10% annotated data
by the human expert, identifying similarities in the process.
Employing a statistical approach, the algorithm determines if
the values of a given pulse lie within standard parameters or
deviate from the norm. We subsequently cross-validated the
algorithm’s annotations against those from the professional
expert to determine the algorithm’s accuracy. It was decided
to annotate a maximum of 10% of the database and then use
the LP algorithm to annotate the rest of the data.

1) EXPERT LABELING
PPG signals already segmented are presented to the expert.
By analyzing each pulse, the expert classifies each pulse as
artifact or artifact-free. A pulse is defined as artifact-free if its
morphology is typical, i.e., if its characteristics - amplitude,
width, shape - are the same as those of adjacent signals.
A pulse is defined with artifacts if its characteristics differ
from those of adjacent pulses (see fig. 3). To recheck the
annotations of one expert, an algorithm that acts as a second
expert was set up, allowing all impulses to be reannotated to
see similarities. This algorithm uses a statistical approach to
assess whether the statistical values of a pulse are normal or
outside the norm.

2) STATISTICAL ANALYSIS
For each cardiac cycle, which corresponds to a pulse,
if the waveform is similar, statistics such as skewness,
standard deviation (std), and kurtosis are approximately
constant for each cycle. It is, therefore, possible to detect
motion artifacts by using the value of these statistics to
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differentiate a pulse without artifacts from a pulse with
motion artifacts [16]. Skewness indicates the degree of
asymmetry in the probability distribution of a random
variable around its mean. It can take on positive, zero,
negative, or undefined values, reflecting the shape and
symmetry of the distribution. Kurtosis is the sharpened of
the peak of a frequency-distribution curve, and standard
deviation reflects the dispersion degree of a data set. If X is
considered a variable with µ and σ , the mean and standard
deviation, respectively, statistical values are calculated as
follows:

Kurt[X ] = E

[(
X − µ

σ

)4
]

=
E

[
(X − µ)4

]
σ 4 (1)

Skew[X ] = E

[(
X − µ

σ

)3
]

=
E

[
(X − µ)3

]
σ 3 (2)

std[X ] =

√
E

[
(X − µ)2

]
(3)

These values are calculated for each pulse of a signal. So,
in our case, the variable X represents a vector of all the
samples in a pulse. If the shape of the cycle changes, then
these statistical values will no longer be constant. To be able
to detect outliers, thresholds that detect skewness, kurtosis,
and standard deviation values that are not normal, i.e. values
for artifact-free cycles, were set up. For this reason, the
distribution of each of these three statistics over a pulse can
be estimated using a normal distribution [31]. The aim is to
reduce the risk of a pulse being incorrectly annotated. To do
this, a wide confidence interval is taken to ensure that the
probability that the value of the corresponding statistic is not
unnecessarily rejected. If X is considered to be a variable that
can be approximated by a normal distributionN (µ, σ 2), the
probability that this variable lies within the chosen confidence
interval can be written as follows:

P(µ − 2σ ≤ X ≤ µ + 2σ ) ≈ 0.9545 (4)

After several experiments, this 95% confidence interval gives
the best results, as it reduces the risk of poor detection. So,
lower and upper thresholds can be defined as follows:

thl = µ − 2σ (5)

thu = µ + 2σ (6)

The mean and standard deviation are calculated for each
statistic measured by taking the set of values for each pulse
of a signal. A waveform segment is classified as containing
motion artifacts to effectively detect motion artifacts if at least
one of the three statistics falls outside the defined thresholds.
The result of this first step is a small proportion of the
annotated dataset, with a binary value for each pulse: pulse
with artifact or without artifact. The annotations given by the
algorithm are then compared with the expert’s annotations
and found to have 80% similarity. After examining the
annotations with the expert, the function chosen to segment
the pulses did not always correctly segment a pulse that was
formed by a distinct diastole and systole curve. In a cardiac

cycle, diastole is the relaxation phase when the heart fills with
blood, and systole is the contraction phase when the heart
pumps blood out to the body or lungs. In this case, two pulses
were detected instead of one. This segmentation error partly
explains the 20% difference in annotation between the expert
and the algorithm. The percentage of similarity is considered
high enough to validate the expert’s annotations.

3) IMBALANCED DATASET
The two classes of annotated data are unevenly distributed.
The annotation includes many more pulses without motion
artifacts, approximately 80% and 20% of pulses with motion
artifacts. For accurate results with the algorithms, the
data needs to be resampled. The complex characteristics
of our clinical data, such as small training sizes, many
features, and correlations between the features, make the task
more complicated. Understanding the interconnectedness
of these variables is crucial for accurate analysis and
prediction [23]. Oversampling and undersampling methods
are the most frequently used. Under-sampling reduces the
majority of class examples, achieving a balanced dataset,
with random under-sampling (RUS) being a well-known
method. However, under-sampling may lead to the loss
of valuable information from the majority class. On the
other hand, over-sampling increases the minority class
examples. Random over-sampling (ROS) replicates existing
minority examples, but it may result in overfitting. Synthetic
minority over-sampling technique (SMOTE) generates arti-
ficial minority examples by interpolating between selected
examples and their nearest neighbors. Modifications such as
adaptive synthetic sampling (ADASYN) adjust the number of
artificial minority examples based on the density of majority
examples surrounding the original minority example [32].
Also, it is concluded that there is no clear winner between
oversampling and undersampling to compensate for the
class imbalance if factors such as class distribution, class
prevalence, and features correlations in medical decision-
making [23] are not taken into consideration. In the section V,
the different results obtained with the sampling methods will
be presented to conclude on the best method for our study.

4) LABEL PROPAGATION
The LP algorithm is an iterative algorithm that assigns labels
to unlabeled data points by propagating labels through the
dataset. It was first presented in an article published in
2002 by X. Zhu and Z. Ghahramani, entitled ‘‘Learning from
labeled and unlabeled data with label propagation’’ [33].
In graph-based semi-supervised learning methods, a graph
where each node is represented by a vector of features is
created. The edges between nodes are weighted based on how
similar the features are. When the weights of the edges are
high, it means that the connected nodes are likely to have
the same label. This idea is based on the assumption that
samples close to each other in the graph are part of the same
group or category [34]. At the start of the algorithm, only a
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small proportion of the data is already labeled, corresponding
here to the proportion of data annotated in the previous
step. In our case, considering that we have around 51 pulses
per signal and that we have annotated 10% of the entire
database of 1571 signals, we therefore have 8000 pulses,
and thus 8000 nodes in the graph. This algorithm is based
on the hypothesis that if two nodes are connected, they
carry a similarity. Usually, the Euclidean distance between
nodes is calculated to establish the graph. Depending on the
kernels chosen for the algorithm’s operation, this distance
measurement may be different. Consider the following
notations:

u : number of unlabeled points

l : number of labeled points

k : number of classes

In the final state, this algorithm aims to look at all the
probabilities a node has of belonging to a certain class
and take the largest. Y a matrix with rows containing
the probabilities that a node belongs to a certain class is
considered. This matrix Y is a N×k matrix where N = l+u.
Also considered T , a N × N probability transition matrix.
This matrix T is obtained by calculating the degree matrix
(D) and the adjacency matrix (A). It defines the probability of
jumping from one node to another in t steps. This number t
can tend towards infinity [35]. Thematrix Y contains two sub-
matrices: Yl and Yu, respectively, for the known and unknown
labels. The same applies to the T matrix, which contains
4 sub-matrices:

• Tll : probability to get from labeled nodes to labeled
nodes. This matrix will be an identity matrix.

• Tlu: probability of getting from labeled to unlabelled
nodes. This will be a zero matrix because labelled nodes
are absorbing states, it means you are in a self-loop and
can’t move in any direction.

• Tul and Tuu: probability to get from unlabelled nodes to
labeled and unlabelled nodes, respectively.

Consider Ŷ , the probability matrix of annotations obtained
in the final state. The matrix T is set to the infinite power,
and Y0 represents the initial annotations of the nodes. The
equation for the final stage of this algorithm can be expressed
as:

Ŷ = T t→∞Y0 (7)

In 7, the matrix T is set to the power t with t tending to
infinity. It can be written as:

lim
t→∞

T t =

[
I 0(∑

∞

t=0 T
t
uu

)
Tul T∞

uu

]
(8)

The sum between the brackets is similar, when t tends to
infinity, to a geometric series that has an argument that is
less than 1 in modulus. And if Tuu is multiplied by itself a
large number of times, knowing that the values are less than 1,
it will become very close to 0. Therefore, a conclusion on the

limit of the transition matrix for a very large number of steps
is:

lim
t→∞

T t =

[
I 0

(I − Tuu)−1 Tul 0

]
(9)

The equation 7 can, therefore, be rewritten:[
Ŷl
Ŷu

]
=

[
I 0

(I − Tuu)−1 Tul 0

] [
Yl0
Yu0

]
(10)

For unknown labels, the following formula can be written:

Ŷu = (I − Tuu)−1 TulYl0 (11)

This matrix contains the new labels and is the output of the
algorithm. To sum up, the various stages of the algorithm can
be summarized as follows:

1) Creation of a graph with nodes labeled and unlabeled.
2) Calculation of the probability transition matrix T . This

matrix is linked to the degree matrix D, a diagonal
matrix where each diagonal element corresponds to
the sum of edge weights connected to that node. Also
linked to the adjacency matrix A, it is a square matrix
where each row and column corresponds to a node, and
the value at the intersection indicates whether there’s
an edge (value 1, otherwise 0) connecting those nodes.
The formula is: T = D−1

· A. This matrix is the same
throughout the algorithm.

3) Calculation of the new labels for each t iteration:

Y t+1
= T tY t (12)

4) Repeat step 3 until convergence.
A concrete example of how the LP algorithm works is shown
in figure 4. This example is based on a sample of synthetic
data where each of the three classes is represented in a band.
The KNN algorithm is unaware of the band structure and fails
to propagate labels efficiently. The LP model, on the other
hand, recognizes this structure and uses it to its advantage to
group labels.

While performing label propagation, groups of closely
linked nodes quickly reach a consensus on a single label,
causing many labels to vanish. Only a few labels remain after
propagation. When nodes end up with the same label after
convergence, it signifies that they are part of the same group.

D. CLASSIFICATION
Once the ground truth has been established, the aim is
to classify the pulses and compare the results obtained
with the annotations. Machine learning classifiers are used
for classification. These automatic algorithms categorize
data into the two classes of our problem. They operate
as mathematical models, utilizing statistical analysis and
optimization techniques to detect patterns within the data.
By identifying these patterns, classifiers can assign each
instance to a specific class or category. There are a
wide variety of traditional classifiers, both supervised and
unsupervised. Supervised classifiers have been chosen to be
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FIGURE 4. Comparison of label propagation between KNN and LP model with the ‘‘3 Bands dataset’’.
(a) 3 initial annotated points (3 classes represented in green, red, and blue) and 178 non-annotated points
(b) annotated dataset with KNN (c) with LP. From [33].

utilized to process medical data, which is also temporal data.
Here are 4 examples [25]:

1) KNN: this is a supervised method where k represents
the number of neighbors. For classification, when given
a new input data point, the algorithm identifies the k
nearest neighbors from the training dataset based on
their feature similarity. The class label of the majority
of these k neighbors is then assigned to the new data
point.

2) SVM: in SVM, data points are mapped as vectors
within a high-dimensional space. The algorithm aims to
identify the optimal hyperplane that distinctly catego-
rizes the classes. In binary classification, a hyperplane
can be considered as a boundary delineating two
distinct data classes. While numerous hyperplanes
might achieve this separation, the algorithm selects the
one that provides the most effective separation. For a
specific classification purpose, as is the case for this
project, we have subsequently used SVC, a type of
SVM specialized for classifications.

3) DT: Each internal node represents a feature or attribute,
and each branch represents a decision rule based on that
feature. The leaf nodes of the tree represent the final
class label or predicted value. During training, each
value is separated based on the attribute. When making
predictions, new data points traverse the decision tree
by following the decision rules at each node until
reaching a leaf node, which then provides the predicted
class label or value.

4) NB classifier: this classifier uses probability to predict
whether an input will fit into a certain category.
It builds a statistical model based on these probabilities.
Naive Bayes calculates the likelihood of the data point
belonging to each class using the previously estimated
probabilities.

Traditional classifiers have big advantages for small or
medium datasets that require simpler or linear models.
They have few layers in their architecture; conversely, deep
learning (MLP and Transformers) architectures comprise
multiple layers of neural networks. Deep architectures take
advantage of unsupervised pre-training at the layer level,

which facilitates efficient tuning of the deep networks
and enables them to extract intricate structures from input
data. These extracted features at higher levels contribute
to improved predictions and overall performance [36]. For
classification, MLP and Transformers are neural networks
classifiers:

• MLP: it consists of multiple layers of nodes (neurons)
that are interconnected through weighted connections.
MLP employs a feedforward mechanism, where infor-
mation flows from the input layer through the hidden
layers to the output layer. Each node in the network
applies an activation function to the weighted sum of its
inputs to produce an output. Through a process called
backpropagation, the MLP classifier adjusts the weights
to minimize the error between predicted and actual
labels during training.

• Transformers: it relies on the attention mechanism. The
attention-mechanism looks at an input sequence and
decides at each step which other parts of the sequence
are important. A Transformer is an architecture for
transforming one sequence into another one with the
help of two parts (Encoder and Decoder).

The objective is to apply all these classifiers to the PPG signal
pulses so that a comparison of the classifiers on our medical
data can be built. In addition to being compared with each
other, these classifiers will also be compared with the LP
semi-supervised algorithm, which annotates our database and
classifies artifacts in PPG signals.

IV. EXPERIMENTAL IMPLEMENTATION
First, as a reminder, in the LP algorithm, the two input
matrices are the annotation matrix, a binary vector, and a
matrix containing the features for each pulse. Each pulse
represents a node in the algorithm’s graph. For the choice
of features, the signal from a temporal perspective has been
considered. Therefore, an input matrix for the algorithm of
size 256 samples × the number of pulses can be obtained.

Different metrics have been chosen to evaluate our results.
The negative state (0) is a pulse without motion artifacts,
whereas the positive state (1) is a pulse with motion artifacts.
All these measures are based on the evaluation of false
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negatives (FN), pulse with artifact incorrectly identified as
a clean pulse, false positives (FP), clean pulse incorrectly
identified as a pulse with artifact, true negatives (TN), clean
pulse correctly identified as a clean pulse, and true positives
(TP), pulse with artifact correctly identified as a pulse with
artifact. The following metrics are defined:

• Confusion Matrix: a table with two rows and two
columns that reports the number of true positives, false
negatives, false positives, and true negatives.

• Precision, Recall, and F1: these three scores give a
more general idea of how the algorithm works, rather
than just looking at the algorithm’s accuracy, which
can be biased in certain situations. They are defined as
follows:

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 = 2 ×
Precision × Recall
Precision + Recall

• Matthews Correlation Coefficient (MCC), Cohen’s
Kappa Coefficient, and Critical Success Index (CSI):
MCC is particularly useful in the case of binary
classification, where the two classes are unbalanced.
It varies between 0 and 1. CSI is also known as the Threat
Score. A CSI of 1 indicates perfect prediction, while a
score of 0 indicates no successful predictions beyond
random chance. Kappa Coefficient (κ) is stronger than
accuracy; it ranges from -1 to 1.

mcc =
TP× TN−FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

csi =
TP

TP+ FN + FP

κ =
2 × (TP× TN−FP× FN )

(TP+ FP)(FP+ TN ) + (TP+ FN )(FN + TN )

• AUROC/AUC: the AUROC or AUC (Area Under the
Receiver Operating Characteristic curve) represents the
probability that the model correctly ranks a randomly
chosen positive instance higher than a randomly chosen
negative instance. The ROC curve is created by plotting
the TP rate against the FP rate.

Using these metrics, the hyperparameters of our model for
the LP algorithm need to be defined. The first parameters
defined are the parameters of the function used. The choice
of the kernel is between KNN or RBF (radial basis function);
depending on this choice, two other associated parameters
could be modified. The maximum number of iterations
and the algorithm’s convergence tolerance remained the
default values: 1000 iterations and 10−3 for the convergence
threshold. The first parameter to be defined was the choice
of kernel. For this, a cross-validation was carried out on
the data. This involves dividing the data into several parts
and then running the two algorithms using different values
for the parameters on each part, keeping one part aside

for performance testing. Then a calculation of the average
performance can be done over all the test parts for each
value and choose the one that gives the best performance.
A KNN kernel with a number of neighbors of 7 has been
chosen. The table 2 summarizes the parameters chosen for
the algorithm. The data are separated as follows: 70% training
and 30% testing. The data from the training part are redivided
evenly to obtain 50% of unlabeled data and 50 % of labeled
data.

V. RESULTS AND DISCUSSION
Different proportions of the dataset were tried for annotation
to optimize the Lable Propagation algorithm and achieve
the best performance on automatic labeling. The aim is to
annotate as few pulses as possible. 2.5%, 5%, 7.5%, and
10% of the dataset were annotated, given that the entire
database contains 1571 signals, and the proportion that
gave the best results was evaluated. For each proportion
of the dataset, the precision, recall, and F1 values were
analyzed to decide. The results for class 1 (class ‘‘pulse
with artifacts’’) of these metrics are presented in the table 4.
Because the data are imbalanced, the results for class 0
(class ‘‘pulse without artifacts’’) remain consistently good
and don’t change much with different parameters. The best
results are obtained for a proportion of 5% of the dataset.
Indeed, as the proportion of annotated data increases, the
distribution of classes becomes even more disparate. For
2.5% there are 17.3% of pulses with artifacts, and for 5%,
the proportion of pulses with artifacts is 18.1%. As the size
of the annotated dataset increases, for 7.5% there are 16.4%
of pulses with artifacts. For 10% of the dataset, 17.7% of
pulses contain artifacts. All these values are summarized in
the table 3. If the classes are more unbalanced, this may
influence the algorithm, which will have greater difficulty in
finding a constant pattern for propagating the labels. In the
case of 10%, the proportion of pulses with artifacts is high,
but the number of annotated pulses increases, and this may
induce new data that is less representative of the overall
data distribution, leading to poor generalization on unseen
data.

The various resamplingmethods presented in section III-C3
were applied. The results are shown in table 5. First, we can
see that despite the class imbalance, the algorithm manages
to detect the artifacts for the training part and that the
scores are correct (96% precision, 82% recall, and 89% F1).
However, when we apply a resampling method, the results
between the scores are more balanced. This results in a
more robust algorithm. The difference in results between
undersampling and oversampling can be explained by the
fact that undersampling will reduce the number of majority,
which leads to loss of data and loss of information from this
data. On the contrary, oversampling increases the number of
values in the minority class, providing more data. In our case,
SMOTE is the best oversampling method. SMOTE selects a
minority class instance and identifies its k-nearest neighbors
in the feature space. It then creates new synthetic examples
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TABLE 2. Summary table containing the label propagation parameters.

FIGURE 5. Confusion matrix and ROC curve for the LP algorithm with a KNN kernel with 7 neighbors,
an oversampling method SMOTE, and 5% of the dataset already labeled.

TABLE 3. Summary table containing the labeling portion and the
imbalance rate.

TABLE 4. Results for the class ‘‘with artifacts’’ for different proportions of
the dataset.

TABLE 5. Results for the class ‘‘with artifacts’’ for different sampling
methods.

along the line segments connecting the selected instance
and its neighbors. By introducing these synthetic examples,
SMOTE effectively increases the size of the minority class,
making it comparable to the majority class and improving the
performance of classifiers in handling imbalanced datasets.
However, it is important to consider that resampling can
potentially cause issues such as overfitting. It is important
to monitor the model’s performance after oversampling to

detect any signs of overfitting or other potential issues. Our
model showed no signs of overfitting, and resampling was
very important for training a well-balanced classifier in the
case of the imbalanced dataset.

FIGURE 6. Precision evaluation for different traditional Machine Learning
classifiers (in axis order: KNN, SVC, Decision Tree, Random Forest,
Gaussian NB, Multinomial NB, Logistic Regression).

Given the correct sampling method and the appropriate
proportion of the dataset to be selected, the results of
the LP algorithm were evaluated. The confusion matrix
is shown on the left and the ROC curve on the right,
on the Fig. 5. The ROC curve is plotted for each decision
threshold. In the case of the LP algorithm, this represents the
probability assigned to each instance for each class. For a
5% dataset, the number of pulses for the validation part is
1252. 1034 belong to the ‘‘without artifacts’’ category, and
218 belong to the ‘‘with artifacts’’ category. The number
of true positives and true negatives is higher than the
number of false positives or false negatives. This indicates
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TABLE 6. A comparison of the performance of different classifiers for the ‘‘with artifact’’ class. The oversampling method chosen is SMOTE for the LP
model and ADASYN for the other models. In addition, 5% of the dataset is already annotated.

FIGURE 7. The comparison of CNN performance during training (Train) and validation (Val) for loss,
AUROC, precision, and recall.

that the algorithm can understand and apply the model to
unlabeled signals. However, the number of pulses detected
as clean but containing artifacts (false negatives) is higher
than the reverse (false positives). The LP algorithm uses
neighborhood information to propagate labels through the
data network. This means that labels for samples close in
feature space tend to be similar. However, in the case of
pulses containing artifacts, these artifacts may be similar to
certain features of other clean pulses, leading to incorrect
label propagation. As a result, pulses containing artifacts may
be incorrectly labeled as clean by the LP algorithm, leading
to a higher number of falsely classified pulses. Misclassified
pulses are always an important problem in the medical field.
This can lead to false alarms if the pulse is not a clean
pulse or to misdetections. False alarms force hospital staff
to make emergency visits due to outliers. These situations
are exhausting and not necessary as an additional burden on
caregivers. Presented in Table 6, the three additional scores,
MCC, Kappa, and CSI, support this explanation. Indeed,
these three values must be close to 1 to indicate a good

algorithm prediction. The closer the score is to 0, the more
random the algorithm’s prediction. We note that the MCC,
CSI, and Kappa values demonstrate a strong prediction of
the LP algorithm. These scores allow us to validate the
algorithm’s correct performance. The AUROC is 0.98. The
closer the AUROC is to 1, the better the model’s performance.
A high AUROC indicates that our model can distinguish
between positive and negative classes.

After evaluating the LP algorithm, the performance of
the different types of classifiers, presented in section III-D,
were assessed. First, dealing with the imbalanced classes
by oversampling using the ADASYN algorithm. Cross-
validation was employed to ensure accurate model prediction
and assess the reliability of the machine-learning algorithms.
The results of the 5-fold cross-validation on different clas-
sifiers are presented in Fig. 6 shows a precision comparison
using a box plot. Each blue dot represents the performance
of an individual fold in the cross-validation. The figure
indicates that KNN and SVC (with a kernel of ‘rbf’) are
the top-performing classifiers, with median precision rates
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above 90%. However, KNN shows a slightly better and
more consistent performance than SVC. This observation
is highlighted by the broader range of variability for SVC,
as indicated by the whiskers on the box plot, compared to
KNN. To sum up, KNN and SVC are the top classifiers,
but KNN is the more reliable and stable solution. KNN is
also the best classifier compared to classifiers that use neural
networks such as MLP and Transformers. Table 6 shows
the different performances of the neural networks classifiers:
MLP classifier, Transformer, Fully Convolutional Network
(FCN) VS KNN classifier. MLP consists of 3 hidden layers
with 500 neurons for each hidden layer. Its macro average
accuracy (calculates the accuracy for each class individually
and then computes the average accuracy across all classes)
is 0.88, compared with 0.94 for KNN. In our case, using a
complex model like MLP could lead to overfitting, as the
model may have a high capacity relative to the amount of
data available. In addition, training an MLP can be compu-
tationally expensive, especially with larger architectures and
limited computational resources. Transformers, especially
large ones like BERT (Bidirectional Encoder Representations
from Transformers), have a high computational complexity
and require significant computational resources for training
and inference. Like the MLP classifier, Transformers works
best on larger datasets because it needs a lot of data for the
training part. Otherwise, the model has a greater capacity
than the limited data, and the risk is overfitting. Generally
speaking, in the medical field, Transformers excel in natural
language processing tasks [37]. They can learn complex
relationships and patterns within the text, making them
suitable for medical text classification and understanding
tasks.

Additionally, The LP algorithm demonstrates consistent
and balanced performance in precision and recall, as evi-
denced by the experiment results in Fig. 5 and Table 6. The
confusion matrix in Figure 5 shows that the LP algorithm
with a KNN kernel (7 neighbors) achieves high accuracy,
correctly classifying the majority of positive and negative
cases, leading to a precision of 0.91 and a recall of 0.90.
The ROC curve with an area of 0.98 further indicates
the model’s ability to distinguish between classes. Table 6
reinforces these findings by comparing the LP algorithm to
other classifiers, where LP maintains competitive precision
and recall values while achieving high F1 (0.90) and MCC
(0.89) scores. These results highlight that the LP algorithm,
combined with SMOTE for oversampling and leveraging 5%
of already labeled data, effectively balances precision and
recall, ensuring robust performance in classifying the ‘‘with
artifact’’ class.

For the last classifier, experiments were conducted with
an FCN model. FCN is a neural network architecture
for semantic segmentation, producing dense pixel-wise
predictions. It consists of convolutional layers without fully
connected layers, enabling it to handle images of any
size and preserve spatial information. Using FCN for time
series classification involves adapting the fully convolutional

architecture to process one-dimensional time series data.
Instead of working with two-dimensional images, the FCN
is applied to sequences of data points. The temporal convo-
lutional layers capture temporal patterns and dependencies
in the time series, and the decoding path with transposed
convolutional layers helps to produce dense predictions for
each data point in the sequence, enabling accurate time series
classification [38]. One key benefit is that FCN eliminates
manual feature engineering, as they can directly learn relevant
features from raw time series data. This streamlines the
classification process and saves time and effort in designing
handcrafted features. Additionally, FCN enables end-to-end
learning, optimizing feature representations and classifica-
tion jointly, which can lead to improved performance. The
flexibility of FCN with input size allows them to handle
time series data of varying lengths without requiring resizing
or padding, making them suitable for irregularly sized data.
Moreover, FCN produces dense predictions for each time
step, capturing fine-grained temporal patterns and enhancing
the informativeness of classification results. Experimentally,
during FCN training, it is evident that the process takes
longer than other approaches. However, its performance is
not comparable to those methods, mainly due to its lower
accuracy.

For training MLP, FCN, and Transformer, we use the
binary cross-entropy loss as follows:

LBCE = −
1
n

n∑
i=1

(Yi × log(Ŷi) + (1 − Yi) × log(1 − Ŷi))

(13)

We use the Adam optimizer and early stopping to deal
with the overfitting. We use GridSearchCV to fine-tune
the hyper-parameters, balancing the best combination and
computation time. Only certain hyper-parameters typically
affect a neural network’s accuracy, specifically the number
of hidden layers, nodes in each hidden layer, and the learning
rate [39]. By focusing on these, grid search effectively
optimizes all parameters simultaneously, allowing for quick
model training. Grid search also offers straightforward
parallelization and flexible resource allocation, which other
approaches lack [40].

Fig. 7 provides a comprehensive view of the model’s
performance over time. The improvements in metrics like
loss, AUC, precision, and recall suggest that the model is
learning and improving its performance with each epoch.
The consistent trends between training and validation data
indicate that themodel is generalizingwell and not overfitting
significantly. However, we can see the fluctuation between
precision and recall; it can be confirmed that FCN cannot deal
with the imbalanced classes from the nature of the data.

So, compared with previous studies, the artifact classifi-
cation algorithm we have implemented has the advantage
of having a faster execution time on large volumes of
data compared to EMD or wavelet denoising, for example.
It exploits the intrinsic relationships between the data rather
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than decomposing each signal individually. It also has the
advantage of being easily generalizable to other signals since
no additional parameters are required.

VI. LIMITATIONS AND FUTURE WORK
This study delved into utilizing semi-supervised LP methods
for artifact classification within PPG signals, especially in
scenarios characterized by imbalanced class distributions.
The study showed us that our model is sensitive to data
volume, and its improvement is limited as data volume
increases. One future objective is to improve our model,
particularly in feature detection. To augment the capability
of our model, we can add some steps in the preprocessing
part. In section III-C2, the segmentation problem has already
been mentioned. First, adaptive filtering techniques can
attenuate artifacts without affecting the signal. Signal quality
can be improved through noise reduction methods, such as
singular value decomposition (SVD). Alternative segmenta-
tion approaches can be employed to enhance the efficiency
of the statistical analysis algorithm. Peak or minimum
detection can be improved by employing derivative-based
algorithms. A CNN model can also detect peaks, known
for its pattern recognition capabilities [41]. Implementing
alternative segmentation approaches and employing a CNN
model for peak detection in PPG signals may face challenges
in parameter tuning, validation, and network architecture
design. However, careful optimization and validation of
these approaches can improve the algorithm’s accuracy and
reliability.

Exploring data augmentation can also be a method to
tackle the model’s sensitivity to data volume. The authors
in [42] found that using data augmentation allowed them
to better handle the unbalanced class problem for binary or
multiclass classification. These authors also draw a parallel
with ensemble learning methods, which are new hybrid
methods that are more robust against unbalanced data.
In [43] and [44], the authors put into practice the use of
RUSBoost for epilepsy seizure detection and schizotypy
classification. Compared to classical models, the ensemble
model performed very well, making it a candidate for feature
classification. Investigating ensemble learning models may
help to better handle class imbalances and classification
tasks. Exploring self-supervised or unsupervised learning
methods could be considered for future work to address the
labeling challenge we encountered without relying onmanual
annotations.

VII. CONCLUSION
This study explored applying semi-supervised LP methods
for artifact classification in PPG signals, addressing chal-
lenges posed by imbalanced class distributions. Comparative
analysis with traditional supervised learning algorithms,
MLP, and Transformer-based models demonstrated the
superior performance of the LP classifier. This algorithm can
enhance the overall quality of PPG signals in artifact classifi-
cation by dynamically adapting to the specific characteristics

of the dataset. It becomes more adaptable to variations in
PPG signals caused by different types of motion artifacts.
The improved balance between precision and recall indicates
more robust classifier performance, which is critical for
real-life medical applications.

Overall, this model holds promise for enhancing healthcare
monitoring systems, with potential applications in ECG and
arterial blood pressure signal analysis.
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