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A B S T R A C T   

Ice accretion on overhead transmission line systems is a leading cause of power outages and can lead to sub-
stantial economic losses in northern regions. Therefore, accurately and rapidly predicting ice accretion on power 
lines is crucial for ensuring the safe operation of the power grid. This study introduces a machine learning 
method for predicting the ice-to-liquid ratio (ILR), an important parameter for assessing ice accretion efficiency. 
While estimating ILR is vital for operational forecasting, many existing ice accretion models do not include this 
capability. A feedforward neural network (FFNN) trained with stochastic gradient descent and various meta-
heuristic optimizers - specifically particle swarm optimization, grey wolf optimizer, whale optimizer, and slime 
mold optimizer - is employed to forecast hourly ILR. Environmental data required for training and testing the 
FFNN model were obtained from the Automated Surface Observing System (ASOS). A global sensitivity analysis 
using the Sobol index, evaluated via the coefficients of a polynomial chaos expansion, was conducted to identify 
the most influential input parameters. The results indicate that only four input parameters significantly 
contribute to the variance in the response: precipitation, temperature, dew point temperature, and wind speed. 
Furthermore, the FFNN model trained with metaheuristic optimizers outperformed the stochastic gradient 
descent approach. With the predicted ILR, ice accumulation can be easily calculated as the product of ILR and the 
amount of liquid precipitation depth.   

1. Introduction 

Maintaining grid reliability and safety becomes a significant chal-
lenge for utilities operating in regions susceptible to freezing tempera-
tures and winter storms due to ice accretion on transmission lines 
(Ruszczak and Tomaszewski, 2014; Tomaszewski et al., 2019). This ice 
buildup can lead to catastrophic events when combined with wind loads, 
causing power outages, structural damage, and substantial economic 
losses (Fikke et al., 2008). Furthermore, ice accumulation threatens the 
integrity of the distribution network, potentially exceeding infrastruc-
ture capacity and triggering cascading failures. Understanding the 
mechanisms of ice load formation is crucial, as it can lead to power line 
failures through two primary modes: structural overload and galloping. 
For instance, Ontario and Quebec experienced a major ice storm in 1998 
that caused the collapse of several power transmission towers and nearly 
$1.7 billion in economic losses (Chang et al., 2007; Chang et al., 2012). 
Similarly, an ice storm in eastern Canada in 2013 resulted in $200 

million in insured losses and extended power outages for over 1 million 
customers (Armenakis and Nirupama, 2014; Sheng et al., 2023). In the 
US alone, icing events are estimated to inflict an average annual cost of 
$313 million (Zarnani et al., 2012). With the increasing frequency of 
extreme weather events due to global warming, severe weather-induced 
icing incidents have become one of the most significant risks in power 
grid operations (Jeong et al., 2019; Chen et al., 2020). Therefore, ac-
curate and rapid prediction of icing events and their severity is crucial 
for assisting impacted communities and electric power companies in 
preparing for ice events, guiding decision-making processes, designing 
preventive measures, and planning for recovery (DeGaetano et al., 
2008). 

Several models have been proposed in the literature to predict ice 
thickness on transmission lines systems by considering meteorological 
and environmental parameters (Lozowski and Makkonen, 2005). 
Generally, these models can be categorized as physics-based or data- 
driven (He et al., 2021). Physics-based models simulate ice accretion 
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by integrating established physical processes such as heat transmission 
principles and fluid mechanics with simplified mathematical formula-
tions which might be calibrated or validated using experimental data 
(Imai, 1953; Lenhard Jr., 1955; Goodwin et al., 1983; Makkonen, 1984; 
Makkonen, 1998; Zhang et al., 2012). However, since ice accretion is a 
complex, nonlinear process influenced by several environmental factors 
with numerous uncertainties, generalizing mathematical equations to 
accurately simulate this process is extremely challenging (He et al., 
2021). On the other hand, data-driven models utilize data from different 
sources such as field measurements and controlled experiments (Saviz 
Naeini, S. and Snaiki, 2024). These models can then be derived using 
various machine learning techniques, ranging from relatively simple 
statistical methods like linear regression (Chaîné and Castonguay, 1974; 
Jones, 1998; Sanders and Barjenbruch, 2016) to complex algorithms like 
deep neural networks (Wu and Snaiki, 2022). The simplicity and 
computational efficiency of simplified autoregressive formulas have led 
to their widespread implementation in various engineering applications, 
such as ice maps generation (Jeong et al., 2018; Jarrett et al., 2019; 
Jeong et al., 2019; Sheng et al., 2023). However, the use of predefined 
basis functions and autoregressive formulas may not be suitable for 
accurately modeling such complex dynamic systems. Alternatively, 
machine learning approaches can be considered as effective tools for 
rapidly predicting ice accretion (Shabani et al., 2022; Snaiki, 2024). 
They can simulate nonlinear dynamic systems without relying on 
simplified assumptions or linearization. For example, artificial neural 
networks trained using the backpropagation algorithm have been 
developed for simulating ice accretion (Li et al., 2011; Huang and Li, 
2012; Chen et al., 2012). Other techniques, such as genetic algorithms 
(Du et al., 2010), the continuous ant colony algorithm (Yin et al., 2012), 
and the fruit fly optimization algorithm (Niu et al., 2017) have also been 
used to enhance neural network performance in ice accretion prediction. 
Various versions of Support Vector Machine (SVM) models have also 
been employed to predict ice thickness based on available environ-
mental factors (Zarnani et al., 2012; Dai et al., 2013; Huang et al., 2014; 
Ying and Su, 2014; Xu et al., 2015; Ma and Niu, 2016; Ma et al., 2016; 
Niu et al., 2017). Additionally, models like the extreme learning ma-
chine (Sun and Wang, 2019) and deep learning models (He et al., 2021) 
have been developed for ice accretion prediction. While several machine 
learning (ML) models have been developed for predicting ice accretion, 
a thorough investigation into feature selection to identify the best 
environmental parameters for the ML model among multiple variables 
has been lacking. Failure to select the most influential factors could 
result in inaccurate simulation results. Additionally, these models have 
often been developed based on the same icing processes or the same 
transmission lines, without considering varying environmental condi-
tions or utilizing large, geographically diverse datasets. 

Most ML applications have been developed to predict the equivalent 
radial ice thickness, which is notoriously challenging to measure 
directly. In addition, in operational weather forecasting, accurately 
predicting ice accretion thickness remains a challenge due to the 
inherent variability in icing efficiency (e.g., runoff rate). As a result, 
various assumptions (e.g., assumed ice accretion efficiency) are often 
employed to approximate it, introducing significant uncertainties into 
the prediction process. In contrast, the ice-to-liquid ratio (ILR), which 
represents the ratio of accumulated ice depth to accumulated liquid 
depth on a specific surface, is a crucial parameter used to assess the 
efficiency of ice accretion. By directly targeting ILR, which depends on 
readily predictable parameters including temperature, wind, and pre-
cipitation rate, it is possible to simplify the complex process of assessing 
icing efficiency, and achieve substantially more accurate ice accretion 
forecasts for upcoming weather events. However, despite the impor-
tance of ILR estimation, particularly for operational forecasting, most 
existing ice accretion models do not provide this information. Sanders 
and Barjenbruch (2016) investigated the effects of several environ-
mental factors on ILRs using a large ASOS database. They developed the 
Freezing Rain Accumulation Model (FRAM), which predicts hourly ILRs 

based on three environmental factors: wind speed, precipitation rate, 
and wet-bulb temperature. With the predicted ILR, ice accumulation can 
be easily calculated by multiplying the ILR by the amount of liquid 
precipitation accumulation. The resulting ice depth can then be used to 
estimate ice accretion thickness on elevated objects, whether on a flat 
surface or as a radial ice thickness measurement, using simplified for-
mulas (Ryerson and Ramsay, 2007). However, it is important to note 
that FRAM is a simplified autoregressive model and may not capture the 
nonlinearities within the system accurately. 

This study addresses the safety of power transmission/distribution 
infrastructure by focusing on improved ice accretion prediction on 
overhead transmission lines. Specifically, the hourly ILR (calculated 
using the hourly accumulated ice and liquid depths) will be predicted 
using a feedforward neural network (FFNN) trained with several meta-
heuristic optimizers. This approach aims to overcome the limitations of 
gradient-based algorithms, which are known for their relatively slow 
convergence rates and susceptibility to getting stuck in local minima. 
Metaheuristics utilize heuristics as informed guesses to guide the search 
process towards promising regions in the solution space. To accomplish 
this, the environmental data of freezing rain events over the United 
States was extracted from the Automated Surface Observing System 
(ASOS). Six ASOS-observed environmental parameters were selected, 
representing the mean values calculated over 60-min duration of 
continuous freezing rain precipitation. These parameters are air tem-
perature, dew point temperature, sustained wind speed, wind gust 
speed, precipitation rate, and wet-bulb temperature. A global sensitivity 
analysis was then conducted to evaluate the impact of each input 
parameter on the ILR. This analysis utilized Sobol variance decomposi-
tion, which was evaluated analytically from the coefficients of a poly-
nomial chaos expansion (PCE) metamodel and compared with the 
Monte Carlo technique. Additionally, the obtained Sobol’s indices were 
compared with the total Kucherenko indices to further assess their sig-
nificance. After identifying the most influential input parameters in 
terms of their variance contribution to the ILR, they will be used as in-
puts to the FFNN model. This model will be trained using four meta-
heuristic optimization algorithms: particle swarm optimization (PSO), 
grey wolf optimizer (GWO), whale optimizer (WOA), and slime mold 
optimizer (SMO), as well as the stochastic gradient descent approach. 
The simulation results will then be compared and discussed to evaluate 
the performance of each optimization method in predicting the ILR. It 
should be noted that accurate ILR predictions offer significant benefits to 
grid operators by enabling proactive management strategies. These 
strategies include pre-emptive de-icing of power lines or load reduction 
during periods of anticipated heavy ice accumulation, thereby miti-
gating the risk of line failures. Furthermore, real-time or near real-time 
ILR predictions enhance situational awareness, allowing grid operators 
to better anticipate and respond to weather events that could lead to 
outages. Finally, improved ice load forecasts inform targeted mainte-
nance schedules, focusing resources on areas most susceptible to ice- 
related damage. This combination of proactive measures, enhanced 
awareness, and optimized maintenance ultimately contributes to a more 
resilient power grid infrastructure. 

2. Feedforward neural network 

Feedforward neural networks (FFNNs) are supervised neural net-
works used in a wide range of applications, including regression and 
classification. These algorithms excel at learning hidden patterns within 
data and providing dependable predictions. Two well-known architec-
tures of FFNNs are the multi-layer perceptron and deep neural networks. 
Both consist of an input layer, one or more hidden layers, and an output 
layer. Each neuron within these layers performs a specific calculation to 
transform the data it receives. The output of each neuron can be 
calculated as follows: 
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y = ϕ

(
∑n

i=1
ωixi + b

)

(1)  

where ϕ = activation function; ωi = weight associated with input xi; and 
b = bias. The activation function is responsible for capturing the non-
linearities present in the data and can be selected from a range of 
commonly used functions, such as hyperbolic tangent, sigmoid, ReLU, 
and others. To train FFNNs, suitable values for the weights and biases 
need to be determined to establish a desirable relationship between the 
predicted and expected outputs. This is typically achieved using an 
optimization algorithm. For example, the backpropagation algorithm is 
commonly employed to update the weights and biases of FFNNs. It does 
so by propagating the error (the difference between predicted and ex-
pected outputs) backward through the network and adjusting the 
weights and biases based on the gradient of the error. More specifically, 
with a predefined loss function E, the new weight or bias (θnew) can be 
obtained based on the following formula: 

θnew = θold − α ∂E
∂θ

(2)  

where θold = current weight or bias; and α = learning rate. While the 
backpropagation technique has been widely used to train neural net-
works in various applications, it does have certain drawbacks. Specif-
ically, this gradient-based algorithm is known for its relatively slow 
convergence rate and its susceptibility to getting stuck in local minima. 
Additionally, the backpropagation technique can suffer from the van-
ishing and exploding gradient problems, which can significantly affect 
the training of the neural network. To address these issues, advanced 
optimization techniques, such as those based on metaheuristic algo-
rithms, have been developed. These techniques aim to overcome the 
limitations of traditional backpropagation by providing more efficient 
and robust training methods for neural networks. A schematic repre-
sentation of a FFNN model trained with a metaheuristic algorithmic is 
depicted in Fig. 1. 

3. Metaheuristic algorithms 

A metaheuristic is a procedure that uses nature-inspired heuristics to 
effectively balance exploration and exploitation strategies, aiming to 
find an optimal solution. Unlike conventional methods that rely on 
continuous and differentiable objective functions (such as gradient- 
based techniques), metaheuristic algorithms have the capability to 
handle highly nonlinear and non-differentiable problems. Metaheuristic 
algorithms can be broadly classified into three categories (Ojha et al., 

2017): 1. Single solution-based methods which focus on improving a 
single solution iteratively (Kirkpatrick et al., 1983; Mladenović and 
Hansen, 1997); 2. Population-based methods which manage a group of 
solutions, inspired by natural phenomena like evolution (genetic algo-
rithms) or swarm behavior (particle swarm optimization) (Geem et al., 
2001; Rashedi et al., 2009); 3. Hybrid methods which combine multiple 
metaheuristic models for enhanced optimization. 

In this study, four state-of-the-art population-based algorithms will 
be employed and compared to optimize the weights and biases of 
FFNNs, namely the particle swarm optimization (PSO), the grey wolf 
optimizer (GWO), the whale optimizer (WOA) and the slime mold 
optimizer (SMA). A brief description of each algorithm will be provided 
in the following sections. 

3.1. Particle swarm optimization 

Particle Swarm Optimization (PSO) is a population-based optimiza-
tion algorithm that emulates the behavior of bird flocks or fish schools. It 
is suitable for both single-objective and multi-objective optimization 
problems (Kennedy and Eberhart, 1995). In PSO, a population of po-
tential candidate solutions, referred to as particles, explores a search 
space to find optimal or near-optimal solutions by iteratively updating 
their positions. Each particle updates its position by considering its own 
best-known position as well as the best-known position of the entire 
swarm. The updated velocity ( v→j+1 ) and position ( X→j+1) for each par-
ticle are derived based on the current velocity ( v→j) and position ( X→j) 
(indicated by j) as: 

v→j+1 = v→j +C1r1.

[

X→
j

lopt − X→j
]

+C2r2.

[

X→
j

gopt − X→j
]

(3)  

X→j+1 = X→j + v→j+1 (4)  

where X→ = position vector; v→= velocity vector; X→lopt = personal best 

position; X→gopt = best global position; C1 = cognitive component; C2 =

social component; and (r1,r2) = random values sampled from an interval 
[0, 1]. It should be noted that for the PSO algorithm to effectively identify 
a global optimal solution, the hyperparameters, including the cognitive 
and social components, along with the inertia weight, should be care-
fully selected based on the specific optimization problem. Additionally, 
the termination criterion is typically linked to a maximum number of 
iterations or a desired level of solution quality. This careful selection of 
hyperparameters and termination criteria is crucial for the algorithm to 
converge efficiently and produce high-quality solutions. 

3.2. Grey wolf optimizer 

The Grey Wolf Optimizer (GWO) is a population-based optimization 
algorithm inspired by the social leadership and hunting behavior of grey 
wolves (Mirjalili et al., 2014). This optimization algorithm divides the 
population into four main groups known as alpha (α), beta (β), delta (δ), 
and omega (ω) wolves. The alpha, beta, and delta wolves, representing 
the three fittest individuals, assume leadership roles and guide the other 
wolves towards promising regions in the search space. During the 
optimization process, the wolves update their current positions (indi-
cated by j) around the alpha, beta, or delta wolves using the following 
equations: 

X→j+1 = Xp
̅→j − A→.D→ (5)  

D→=

⃒
⃒
⃒C
→
. Xp
̅→j − X→j

⃒
⃒
⃒ (6)  

where Xp
̅→

= position of the prey; X→ = position of a grey wolf; and (A→,

C→) = coefficient vectors which help to explore different regions around Fig. 1. Schematic of a FFNN model trained with a metaheuristic algorithm.  
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the best agent in the search space during the optimization process. 
Throughout the optimization process, it is assumed that the first 

three best solutions are represented by α, β and δ, respectively. The 
remaining wolves (ω) reposition themselves based on α, β and δ. Spe-
cifically, the following quantities which determine the distances be-
tween the current position and α, β and δ, respectively, are first 
determined: 

Dα
̅→

=

⃒
⃒
⃒ C1
̅→

. Xα
̅→

− X→
⃒
⃒
⃒

Dβ
̅→

=

⃒
⃒
⃒ C2
̅→

. Xβ
̅→

− X→
⃒
⃒
⃒

Dδ
̅→

=

⃒
⃒
⃒ C3
̅→

. Xδ
̅→

− X→
⃒
⃒
⃒

(7)  

where Xk
̅→

= position of the k wolf (with k = α, β or δ); and ( C1
̅→

, C2
̅→

,

C3
̅→) = random vectors. Then the updated position X→j+1 can be calcu-
lated as: 

X→j+1 =
[(

Xα
̅→

− A1
̅→

. Dα
̅→
)
+
(

Xβ
̅→

− A2
̅→

. Dβ
̅→
)
+
(

Xδ
̅→

− A3
̅→

. Dδ
̅→
) ]

/3

(8)  

where ( A1
̅→

, A2
̅→

, A3
̅→) = random vectors. It should be noted that the 

boundary constraints are applied to the new positions to ensure that they 
remain within the defined problem boundaries. This is important to 
prevent solutions from going beyond the feasible region of the problem 
space. 

3.3. Whale optimizer 

The Whale Optimization Algorithm (WOA) is a population-based 
optimization algorithm that utilizes a population of search agents to 
iteratively enhance a set of random candidate solutions by emulating the 
bubble-net feeding behavior of humpback whales (Mirjalili and Lewis, 
2016). Its objective is to identify the global optimum for the optimiza-
tion problem. The search process is divided into two phases: exploration 
and exploitation. During the exploitation phase, represented by a 

random coefficient vector A→ where 
⃒
⃒
⃒A
→
⃒
⃒
⃒ ≤ 1, the next position X→j+1 is 

determined as follows: 

X→j+1 =

{
X*
̅→

j − A→.D→ if p < 0.5
D
→́
.exp(bl).cos(2πl) + X*

̅→
j if p ≥ 0.5

(9)  

where p = a random number in the range [0, 1]; X*
̅→

= position of the best 

solution; D→ =

⃒
⃒
⃒C
→
. X*
̅→

j − X→j
⃒
⃒
⃒; D́
→

=

⃒
⃒
⃒ X*
̅→

j − X→j
⃒
⃒
⃒; C
→

= coefficient vector; b 

= a constant that determines the shape of spiral bubble-net; and l = a 
random number in the range [ − 1,1]. On the other hand, the exploration 

phase (represented by a random coefficient vector 
⃒
⃒
⃒A
→
⃒
⃒
⃒ > 1) can be 

formulated as follows: 

X→j+1 = X→rand − A→.D→ (10)  

where X→rand = random position vector selected from the current whale 

optimization; and D→ =

⃒
⃒
⃒
⃒C
→
.X→

j
rand − X→j

⃒
⃒
⃒
⃒. 

3.4. Slime mold optimizer 

The Slime mold optimizer (SMO) is a population-based optimization 
algorithm that emulates the foraging behavior and morphological 
transformations observed in slime mold Physarum Polycephalum to 
explore the search space and find the optimal or near-optimal solutions 
(Li et al., 2020). This optimizer utilizes weight values to mimic the 
positive and negative feedback of the bio-oscillator during the foraging 

stage, resulting in the formation of a diverse feeding vein network 
thickness, while the slime mold’s morphology undergoes changes 
through three distinct contraction patterns. The algorithm operates in 
two primary phases: the approach phase, where it searches for food, and 
the wrap phase, where it exploits the identified food. It iterates between 
these two phases in an oscillating manner. The mathematical formula-
tion which mimics the slime mold behavior is given as: 

X→j+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rnd.(ub − lb) + lb if rnd < z

X→
j

b + vb
→
.

(

W→.X→
j

A − X→
j

B

)

if r < p

vc
→
.X→j if r ≥ p

(11)  

where ( X→A, X→B) = two randomly selected individuals from the popu-
lation; X→b = location of the individual with the optimal fitness; W→ =

weight of the slime mold; vb
→

= a parameter within the range of [ − a, a]; 
vc
→

= a parameter which decreases linearly from one to zero; lb and ub are 
the lower and upper boundaries of the search range; p = a selected value 
controlling the exploration and exploitation processes; (rnd, r) =
random values in the range of [0,1]; and z = a hyperparameter that 
controls the balance between exploration and exploitation. It’s worth 
noting that the first term of the equation signifies the random explora-
tion process, where the hyperparameter z can be selected based on the 
specific problem being studied. The second and third terms correspond 
to the exploration and exploitation phases, respectively. 

3.5. Metaheuristic design for training FFNNs 

Metaheuristic algorithms are suitable for various applications, 
including those related to Feedforward Neural Networks (FFNNs), due 
to their capability to provide near-optimal solutions for complex and 
non-differentiable problems. These algorithms can be utilized to opti-
mize different aspects of FFNNs, such as weights and biases, architec-
ture, activation functions, and other hyperparameters like learning rate. 
However, they have been primarily employed to optimize weights and 
biases for fixed architectures, aiming to minimize the overall error of 
FFNNs. 

In this study, the four selected metaheuristic models, namely PSO, 
GWO, WOA, and SMO, are employed to train a FFNN with a single 
hidden layer. To achieve this, the weights and biases of a candidate 
neural network are first stored in a one-dimensional vector, with the 
vector’s length corresponding to the total number of weights and biases 
in the FFNN. Next, an objective function (or fitness function) is defined 
for the metaheuristic algorithm, aiming to optimize the FFNN’s ability to 
achieve the highest accuracy in either regression or classification ap-
plications. In this study, the mean square error (MSE) metric is chosen as 
the fitness function for the four metaheuristic algorithms and can be 
expressed as: 

MSE =
1
n
∑n

i− 1
(y − ŷ)2 (12)  

where y = actual (true) value; ŷ = predicted value generated by the 
FFNN model; and n = number of training samples. It should be noted 
that the correlation coefficient R will also be employed to assess the 
performance of the proposed model. The proposed procedure is illus-
trated in Fig. 2. 

4. Application 

In this section, four selected metaheuristic algorithms, namely PSO, 
GWO, WOA, and SMO, will be employed to train a feedforward neural 
network (FFNN). The objective is to predict the ice-to-liquid ratio, which 
in turn determines the thickness of ice accretion on overhead trans-
mission lines. This section will start will the ice accretion problem and 
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datasets, followed by a discussion of feature selection. Finally, the 
training and testing results will be presented, along with an analysis and 
discussion of the findings. 

4.1. Ice accretion problem & datasets 

Ice accretion on overhead lines refers to the gradual buildup of ice on 
conductors, insulators, or other components of power transmission 
systems due to freezing precipitation. This accumulation can lead to 
failure due to the weight of the ice accretion, especially when combined 
with additional physical stress applied when the lines are exposed to 
wind, potentially resulting in power outages and even the collapse of the 
power transmission system. Therefore, accurate and rapid prediction of 
ice accretion on transmission lines is vital for ensuring system reliability, 
public safety, preventing power disruptions, and planning resource 
allocation for improved recovery time. In this study, a FFNN is proposed 
to rapidly predict the ice-to-liquid ratio (ILR) which can then be used to 
predict ice accretion on elevated surfaces including power lines. 

The data used to train the neural networks were obtained from the 
Automated Surface Observing System (ASOS). ASOS is an advanced 
network of meteorological instruments and sensors operated by various 
agencies, including the National Weather Service. It collects real-time 
weather data such as wind speed and direction, temperature, atmo-
spheric pressure, and precipitation. By analyzing ASOS data during 
freezing precipitation events, it is possible to accurately measure ice 
accretion on elevated surfaces. These ice accretion measurements are 
observed at the same time and location as the additional atmospheric 
variables, making it possible to correlate atmospheric conditions to ILR. 
For this study, ice accumulation data was acquired from the National 
Centers for Environmental Information (NCEI) for the period 
2013–2017, encompassing 407 ASOS sites and providing geographically 
diverse coverage (Sanders and Barjenbruch, 2016). The data consisted of 
60-min periods with continuous freezing rain, resulting in 2646 obser-
vations. To isolate impactful freezing rain events, further filtering 
criteria were applied. Events were excluded if they lacked any 60-min 
period with precipitation rates exceeding 0.50 mm/h (0.02 in/h) or 
ice accumulation rates below 0.25 mm/h (0.01 in/h), as these events 
were unlikely to cause significant infrastructure issues. Finally, a 
meticulous manual quality control process ensured data integrity by 
eliminating periods with missing or unreasonable meteorological data 
required for calculating mean sustained wind speed or wet-bulb 

temperature. This rigorous filtering resulted in a final dataset of 1355 
high-quality observations. Six environmental parameters were evalu-
ated as potential predictors of the ILR, with the mean of each parameter 
calculated over the 60-min duration of continuous freezing rain pre-
cipitation. These parameters are the air temperature (T[◦C]), dewpoint 
temperature (DPT[◦C]), sustained wind speed (U[kts]), wind gust speed 
(G[kts]), hourly liquid precipitation rate (P[in/h]), and wet-bulb tem-
perature (WBT[◦C]). To ensure data quality, rigorous quality control 
procedures were implemented to remove any invalid or physically 
implausible data points. 

It is important to highlight that the proposed ML model aims to 
predict ILR, a key parameter for operational forecasting. Directly tar-
geting ILR, which depends on readily predictable parameters (e.g., 
temperature, wind, and precipitation rate), can help overcome the 
challenges associated with varying icing efficiency. This approach offers 
the potential for significantly more accurate ice accretion forecasts for 
upcoming weather events compared to directly predicting ice accretion 
thickness, which is challenging due to its inherent variability in icing 
efficiency. The ILR represents the ratio between the accumulated depth 
of ice on a specific surface and the accumulated depth of liquid, which, 
by definition, occurs on a horizontal surface. Given the ILR, the ice 
thickness on an elevated horizontal surface IT can be obtained using the 
following formula (Sanders and Barjenbruch, 2016): 

IT =
∑h

0
ILR×P (13)  

where h = number of hours over which the precipitation occurs. The 
equivalent radial ice thickness on an elevated surface (Req) can be then 
obtained using the following empirical formula (Ryerson and Ramsay, 
2007): 

Req = 0.394IT (14)  

4.2. Input selection 

In order to select the best input variables for the FFNN model, this 
study employs the Sobol index. The Sobol index assesses the portion of 
the output variance that can be attributed to each input variable or 
combination of variables. The first-order Sobol’s index quantifies the 
individual effect of each input variable on the output variability by 
measuring the proportion of the total variance that can be attributed to a 

Fig. 2. General steps of the metaheuristic-based FFNN model.  
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specific input variable independently of other variables. On the other 
hand, higher-order Sobol’s indices quantify the combined effects of two 
or more variables on the output, measuring the extent to which in-
teractions contribute to the total output variance. Similarly, the total 
Sobol index quantifies the proportion of the total output variance that 
can be attributed to a particular variable, considering all possible in-
teractions with the other variables. 

To calculate the Sobol’s indices, the study employs an analytical 
approach based on the coefficients of a polynomial chaos expansion 
(PCE) metamodel, which is constructed using ASOS data. This involves 
characterizing random inputs and constructing the PCE to enable the 
computation of Sobol’s indices. Each uncertain model parameter is 
represented by a random variable and a corresponding probability 
density function (PDF) in the form X ∼ fX(x). The selection of appro-
priate probability distributions for the environmental parameters 
involved a two-step process. First, visual inspection of data histograms 
(Fig. 3) and knowledge of the physical characteristics of each parameter 
guided the identification of candidate distributions. The Kolmogorov- 
Smirnov (K–S) test then served as a final step to assess the goodness- 
of-fit between the candidate distributions and the empirical distribu-
tions observed in the dataset. This approach ensured that the chosen 
distributions closely resembled the actual data, enhancing the model’s 
accuracy. 

The histograms in Fig. 3 represent the marginal distributions for each 
variable, while the plots in the lower/upper diagonals depict the 
sampled points from the bi-dimensional histograms. The distributions 
found for the variables are as follows: a logistic distribution for T, 
Gumbel Min for DPT, Gumbel for U, Gumbel for G, lognormal for P, and 
Gumbel Min for WBT. It is important to note that the Gumbel distribu-
tion refers to the maximum Gumbel distribution or the extreme value 

distribution of type I, while Gumbel Min corresponds to the Gumbel 
minimum extreme value distribution, also known as the Smallest 
Extreme Value (Type I) distribution. For the obtained marginal distri-
butions, a custom set of polynomials that are orthonormal to the non- 
standard distribution is used in this study. Specifically, the univariate 
orthonormal polynomials are computed numerically using the Stieltjes 
procedure (Stieltjes, 1884). Given these univariate orthonormal poly-
nomials, a total-degree truncation scheme is defined, which includes all 
polynomials in the given input variables of a total degree less than or 
equal to the specified maximum polynomial degree p (in this case, p =

12). To compute the PCE coefficients, a sparse PCE method called 
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993; Mallat and 
Zhang, 1993) is employed. The global sensitivity analysis is conducted 
using the PCE-based technique and compared to the Monte-Carlo-based 
technique, as shown in Fig. 4. 

The results indicate that only four stochastic dimensions significantly 
contribute to the response’s variance. Precipitation (P), mean temper-
ature (T), dew point temperature (DPT), and mean wind speed (U) are 
the most dominant environmental factors, with precipitation having the 
most significant effect on ice accretion. As a result, gust wind (G) and 
wet-bulb temperature (WBT) will be excluded from subsequent simu-
lations, and only the four dominant environmental factors will be used 
as inputs for the FFNN model. Furthermore, the results from the Monte 
Carlo technique closely align with those from the PCE-based technique. 
To validate the findings, the total Kucherenko indices are also depicted 
in Fig. 4, providing additional insight into dependent input variables 
and supporting similar conclusions. It is worth noting that while wet 
bulb temperature is generally considered an important factor in pre-
dicting precipitation type, the data used in this study specifically focused 
on freezing rain events and did not show a significant relationship with 

Fig. 3. Drawing samples from the obtained marginal PDF corresponding to the environmental parameters.  
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this predictor. While not a primary objective of this study, an inclusion 
of non-freezing rain events (where the ILR is 0) could reveal a more 
prominent role for wet bulb temperature as a predictor. 

4.3. Results and discussion 

The architecture of the selected FFNN model includes: 1. An input 
layer comprising the mean air temperature (T), mean dewpoint tem-
perature (DPT), mean sustained wind speed (U), and precipitation rate 
(P); 2. One hidden layer containing 21 neurons, determined through 
trial-and-error; and 3. An output layer with a single variable repre-
senting the ice-to-liquid ratio (ILR) as shown in Fig. 5. The selected 
activation function for the hidden layer is ReLU, while a linear activa-
tion function is chosen for the output layer. Before training, all input 
datasets are normalized using the min-max normalization technique. 
Seventy percent of the data is randomly assigned to the training set, with 
the remaining 30 % reserved for testing. 

The FFNN model was trained using the four selected metaheuristic 
models—PSO, GWO, WOA, and SMO—following the approach outlined 
in Sect. 3. Additionally, ten different runs were executed for each met-
aheuristic algorithm to statistically characterize the results. A popula-
tion size of 70 was chosen for all four metaheuristic models, determined 
through a trial-and-error approach. The convergence curves for all 
metaheuristic optimizers, depicting MSE over 200 iterations for a single 
independent run, are shown in Fig. 6. The figure illustrates that all 
selected metaheuristic optimizers exhibit good optimization efficiency 
and fast convergence, typically requiring fewer than 50 iterations. 
Furthermore, GWO demonstrates the fastest convergence speed for the 
ice accretion dataset. 

To evaluate the performance of the metaheuristic optimizers, they 
were compared against the standard stochastic gradient descent (SGD) 

algorithm. Table 1 presents the average, median, standard deviation 
(STD), and best MSE across all training samples from ten independent 
runs. 

From Table 1, it is evident that FFNN models trained using meta-
heuristic algorithms outperform the model trained with stochastic 
gradient descent in terms of average, median, and standard deviation of 
MSE. This indicates their superior ability to avoid local minima in this 
context. Among the metaheuristic optimizers, PSO, WOA, and GWO 
stand out with average MSE values of 2.19E-02, 2.21E-02 and 2.24E-02, 
respectively. Additionally, all four metaheuristic models exhibit low 
standard deviation, suggesting robustness and stability compared to 
SGD. Fig. 7 displays Boxplots for 10 runs of SGD, PSO, GWO, WOA, and 
SMO. The Boxplots provide a clear view of the optimizer variability in 
terms of MSE values across all runs. These plots further confirm the 
superior performance of metaheuristic optimizers over the classical SGD 
algorithm. Notably, WOA and PSO demonstrate the best performance, 
followed by GWO, as evidenced by their low average MSE values and 
compact boxes, indicating the stability of the proposed training 
algorithms. 

Table 2 summarizes the MSE and correlation coefficient (R) achieved 
by the different models on the testing set. PSO, GWO, and WOA dis-
played superior performance, consistent with the training set observa-
tions. Notably, these algorithms achieved comparable MSE values 
(around 2.29E-02) and high correlation coefficients (above 0.80). 

Based on this comparative study, it can be concluded that the met-
aheuristic optimizers outperformed the standard gradient descent 
approach. Compared to SGD, heuristic optimization algorithms offer 
several advantages that contribute to their superior performance in this 
study. SGD’s reliance on gradient descent can lead it to get trapped in 
local optima, while heuristic optimizers excel at balancing exploration 
and exploitation. This exploration ability potentially helps them escape 
shallow local minima and find better solutions. Additionally, SGD per-
formance is highly sensitive to learning rate selection, whereas heuristic 
algorithms typically require less hyperparameter tuning and can identify 
suitable configurations more efficiently. Finally, real-world problems 
often have complex error surfaces with multiple local minima. In 
essence, heuristic optimization’s ability to balance exploration and 
exploitation, combined with less sensitivity to hyperparameter tuning, 
empowers it to navigate complex error surfaces and potentially 
outperform SGD in this specific application. 

The performance of the proposed metaheuristic approach is further 
evaluated on 20 randomly chosen icing events from the testing set. 
These events’ ILRs are predicted using both the metaheuristic optimizers 
and the standard SGD technique. The resulting predictions are then 
compared against the actual ASOS-based ILR values. Fig. 8 visualizes 
these comparisons. 

Examination of the figure reveals that the metaheuristic approach 
generally outperforms the SGD technique. This is evident by the closer 
proximity of most points to the perfect-fit line (y = x) for the 

Fig. 4. Total Sobol indices evaluated using the MC and PCE approaches (left) and total Kucherenko indices (right).  

Fig. 5. FFNN architecture.  
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metaheuristic results. Additionally, the SGD model exhibits a tendency 
to overestimate ILRs below 0.65 and underestimate them for higher 
values. 

To comprehensively understand the influence of various environ-
mental parameters on the predictive performance of the neural network 
models, a systematic investigation was conducted. The initial step 
involved optimizing the neural network while incorporating all six 
initial environmental parameters. Subsequently, the performance of 
various four-parameter combinations was explored. Finally, a three- 
parameter model was tested using the three parameters most 
commonly employed in similar studies. The model trained with all six 
input parameters achieved comparable results in terms of prediction 

Fig. 6. MSE convergence curves using the PSO, GWO, WOA and SMO optimizers.  

Table 1 
Average, median, standard deviation, and best of MSE for all training samples 
over 10 independent runs using several optimization algorithms.  

Algorithm Average MSE Median MSE STD MSE Best MSE 

SGD 4.30E-02 4.24E-02 3.12E-03 3.91E-02 
PSO 2.19E-02 2.19E-02 9.94E-05 2.17E-02 
GWO 2.24E-02 2.22E-02 5.22E-04 2.19E-02 
WOA 2.21E-02 2.21E-02 1.32E-04 2.19E-02 
SMO 2.42E-02 2.44E-02 5.40E-04 2.31E-02  

Fig. 7. Boxplot representation of the MSE for SGD, PSO, GWO, WOA and SMO 
on the ice accretion dataset. 
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accuracy. However, this approach came at the expense of significantly 
increased training time. This rise in training time can be attributed to the 
model’s increased complexity, requiring a more intricate optimization 
process with a larger number of tuning parameters. Next, the perfor-
mance of various combinations of four input parameters was investi-
gated. This analysis revealed that certain combinations, particularly 
those that included the core set identified by the Sobol index analysis 
(detailed in Table 3), achieved acceptable results. The best MSE values 
obtained during ten independent training runs for each combination are 
reported in Table 3. Finally, the three-parameter model incorporating 
the most commonly used parameters exhibited acceptable performance. 
However, the four-parameter set identified through the Sobol index 
analysis consistently yielded the best overall results. This four- 
parameter model achieved a superior balance between prediction ac-
curacy and training efficiency. These findings strongly support the 
effectiveness of the global sensitivity analysis (Sobol index) in accu-
rately identifying the most influential combination of input parameters 
for this specific neural network application. 

To further explore the individual impact of the four key environ-
mental parameters identified by the Sobol index (precipitation, dew 
point temperature, temperature, and wind speed) on the predicted ILR, a 
case study analyzed how increasing each parameter by 10%, 20%, and 
30% in a specific test case (T = − 1.4◦C, DPT = − 4.12◦C, P = 0.08 in/h 
and U = 5.58 kts) affects the predicted ILR. As expected and consistent 
with the global sensitivity analysis (Section 4.2), precipitation exhibited 
the strongest influence, followed by dew point temperature, tempera-
ture, and wind speed (results in Table 4). For example, a 30% increase in 
precipitation led to a 14.58% decrease in predicted ILR, while the same 
increase for wind speed only resulted in a 4.37% increase in predicted 
ILR. This suggests that higher precipitation rates lead to lower ILRs, 
likely due to increased runoff as the liquid doesn’t freeze before more 
liquid is added to the ice surface (Sanders and Barjenbruch, 2016). 

It’s worth noting that the dataset used for training the model was 
drawn from a broad, geographically diverse range across the United 
States. This suggests that investigating the effects of site-specific factors 
could be valuable, potentially enhancing the model’s predictive capa-
bilities. Including such factors as additional inputs in the model might 
lead to further improvements in simulation accuracy. In addition, the 
ASOS data, including ice data and other meteorological variables, is 
collected at 1.5 m above ground level. Therefore, environmental data 
used with this model should ideally be given at the same height (1.5 m) 
for optimal accuracy. Wind speed is particularly sensitive to sensor 
height and requires conversion if measured at different heights (e.g., the 
standard 10-m level). Established methods like log or power law pro-
files, or other calibrated approaches, can be used for wind speed con-
version. However, the model’s intended use with operational forecast 
models, which typically predict ASOS-measured environmental vari-
ables (e.g., precipitation, wind speed, temperature, dewpoint), allows 
for flexibility in data height. If 10-m data is available, the model can be 
retrained on that configuration, and users should then provide inputs at 
the standard 10-m height. Future research exploring vertical wind pro-
files and scaling methods holds promise for further refinement. In 
addition, while the current approach identifies suitable hyper-
parameters (e.g., number of nodes in the hidden layer), a more sys-
tematic exploration could potentially lead to further improvements. 
Employing Bayesian optimization to explore the hyperparameter space 
offers a promising avenue for identifying configurations that optimize 
both model performance and training efficiency. Moreover, incorpo-
rating techniques like knowledge-enhanced neural networks (Karnia-
dakis et al., 2021; Snaiki and Wu, 2019; Snaiki and Wu, 2022; Saviz 
Naeini and Snaiki, 2024) presents a promising avenue to potentially 
improve model performance. These networks leverage both data and 
underlying physical principles, offering the potential for more accurate 
and interpretable ILR predictions. 

5. Concluding remarks 

In this study, the ILR was predicted using a feedforward neural 
network (FFNN) trained with various metaheuristic optimizers to 
overcome the limitations of gradient-based algorithms. The environ-
mental data for freezing rain events were sourced from the Automated 
Surface Observing System (ASOS), with analysis focusing on six key 
parameters. A Sobol index-based global sensitivity analysis, utilizing 
polynomial chaos expansion coefficients, was conducted to assess the 
significance of these input parameters. The results revealed that only 
four input parameters - precipitation, temperature, dew point temper-
ature, and wind speed - substantially influenced the response variance. 
Five optimization algorithms were evaluated for training the FFNN 
model: particle swarm optimization (PSO), grey wolf optimizer (GWO), 
whale optimizer (WOA), slime mold optimizer (SMO), and the standard 
stochastic gradient descent (SGD). The metaheuristic optimizers 
consistently outperformed SGD. Training set MSE values for PSO, GWO, 
WOA, SMO, and SGD were 2.19E-02, 2.24E-02, 2.21E-02, 2.42E-02, and 
4.30E-02, respectively. This trend continued for testing performance, 

Table 2 
Mean square error (MSE) and correlation coefficient (R) of the test set using 
several optimization algorithms.   

Algorithm  

SGD PSO GWO WOA SMO 

MSE 4.98E-02 2.29E-02 2.29E-02 2.29E-02 2.57E-02 
R 0.58 0.81 0.80 0.81 0.79  

Fig. 8. Comparison of observed (ASOS) and predicted hourly ILR for 20 
randomly selected icing events using metaheuristic and SGD optimiza-
tion technique. 

Table 3 
Best MSE of the test set using several input parameter combinations.  

Combination Algorithm 

PSO GWO WOA SMO 

(T, U, P, WBT) 2.24E-02 2.75E-02 2.44E-02 2.56E-02 
(T, DPT, G, P) 2.29E-02 3.36E-02 3.27E-02 2.60E-02 

(DPT, U, P, WBT) 2.21E-02 2.34E-02 3.90E-02 2.54E-02 
(DPT, G, P, WBT) 2.27E-02 2.74E-02 3.88E-02 2.62E-02 

(T, U, P) 2.28E-02 2.34E-02 2.52E-02 2.44E-02  
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with PSO, GWO, and WOA achieving comparable MSE values (around 
2.29E-02) and high correlation coefficients (above 0.80). This superior 
performance is attributed to the metaheuristic optimizers’ high explor-
atory and exploitative behaviors, which enable them to avoid local op-
tima effectively and converge rapidly towards the global optimum. 
Overall, the proposed model has the potential to enhance the meteoro-
logical community’s ability to predict freezing rain accumulation. 
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Ojha, V.K., Abraham, A., Snášel, V., 2017. Metaheuristic design of feedforward neural 
networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116. 

Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S., 1993. Orthogonal Matching Pursuit: 
Recursive Function Approximation with Applications to Wavelet Decomposition. 
IEEE, pp. 40–44. 

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: a gravitational search 
algorithm. Inf. Sci. 179, 2232–2248. 

Ruszczak, B., Tomaszewski, M., 2014. Extreme value analysis of wet snow loads on 
power lines. IEEE Trans. Power Syst. 30, 457–462. 

Ryerson, C.C., Ramsay, A.C., 2007. Quantitative ice accretion information from the 
Automated Surface Observing System. J. Appl. Meteorol. Climatol. 46, 1423–1437. 

Table 4 
Impact of individual parameter variations on predicted ILR.  

% parameter increase P DPT T U 

ILR % ILR change ILR % ILR change ILR % ILR change ILR % ILR change 

10% 0.569 − 4.86 0.618 3.26 0.588 − 1.66 0.607 1.46 
20% 0.540 − 9.72 0.637 6.52 0.579 − 3.33 0.616 2.91 
30% 0.511 − 14.58 0.657 9.79 0.569 − 4.99 0.625 4.37  

R. Snaiki et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0005
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0005
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0010
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0010
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0010
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0015
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0015
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0015
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0020
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0020
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0020
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0025
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0025
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0030
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0030
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0035
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0035
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0035
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0040
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0040
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0040
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0045
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0045
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0045
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0050
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0050
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0050
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0055
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0055
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0060
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0060
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0060
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0065
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0065
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0070
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0070
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0075
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0075
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0080
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0085
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0085
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0090
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0090
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0090
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0095
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0095
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0095
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0095
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0100
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0105
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0105
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0110
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0115
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0115
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0120
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0120
http://refhub.elsevier.com/S0165-232X(24)00130-7/optuSy7HfxLe8
http://refhub.elsevier.com/S0165-232X(24)00130-7/optuSy7HfxLe8
http://refhub.elsevier.com/S0165-232X(24)00130-7/optuSy7HfxLe8
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0125
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0125
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0125
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0130
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0130
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0135
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0135
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0135
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0140
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0140
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0140
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0145
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0145
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0150
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0150
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0155
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0155
http://refhub.elsevier.com/S0165-232X(24)00130-7/optLcq4uaawkt
http://refhub.elsevier.com/S0165-232X(24)00130-7/optLcq4uaawkt
http://refhub.elsevier.com/S0165-232X(24)00130-7/optJahfhlhjJZ
http://refhub.elsevier.com/S0165-232X(24)00130-7/optJahfhlhjJZ
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0160
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0160
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0170
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0170
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0170
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0175
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0175
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0180
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0180
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0180
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0185
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0185
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0190
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0190
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0195
http://refhub.elsevier.com/S0165-232X(24)00130-7/rf0195


Cold Regions Science and Technology 224 (2024) 104249

11

Sanders, K.J., Barjenbruch, B.L., 2016. Analysis of ice-to-liquid ratios during freezing 
rain and the development of an ice accumulation model. Weather Forecast. 31, 
1041–1060. 

Saviz Naeini, S., Snaiki, R., 2024. A novel hybrid machine learning model for rapid 
assessment of wave and storm surge responses over an extended coastal region. 
Coastal Engineering 190. 

Saviz Naeini, S., Snaiki, R., 2024. A physics-informed machine learning model for time- 
dependent wave runup prediction. Ocean Eng. 295, 116986. 

Shabani, M., Jamali, A., Snaiki, R., Rahem, A., 2022. Prediction of Ice Accretion on 
Transmission Lines Using Hybrid Particle Swarm Optimization-Based Artificial 
Neural Networks. 

Sheng, C., Tang, Q., Hong, H.P., 2023. Estimating and mapping extreme ice accretion 
hazard and load due to freezing rain at Canadian Sites. Int. J. Disaster Risk Sci. 14, 
127–142. 

Snaiki, R., 2024. Performance-based ice engineering framework: A data-driven multi- 
scale approach. Cold Regions Science and Technology 104247. 

Snaiki, R., Wu, T., 2019a. Knowledge-enhanced deep learning for simulation of tropical 
cyclone boundary-layer winds. J. Wind Eng. Ind. Aerodyn. 194, 103983. 

Snaiki, R., Wu, T., 2022. Knowledge-enhanced deep learning for simulation of 
extratropical cyclone wind risk. Atmosphere 13 (5), 757. 

Stieltjes, T.J., 1884. Quelques recherches sur la théorie des quadratures dites 
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