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Abstract

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic

activity from deep generators is often challenging due to the higher sensitivity of

EEG/MEG to superficial regions and to the spatial configuration of subcortical struc-

tures. We previously demonstrated the ability of the coherent Maximum Entropy on

the Mean (cMEM) method to accurately localize the superficial cortical generators

and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to

localize deep generators more accurately. These methods were evaluated using realis-

tic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual

MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-

weighting within the MEM framework to compensate for its preference for superfi-

cial generators. We also included a mesh of both hippocampi, as an additional deep

structure in the source model. We generated 5400 realistic simulations of interictal

epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents

and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG

in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were

marked by visual inspection. We applied three EMSI methods: cMEM, depth-

weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground
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truth was defined as the true simulated generator or as a drawn region based on clinical

information available for patients. For deep sources, depth-weighted cMEM improved

the localization when compared to cMEM and depth-weighted MNE, whereas depth-

weighted cMEM did not deteriorate localization accuracy for superficial regions. For

patients' data, we observed improvement in localization for deep sources, especially for

the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the

initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradi-

ometers) than for HD-EEG. Similar findings were found when considering depth

weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM

improved the localization of deep sources without or with minimal deterioration of the

localization of the superficial sources. This was demonstrated using extensive simula-

tions with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
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Practitioner Points

• Proposed depth-weighted Maximum Entropy on the Mean (MEM) methods for EEG/MEG

source imaging.

• Evaluation using realistic EEG/MEG simulations and actual EEG/MEG recordings from

patients with focal epilepsy.

• Improvement in source reconstruction especially for deep sources in low SNR environment

compared to standard MEM and depth-weighted MNE.

1 | INTRODUCTION

In addition to seizures, patients with epilepsy present interictal epilep-

tic discharges (IED), characterized by spontaneous abnormal neuronal

discharges usually generated from regions overlapping with the

regions generating seizures (Hauf et al., 2012), but without clinical

manifestation. IEDs occur more frequently than seizures and the local-

ization of IED generators is crucial during the pre-surgical evaluation

of patients with drug-resistant epilepsy (Bautista et al., 1999;

Hufnagel et al., 2000).

Electro/Magneto- EncephaloGraphy (EEG/MEG) are widely used

non-invasive techniques to detect IEDs and delineate the seizure

onset zone and irritative zone (Rosenow & Lüders, 2001). The ability

of EEG/MEG to detect deep brain activity is often debated, especially

for MEG (Barkley & Baumgartner, 2003; Kaiboriboon et al., 2010;

Leijten et al., 2003; Rampp & Stefan, 2007; Shigeto et al., 2002).

Detection and localization of deep subcortical sources by EEG/MEG

is challenging for several reasons: (i) rapid attenuation of the signals

generated from deep structures as a function of the distance of the

generator to the EEG/MEG sensors, which is more pronounced for

MEG when considering gradiometers (Barkley & Baumgartner, 2003;

Malmivuo & Plonsey, 1995). (ii) ‘closed field’ structure of the subcorti-

cal regions such that the generators cancel each other (Lorente De

Nó, 1947; Murakami & Okada, 2006) and are difficult to detect by dis-

tant sensors and (iii) signals from deep structures propagate rapidly to

the lateral cortex resulting in the superposition of the low signal to

noise ratio (SNR) signals from deep structures and high SNR signals

from superficial regions; this makes it difficult to disentangle those

sources (Attal & Schwartz, 2013; Benar et al., 2021). This is especially

true for mesial temporal lobe epilepsy, a common type of epilepsy

where the IEDs generated in mesial temporal regions propagate to

neocortical temporal regions with a 10 to 50 ms delay (Merlet &

Gotman, 1999). However, compelling evidence is available now sug-

gesting that deep brain activity can be recorded by EEG (Seeber

et al., 2019) and MEG (Alberto et al., 2021; Kaiboriboon et al., 2010),

as demonstrated by simultaneously recorded intracranial EEG (Dalal

et al., 2009; Koessler et al., 2015; Pizzo et al., 2019).

The spatiotemporal localization of underlying neuronal generators

from EEG/MEG sensors, called EEG/MEG source imaging (EMSI), is

an ill-posed inverse problem. Solving the ill-posed EMSI problem

requires making assumptions (constraints added for regularization),

which vary for different methods. Minimum-norm estimate (MNE) is a

widely used EMSI method (Hämäläinen & Ilmoniemi, 1994) choosing

the solution that best fits the sensor data with a minimum overall

energy of brain activity. As the amplitude of electrical potentials or

magnetic fields decreases with the square of the distance from gener-

ators to sensors, EEG and MEG sensors have a higher sensitivity

to superficial compared to deep generators (Heller & van

Hulsteyn, 1992). Because of the constraint of minimum energy, stan-

dard MNE solutions have natural preferences toward localizing activ-

ity in superficial sources for which the sensors are more sensitive

(Jeffs et al., 1987; Uutela et al., 1999), resulting in an underestimation
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of deep sources. A depth-weighted version of MNE was proposed

(Fuchs et al., 1999; Jeffs et al., 1987; Lin et al., 2006) to improve the

accuracy of source localization for deep sources, by weighting

the covariance structure of the source to allow enhancing activity

from deep generators. In parallel, two noise-normalized versions of

MNE have been proposed, dynamic statistical parametric mapping

(dSPM) (Dale et al., 2000) and standardized low-resolution electro-

magnetic tomography (sLORETA) (Pascual-Marqui, 2002). These

noise-normalized versions of MNE also allow for enhancing the con-

tribution of deep sources when solving the EMSI problem (Lin

et al., 2006). Exploiting the depth-weighted and noise-normalized ver-

sions of MNE, while using a realistic anatomical and electrophysiologi-

cal model of deep brain activity, Attal and Schwartz (2013) showed

that signals from subcortical sources can be detected by MEG with

good accuracy, especially when considering single source activation.

The localization from subcortical regions becomes more challenging

when a cortical source is simultaneously active. In Attal and Schwartz

(2013), for accurate localization, the simulated subcortical activity had

an energy SNR of 20 (amplitude SNR of �4.5 or 13 dB), which roughly

corresponds to an evoked cortical MEG response obtained after aver-

aging �100 to 200 trials. In a low SNR scenario, which is usually the

case for single events generated from deep structures, EEG/MEG

source localization remains quite challenging. In addition, to study

deep brain activity, an interesting anatomical and electrophysiological

model was proposed by Attal et al. (2009) and Attal and Schwartz

(2013). Depending on the types of neural generators (open and closed

field cells) and their preferred orientation, subcortical structures were

modeled as volume grids or surface meshes. The thalamus, striatum,

and amygdala were modeled by placing current dipoles on the volume

grid with random orientation; the hippocampus was modeled as a sur-

face mesh placing the current dipoles orthogonally to the surface (sim-

ilar to cortical source space) (Attal & Schwartz, 2013; Meyer

et al., 2017).

In the context of epilepsy, recovering the spatial extent of the

generator is also of importance in addition to localizing its origin. It

has been reported that the generators of IEDs often are associated

with a large area of cortex, for instance with a minimum area of 4–

8 cm2 for EEG (Ebersole, 1997; Merlet & Gotman, 1999; Tao

et al., 2007; Von Ellenrieder et al., 2014) and 3–4 cm2 for MEG

(Hari, 1990; Mikuni et al., 1997; Oishi et al., 2002). The Maximum

Entropy on the Mean (MEM) is an EMSI technique that can accurately

localize the superficial generators together with their spatial extent,

which we previously demonstrated for coherent MEM (cMEM), the

standard variant of MEM, assuming a stable parcellation of the brain

along time in the prior model and which is ideal for localization of epi-

leptic spikes (Abdallah et al., 2022; Chowdhury et al., 2013, 2016;

Grova et al., 2006). Our team also developed the wavelet MEM

(wMEM) which is another variant of MEM, designed to localize the

oscillatory components by transforming the data in the time-

frequency domain before applying MEM localization (Afnan

et al., 2023; Lina et al., 2012). In the present study, we propose a

depth-weighted extension of cMEM and wMEM, following the depth-

weighted strategy implemented by Cai et al. (2022) to reconstruct

functional Near-InfraRed Spectroscopy data. We also added the hip-

pocampus as a surface mesh in our source model, as proposed by

Attal et al. (2009). Our objective is to demonstrate the ability of

depth-weighted MEM methods to localize deep generators accurately

while largely retaining their ability to localize superficial generators.

We considered high-density EEG (HD-EEG) and MEG realistic simula-

tions of single-source epileptic activity (Chowdhury et al., 2013;

Grova et al., 2006) as well as more complex scenarios involving epilep-

tic activity in the hippocampus and neocortical regions. The mixed

sources scenario was generated to mimic IEDs in mesial temporal lobe

epilepsy characterized by initial mesial activity followed by propagated

neocortical activity (Merlet & Gotman, 1999). Finally, we evaluated

the performance of depth-weighted MEM methods with IEDs

recorded from HD-EEG and MEG in patients with focal epilepsy for

whom the presumed localization of the focus was defined as a region

along the cortical surface (including the hippocampus) using all avail-

able information from presurgical evaluation.

2 | MATERIALS AND METHODS

2.1 | Experimental design

The analysis pipeline is summarized in Figure 1. We propose depth-

weighting in cMEM implementation (Section 2.2). The depth-weighted

cMEM was first evaluated using realistic simulations of IED on MEG

and HD-EEG (Section 2.3), before localizing actual IEDs from MEG,

and HD-EEG (Section 2.4) from patients with drug-resistant focal epi-

lepsy. The proposed method was compared with standard cMEM and

depth-weighted MNE. We included a surface of both hippocampi, as

an additional deep structure in the source model (Section 2.5).

2.2 | Maximum entropy on the mean method and
depth weighting

The EEG/MEG inverse problem was solved using the Maximum

Entropy on the Mean (MEM) (Amblard et al., 2004; Chowdhury

et al., 2013). The key feature of this method is that it relies on a flexi-

ble spatial prior, assuming that brain activity is organized in cortical

parcels. The activity of every parcel is scaled by the probability of acti-

vation of every parcel, which is tuned through a hidden state variable.

When the parcel is active, a Gaussian distribution is used as the prior

of the activity within the parcel. When the parcel is inactive, a Dirac

distribution is considered that allows to shut down the activity from

this parcel. Starting from such a prior “reference” distribution, the

model is fitted to data by maximizing the relative entropy between

the solution and the prior. As a result, MEM can either switch off or

switch on the parcels during the localization process, while still allow-

ing local contrast on the cortical surface within the active parcels.

MEM provides accurate localization of the generators together with

their spatial extent, as demonstrated by the standard variant of MEM,

cMEM (Abdallah et al., 2022; Chowdhury et al., 2013; Chowdhury
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et al., 2016; Grova et al., 2016), as well as the wavelet-based exten-

sion, wMEM (Lina et al., 2012; Pellegrino et al., 2016; von Ellenrieder

et al., 2016). For coherent MEM (cMEM), the term “coherent” refers

to the fact that we are using a coherent spatial prior, that is, a data

driven parcellation which is fixed along time (Abdallah et al., 2022;

Chowdhury et al., 2013; Chowdhury et al., 2016; Grova et al., 2016).

wMEM consists in applying first a discrete wavelet transformation

(Daubechies wavelets) to characterize the oscillatory patterns in the

data before considering the MEM solver to solve the EMSI problem

(Lina et al., 2012). cMEM and wMEM implementations are available in

the BrainEntropy plugin of Brainstorm software (Tadel et al., 2011)

(https://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst/).

cMEM/wMEM for EMSI have a preference toward superficial

solutions (Afnan et al., 2023; Grova et al., 2006), since so far, we have

not considered any depth-weighted strategy for both methods. On

the other hand, depth weighted strategy is commonly considered for

MNE (Hämäläinen & Ilmoniemi, 1994) and Beamformer (Van Veen

et al., 1997). To solve the EMSI inverse problem for each source loca-

tion, the uncertainty of the activity of the underlying sources is mod-

eled by the source covariance matrix. Deeper sources tend to have

greater uncertainty in EMSI, resulting in higher values in the covari-

ance matrix compared to superficial sources. Therefore, an a priori

source covariance matrix should appropriately account for the vari-

ance differences across source locations. To do so, the diagonal of the

source covariance can be weighted by the forward model of each

source, quantifying the influence of source depth of each source at a

specific power ω. This standard approach is used as a default imple-

mentation of depth-weighted MNE (Fuchs et al., 1999; Lin

et al., 2006). A similar depth-weighted strategy was implemented

within the cMEM framework by Cai et al. (2022) for the reconstruc-

tion of functional Near-InfraRed Spectroscopy data. We weighted the

source covariance for each parcel when generating the spatial prior

(see additional details in the Appendix A). The depth weighting param-

eter was set to ω=0.5 as this is also used as a default value for

depth-weighted MNE implemented in Brainstorm. We also

investigated the depth weighting parameter ω for a range of values:

ω=0.1, 0.3, 0.5, 0.7, and 0.9. The results are presented in the

Data S1.

Here, we evaluated the newly proposed depth-weighted cMEM

(cMEMω, ω being the depth weighting factor) and compared with orig-

inal cMEM (not depth-weighted) and depth-weighted MNE (MNEω)

using first simulated IEDs (Section 2.3) and then actual IEDs from

MEG and HD-EEG (Section 2.4). To calculate the noise covariance, we

used 2 s of resting state data from each subject. For MNEω, we esti-

mated the regularization hypermeter λ by using the SNR of the data,

as λ = 1/SNR2, with the SNR set to 3 (default value in Brainstorm).

We applied a similar depth weighting strategy for wMEM and val-

idated it using the same dataset of simulated IEDs. Since wMEM con-

siders discrete wavelets and is designed to localize oscillatory

components of the signals, IEDs signals might not be ideal for valida-

tion of wMEM. However, our focus was on the improvement of

depth-weighted wMEM (wMEMω) compared to original wMEM, not

on the comparison between wMEM and cMEM. We compared

wMEMω with cMEM, wMEM, cMEMω, and MNEω in Section 3.5 and

Data S1. However, since this study focuses mainly on cMEM

and cMEMω, the wMEM results are reported in Supplementary

Data S1.

2.3 | MEG and HD-EEG realistic simulations

2.3.1 | Realistic simulation parameters

The realistic simulation framework was developed by adding simu-

lated epileptic activity to a real MEG or HD-EEG resting state back-

ground (Chowdhury et al., 2016; Grova et al., 2006; Lina et al., 2012)

using the following steps: (i) the time course of an interictal epileptic

spike was modeled with three gamma functions for each vertex within

a specific generator defined along the cortical surface; (ii) the simu-

lated time courses of the generator defined in the source space were

F IGURE 1 Analysis pipeline to evaluate depth-weighted cMEM compared to standard cMEM and depth-weighted MNE using MEG and HD-
EEG simulations of epileptic discharges, as well as actual interictal epileptic discharges from MEG and HD-EEG in patients with focal epilepsy.

4 of 24 AFNAN ET AL.
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multiplied by the forward model to obtain sensor level data (more

details in Chowdhury et al. (2013) and Grova et al. (2006)); (iii) the

simulated sensor level data was finally superimposed on real resting

state MEG or HD-EEG background obtained from a healthy subject.

The maximum amplitude of each vertex of the simulated source was

set to 2.85 nA.m. This value has been chosen to mimic the realistic

amplitude of a typical epileptic spike. In each simulation, one trial of

background HD-EEG/MEG was used, thus mimicking the occurrence

of a single non-averaged epileptic spike. The simulations were pre-

pared separately for MEG and HD-EEG using resting state data and

head models obtained from two different healthy subjects.

The spatial extent (SE) of the generator was obtained by expand-

ing the region around a randomly chosen location (called the seed) in

a geodesic manner on the cortical surface (or hippocampus surface),

using different spatial neighborhood order. The actual SNR of the sim-

ulated sensor signal was defined as the ratio of maximum activity at

the peak of the simulated epileptic activity to the standard deviation

estimated within 300 ms background activity for the channel exhibit-

ing this peak (Equation 1).

SNR dBð Þ¼20log10
maximum activity at the peakj j

standard deviation for 300msbackground
ð1Þ

Depending on the location and spatial extent of the generator,

the SNR of the sensor-level signal varied, although the signal strength

of the generators for each vertex was kept equal to S0 = 2.85 nA.m at

the peak of the simulated spikes. In other words, the SNR of the simu-

lations varied depending on the location, spatial extent and orienta-

tion of the sources. As expected, it was higher for the superficial

sources and lower for the deep sources and resulted in relatively real-

istic SNR expected at the sensor level (see Figures S1 and S2 for

actual sensor level SNR of the simulated signals).

Simulation of a single epileptic source: For each modality

(MEG/HD-EEG), we generated 2700 simulations for three levels of

the spatial extent (i.e., spatial neighborhood order around the seed)

of the generators (SE = 2 [�5 cm2], 3 [�10 cm2], 4 [20 cm2]), and

three levels of source amplitude strength (2S0, 3S0, 4S0 where

S0 = 2.85 nA.m), while keeping the amplitude of sensor level back-

ground at the same level. Since changing source amplitude strength

directly impacted SNR at the sensor level, for simplification purposes,

we denoted these three levels of source strengths as the SNR of 2, 3,

4 in this document. For each combination of SE and SNR, 300 simula-

tions were performed where the location of each generator was

selected randomly on the cortical or hippocampal surfaces. The pro-

portion of simulated generators involving the hippocampus for each

combination was 2.2 ± 0.8% for MEG and 1.9 ± 0.3% for HD-EEG.

The resulting sensor level SNRs of those hippocampal generators

were 11.3 ± 4.09 dB for MEG and 18 ± 4.6 dB for HD-EEG. In

Figure S3, we showed all the single hippocampal sources generated

among the total 300 MEG simulations, considering one combination

of SE and SNR (SE3 SNR2). We also reported the amplitude of the

sensor exhibiting the highest amplitude and the corresponding

sensor-level SNR. In addition, Figure S4 illustrates the decomposition

of the simulated signals into the simulated spike and the MEG back-

ground for two examples in Figure S3.

Simulation of the mixture of cortical and hippocampal sources in

MEG: We also simulated 100 sets of epileptic activity on MEG, involv-

ing a mixture of two generators, one in the hippocampus and the

other in the lateral temporal cortex with a 15 ms delay. These simula-

tions mimicked typical epileptic discharges in a mesial temporal epi-

lepsy case, where the signal is generated in the hippocampus and

rapidly propagates to the lateral part of the temporal cortex (Merlet &

Gotman, 1999). The seeds were chosen randomly but restricted to

the hippocampus and the ipsilateral temporal cortex. Unlike the single

source simulations in the hippocampus (low SNR), we generated

higher SNR signals in the hippocampus for this set by increasing the

number of vertices in the hippocampus (see Section 2.5). The resulting

sensor level SNR of the simulated signals was 14 ± 4.3 dB for the hip-

pocampal generators and 20 ± 5.4 dB for the cortical generators. The

average spatial extent was �6 cm2 for hippocampal sources and

�10 cm2 for cortical sources.

2.3.2 | Resting-state data acquisition for simulation

The resting state MEG and HD-EEG trials were acquired from two dif-

ferent healthy subjects (Hedrich et al., 2017). These studies were

approved by the Research Ethics Board of the Montreal Neurological

Institute and Hospital and a written informed consent was signed by

all participants before the procedures. MEG: We acquired MEG in a

magnetically shielded room at the MEG center of the Montreal Neu-

rological Institute (MNI) using a 275-channel CTF system (MISL, Van-

couver, Canada) with a sampling rate of 1200 Hz. The participant was

seated and instructed to keep eyes open. Continuous head localiza-

tion was obtained using three localization coils attached to the nasion

and left and right peri-auricular points on each subject. The exact

position of the localization coils, as well as the shape of the head of

the subject, were digitized with a 3D Polhemus localizer for subse-

quent coregistration with the anatomical MRI. The co-registration was

done using the skin surface segmented from a high-resolution

T1-weighted MRI acquired on the same subject at the MRI center of

the MNI. The iterative closest point algorithm implemented in Brain-

storm (Tadel et al., 2019) was used to ensure accurate coregistration

between the skin mesh segmented from the MRI and the head shape

digitized using the 3D Polhemus localizer, to estimate a rigid transfor-

mation matrix (3 rotations, 3 translations). HD-EEG: HD-EEG was

recorded using a 256-electrode EGI system (Magstim Electrical Geo-

desics Inc., Eugene, OR) with a sampling rate of 1000 Hz. A high-

resolution T1-weighted MRI was acquired on the same subject using

the scanner located at the MNI. Co-registration was done using indi-

vidual T1 MRI and EEG sensor positions estimated using the Geodesic

Photogrammetry System (GPS, Electrical Geodesic Inc., Eugene, OR)

(Hedrich et al., 2017). The same coregistration approach employed for

MEG was applied to HD-EEG and MRI.
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2.3.3 | Data preprocessing

The selected data were investigated to remove artifacts from eye

blinks and muscle activity. Cardiac artifact and eye movement artifacts

were removed from HD-EEG and MEG using Signal Space Projection

method (Uusitalo & Ilmoniemi, 1997). The preprocessing included

applying a bandpass filter between 0.3 and 70 Hz, a notch filter at

60 Hz, noisy channels removal, and downsampling to 600 Hz. For

MEG, the third-order gradient compensation was also applied. A total

of 105 segments each lasting 0.7 s were extracted from the clean

MEG data. A total of 50 segments of 0.7 s were extracted from the

clean HD-EEG data. These segments were selected to be added as

background realistic noise to simulated epileptic spikes.

2.4 | IEDs from patients with focal epilepsy

For patients' data, both MEG and HD-EEG studies were approved by

the Research Ethics Board of the Montreal Neurological Institute and

Hospital and a written informed consent was signed by all participants

before the procedures.

MEG: MEG from 14 patients with focal epilepsy (7 F; mean age,

31.4 ± 11.0 Y, 8 mesial temporal) were acquired in supine position on

the same 275-channel CTF system as mentioned in Section 2.3.2 at

1200 Hz sampling rate. MEG data were acquired between 2008 and

2018 for presurgical evaluation (see Table S1). We included patients

for whom at least five IEDs were marked by visual inspection and

enough clinical information was available to estimate a reasonable

ground truth (by C.A and V. R). MEG was performed with the patient

lying down in a supine position, lasting �1 h (10 runs of 6 min each).

HD-EEG: The HD-EEG patient cohort included 16 patients (7 F; mean

age, 33.6 ± 10.9 Y, 9 mesial temporal) with drug-resistant focal epi-

lepsy who underwent 24–48 h long HD-EEG recordings (83 elec-

trodes, sampling 1000 Hz) during presurgical evaluation at the MNI

epilepsy unit between 2019 and 2022 (see Table S2). The HD-EEG

dataset was part of another study published by our group (Avigdor

et al., 2024). HD-EEG was performed using the Nihon Koden system

(Tokyo, Japan) using 83 collodion glued electrodes (10-10 EEG sys-

tem). Note that we used a different HD-EEG system (256-electrode

Magstim EGI system) for recording background activity from healthy

participants. Co-registration for MEG and HD-EEG with correspond-

ing anatomical MRI was done as described in Section 2.3.2. Prepro-

cessing of data included: bandpass filtered between 0.3 and 70 Hz,

notch filter at 60 Hz, downsampling to 600 Hz and removal of chan-

nels with artifacts by visual inspection. EEG data were analyzed using

average reference montage.

Marking of IEDs and clinical ground truth: IEDs were visually

marked by a board-certified epileptologist (MEG: C.A. and V.R., HD-

EEG: C.A and B.F.). The number of IEDs marked for each patient is

summarized in Tables S1 and S2. We analyzed the average IED for

each patient, considering a 200 ms window around the peak of the

IED. To quantify the accuracy of source imaging, the presumed clinical

ground truth for each patient was drawn as a region on the cortical

surface (including the hippocampus) using all clinical information

available from presurgical evaluation with long-term video EEG moni-

toring, anatomical MRI, fluorodeoxyglucose-positron emission tomog-

raphy, neuropsychological evaluation, intracranial EEG results or

surgical cavity drawn using pre- and post-surgical MRI for patients

who became seizure-free (for MEG), varying based on the availability

of the information. Our evaluation was therefore performed based on

a semi-quantitative definition of the presumed ground truth, as

reported in our previous studies (Pellegrino et al., 2018; Pellegrino,

Xu, et al., 2020).

2.5 | Source space and forward model estimation

Brain segmentation and reconstruction of the white/gray matter

interface for the cortex were obtained using recon-all from FreeSurfer

software package (Dale et al., 1999). The subcortical structures were

also segmented using FreeSurfer. The subsequent analysis to create

the source model and forward model was conducted in Brainstorm

(Tadel et al., 2011). We considered the cortical mesh of the middle

layer which is equidistant from the white matter and pial surfaces con-

sisting of �300,000 vertices. We included the two hippocampi from

the subcortical structures. Each hippocampus consisted of �3000–

4000 vertices (depending on the subject anatomy). For both the cor-

tex and the hippocampus, the sources were located on the surface of

the structures with a fixed orientation orthogonal to the surface at

each point. Then we merged the cortical and hippocampal surfaces

and downsampled the source space to �8000 vertices. This resulted

in �4 vertices/cm2 on the cortical and the hippocampal surface. A uni-

form density of vertices was used for both surfaces for simulations of

single source generators and patients' data. Only for the simulations

of mixed sources in MEG (Section 2.3.1), we used a source model

where the density of vertices was double in the hippocampus (�8 ver-

tices/cm2). The reason was to generate higher SNR simulations in the

hippocampus while keeping other simulation parameters similar com-

pared to single source simulations. Once our source space was

defined, the forward model was computed using OpenMEEG soft-

ware using a 3-layer Boundary Element model (BEM) (Kybic

et al., 2005) consisting of brain, skull, and scalp surfaces with conduc-

tivity values of 0.33, 0.0165, and 0.33 S m�1, respectively (Zhang

et al., 2006).

2.6 | Validation metrics

The performance of three source imaging methods (cMEM, cMEMω,

and MNEω) was assessed using the following three validation metrics:

(i) Area Under the ROC Curve (AUC): A detection accuracy index to

assess the sensitivity to the spatial extent of the sources in the con-

text of distributed sources model (adapted by Grova et al. (2006) for

the specific problem of EMSI validation while allowing unbiased esti-

mates, more details provided in Chowdhury et al. (2013)). (ii) Dmin: the

minimum distance localization error was the Euclidean distance in mm

6 of 24 AFNAN ET AL.
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from the maximum of the map to the closest vertex belonging to the

ground truth. When this maximum was located inside the simulated

source, Dmin was set to 0 mm (Hedrich et al., 2017). (iii) Spatial disper-

sion (SD): the SD metric measured the spatial spread (in mm) of the

localization around the Ground Truth. To estimate SD, we considered

the root mean square of the square of the distance from the esti-

mated source to the ground truth weighted by the energy of the

source localization map at each vertex (Hedrich et al., 2017). For each

IED, we estimated those metrics at the peak of the IEDs for simula-

tions, and at the midpoint of the rising spike for patients' averaged

IEDs. We assessed AUC, SD, and Dmin of each simulated source as a

function of the eccentricity of the source, defined as the mean of the

distance between all the vertices in the ground truth and the center

of the head. Deep sources have therefore low eccentricity and super-

ficial sources have high eccentricity. We applied the non-parametric

Friedman test to compare the three source imaging methods (Durbin-

Conover test for pair-wise comparisons, p value corrected for multiple

comparisons using Bonferroni). Similar analyses were also performed

to evaluate wMEM and wMEMω methods, results are reported in the

Data S1.

3 | RESULTS

3.1 | Simulation of single epileptic source: MEG

Figure 2 summarizes the performance of our three validation

metrics—AUC, SD, and Dmin for cMEM, cMEMω, and MNEω estimated

for 300 MEG simulations with spatial extent SE = 3 (11.8 ± 2.1 cm2)

and SNR = 2 (11.6 ± 5.4 dB). Figure 2d shows the average eccentric-

ity values for those 300 generators. In Figure 2, the metrics are shown

as colormap for 300 generators, where all the vertices within a gener-

ator are represented by one color associated with the value of the

corresponding metric. The AUC values were overall improved when

considering cMEMω in comparison to cMEM, especially in mesial

regions. cMEMω performances in terms of SD and Dmin were also

improved in deeper regions when compared to cMEM. Both cMEM

and cMEMω exhibited smaller SD values when compared to MNEω.

The improvement in localization for deep sources by cMEMω

compared to cMEM is more clearly presented in Figure 3, which illus-

trates that cMEMω improved the localization mostly on the medial

side (deep sources) without or with minimal worsening of the localiza-

tion in the lateral and superficial regions. The statistical comparisons

for these maps are presented in Figure 4 for deep sources and

Figure S5 for superficial sources.

Figure 4a presents the detailed distributions of validation metrics

AUC, SD, and Dmin as a function of eccentricity for the 300 MEG sim-

ulations shown in Figures 2 and 3. Similar to Figure 3, Figure 4 shows

that the localization improved for regions with low eccentricity

(0–60 mm, deep sources). We compared the metrics for cMEMω,

cMEM and MNEω for regions with eccentricity <60 mm (Figure 4b1,

b2, b3). The localization for those regions was significantly improved

by cMEMω compared to cMEM in terms of AUC, SD and Dmin

(p < .001, AUCcMEMω-cMEM: 0.14 ± 0.11, SDcMEM-cMEMω: 3.9 ±

2.8 mm, DmincMEM-cMEMω: 3.1 ± 3.3 mm), the effect being reported as

median ± median absolute deviation of the difference between

cMEMω and cMEM. Compared to MNEω, the localization was also

significantly improved by cMEMω in terms of AUC and SD (p < .001,

AUCcMEMω-MNEω: 0.11 ± 0.07, SDMNEω-cMEMω 19.5 ± 5.6 mm). Dmin by

cMEMω was also improved when compared to MNEω but did not pass

the significance threshold (DminMNEω-cMEMω: 0.3 ± 7.6 mm).

For regions with eccentricity >60 mm (Figure S5), the AUC and

Dmin for cMEMω were overall similar to cMEM (AUCcMEMω-cMEM:

�0.01 ± 0.02, DmincMEM-cMEMω: 0.0 ± 0.0 mm). The SD was

slightly worsened by cMEMω when compared to cMEM (p < .001,

SDcMEM-cMEMω: �2.9 ± 1.8 mm). However, the SD was significantly

improved by cMEMω compared to MNEω (p < .001, SDMNEω-cMEMω:

23.8 ± 5.3 mm). In terms of SD, both cMEM and cMEMω were still

largely significantly lower than MNEω (p < .001, SDMNEω-cMEM: 26.0 ±

4.9 mm). The lowest median Dmin was found for MNEω, however, it

was not significantly lower than cMEMω. See also Figures S6–S16

for 2400 MEG simulations with other combinations of SE and SNR.

Similar improvement by cMEMω was found compared to cMEM and

MNEω for all combinations.

Figure S17 presents the distribution of AUC, SD, and Dmin for

300 MEG simulations as a function of eccentricity for cMEMω for five

different values of depth weighting parameter ω (ω = 0.1, 0.3, 0.5,

0.7, and 0.9). As ω increases, the localization accuracy for deep

sources improves. However, for higher ω values, localization for

superficial sources deteriorates, as observed in SD for ω = 0.7, 0.9,

and in AUC, SD, and Dmin for ω = 0.9.

3.2 | Simulation of mixed sources in the
hippocampus and the neocortex in MEG

Figure 5 shows an example simulation of a complex or mixed source

scenario, the first simulated generator is in the hippocampus (peak at

358 ms) and is followed by another generator along the lateral tempo-

ral cortex after a 15 ms delay (peak at 373 ms), mimicking a situation

likely occurring in patients with mesial temporal lobe epilepsy. We cal-

culated the metrics at 358 ms for the hippocampus and at 373 ms for

the neocortex, considering the two sources are independent. We con-

sidered the whole cortex when estimating the metrics for both

sources. For the hippocampal source, cMEMω localized the generator

whereas cMEM failed, as reflected by AUC, SD and Dmin. The metrics

by cMEM and cMEMω were (cMEM/cMEMω): AUC:0.38/0.74, SD:

25.9 mm/20.2 mm, Dmin: 25.3 mm/24.9 mm. The metrics for MNEω

for the hippocampal source were: AUC: 0.71, SD: 34.5 mm, Dmin:

23.5 mm. For the superficial source at 373 ms, both cMEM and

cMEMω localized the generator. The metrics for cMEM and cMEMω

were (cMEM/cMEMω): AUC:0.93/0.90, SD: 12.2 mm/15.3 mm, Dmin:

0 mm/0 mm. The metrics for MNEω for the superficial source were:

AUC: 0.81, SD: 28.8 mm, Dmin: 0 mm.

Figure 6 summarizes the metrics for 100 simulations of mixed

sources, following a complex scenario similar to the one illustrated

AFNAN ET AL. 7 of 24
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in Figure 5. The first column shows the AUC, SD, and Dmin at

358 ms for the source simulated in the hippocampus. AUC and SD

were significantly improved by cMEMω compared to cMEM and

MNEω (p < .001, AUCcMEMω-cMEM: 0.26 ± 0.08, AUCcMEMω-MNEω:

0.11 ± 0.09, SDcMEM-cMEMω: 4.3 ± 2.6 mm, SDMNEω-cMEMω: 17.6

± 6.2 mm). Dmin was significantly improved by cMEMω compared to

F IGURE 2 (a) AUC, (b) SD, and (c) Dmin for three source imaging methods are shown on the cortical surface at the locations of 300 simulated
sources in MEG. The average eccentricity values for those 300 generators are shown in (d). Each parcel is one simulated source with the color
representing the metric value associated with it. Regions where no sources were generated are shown as grey. When there was overlap between
sources, a line was superimposed on the new color to illustrate the overlap from the previous source. Increases in AUC and decreases in SD and
Dmin by cMEMω were observed mostly for the medial regions, whereas cMEMω and cMEM presented similar performances for superficial sources.
Brain maps are shown for six views: right lateral, left lateral, right medial, left medial, hippocampi top, and hippocampi bottom.
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cMEM (p < .001, DmincMEM-cMEMω: 3.3 ± 3.3 mm). Compared to

MNEω, Dmin was also significantly improved by cMEMω (p < .05,

DminMNEω-cMEMω: 5.2 ± 8.1 mm).

For the neocortical generator simulated at 373 ms, cMEMω

showed similar AUC but slightly decreased SD compared to cMEM

(AUCcMEMω-cMEM: 0.01 ± 0.03, SDcMEM-cMEMω: �1.7 ± 2.6 mm). Both

cMEM and cMEMω showed improved AUC and SD compared to

MNEω (p < .001, AUCcMEMω-MNEω: 0.09 ± 0.05, AUCcMEM-MNEω: 0.06

± 0.06, SDMNEω-cMEMω: 20.6 ± 5.1 mm, SDMNEω-cMEM: 21.5 ± 5.3 mm).

Dmin was slightly improved in cMEMω compared to cMEM (p < .01,

DmincMEM-cMEMω: 0.0 ± 2.8 mm). Similar Dmin was found for cMEMω

and MNEω (DminMNEω-cMEMω: 0.0 ± 3.7 mm).

3.3 | Simulation of single epileptic source: HD-EEG

Similar to the MEG results in Figure 3, Figure 7 shows the improve-

ment in AUC, SD and Dmin for 300 EEG simulations of epileptic

activity (SE = 3, SNR = 2). The HD-EEG equivalent of Figure 2 is

shown in Figure S18. Figure 7 illustrates that HD-EEG localization

improved mostly on the medial side (deep sources) without or with

minimal worsening of the localization in the lateral and superficial

regions.

Figure 8 presents the metrics as a function of eccentricity for

the 300 HD-EEG simulations (SE = 3 and SNR = 2), showing that

the localization accuracy improved with cMEMω for regions with

low eccentricity (deep sources, eccentricity <45 mm). The eccen-

tricity threshold was chosen based on the results from 2700 HD-

EEG simulations where the localization accuracy from cMEM and

cMEMω started to converge at �45 mm, (Figures 8 and S19–S21).

For MEG, this threshold was �60 mm. We summarized the results

from cMEM, cMEMω, and MNEω as boxplots for regions with

eccentricity <45 mm (Figure 8) and regions with eccentricity

>45 mm (Figure S22).

For sources with eccentricity <45 mm, the localization was signifi-

cantly improved by cMEMω in terms of all three metrics compared to

F IGURE 3 The differences in AUC, SD, and Dmin between cMEMω and cMEM (cMEMω – cMEM) are shown on the cortical surface at the
locations of 300 simulated sources in MEG. Increases in AUC and decreases in SD and Dmin (warmer color) were observed mostly for the deeper
regions. Regions where no sources were generated are shown as grey. When there was overlap between sources, a line was superimposed on the
new color to illustrate the overlap from the previous source. Brain maps are shown for six views: right lateral, left lateral, right medial, left medial,
hippocampi top, and hippocampi bottom.
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cMEM (p < .001, AUCcMEMω-cMEM: 0.05 ± 0.03, SDcMEM-cMEMω: 2.4

± 2.8 mm, DmincMEM-cMEMω: 5.5 ± 5.0 mm) and MNEω (p < .001,

AUCcMEMω-MNEω: 0.20 ± 0.05, SDMNEω-cMEMω: 17.1 ± 3.2 mm,

DminMNEω-cMEMω: 11.8 ± 10.0 mm).

For regions with eccentricity >45 mm (Figure S22), AUC and Dmin

for cMEMω were similar to cMEM (AUCcMEMω-cMEM: 0.00 ± 0.02,

DmincMEM-cMEMω: 0 ± 0 mm). In terms of SD, cMEMω worsened

slightly but significantly compared to cMEM (p < .001, SDcMEM-cMEMω:

�2.1 ± 1.1 mm). On the other hand, AUC and SD for cMEM
ω
were sig-

nificantly improved compared to MNEω (p < .001, AUCcMEMω-MNEω:

0.13 ± 0.05, SDMNEω-cMEMω: 13.3 ± 3.8 mm). Even if we

observed slight worsening of cMEMω compared to cMEM for SD

(SDcMEM-cMEMω: �2.1 ± 1.1 mm), SD values remained low for both

cMEM and cMEMω when compared to MNEω (SDMNEω-cMEM: 15.2 ±

F IGURE 4 For 300 MEG simulations at SE = 3 and SNR = 2, the plot of AUC (a1), SD (a2), and Dmin (a3) as a function of eccentricity for
cMEM, cMEMω and MNEω. The comparison of the three methods is summarized for AUC (b1), SD (b2), and Dmin (b3) for 99 (out of 300) sources
with an eccentricity of <60 mm. On each boxplot, the central mark indicates the median, and the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively. If the groups are statistically different after post-hoc analysis, the significance levels are shown as:
***p < .001, **p < .01, and *p < .05.
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3.0 mm, SDMNEω-cMEMω: 13.3 ± 3.8 mm). In terms of Dmin, all three

methods exhibited similar accuracy (DmincMEM-cMEMω: 0.0 ± 0.0 mm,

DminMNEω-cMEMω: 0.0 ± 3.8 mm, DmincMEM-MNEω: 0.0 ± 1.8 mm).

See also Figures S23–S30 for 2400 HD-EEG simulations with other

combinations of SE and SNR. Similar improvement by cMEMω was

found compared to cMEM and MNEω for all combinations.

F IGURE 5 Example of two
simulated generators first in the
hippocampus (a) and then in the
lateral neocortex after 15 ms
delay (b). Three source imaging
methods were applied to the
averaged interictal epileptic
discharges. The surface of the
hippocampus is included in the

source model (and presented in
the figure as separate
structures). The metrics AUC,
SD, and Dmin were calculated at
358 ms (peak of the source in
the hippocampus) and at
373 ms (peak of the neocortical
source). The scale is different
for the three methods but
source maps have been
interpreted relatively for each
method.
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3.4 | Evaluation on clinical MEG/HD-EEG data
from patients with focal epilepsy

MEG: Figure 9a shows an example of MEG source localization for a

patient with mesial temporal lobe epilepsy. The source imaging

methods were applied on an averaged IED (number of IEDs: 16, sensor

level SNR at the peak: 30 dB). The metrics were calculated at the mid-

point of the rising phase of the spike (�10 ms, sensor level SNR at

�10 ms: 26 dB). cMEM was not able to localize the underlying hippo-

campal generator, whereas the depth-weighted methods, cMEMω and

MNEω could localize this deep generator during the rising phase of

the averaged IED. The metrics for cMEM/cMEMω were: AUC:

0.43/0.79, SD: 21.7/16.6 mm and Dmin: 18.3/10.6 mm. The results

for MNEω were: AUC: 0.76, SD: 27.5 mm, Dmin: 13.0 mm. All three

methods mainly retrieved the propagated activity within temporal

neocortical regions. Figure 9b compares the metrics for three source

imaging methods in MEG for eight patients with mesial temporal lobe

epilepsy, where the clinical ground truth involved the mesio-temporal

structures including the hippocampus. The sensor level SNR of the

averaged IEDs were 22.7 ± 6.6 dB at the peak and 20.33 ± 7.05 dB at

the midpoint of the rising phase of the spike. The localization was sig-

nificantly improved by cMEMω compared to cMEM in terms of AUC,

SD (AUCcMEMω-cMEM: 0.19 ± 0.04, SDcMEM-cMEMω: 4.9 ± 0.3 mm,

p < .001) and Dmin (DmincMEM-cMEMω: 7.6 ± 6.3 mm, p < .05). Com-

pared to MNEω, cMEMω improved the localization significantly in

terms of AUC (p < .05, AUCcMEMω-MNEω: 0.13 ± 0.04) and SD

(p < .001, SDMNEω-cMEMω: 11.7 ± 1.7 mm). The median Dmin was lower

for cMEMω compared to MNEω (DminMNEω-cMEMω: 0.0 ± 2.8 mm), but

not statistically significant.

Figure S31a summarizes the metrics estimated for 14 patients

including the mesial temporal cases and also other superficial cases.

The sensor level SNR of the averaged IEDs were 24.0 ± 7.7 dB at the

peak and 20.7 ± 7.4 dB at the midpoint of the rising phase of

the spike. Overall improvement by cMEMω was observed compared

F IGURE 6 Source imaging for 100 simulations of mixed generators in the hippocampus and the ipsilateral neocortex after 15 ms delay. AUC,
SD, and Dmin are calculated separately for each generator at the peak of the spike (358 ms for hippocampal generator and 373 ms for neocortical
generator). On each boxplot, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. If the groups are statistically different after post-hoc analysis, the significance levels are shown as: ***p < .001, **p < .01,
and *p < .05.
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to cMEM (not statistically significant). Compared to MNEω, cMEMω

slightly improved the localization in terms of AUC (not statistically sig-

nificant) and SD (p < .001). The lowest median of Dmin was found for

MNEω when compared to cMEM and cMEMω. We also verified that

the improvement brought by depth weighting was not dependent on

the overall quality of the ground truth data, when comparing results

between the seizure-free group and the other group for both MEG

and HD-EEG data (see details in the Data S2).

HD-EEG: Figure 10a presents an example of HD-EEG source locali-

zation for a patient with mesial temporal lobe epilepsy. Unlike the MEG

result shown in Figure 9a, cMEM could localize the hippocampal genera-

tor for HD-EEG. cMEMω improved the localization compared to cMEM

in terms of AUC, SD and Dmin. The metrics for cMEM/cMEMω were:

AUC: 0.60/0.67, SD: 21.0/15.6 mm and Dmin: 30/0 mm. The results for

MNEω were: AUC: 0.36, SD: 47 mm, Dmin: 30 mm.

Figure 10b shows the boxplots summarizing the metrics for

cMEM, cMEMω and MNEω for nine patients with mesial temporal

lobe epilepsy, for which the ground truth involved the mesio-temporal

structures that include the hippocampus. The sensor level SNR of the

averaged IEDs were 28.60 ± 4.95 dB at peak and 26.92 ± 5.88 dB at

the midpoint of the rising phase of the spike. cMEMω significantly

improved the localization compared to cMEM in terms of AUC

(p < .001, AUCcMEMω-cMEM: 0.04 ± 0.01) and SD (SDcMEM-cMEMω: 2.9

± 0.7 mm). Dmin was also improved by cMEMω compared to cMEM

(DmincMEM-cMEMω: 0.4 ± 1.1 mm) but not statistically significant. Com-

pared to MNEω, cMEMω provided improved AUC (p < .001,

AUCcMEMω-MNEω: 0.10 ± 0.03), SD (p < .001, SDMNEω-cMEMω: 16.0

± 3.2 mm) and slightly improved Dmin (DminMNEω-cMEMω: 3.2

± 5.2 mm, not statistically significant).

Figure S31b summarizes the metrics for all 16 HD-EEG

patients including mesial temporal cases and other extra-

temporal cases. The sensor level SNR of the averaged IEDs

were 28.09 ± 4.40 dB at the peak and 25.40 ± 5.00 dB at the mid-

point of the rising phase of the spike. Overall improvement by

cMEMω was observed compared to cMEM (not statistically signifi-

cant). Compared to MNEω, cMEMω significantly improved the

F IGURE 7 The differences in AUC, SD, and Dmin between cMEMω and cMEM (cMEMω – cMEM) are shown on the cortical surface at the
locations of 300 simulated sources in HD-EEG. Increases in AUC and decreases in SD and Dmin (presented warmer color) were observed mostly
for the deeper regions. Regions where no sources were generated are shown as grey. When there was overlap between sources, a line was
superimposed on the new color to illustrate the overlap from the previous source. Brain maps are shown for six views: right lateral, left lateral,
right medial, left medial, hippocampi top and hippocampi bottom.
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localization in terms of AUC (AUCcMEMω-MNEω: 0.11 ± 0.06), SD

(SDMNEω-cMEMω: 16.7 ± 6.0 mm) and Dmin (DminMNEω-cMEMω

3.0 ± 9.0 mm).

3.5 | Depth-weighted wMEM

Similar to cMEM, depth weighting improved the localization for deep

sources for wMEM method as well. Figure S32 shows the metrics

AUC, SD and Dmin as a function of eccentricity for the 300 MEG simu-

lations presented in Figure 4, but also this time considers wMEM and

its depth weighted implementation, wMEMω. Overall, the findings for

wMEM versus wMEMω were similar to cMEM versus cMEMω.

Detailed statistical comparisons are presented in the Supplementary

material (section S1, Figures S32 and S33). We also provided wMEM

results as a function of eccentricity for all combinations of SE and

SNR levels for MEG simulations in Figures S34–S36 and HD-EEG sim-

ulations in Figures S37–S39. For all combinations of MEG and HD-

EEG, similar trends were found as described in Figures S32 and S33.

We decided not to provide detailed statistical comparisons for wMEM

results for other combinations of HD-EEG and MEG simulations. Our

results were overall similar to the ones reported in Figures S32 and

F IGURE 8 For 300 HD-EEG simulations at SE = 3 and SNR = 2, the plot of AUC (a1), SD (a2), and Dmin (a3) as a function of eccentricity for
three source imaging methods. The comparison of the three methods is summarized for AUC (b1), SD (b2), and Dmin (b3) for 56 (out of 300) deep
sources with an eccentricity <45 mm. For each boxplot, the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. If the groups are statistically different after posthoc analysis, the significance levels are shown as:
***p < 0.001, **p < 0.01, and *p < 0.05.
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S33, suggesting that depth weighting also improved the ability of

wMEM to localize deep generators, while preserving good accuracy

when localizing superficial generators, which could be of great interest

when localizing specific oscillations using this wavelet extension of

MEM framework.

4 | DISCUSSION

In this study, we proposed a depth-weighted implementation of

cMEM for EEG/MEG source imaging to localize deep source activity

accurately, while maintaining cMEM's ability to recover the spatial

extent of the underlying generators for both deep and cortical genera-

tors. We assessed the ability of the depth-weighted method, cMEMω

to localize simulated epileptic activity at different locations on the cor-

tical and hippocampal surface. Compared to cMEM and MNE as

benchmarks, the new version could estimate the deep generators

more accurately, without or with minimal worsening of the localiza-

tion for superficial regions. This was robust for HD-EEG and MEG, dif-

ferent spatial extents of the generator, and different SNR levels. A

similar improvement was found for the wavelet version of the MEM

method. We also demonstrated the utility of cMEMω in localizing

F IGURE 9 (a) Example of a MEG patient with mesial temporal lobe epilepsy. The source imaging methods were applied to the average of
16 selected interictal epileptic discharges. The surface of the hippocampus is included in the source model (shown as separate structures). The
metrics AUC, SD, and Dmin were calculated at the midpoint of the rising phase of the spike (�10 ms). The scale is different for the three methods,
but source maps are interpreted relatively for each method. (b) Comparison of the MEG source imaging methods in terms of the validation metrics
AUC, SD and Dmin for eight patients with mesial temporal lobe epilepsy. Each boxplot represents metrics from one source imaging method. On each
boxplot, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. If the
groups are statistically different after post-hoc analysis, the significance levels are shown as: ***p < .001, **p < .01, and *p < .05.
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F IGURE 10 (a) Example localization of HD-EEG source imaging methods for a patient with mesial temporal lobe epilepsy. The source imaging
methods were applied to an average of 28 interictal epileptic discharges. The surface of the hippocampus is included in the source model (shown
as separate structures). The metrics AUC, SD, and Dmin were calculated at the midpoint of the rising phase of the spike (�10 ms). The scale is
different for the three methods but source maps are interpreted in a relative manner for each method. (b) Comparison of the EEG source imaging
methods in terms of the validation metrics AUC, SD and Dmin for nine patients with mesial temporal lobe epilepsy. Each boxplot represents
metrics from one source imaging method. On each boxplot, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. If the groups are statistically different after posthoc analysis, the significance levels are
shown as: ***p < .001, **p < .01, and *p < .05.

16 of 24 AFNAN ET AL.

 10970193, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26720 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [01/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EEG/MEG epileptic spikes from patients with mesial temporal lobe

epilepsy.

4.1 | Including hippocampus in the source model

The source model included the surface mesh of the cortex, with an

additional subcortical structure, the hippocampus. The sources were

located along the surface of the structures, with a fixed orientation

normal to the surface as proposed by Attal and Schwartz (2013) and

used in other studies (Calvetti et al., 2019; Meyer et al., 2017). Such

modeling is motivated by the morphological and organizational simi-

larity of the layer of the pyramidal cells in the hippocampus and neo-

cortex (Meyer et al., 2017). Other subcortical structures such as the

thalamus, amygdala, or brainstem can be modeled as a volume grid for

better anatomical approximation (Attal & Schwartz, 2013). Including

those structures in the volume grid would require handling parcella-

tion in both surface and volume for the MEM framework, which was

out of the scope of this study, as in MEM the parcellation is guided

along the surface in a geodesic manner.

4.2 | Depth-weighted cMEM improved localization
for deep sources

For MEG and HD-EEG simulations of epileptic activity involving dif-

ferent locations covering the whole brain, cMEMω provided more

accurate localizations for deep sources than cMEM and MNEω. For

superficial regions, cMEMω exhibited similar performance as cMEM in

terms of AUC and Dmin, but worsened slightly the SD. Compared to

MNEω, cMEMω localizations for superficial regions were also better in

terms of AUC and SD, along with our previous findings comparing

non depth-weighted cMEM to MNEω (Chowdhury et al., 2013;

Chowdhury et al., 2016; Chowdhury et al., 2018). Although cMEMω

slightly worsened the SD compared to cMEM (by �3 mm), it still pro-

vided improved SD compared to MNEω (by �24 mm in MEG

and � 14 mm for HD-EEG) and therefore excellent sensitivity to the

spatial extent of the generators.

Our simulation results showed that the cMEMω was sensitive to

mesial sources, and we found rare spurious localization of deep struc-

tures when they were not simulated. MEG and HD-EEG source imag-

ing results were robust for all other combinations of spatial extent

and SNR levels. Compared to HD-EEG, we observed high variance in

SD and Dmin for MEG simulations and worsening of SD and Dmin for

some superficial regions (Figures S5 and S22 and Figures 3 and 7).

This was related to the lower level of sensor level SNR for MEG simu-

lations compared to HD-EEG. The sensor level SNR of the simulated

signal for MEG/HD-EEG is reflective of the sensitivity of the sensors

to different source locations and orientations. For instance, EEG is

more sensitive to radial and deep sources whereas MEG using gradi-

ometers is more sensitive to tangential and superficial sources

(Goldenholz et al., 2009; Kakisaka et al., 2013). This is also why the

improvement in MEG due to depth weighting was more pronounced

compared to HD-EEG (Figures 3 and 7). However, the low SNR of

MEG simulations also resulted from the simulation model used in this

study. As we used a uniform signal strength for all the vertices within

a patch, the generators that consisted of two opposite walls of the

sulcus would lead to more signal cancellation for MEG than EEG

(Chowdhury et al., 2015; Chowdhury et al., 2016). Therefore, several

MEG sources simulated in this study resulted in lower sensor level

SNR when compared to HD-EEG. This could explain the large vari-

ance observed in SD and Dmin in MEG localizations for both deep and

superficial sources even after applying depth weighting.

Although cMEMω improved localization accuracy for deep

sources compared to cMEM and MNEω, the localization accuracy was

still associated with source depth (i.e., lower accuracy for deeper

sources). This is consistent with the findings reported in previous

studies using EEG (Krings et al., 1999; Mikulan et al., 2020;

Unnwongse et al., 2023; Whittingstall et al., 2003) and MEG

(Chowdhury et al., 2015). Using simultaneously acquired HD-EEG and

intracerebral stimulation as ground truth, Pascarella et al. (2023) com-

pared 10 source imaging methods and explored different depth

weighting parameters. They found the lowest localization error (within

10 mm) was obtained for dipolar and sparsity-promoting localization

methods. Larger localization errors (mean � 15–20 mm) were found

for distributed source imaging methods such as the MNEω, sLORETA,

eLORETA (Pascual-Marqui et al., 2006) and Beamformer (Van Veen

et al., 1997), with large localization errors associated with deeper

sources, even after applying depth weighting. In our HD-EEG simula-

tions, we observed a similar range of localization error and SD for

MNEω as reported by Pascarella et al. (2023). We found the lowest

localization error (4.8 ± 6.8 mm) for cMEMω. Both cMEM and cMEMω

provided much lower SD compared to MNEω, consistent with our pre-

vious studies (Chowdhury et al., 2013; Chowdhury et al., 2016; Pelle-

grino, Hedrich, et al., 2020) reporting the ability of the MEM method

to recover the spatial extent accurately. Pascarella et al. (2023) used

real intracerebral stimulations resulting in very focal generators asso-

ciated with high SNR, whereas we used realistic numerical simulations

involving spatially extended generators and different SNR levels.

Another important difference is we considered a fixed value of depth

weighting factor (ω = 0.5) for cMEMω and MNEω in the whole study.

However, we also investigated the depth weighting parameter ω for a

range of values: ω = 0.1, 0.3, 0.5, 0.7, and 0.9 for one set of 300 MEG

simulations (Figure S17). For deep sources, increasing the depth

weighting parameter ω improved localization accuracy as expected,

but choosing higher ω values penalized the localization of superficial

sources. This observation aligns with Pascarella et al. (2023), who

investigated different depth weightings between 0 and 5 in MNE,

Mixed Norm Estimate (Gramfort et al., 2012), dSPM and Beamformer

for various sources and found optimal localizations with either ω = 0

or 1. This suggests that for superficial sources, ω = 0 would provide

the best localization, while for deep sources, ω = 1 would be optimal.

Without a ground truth, determining whether a source is superficial or

deep is unknown. Therefore, choosing ω = 0.5 appears as a reason-

able compromise, whereas using 0 or 1 could potentially lead to com-

plete mislocalization of sources. Moreover, the depth weighting factor
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also depends on the sensitivity of the modality. For instance, Lin et al.

(2006) reported the best localization accuracy for MNEω for a depth

weighting factor ranging from 0.6 to 0.8 for MEG, and from 2 to 5 for

EEG. Recently, in Cai et al. (2022), our group evaluated a range of ω

when reconstructing functional Near-InfraRed Spectroscopy data

using cMEMω, most accurate results were found for depth weighting

factors ranging between 0.3 and 0.5.

The simulations generated in this study were controlled to remain

within a realistic range. Most of the hippocampal IEDs were nearly

obscured by the background (as depicted in Figures S3 and S4). In

contrast to single simulations in MEG, for the mixture of cortical and

hippocampal sources, we intentionally applied a higher SNR for the

hippocampus to highlight that even with a good SNR signal, the stan-

dard cMEM failed to localize accurately to the hippocampus. In sce-

narios with very low SNR, none of the methods would be able to

effectively localize deep sources when they are obscured by the

superficial component. However, this limitation would be due to

the low SNR of deep sources rather than the methods themselves.

We also demonstrated the applicability of cMEMω by evaluating

the source localization of actual IEDs from patients with focal epi-

lepsy. For the patients with mesial temporal lobe epilepsy, localization

was significantly improved by cMEMω compared to cMEM and MNEω.

The MEG localizations of IEDs by cMEM were almost blind to the

deep hippocampal or the mesial part of the sources. Depth weighting

was necessary to localize these hippocampal sources during the rising

phase of the spike. In contrast, HD-EEG localizations by cMEM were

still behaving better (when compared to MEG) and some activity in

the hippocampus and other deep regions was localized with cMEM,

but incorporating depth weighting improved the localization accuracy.

4.3 | Complex simulations involving mesial and
neocortical sources

It is evident from simultaneous recording of scalp EEG/MEG and

intracerebral EEG that the IEDs generated in deep mesial structures

are hardly observable (often missed during visual interpretation) from

scalp measurements when confined to mesial structures only

(Merlet & Gotman, 1999). The spikes generated from mesial struc-

tures are more detectable on the sensors when they propagate and

involve the activation of neocortical sources (Koessler et al., 2015;

Merlet & Gotman, 1999). To mimic such concurrent activation of

mesial plus neocortical interictal spikes, we simulated complex epilep-

tic spikes on MEG, including the first generator at the hippocampus

propagating to a second generator on the temporal neocortex after

15 ms. We only ran these simulations for MEG, not HD-EEG, because

it was more difficult for MEG data acquired with gradiometers to

localize deep sources without depth weighting, when compared

to our HD-EEG results. We considered source imaging at the peak of

the hippocampal sources, which corresponded approximately to the

midpoint of the rising phase of the spike we used when localizing clin-

ical data. Compared to cMEM and MNEω, cMEMω was more accurate

when localizing the hippocampal source. cMEM could not localize the

hippocampal source, mistakenly placing it on the lateral neocortex.

cMEMω localized the source in the hippocampus, but also exhibited

spurious localizations on the lateral neocortex, reflected by a large

localization error (�20 mm) and SD (�25 mm). MNEω also showed

this spurious localization on the lateral neocortex reflected by large

localization error (�28 mm) and spatial spread (SD: �48 mm). For

superficial regions, localizations by both MEM methods were more

accurate than MNEω in terms of AUC and SD, not in terms of Dmin, as

we previously reported (Hedrich et al., 2017).

Although cMEMω was more accurate than cMEM in localizing the

deep hippocampal activity, the maximum activity was mostly found on

the lateral cortex (see Dmin in Figure 6). This activation in the lateral cor-

tex was also contributed by the simulation of the neocortical generator

that already started at that point. However, we also observed spurious

activity on the lateral neocortex for the single sources simulated in the

hippocampus only, which was reflected by high SD. Thus, the challenge

to completely disentangle the mesial from neocortical sources remains

(Benar et al., 2021; Krishnaswamy et al., 2017), even if depth weighting

shows improved accuracy in localizing deep generators. Independent

component analysis (ICA) based source separation techniques could be

employed to disentangle deep versus superficial sources (Pizzo

et al., 2019). However, ICA-based approach has been found to worsen

MEG source localization accuracy for interictal activity and is suggested

to be applied with caution (Pellegrino, Xu, et al., 2020).

4.4 | Sensitivity of EEG/MEG sensors to deep
activity

As the simulations for MEG and HD-EEG were implemented using

background activity and anatomical head models from two different

subjects, it was difficult to compare different source localization

methods between these modalities directly. However, MEG was

found overall less sensitive to deep sources than HD-EEG. One of the

main reasons is that we considered gradiometers only, whereas mag-

netometers have a higher sensitivity to deep sources, at the price of

more sensitivity to environmental noise (Malmivuo & Plonsey, 1995;

Parkkonen et al., 2009). Our results are therefore consistent with

studies using MEG gradiometers and suggesting that MEG is less sen-

sitive to deep sources (Agirre-Arrizubieta et al., 2009; Baumgartner

et al., 2000; Leijten et al., 2003; Shigeto et al., 2002; Wennberg

et al., 2011). Few studies localizing subcortical activity using gradiom-

eters benefitted from evoked responses with large SNR data (Barry

et al., 2019; Coffey et al., 2016; Taylor et al., 2011). In contrast, most

studies reporting that deep activity is indeed detectable by MEG, used

magnetometers (Dalal et al., 2013; López-Madrona et al., 2022; Pizzo

et al., 2019; Plummer et al., 2019; Santiuste et al., 2008). Fusion of

EEG and MEG can also be exploited to recover some deep activity

which we previously demonstrated using cMEM (Chowdhury

et al., 2015; Chowdhury et al., 2018). Even though gradiometers are

less sensitive to deep sources, we showed that the proposed cMEMω

method would be useful for localizing deep source activity, even for

gradiometers.
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4.5 | Depth-weighted wMEM

wMEM represents the data on the time-frequency domain, using dis-

crete wavelets, before applying MEM solver for localization. Since

discrete wavelets only consider the oscillatory part of the signal,

wMEM was therefore proposed as a method particularly adapted to

localize brain oscillations (Lina et al., 2012). The depth-weighted

wMEM (wMEMω), the wavelet version of cMEMω, showed similar

improvement for MEG and HD-EEG simulations. Compared to

cMEMω, wMEMω results exhibited similar performances in terms of

AUC and Dmin, but slightly larger SD values. We expect that wMEM

localization of epileptic spikes, mainly characterized by a transient

shape and not by oscillations, will often result in higher SD than

cMEM. The depth-weighted version of wMEM is more suitable for

the localization of resting state oscillations (Afnan et al., 2023), epilep-

tic burst activity, or high-frequency oscillations from deep sources

(Avigdor et al., 2021; von Ellenrieder et al., 2016) and oscillatory activ-

ity at seizure onset (Pellegrino et al., 2016).

4.6 | Limitations

One limitation of this study is that the MEG and EEG simulations

were generated using anatomical head models and background

recordings from different subjects, thus it was difficult to directly

compare these two modalities. Simultaneous recording of EEG and

MEG on the same subject would allow a comparison of the sensitiv-

ity of detecting deep source activity by EEG versus MEG. Moreover,

the ground truth used for patients was still semi-quantitative. Fur-

ther examination showed that the differences in localization

improvement by depth weighting between the seizure-free group

and the other group were not likely influenced by the quality of

ground truth and possibly by the number of patients with deep gen-

erators included in that group (see Data S2, Tables S1 and S2). Com-

parison of simultaneous scalp recording with intracranial EEG will be

considered in our future investigations.

5 | CONCLUSION

We proposed depth-weighted cMEM (cMEMω) source imaging and

demonstrated that it improved the EEG/MEG localization of deep

sources compared to standard cMEM and depth-weighted MNE. We

validated this method using extensive MEG and EEG realistic

simulations of epileptic spikes, covering all brain regions including the

hippocampus. We demonstrated the improvement by cMEMω in local-

izing deep brain activity, especially in a low SNR environment. Finally,

we showed that cMEMω could localize the hippocampal activity more

accurately for patients with mesial temporal lobe epilepsy, in cases for

which standard cMEM would fail in recovering these deep generators.

It is notable that the localization of superficial sources was hardly

affected by depth weighting both for MEG and HD-EEG.

ACKNOWLEDGMENTS

This study was supported by Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery grant, grant from

Canadian Institutes of Health Research (CIHR) (PJT-159948 and FDN

143208), and the Fonds de recherche du Québec—Nature et technol-

ogies (FRQNT) Research team grant. JA was partially supported by

The Canadian Open Neuroscience Platform scholarship, Irma Bauer

Fellowship, Faculty of Medicine and Health Sciences, McGill Univer-

sity and Fonds de Recherche du Québec—Santé Doctoral scholarship.

BF was supported by CIHR project grant (PJT-175056), salary award

(Chercheur-boursier clinicien Senior) of the Fonds de Recherche du

Québec—Santé.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Jawata Afnan https://orcid.org/0000-0003-3206-9873

Zhengchen Cai https://orcid.org/0000-0002-4233-5568

Edouard Delaire https://orcid.org/0000-0003-1421-1071

Tanguy Hedrich https://orcid.org/0000-0002-6238-5415

Nicolas von Ellenrieder https://orcid.org/0000-0003-0845-347X

Birgit Frauscher https://orcid.org/0000-0001-6064-1529

Christophe Grova https://orcid.org/0000-0003-2775-9968

REFERENCES

Abdallah, C., Hedrich, T., Koupparis, A., Afnan, J., Hall, J. A., Gotman, J.,

Dubeau, F., von Ellenrieder, N., Frauscher, B., Kobayashi, E., &

Grova, C. (2022). Clinical yield of electromagnetic source imaging and

hemodynamic responses in epilepsy: Validation with intracerebral

data. Neurology, 98(24), e2499–e2511.
Afnan, J., von Ellenrieder, N., Lina, J.-M., Pellegrino, G., Arcara, G., Cai, Z.,

Hedrich, T., Abdallah, C., Khajehpour, H., Frauscher, B., Gotman, J., &

Grova, C. (2023). Validating MEG source imaging of resting state oscil-

latory patterns with an intracranial EEG atlas. NeuroImage,

274, 120158.

Agirre-Arrizubieta, Z., Huiskamp, G., Ferrier, C., Van Huffelen, A., &

Leijten, F. (2009). Interictal magnetoencephalography and the irritative

zone in the electrocorticogram. Brain, 132(11), 3060–3071.
Alberto, G. E., Stapleton-Kotloski, J. R., Klorig, D. C., Rogers, E. R.,

Constantinidis, C., Daunais, J. B., & Godwin, D. W. (2021). MEG source

imaging detects optogenetically-induced activity in cortical and sub-

cortical networks. Nature Communications, 12(1), 5259.

Amblard, C., Lapalme, E., & Lina, J.-M. (2004). Biomagnetic source detec-

tion by maximum entropy and graphical models. IEEE Transactions on

Biomedical Engineering, 51(3), 427–442.
Attal, Y., Bhattacharjee, M., Yelnik, J., Cottereau, B., Lefèvre, J., Okada, Y.,

Bardinet, E., Chupin, M., & Baillet, S. (2009). Modelling and detecting

deep brain activity with MEG and EEG. IRBM, 30, 133–138.
Attal, Y., & Schwartz, D. (2013). Assessment of subcortical source localiza-

tion using deep brain activity imaging model with minimum norm oper-

ators: A MEG study. PLoS One, 8(3), e59856.

AFNAN ET AL. 19 of 24

 10970193, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26720 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [01/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-3206-9873
https://orcid.org/0000-0003-3206-9873
https://orcid.org/0000-0002-4233-5568
https://orcid.org/0000-0002-4233-5568
https://orcid.org/0000-0003-1421-1071
https://orcid.org/0000-0003-1421-1071
https://orcid.org/0000-0002-6238-5415
https://orcid.org/0000-0002-6238-5415
https://orcid.org/0000-0003-0845-347X
https://orcid.org/0000-0003-0845-347X
https://orcid.org/0000-0001-6064-1529
https://orcid.org/0000-0001-6064-1529
https://orcid.org/0000-0003-2775-9968
https://orcid.org/0000-0003-2775-9968


Avigdor, T., Abdallah, C., Afnan, J., Cai, Z., Rammal, S., Grova, C., &

Frauscher, B. (2024). Consistency of electrical source imaging in pre-

surgical evaluation of epilepsy across different vigilance states. Annals

of Clinical and Translational Neurology, 11(2), 389–403.
Avigdor, T., Abdallah, C., von Ellenrieder, N., Hedrich, T., Rubino, A.,

Russo, G. L., Bernhardt, B., Nobili, L., Grova, C., & Frauscher, B. (2021).

Fast oscillations >40 Hz localize the epileptogenic zone: An electrical

source imaging study using high-density electroencephalography. Clini-

cal Neurophysiology, 132(2), 568–580.
Barkley, G. L., & Baumgartner, C. (2003). MEG and EEG in epilepsy. Journal

of Clinical Neurophysiology, 20(3), 163–178.
Barry, D. N., Barnes, G. R., Clark, I. A., & Maguire, E. A. (2019). The neural

dynamics of novel scene imagery. Journal of Neuroscience, 39(22),

4375–4386.
Baumgartner, C., Pataraia, E., Lindinger, G., & Deecke, L. (2000). Neuro-

magnetic recordings in temporal lobe epilepsy. Journal of Clinical Neu-

rophysiology, 17(2), 177–189.
Bautista, R. E. D., Cobbs, M. A., Spencer, D. D., & Spencer, S. S. (1999).

Prediction of surgical outcome by interictal epileptiform abnormalities

during intracranial EEG monitoring in patients with extrahippocampal

seizures. Epilepsia, 40(7), 880–890.
Benar, C.-G., Velmurugan, J., Lopez-Madrona, V. J., Pizzo, F., &

Badier, J.-M. (2021). Detection and localization of deep sources in

magnetoencephalography: A review. Current Opinion in Biomedical

Engineering, 18, 100285.

Cai, Z., Machado, A., Chowdhury, R. A., Spilkin, A., Vincent, T., Aydin, Ü.,

Pellegrino, G., Lina, J.-M., & Grova, C. (2022). Diffuse optical recon-

structions of functional near infrared spectroscopy data using maxi-

mum entropy on the mean. Scientific Reports, 12(1), 1–18.
Calvetti, D., Pascarella, A., Pitolli, F., Somersalo, E., & Vantaggi, B. (2019).

Brain activity mapping from MEG data via a hierarchical Bayesian algo-

rithm with automatic depth weighting. Brain Topography, 32, 363–393.
Chowdhury, R., Merlet, I., Birot, G., Kobayashi, E., Nica, A., Biraben, A.,

Wendling, F., Lina, J.-M., Albera, L., & Grova, C. (2016). Complex pat-

terns of spatially extended generators of epileptic activity: Comparison

of source localization methods cMEM and 4-ExSo-MUSIC on high res-

olution EEG and MEG data. NeuroImage, 143, 175–195.
Chowdhury, R. A., Lina, J. M., Kobayashi, E., & Grova, C. (2013). MEG

source localization of spatially extended generators of epileptic activ-

ity: Comparing entropic and hierarchical bayesian approaches. PLoS

One, 8(2), e55969.

Chowdhury, R. A., Pellegrino, G., Aydin, Ü., Lina, J. M., Dubeau, F.,

Kobayashi, E., & Grova, C. (2018). Reproducibility of EEG-MEG fusion

source analysis of interictal spikes: Relevance in presurgical evaluation

of epilepsy. Human Brain Mapping, 39(2), 880–901.
Chowdhury, R. A., Zerouali, Y., Hedrich, T., Heers, M., Kobayashi, E.,

Lina, J.-M., & Grova, C. (2015). MEG–EEG information fusion and elec-

tromagnetic source imaging: From theory to clinical application in epi-

lepsy. Brain Topography, 28, 785–812.
Coffey, E. B., Herholz, S. C., Chepesiuk, A. M., Baillet, S., & Zatorre, R. J.

(2016). Cortical contributions to the auditory frequency-following

response revealed by MEG. Nature Communications, 7(1), 11070.

Dalal, S., Jerbi, K., Bertrand, O., Adam, C., Ducorps, A., Schwartz, D.,

Martinerie, J., & Lachaux, J.-P. (2013). Simultaneous MEG-intracranial

EEG: New insights into the ability of MEG to capture oscillatory modu-

lations in the neocortex and the hippocampus. Epilepsy & Behavior.

https://doi.org/10.1016/j.yebeh.2013.1003.1012

Dalal, S. S., Baillet, S., Adam, C., Ducorps, A., Schwartz, D., Jerbi, K.,

Bertrand, O., Garnero, L., Martinerie, J., & Lachaux, J.-P. (2009). Simul-

taneous MEG and intracranial EEG recordings during attentive read-

ing. NeuroImage, 45(4), 1289–1304.
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis:

I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.
Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W.,

Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric

mapping: Combining fMRI and MEG for high-resolution imaging of

cortical activity. Neuron, 26(1), 55–67.
Ebersole, J. S. (1997). Defining epileptogenic foci: past, present, future.

Journal of Clinical Neurophysiology, 14(6), 470–483.
Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-

Barreto, N., Henson, R., Flandin, G., & Mattout, J. (2008). Multiple

sparse priors for the M/EEG inverse problem. NeuroImage, 39(3),

1104–1120.
Fuchs, M., Wagner, M., Köhler, T., & Wischmann, H.-A. (1999). Linear and

nonlinear current density reconstructions. Journal of Clinical Neuro-

physiology, 16(3), 267–295.
Goldenholz, D. M., Ahlfors, S. P., Hämäläinen, M. S., Sharon, D., Ishitobi, M.,

Vaina, L. M., & Stufflebeam, S. M. (2009). Mapping the signal-to-noise-

ratios of cortical sources in magnetoencephalography and electroenceph-

alography. Human Brain Mapping, 30(4), 1077–1086.
Gramfort, A., Kowalski, M., & Hämäläinen, M. (2012). Mixed-norm esti-

mates for the M/EEG inverse problem using accelerated gradient

methods. Physics in Medicine & Biology, 57(7), 1937–1961.
Grova, C., Aiguabella, M., Zelmann, R., Lina, J. M., Hall, J. A., &

Kobayashi, E. (2016). Intracranial EEG potentials estimated from MEG

sources: A new approach to correlate MEG and iEEG data in epilepsy.

Human Brain Mapping, 37(5), 1661–1683.
Grova, C., Daunizeau, J., Lina, J.-M., Bénar, C. G., Benali, H., & Gotman, J.

(2006). Evaluation of EEG localization methods using realistic simula-

tions of interictal spikes. NeuroImage, 29(3), 734–753.
Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields

of the brain: Minimum norm estimates. Medical & Biological Engineer-

ing & Computing, 32, 35–42.
Hari, R. (1990). The neuromagnetic method in the study of the human

auditory cortex. In Auditory Evoked Magnetic Fields and Potentials:

Advances in Audiology (Vol. 6, pp. 222–282). Karger.
Hauf, M., Jann, K., Schindler, K., Scheidegger, O., Meyer, K., Rummel, C.,

Mariani, L., König, T., & Wiest, R. (2012). Localizing seizure-onset

zones in presurgical evaluation of drug-resistant epilepsy by electroen-

cephalography/fMRI: Effectiveness of alternative thresholding strate-

gies. American Journal of Neuroradiology, 33(9), 1818–1824.
Hedrich, T., Pellegrino, G., Kobayashi, E., Lina, J.-M., & Grova, C. (2017).

Comparison of the spatial resolution of source imaging techniques in

high-density EEG and MEG. NeuroImage, 157, 531–544.
Heller, L., & van Hulsteyn, D. B. (1992). Brain stimulation using electro-

magnetic sources: Theoretical aspects. Biophysical Journal, 63(1),

129–138.
Hufnagel, A., Dümpelmann, M., Zentner, J., Schijns, O., & Elger, C. (2000).

Clinical relevance of quantified intracranial interictal spike activity in

presurgical evaluation of epilepsy. Epilepsia, 41(4), 467–478.
Jeffs, B., Leahy, R., & Singh, M. (1987). An evaluation of methods for neu-

romagnetic image reconstruction. IEEE Transactions on Biomedical Engi-

neering, 9, 713–723.
Kaiboriboon, K., Nagarajan, S., Mantle, M., & Kirsch, H. E. (2010). Interictal

MEG/MSI in intractable mesial temporal lobe epilepsy: Spike yield and

characterization. Clinical Neurophysiology, 121(3), 325–331.
Kakisaka, Y., Alkawadri, R., Wang, Z. I., Enatsu, R., Mosher, J. C.,

Dubarry, A.-S., Alexopoulos, A. V., & Burgess, R. C. (2013). Sensitivity

of scalp 10–20 EEG and magnetoencephalography. Epileptic Disorders,

15, 27–31.
Koessler, L., Cecchin, T., Colnat-Coulbois, S., Vignal, J.-P., Jonas, J.,

Vespignani, H., Ramantani, G., & Maillard, L. G. (2015). Catching the

invisible: Mesial temporal source contribution to simultaneous EEG

and SEEG recordings. Brain Topography, 28, 5–20.
Krings, T., Chiappa, K. H., Cuffin, B. N., Cochius, J. I., Connolly, S., &

Cosgrove, G. R. (1999). Accuracy of EEG dipole source localization

using implanted sources in the human brain. Clinical Neurophysiology,

110(1), 106–114.
Krishnaswamy, P., Obregon-Henao, G., Ahveninen, J., Khan, S., Babadi, B.,

Iglesias, J. E., Hämäläinen, M. S., & Purdon, P. L. (2017). Sparsity

20 of 24 AFNAN ET AL.

 10970193, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26720 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [01/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.yebeh.2013.1003.1012


enables estimation of both subcortical and cortical activity from MEG

and EEG. Proceedings of the National Academy of Sciences, 114(48),

E10465–E10474.
Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., &

Papadopoulo, T. (2005). A common formalism for the integral formula-

tions of the forward EEG problem. IEEE Transactions on Medical Imag-

ing, 24(1), 12–28.
Lapalme, E., Lina, J.-M., & Mattout, J. (2006). Data-driven parceling and

entropic inference in MEG. NeuroImage, 30(1), 160–171.
Leijten, F. S., Huiskamp, G.-J. M., Hilgersom, I., & Van Huffelen, A. C.

(2003). High-resolution source imaging in mesiotemporal lobe epi-

lepsy: A comparison between MEG and simultaneous EEG. Journal of

Clinical Neurophysiology, 20(4), 227–238.
Lin, F.-H., Witzel, T., Ahlfors, S. P., Stufflebeam, S. M., Belliveau, J. W., &

Hämäläinen, M. S. (2006). Assessing and improving the spatial accu-

racy in MEG source localization by depth-weighted minimum-norm

estimates. NeuroImage, 31(1), 160–171.
Lina, J.-M., Chowdhury, R., Lemay, E., Kobayashi, E., & Grova, C. (2012).

Wavelet-based localization of oscillatory sources from magnetoen-

cephalography data. IEEE Transactions on Biomedical Engineering, 61(8),

2350–2364.
López-Madrona, V. J., Medina Villalon, S., Badier, J. M., Trébuchon, A.,

Jayabal, V., Bartolomei, F., Carron, R., Barborica, A., Vulliémoz, S.,

Alario, F. X., & Bénar, C. G. (2022). Magnetoencephalography can

reveal deep brain network activities linked to memory processes.

Human Brain Mapping, 43(15), 4733–4749.
Lorente De Nó, R. (1947). Action potential of the motoneurons of the

hypoglossus nucleus. Journal of Cellular and Comparative Physiology,

29(3), 207–287.
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and applica-

tions of bioelectric and biomagnetic fields. Oxford University Press.

Merlet, I., & Gotman, J. (1999). Reliability of dipole models of epileptic

spikes. Clinical Neurophysiology, 110(6), 1013–1028.
Meyer, S. S., Rossiter, H., Brookes, M. J., Woolrich, M. W., Bestmann, S., &

Barnes, G. R. (2017). Using generative models to make probabilistic

statements about hippocampal engagement in MEG. NeuroImage, 149,

468–482.
Mikulan, E., Russo, S., Parmigiani, S., Sarasso, S., Zauli, F. M., Rubino, A.,

Avanzini, P., Cattani, A., Sorrentino, A., Gibbs, S., Cardinale, F.,

Sartori, I., Nobili, L., Massimini, M., & Pigorini, A. (2020). Simultaneous

human intracerebral stimulation and HD-EEG, ground-truth for source

localization methods. Scientific Data, 7(1), 127.

Mikuni, N., Nagamine, T., Ikeda, A., Terada, K., Taki, W., Kimura, J.,

Kikuchi, H., & Shibasaki, H. (1997). Simultaneous recording of epilepti-

form discharges by MEG and subdural electrodes in temporal lobe epi-

lepsy. NeuroImage, 5(4), 298–306.
Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical

neurons to magnetoencephalography and electroencephalography sig-

nals. The Journal of Physiology, 575(3), 925–936.
Oishi, M., Otsubo, H., Kameyama, S., Morota, N., Masuda, H.,

Kitayama, M., & Tanaka, R. (2002). Epileptic spikes: Magnetoencepha-

lography versus simultaneous electrocorticography. Epilepsia, 43(11),

1390–1395.
Parkkonen, L., Fujiki, N., & Mäkelä, J. P. (2009). Sources of auditory brain-

stem responses revisited: Contribution by magnetoencephalography.

Human Brain Mapping, 30(6), 1772–1782.
Pascarella, A., Mikulan, E., Sciacchitano, F., Sarasso, S., Rubino, A.,

Sartori, I., Cardinale, F., Zauli, F., Avanzini, P., Nobili, L., Pigorini, A., &

Sorrentino, A. (2023). An in-vivo validation of ESI methods with focal

sources. NeuroImage, 277, 120219.

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electro-

magnetic tomography (sLORETA): Technical details. Methods and Find-

ings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.
Pascual-Marqui, R. D., Pascual-Montano, A. D., Lehmann, D., Kochi, K.,

Esslen, M., Jancke, L., Anderer, P., Saletu, B., Tanaka, H., Hirata, K., &

John, E. R. (2006). Exact low resolution brain electromagnetic tomog-

raphy (eLORETA). NeuroImage, 31(Suppl 1), S86.

Pellegrino, G., Hedrich, T., Chowdhury, R., Hall, J. A., Lina, J. M.,

Dubeau, F., Kobayashi, E., & Grova, C. (2016). Source localization of

the seizure onset zone from ictal EEG/MEG data. Human Brain Map-

ping, 37(7), 2528–2546.
Pellegrino, G., Hedrich, T., Chowdhury, R. A., Hall, J. A., Dubeau, F., Lina, J. M.,

Kobayashi, E., & Grova, C. (2018). Clinical yield of magnetoencephalogra-

phy distributed source imaging in epilepsy: A comparison with equivalent

current dipole method. Human Brain Mapping, 39(1), 218–231.
Pellegrino, G., Hedrich, T., Porras-Bettancourt, M., Lina, J. M., Aydin, Ü.,

Hall, J., Grova, C., & Kobayashi, E. (2020). Accuracy and spatial properties

of distributed magnetic source imaging techniques in the investigation of

focal epilepsy patients. Human Brain Mapping, 41(11), 3019–3033.
Pellegrino, G., Xu, M., Alkuwaiti, A., Porras-Bettancourt, M., Abbas, G.,

Lina, J.-M., Grova, C., & Kobayashi, E. (2020). Effects of independent

component analysis on magnetoencephalography source localization in

pre-surgical frontal lobe epilepsy patients. Frontiers in Neurology, 11, 479.

Pizzo, F., Roehri, N., Medina Villalon, S., Trébuchon, A., Chen, S., Lagarde, S.,

Carron, R., Gavaret, M., Giusiano, B., McGonigal, A., Bartolomei, F.,

Badier, J. M., & Bénar, C. G. (2019). Deep brain activities can be detected

with magnetoencephalography. Nature Communications, 10(1), 1–13.
Plummer, C., Vogrin, S. J., Woods, W. P., Murphy, M. A., Cook, M. J., &

Liley, D. T. (2019). Interictal and ictal source localization for epilepsy

surgery using high-density EEG with MEG: A prospective long-term

study. Brain, 142(4), 932–951.
Rampp, S., & Stefan, H. (2007). Magnetoencephalography in presurgical

epilepsy diagnosis. Expert Review of Medical Devices, 4(3), 335–347.
Rosenow, F., & Lüders, H. (2001). Presurgical evaluation of epilepsy. Brain,

124(9), 1683–1700.
Santiuste, M., Nowak, R., Russi, A., Tarancon, T., Oliver, B., Ayats, E.,

Scheler, G., & Graetz, G. (2008). Simultaneous magnetoencephalogra-

phy and intracranial EEG registration: Technical and clinical aspects.

Journal of Clinical Neurophysiology, 25(6), 331–339.
Seeber, M., Cantonas, L.-M., Hoevels, M., Sesia, T., Visser-

Vandewalle, V., & Michel, C. M. (2019). Subcortical electrophysiologi-

cal activity is detectable with high-density EEG source imaging. Nature

Communications, 10(1), 753.

Shigeto, H., Morioka, T., Hisada, K., Nishio, S., Ishibashi, H., Kira, D.-I.,

Tobimatsu, S., & Kato, M. (2002). Feasibility and limitations of magne-

toencephalographic detection of epileptic discharges: Simultaneous

recording of magnetic fields and electrocorticography. Neurological

Research, 24(6), 531–536.
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011).

Brainstorm: A user-friendly application for MEG/EEG analysis. Compu-

tational Intelligence and Neuroscience, 2011, 1–13.
Tadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D.,

Leahy, R. M., & Baillet, S. (2019). MEG/EEG group analysis with brain-

storm. Frontiers in Neuroscience, 13, 435877.

Tao, J. X., Baldwin, M., Hawes-Ebersole, S., & Ebersole, J. S. (2007). Corti-

cal substrates of scalp EEG epileptiform discharges. Journal of Clinical

Neurophysiology, 24(2), 96–100.
Taylor, M. J., Mills, T., & Pang, E. W. (2011). The development of face rec-

ognition; hippocampal and frontal lobe contributions determined with

MEG. Brain Topography, 24, 261–270.
Unnwongse, K., Rampp, S., Wehner, T., Kowoll, A., Parpaley, Y., von

Lehe, M., Lanfer, B., Rusiniak, M., Wolters, C., & Wellmer, J. (2023).

Validating EEG source imaging using intracranial electrical stimulation.

Brain Communications, 5(1), fcad023.

Uusitalo, M. A., & Ilmoniemi, R. J. (1997). Signal-space projection method

for separating MEG or EEG into components. Medical and Biological

Engineering and Computing, 35(2), 135–140.
Uutela, K., Hämäläinen, M., & Somersalo, E. (1999). Visualization of mag-

netoencephalographic data using minimum current estimates. Neuro-

Image, 10(2), 173–180.

AFNAN ET AL. 21 of 24

 10970193, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26720 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [01/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



van Veen, B. D., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997).

Localization of brain electrical activity via linearly constrained mini-

mum variance spatial filtering. IEEE Transactions on Biomedical Engi-

neering, 44(9), 867–880.
von Ellenrieder, N., Beltrachini, L., Muravchik, C. H., & Gotman, J. (2014).

Extent of cortical generators visible on the scalp: Effect of a subdural

grid. NeuroImage, 101, 787–795.
von Ellenrieder, N., Pellegrino, G., Hedrich, T., Gotman, J., Lina, J.-M.,

Grova, C., & Kobayashi, E. (2016). Detection and magnetic source

imaging of fast oscillations (40–160 Hz) recorded with magnetoen-

cephalography in focal epilepsy patients. Brain Topography, 29(2),

218–231.
Wennberg, R., Valiante, T., & Cheyne, D. (2011). EEG and MEG in mesial

temporal lobe epilepsy: Where do the spikes really come from? Clinical

Neurophysiology, 122(7), 1295–1313.
Whittingstall, K., Stroink, G., Gates, L., Connolly, J., & Finley, A. (2003).

Effects of dipole position, orientation and noise on the accuracy of

EEG source localization. Biomedical Engineering Online, 2(1), 1–5.
Zhang, Y., van Drongelen, W., & He, B. (2006). Estimation of in vivo brain-

to-skull conductivity ratio in humans. Applied Physics Letters, 89(22),

223903.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Afnan, J., Cai, Z., Lina, J.-M., Abdallah,

C., Delaire, E., Avigdor, T., Ros, V., Hedrich, T., von Ellenrieder,

N., Kobayashi, E., Frauscher, B., Gotman, J., & Grova, C.

(2024). EEG/MEG source imaging of deep brain activity within

the maximum entropy on the mean framework: Simulations

and validation in epilepsy. Human Brain Mapping, 45(10),

e26720. https://doi.org/10.1002/hbm.26720

APPENDIX A

A.1 | Coherent maximum entropy on the mean (cMEM)

The relationship between source amplitudes and EEG/MEG measure-

ments is expressed by the following linear model:

m tð Þ¼Gj tð Þþe tð Þ ðA1Þ

m tð Þ is the q-dimensional measurement vector for EEG or MEG signal

at time t where q denotes the number of EEG/MEG sensors, j tð Þ is the
r-dimensional vector denoting current density of r dipolar sources at

time t and G is the lead field matrix with a dimension of q� r. e(t)

models an additive measurement noise at time t. We assume an ana-

tomical constraint that the dipoles are orientated orthogonally to the

surface of the cortex and hippocampus.

Within the MEM framework (Amblard et al., 2004), j denoting the

intensities of r dipolar sources is considered as a random variable

described by the probability distribution dp jð Þ¼ p jð Þdj. To regularize

the inverse problem, we incorporate prior information on j in the form

of a reference distribution dν jð Þ. The Kullback Leibler divergence or ν-

entropy is defined by:

Sν dpð Þ¼�
ð
j
log

dp jð Þ
dν jð Þ

� �
dp jð Þ¼�

ð
j
f jð Þ log f jð Þð Þdν jð Þ ðA2Þ

where f is a ν-density of dp defined as dp jð Þ¼ f jð Þdν jð Þ. The ν-entropy

Sν dpð Þ measures the amount of information brought by the data with

respect to the prior dν. We introduce a data fit constraint as the set of

probability distributions on j that explains the data on average.

m� GjIq½ � Edp j½ �
e

h i
¼0,dp�CM ðA3Þ

where CM is the set of probability distributions on j that explains the

data on average, Edp j½ � ¼
Ð
ℝ
jdp jð Þ is the mathematical expectation of j

with respect to the probability distribution dp and Iq is a q�q identity

matrix. Among all the possible distributions of dp jð Þ that explain the

data m on average, MEM solution is derived from maximizing the

ν-entropy (Amblard et al., 2004; Grova et al., 2006). More details on

MEM formulations are described in Chowdhury et al. (2016). The key

feature of this framework is a spatial prior model, assuming that brain

activity is organized within a set of K non-overlapping and indepen-

dent parcels. The reference distribution dν jð Þ for K parcels is defined

as a joint distribution:

dν jð Þ¼ dν1 j1ð Þdν2 j2ð Þdν3 j3ð Þ…::dνk jkð Þ…::dνK jKð Þ ðA4Þ

The spatial parcellation used in MEM method uses a data driven

parcellation technique (Lapalme et al., 2006). Each parcel k is charac-

terized by an activation state Sk , which is a hidden state variable con-

trolling the activation of the parcel. The reference distribution for

each parcel is defined as:

dνk jkð Þ¼ 1�αkð Þδ jkð ÞþαkN μk ,Σkð Þ jkð Þ½ �djk ðA5Þ

where αk is the probability of the kth parcel to be active

(Prob Sk ¼1ð Þ). δ is a Dirac function which is used to switch off the

parcel when Sk ¼0. N μk ,Σkð Þ is a Gaussian distribution of the intensi-

ties of the kth parcel, μk describing the mean and Σk describing the

covariance of all the sources within that kth parcel.

In this study, we considered the “coherent” version of MEM, enti-

tled cMEM, originally introduced in Chowdhury et al., 2013 and fully

described in Chowdhury et al., 2016. The term “coherent” refers to

the fact that we are using a coherent spatial prior, that is, a data

driven parcellation in K parcels which is fixed along time, while the

probability of being active αk can evolve dynamically. In cMEM imple-

mentation, we also included local spatial smoothness within each par-

cel of the model.

Therefore, in cMEM, to initialize the spatial prior model, μk is set

to zero and Σk is defined as follows:
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Σk tð Þ¼ ηk tð ÞWk σð ÞTWk σð Þ ðA6Þ

where Σk tð Þ is the source covariance of parcel k at each time sample t,

Wk σð Þ is a spatial smoothness matrix which controls the local smooth-

ness within the parcel (σ set to 0.6; Chowdhury et al., 2013; Friston

et al., 2008) and ηk tð Þ is defined as 5% of the energy of minimum norm

estimate (MNE) solution (Lin et al., 2006) of all the rk sources within

the parcel kth.

ηk tð Þ¼0:05
1
rk

X
i � rk

bj2MNE i,tð Þ ðA7Þ

The MNE solutionbjMNE was calculated using:

bjMNE ¼ argmin m�Gjk k2Σd
þλ jk k2Σ

� �
¼ GTΣdGþλΣ
� ��1

GTΣdm ðA8Þ

where Σd is the inverse of the noise covariance, Σ is the inverse of the

source covariance (Σ¼ Ir , an r� r identity matrix), and λ is a hyper-

parameter to regularize the inversion. Standard L-Curve method was

used to estimate λ.

After the reference distribution dν is initialized, the MEM solution

is finally obtained through an optimization of a convex function

obtained from the dual formulation of the maximum entropy principle

(Amblard et al., 2004; Chowdhury et al., 2013, 2016).

A.2 | Depth-weighted cMEM (cMEMω)

We are introducing a new parameter for cMEM implementation.

Depth weighting within cMEM framework was first proposed and

implemented by Cai et al. (2022) for functional Near InfraRed Spec-

troscopy 3D reconstruction. Similarly to the depth weighting strategy

proposed for MNE (Lin et al., 2006), we introduced a location penalty

in the source covariance by scaling it with the forward model and thus

penalizing the superficial sources that exhibit larger amplitude and

enhancing the contribution from deep sources. This penalization was

tuned by the weighting parameter ω. Therefore, ω¼0:0 refers to no

depth weighting whereas increasing the value of ω would refer to

more contribution from deep sources.

Therefore, in cMEMω depth weighting was implemented when

initializing the spatial prior. The parcels are initialized using the source

covariance of the parcel, Σk (Equation A6). The source covariance in

Equation A6 was weighted by the forward model of each vertex,

quantifying the influence of source depth, to a specific power ω.

Therefore, following the method proposed and validated by Cai et al.

(2022), depth weighting was added at two levels:

1. To initialize the spatial prior model, we applied depth weighting in

the source covariance for each parcel, Σk tð Þω as:

Σk tð Þω ¼Λrkηk tð ÞωWk σð ÞT Wk σð Þ ðA9Þ

where Λrk is the depth weighting matrix defined as the diagonal matrix

of Gk
TGk

� ��ω
, where Gk is the gain matrix for rk sources in parcel k.

2. For cMEM, ηk tð Þ was defined as 5% of the energy of MNE solution

of rk sources within the parcel k (Equation A7). In cMEMω, we

replaced the MNE solution with the depth-weighted MNE solu-

tion. Equations A7 and A8 are modified as follows:

ηk tð Þω ¼0:05
1
rk

X
i � rk

bjMNEω i,tð Þ2 ðA10Þ

where bjMNEω is the depth-weighted version of bjMNE in Equation A8,

where we used the diagonal of the source covariance matrix Σ,
weighted by the forward model, as follows:

Σ¼ Ir GTG
� ��ω

ðA11Þ

In this study, we considered a fixed depth weighting factor,

ω=0.5 (zero would represent no depth-weighting) for the two levels

reported in Equations A9 and A11. This is different from Cai et al. (2022),

where they explored different pairs of weighting factors for

Equations A9 and A11 using realistic simulations of Functional Near-

infrared spectroscopy data and reported the best reconstruction accuracy

for ω¼0:3 for Equation A9 and ω¼0:5 for Equation A11. In our

EEG/MEG study, ω=0.5 was chosen to be consistent with the

default value used in depth-weighted MNE (MNEω) implementation

for EEG/MEG source imaging in Brainstorm (Tadel et al., 2011). We

also explored ω values ranging between 0.1 and 0.9 for one set of

MEG simulations and observed that higher ω values enhanced the

localization of deep sources but adversely affected the localization of

superficial sources. Therefore, choosing ω=0.5 appeared as a reason-

able compromise.

A.3 | Wavelet-based maximum entropy on the mean (wMEM)

wMEM is another version of MEM specifically designed to localize

brain oscillatory patterns. wMEM applies a discrete wavelet transfor-

mation (Daubechies wavelets) to characterize the oscillatory patterns

in the data before applying the MEM solver (Lina et al., 2012). In this

work, we are introducing a new parameter for wMEM implementation

to allow depth weighting, resulting in the method wMEMω with

ω=0.5. wMEMω method was validated using the same simulation

datasets as cMEMω and MNEω for localizing epileptic spikes. More

details on wMEM implementation can be found in Lina et al. (2012)

and Afnan et al. (2023).

In wMEM, the time expansion of data is substituted with a time-

scale representation. In terms of wavelet expansion, Equation A1 can

be written as:

ds,n ¼Gws,nþwϵ
s,n ðA12Þ
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where ds,n, ws,n, and wϵ
s,n are the wavelet coefficients for the data,

the sources, and the measurement noise, respectively, for a particular

discrete time index n and scale s (s=1, 2, 3, … with s=0 being the

sampling scale). Depth weighting is implemented for the step when

we initialize the spatial prior (as described for cMEMω). The time-scale

representation of Equations A6 and A7 are:

Σk s,nð Þ¼ ηk s,nð ÞWk σð ÞTWk σð Þ ðA13Þ

ηk s,nð Þ¼0:05
1
rk

X
i � rk

bjMNE i,s,nð Þ2 ðA14Þ

where Σk s,nð Þ is the source covariance of parcel k at a particular dis-

crete time index n and scale s. ηk s,nð Þ is defined as 5% of the energy

of MNE solution of all the sources (rk) within the parcel k for a particu-

lar discrete time index n and scale s. The MNE solution bjMNE is calcu-

lated in time-scale domain as:

bjMNE ¼ argmin ds,n�Gws,nk k2Σd
þλ ws,nk k2Σ

� �
¼ GTΣdGþλΣ
� ��1

GTΣdds,n

ðA15Þ

where Σ¼ Ir an r� r identity matrix.

A.4 | Depth-weighted wMEM (wMEMω)

Similar to cMEMω, the depth weighting was applied in wMEM at two

levels. First, we applied depth weighting in the source covariance for

each parcel, Σk s,nð Þω as:

Σk s,nð Þω ¼Λrkηk s,nð ÞωWk σð ÞTWk σð Þ ðA16Þ

where Λrk is the depth weighting matrix defined as the diagonal

matrix of Gk
TGk

� ��ω
, where Gk is the gain matrix for rk sources in

parcel k. Second, we defined ηk s,nð Þω as 5% of the energy of

the depth-weighted MNE solution, for which we modified

Equation A15 by using the diagonal of the source covariance matrix

Σ, weighted by the forward model (see Equation A11:

Σ¼ Ir GTG
� ��ω

). Similar to cMEMω, we considered a fixed depth

weighting factor, ω=0.5 for wMEMω at the two levels described by

Equations A11 and A16.
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