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Abstract: The current paper addresses the production planning problem of unreliable manufacturing
systems generating greenhouse gas (GHG) emissions, producing a single product type in a dynamic
and stochastic context. This work aims to develop a control policy that minimizes the sum of backlog,
inventory, and emission costs. To achieve this goal, the stochastic optimal control theory is used to
develop the optimality conditions solved by numerical techniques to establish the control policy
structure. Sensitivity analyses are provided to depict and validate the obtained structure of the
production policy characterized by multiple thresholds, which regulate the production rate with the
emission and inventory levels. Furthermore, the performance of the developed optimal control policy
is compared with the most pertinent ones identified in the literature. The developed optimal control
policy outperformed those in the literature by significantly reducing the total cost incurred by these
policies. Finally, the developed control policy is implemented to equip the manager of the considered
manufacturing system with a practical and robust decision-support tool.

Keywords: manufacturing systems; environmental constraints; stochastic process; dynamic programming;
numerical methods; optimal control policy

1. Introduction

Since sustainable development was defined by Brundtland [1], many countries have
implemented measures to actively promote individuals and businesses to minimize their
environmental footprints and behave ethically [2]. Over time, governmental and non-
governmental entities have prioritized substantial investments to mitigate the challenges
presented by global climate change. Over the last few decades, decision-makers have
faced numerous challenges linked to environmental constraints. These challenges revolve
around the simultaneous pursuit of production objectives and the imperative of reducing
greenhouse gas emissions. In the literature, papers addressing the ecological dimension,
in conjunction with control policies, predominantly examine two distinct approaches:
regulatory and voluntary. The government and authorities set a specific limit for GHG
emissions generated by various industries as part of regulatory programs to control their
detrimental effects. In recent years, there has been a growing interest in voluntary initia-
tives, such as managing environmental impacts, to enhance the effectiveness and scope of
existing regulations. It is noteworthy that voluntary initiatives are appealing because they
can accomplish environmental objectives more innovatively and with greater speed and
cost-effectiveness compared to regulatory methods [3]. Kang et al. [4] raised an increasing
concern regarding manufacturing companies’ tendency to prioritize their economic endeav-
ors while neglecting the repercussions of these endeavors on the environment and society.
In this context, Setchi and Maropoulos [5] presented important state-of-the-art theoretical,

Sustainability 2024, 16, 5760. https://doi.org/10.3390/su16135760 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16135760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1919-9481
https://doi.org/10.3390/su16135760
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16135760?type=check_update&version=2


Sustainability 2024, 16, 5760 2 of 20

methodological, and applicative aspects of sustainable design and manufacturing. They
discussed ways to achieve a balance between economic and environmental sustainability.

The current work carries significant implications for unreliable manufacturing systems,
presenting the potential for applying both a regulatory and voluntary approach to reduce
GHG emissions. Hence, the primary research questions are as follows: (i) what constitutes
the most cost-effective control policy for managing the unreliable manufacturing system
under consideration? (ii) In this context, is it necessary to apply voluntary and regula-
tory approaches? (iii) How many optimal stock products (threshold levels) are needed?
(iv) When should they be changed? To answer these research questions, the objective of this
paper is to develop an optimal control policy tailored to unreliable manufacturing systems
of businesses committed to mitigating greenhouse gas emissions, thereby minimizing the
total incurred cost.

In this paper, environmental and economic issues are jointly integrated into the opti-
mization model for planning the control of unreliable manufacturing systems that generate
greenhouse gas emissions during production. Thus, to minimize their environmental impact,
it becomes economically necessary for these systems to determine the right time to adjust the
production rate based on GHG emissions generated and the inventory level. Consequently,
this research focuses on developing an optimal control policy aimed at minimizing the sum
of costs associated with backlogs, inventory, and penalty emissions, particularly in settings
where machines are subject to dynamic, stochastic failures and repairs.

The subsequent sections are structured as follows. A comprehensive review of perti-
nent literature is summarized in Section 2. The manufacturing system and the problem
statement are presented in Section 3. Section 4 outlines the optimality conditions and
presents the numerical techniques used. Section 5 summarizes the structure of the optimal
production control policy and conducts a sensitivity analysis. The performance of the
developed optimal policy is compared with that of those adapted from existing litera-
ture, presented in Section 6, while Section 7 engages in a comprehensive discussion of the
findings. Section 8 serves as the paper’s conclusion.

2. Literature Review

Greenhouse gas emissions generated during production are one of the critical drivers
of global warming. Many countries have moved toward reducing these emissions by
adopting mechanisms that focus on emission taxes and cap-and-trade policies to comply
with existing legislation and to reduce their environmental footprints [6]. The same obser-
vation was made by Entezaminia et al. [7] when they stated that under the environmental
legislation mandated by governments for each industry, the emissions generated by the
manufacturing systems stand as a pivotal performance metric for assessing sustainable
manufacturing practices. Fundamentally, to preserve the environment and its natural
resources, it is essential to control harmful emissions to stem the damage of pollution
from industrial activities. Consequently, industries with high emissions, such as pulp and
paper, mining operations, automobile manufacturing, steel, and concrete, will improve
their operational strategies for production control problems in a stochastic context and by
integrating environmental requirements. In the literature, numerous contributions to pro-
duction planning issues within manufacturing systems can be categorized into two primary
classes according to harmful emission control. The first class consists of work on produc-
tion planning of manufacturing systems without GHG emission control, while the second
class consists of work on production planning within manufacturing systems with GHG
emission control. The work of the second class is classified into two categories according to
the deterministic nature (first category) and the stochastic nature (second category) of the
system dynamics. Table 1 highlights the key contributions of this work, as derived from the
literature review. The rows of the table present the studied research classes/categories and
the columns classify the discussed articles according to five attributes, namely, (i) stochastic
and dynamic context, (ii) adapted control policy, (iii) developed optimal control policy,
(iv) regulatory environmental approach, and (v) voluntary environmental approach.
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The first class includes contributions in the literature relying on the production plan-
ning of manufacturing systems without GHG emission control. An in-depth examination
of the literature revealed that several authors have considered optimal production planning
problems in the manufacturing domain. According to Bouslikhane et al. [8], feedback con-
trol policies are the most effective strategies for managing systems in dynamic stochastic
environments. An important branch of research has formulated the problem using stochas-
tic optimal control models, as in [9]. In such pioneering research, a stochastic dynamic
programming approach based on the infinite-horizon control problem was adopted to
develop the optimality conditions related to the production planning problem. The re-
sulting policies were defined by a distinctive structure, known as Hedging Point Policy
(HPP), which aims to control the rate of production by considering a stock threshold and
the system’s current state. Numerous extensions have since been formulated, considering
various aspects of production planning management from diverse perspectives. Works
based on the stochastic optimal control approach in a dynamic context have developed
different Multiple HPP (MHPP) policies for systems with multiple states. For instance,
Yang et al. [10] extended HPP by developing a feedback production and setup control
policy. They utilized the surplus/backlog space of stocks to determine production rates
as well as the times of setup changes, minimizing the total cost. In systems featuring
multiple states, Diop et al. [11] investigated the impact of human errors during mainte-
nance on production planning to enhance the safety of a flexible manufacturing system
(FMS) with a failure-prone machine and Markovian demand patterns. A MHPP was also
investigated in [12], which formulated a stochastic optimal production control problem for
a single-machine multi-product manufacturing system with deteriorating items. The model
aims to minimize expected discounted costs of inventory holdings and shortages, with
optimal conditions derived through Hamilton–Jacobi–Bellman equations. In the same vein,
Aghdam et al. [13] proposed a joint optimization strategy for maintenance and inventory
management in production systems, employing a numerical approach to handle uncertain
demand and shortages. The policy structures presented in the aforementioned works and
their references were obtained by numerically solving the optimality conditions. How-
ever, the proposed control policies were obtained without considering the GHG emission
generated by manufacturing activities.

The second class comprises contributions based on production planning of manufac-
turing systems with GHG emission control by adhering to standards set by regulatory
agencies and adopting voluntary practices. Numerous strategies and approaches have been
developed to incorporate environmental impacts, particularly those related to greenhouse
gas emissions, as illustrated by examples presented in [14,15], which provide comprehen-
sive overviews of the subject. Manufacturers’ environmental concerns are GHG emissions
that involve economic issues, market-based cap-and-trade systems, and carbon taxes to
reduce emissions [16,17].

The first category of this class concerns research work integrating the environmental
dimension without reducing inventory levels. The issue of lot-sizing in production arises
from considering the stochastic context of the dynamics of the machine in the optimization
models used to determine the production control policies. Among the first works, Gong
and Zhou [18] introduced policies for optimal production and greenhouse gas emissions’
trading, designed to minimize the total cost in a single-product manufacturing system. A
target interval policy incorporating two thresholds was proposed as the optimal allowance
trading policy. This approach, which addresses the Economic Order Quantity (EOQ), was
explored in [19] for firms subject to carbon tax and cap-and-trade regulations. In [20],
a sequentially structured dynamic optimization framework was developed to determine
operational choices for managing manufacturing systems under cap-and-trade regulations.
This framework focuses on choices regarding the acquisition of carbon credits and the
management of excess emissions. Xu et al. [21] addressed multi-product manufacturing
systems operating under the same regulations while focusing on the dual challenges of
production and pricing. Zhao et al. [22] integrated the effects of carbon emissions into an
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economic model to balance economic and environmental interests. The model developed
in [23] explores the balance between carbon emissions and production costs. It highlights
that green production, while resulting in fewer emissions than conventional methods,
incurs higher production costs. The proposal allows managers to regulate the balance by
managing production strategies. Without considering the unreliability of the machines in
their models, the obtained production policies could not be appropriate in a context where
the non-production times due to random machine breakdowns are noted.

Table 1. Overview of literature contributions.

Research
Classes/Categories

Stochastic and
Dynamic Context

Adapted Control
Policy

Developed New
Optimal Control

Policy

Regulatory
Environmental

Approach

Voluntary
Environmental

Approach

Class I. production planning of manufacturing system without GHG emission control

Akella and Kumar [9] ✓ ✓

Yang et al. [10] ✓ ✓

Diop et al. [11] ✓

Ouaret [12] ✓ ✓

Aghdam et al. [13] ✓ ✓

Class II. production planning of manufacturing system with GHG emission control
Category 1. Models considering reliability machines

Gong and Zhou [18] ✓ ✓

He et al. [19] ✓ ✓

Zhou et al. [20] ✓ ✓

Xu et al. [21] ✓ ✓

Zhao et al. [22] ✓ ✓

Jauhari et al. [23] ✓

Category 2. Models considering unreliable of machines

Hajej et al. [24] ✓ ✓

Turki and Rezg [25] ✓ ✓

Turki et al. [26] ✓ ✓

Ben-Salem et al. [27] ✓ ✓ ✓ ✓

Afshar-Bakeshloo et al. [28] ✓ ✓ ✓ ✓

Entezaminia et al. [7] ✓ ✓ ✓ ✓

Behnamfar et al. [29] ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓

In the second category, some studies have addressed the production control problem
in a stochastic and dynamic context. In such a context, Hajej et al. [24] addressed the
problem of production and maintenance planning regulated by a carbon tax, considering
the effects of system deterioration and subcontracting to support both remanufacturing
and manufacturing systems. Their approach aimed to minimize the total costs of main-
tenance, production, inventory, and emissions over a finite horizon. Turki and Rezg [25]
developed an optimal inventory production policy for a system that segregates new and
remanufactured products and sorts used products based on quality, aiming to maximize
profit while accounting for carbon emissions in the decision-making process. Building on
this, Turki et al. [26] focused on optimizing manufacturing and remanufacturing planning
under the carbon cap and trade policy. They highlighted how setup costs, return rates, and
carbon policies significantly affect production and storage decisions, influencing system
performance and emissions. Ben-Salem et al. [27] were the first authors to incorporate
GHG emissions during production based on a balance between emission tax, backlog, and
inventory costs. They thus proposed an extended HPP, called the Environmental Hedging
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Point Policy (EHPP), under carbon tax regulation. After surpassing a voluntary emission
cap, they reduced the stock threshold to reduce the machine usage and, consequently, the
GHG emission level to minimize the expected overall cost. They showed that the result-
ing control policies have economic advantages over the conventional HPP. Many other
studies were based on this pioneering research. For instance, Afshar-Bakeshloo et al. [28]
introduced an EHPP under carbon tax regulation. Their work simultaneously controls
the production rates of a low-emission facility (LEF) and a high-emission facility (HEF).
When total emissions surpass a predefined threshold, the manufacturing system halts HEF
operations and switches to LEF production. Entezaminia et al. [7] proposed an MHPP
policy that enables manufacturers to determine optimal timings for purchasing or selling
allowances and adjust production rates to minimize total costs while reducing carbon emis-
sions. More recently, Behnamfar et al. [29] examined the effect of carbon emission control
policies on production planning and inventory management. They compared cap-and-
trade and command-and-control policies using a simulation-based optimization approach
to determine their impact on costs, resource utilization, and environmental performance.

The literature review has identified numerous production planning models for man-
ufacturing systems that generate emissions during production. However, none have
developed an optimal production policy for dynamic systems encountering stochastic
failures and repairs, as highlighted in the last line of Table 1. The table outlines the research
gaps and contributions of the work. Previous research did not create new optimal control
policies but instead adapted existing policies from the literature or relied on common-
sense approaches. This study addresses this gap by employing stochastic optimal control
theory, grounded in the dynamic programming framework, to develop a new optimal
control policy.

The considered system is modeled as an unreliable single machine dedicated to pro-
ducing finished products. The problem of production planning over an infinite planning
horizon is studied, focusing on the dynamics of finished product inventory fluctuations
while accounting for the randomness of machine failures and repairs. To meet environmen-
tal regulations and consider these factors, decision-makers must adjust their production
rates and determine the optimal safety stock levels. This aims to achieve the dual objectives
of minimizing the expected total cost and reducing greenhouse gas (GHG) emissions.

The proposed model delivers an exact solution developed through stochastic dy-
namic programming, employing the maximum principle for the first time in this context.
By numerically solving the optimality conditions derived from the maximum principle,
the structure of the optimal production policy is determined. This forms the primary
contribution of this paper.

3. Methods

First, this section presents the studied manufacturing system. Then, it delineates the
formulation of the production planning problem.

The studied manufacturing system is depicted in Figure 1. It is subject to random
events (failures, repairs) and is dedicated to the production of one type of product at a rate
u(t). The finished products are stored to establish an inventory (x(t)) to meet customer
demand at a constant rate d. The raw materials for the machine are available at all times.
On the environmental aspect, the machine generates GHG emissions (e(t)) during pro-
duction. According to the carbon tax regulation, the excess emission units are penalized
as an environmental tax if the cumulative quantity of emissions during a given period
exceeds the regulatory threshold established by pertinent authorities. The machine pollu-
tion is characterized by a constant emission index θ0 (in the unit of emission volume per
finished product).
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The dynamics of the inventory level of finished products are described by a one-
dimensional ordinary differential equation:

.
x(t) = u(t)− d (1)

where x(0) = x0, and x0 is the given initial stock level. If x(t) ≥ 0, the system maintains an
inventory; when there is less, there is a backlog.

Regarding the evaluation of emissions, as in [27], the linear model can be employed
to describe the correlation between the machine’s production rate, u(t), and its emission
rate,

.
e(t). The cumulative emission of the machine at time t is determined by solving the

following differential equation:
.
e(t) = θ0u(t) (2)

where e(0) = e0, e(T+) = e(T−), where e0 stands for the initial emission and θ0 is the index
emission. T+and T− stand for the last repair and operation times, respectively.

At each time t, the finite-state homogeneous Markov process, ξ(t), describes the
behaviour of the considered system, taking values in A = {1, 2}, such that:

ξ(t) =
{

1 if the machine is operational
2 if the machine is undergoing repairs

The transition probabilities are defined by:

P[ξ(t + δt) = β|ξ(t) = α] =

{
qαβ(.)δt + 0(t) i f α ̸= β

1 + qαβ(.)δt + 0(t) i f α = β

}
(3)

where qαβ denotes the transition rate from mode α to mode β, with qαβ ≥ 0(α ̸= β)qαα =

−∑α ̸=β qαβ, α, βϵA, and lim
δt→0

o(t)
δt = 0.

Over an infinite horizon, the machine may randomly switch between the two modes.
Hence, the stochastic process considered is defined by a 2 × 2 transition rate matrix,
Q =

[
qαβ

]
, given by the following equation:

Q =

(
−q12 q12
q21 −q21

)
(4)

The limiting probabilities of the mode i, i ϵ {1, 2}, are the steady-state solutions of the
forward Kolmogorov equations:

.
π = π × Q (5)

where π1 + π2 = 1. To ensure demand fulfilment over an infinite horizon, the following
feasibility condition of the manufacturing system must be verified:

π1 × umax > d (6)

where π1 represents the operational mode’s limiting probability.
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The following equation describes the instantaneous cost, which includes backlog,
inventory, and environmental costs, given by:

g(x, e, α) = c+x+ + c−x− + ce(e) (7)

where constants c+and c− are costs per unit of time to penalize parts’ inventory and
backlog, respectively, with x+= max (0, x), and x− = max (0, −x).

Referring to the carbon tax regulation, if the cumulative quantity of emissions during a
given period surpasses a standard limit, L, set by pertinent authorities, the surplus quantity
incurs an environmental cost, represented by:

ce(e) = ce × max{0, (e(t)− L)}

where ce is the penalty cost for emissions exceeding L.
This research aims to find the production rate, u(·), that would minimize the expected

discounted cost, J(·), given by the following equation:

J(x, e, u, α) = E
[∫ ∞

0
e−ρt[g(x, e, α)]dt| x(0) = x, e(0) = e, ξ(0) = α

]
(8)

where ρ is the discount rate, while x, e, and α are, respectively, the initial values of the state
variables. The admissible decisions set, Γ(α), which identifies the feasible production rate,
u(·), depends on the stochastic process (i.e., ξ(t) = α) and is determined by:

Γ(α) =
{
(u) ∈ R|0 ≤ u(·) ≤ umax Ind{α = 1}

}
(9)

Let us define the value function υ(·) as the minimum of cost over uϵΓ(α), i.e.,

v(x, e, α) = min
u∈Γ(α)

J(x, e, u, α) (10)

the subsequent section, the properties of the value function, υ(·), are outlined by (10),
establishing its satisfaction with the optimality conditions described by the Hamilton–
Jacobi–Bellman (HJB)-type equations.

4. Optimality Conditions and Structure of Optimal Control Policy

The value function v(·), given by (10), meets a set of coupled partial differential
equations, called HJB equations, derived from the dynamic programming approach. The
properties of such v(·) and the method used for obtaining these equations can be found
in [30], and references therein. Such equations describe the optimality conditions to be
solved to determine the optimal production control policy for the considered planning
problem. In a dynamic and stochastic context and concerning the optimality principle, the
HJB equations can be expressed as follows:

ρv(x, e, α) = min
u∈Γ(α)

{
J(x, e, u, α) +

∂v(·)
∂x

(u − d) +
∂v(·)

∂e
(θ0u) + ∑

β∈A
qαβv(x, φe(β), e, β)

}
(11)

where αϵA, and φe(ξ) is given by:

φe(ξ) =

{
e(τ−) if ξ(τ+) = 1 and ξ(τ−) = 2
e(τ−) otherwise

The reset function, φe(ξ), denotes the benefit of repairs and describes the emission dis-
continuity. The optimal solution, over Γ(α) of the right-hand side of (11), is the production
rate, denoted as u*(.). When the υ(·), described by (10), is available, the production rate
can be determined as in Equation (11). However, deriving an analytical solution for (11)
is nearly impossible. Solving the HJB equation (11) numerically poses an insurmountable
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challenge, which demonstrates the feasibility of addressing such issues by implementing
Kushner’s method [31] within the production planning context. Numerical methods are
used in Appendix A to develop the numerical version of the HJB equations. The obtained
discrete HJB equations can be solved using successive approximation and policy improve-
ment methods, as in [32]. The numerical algorithm used to solve the HJB equations for the
production planning problem was implemented in MATLAB Version R2020b and executed
on a computer with an Intel Xeon CPU at 3.50 GHz and 16 GB of RAM.

The computational domain, D, is defined by:

D = Gh
x × Gh

e

where Gh
x = {x : −5 ≤ x ≤ 120}; Gh

e = {e : 0 ≤ e ≤ 350}.
Table 2 presents the parameters required for the numerical example, with values adapted

from the literature. These values respect the feasibility condition stated by Equation (6).

Table 2. Numerical example data.

c+ c− ce umax d L θ0 q−1
21 q−1

12 ρ

5 100 40 3.25 3 250 2 6 105 0.01

The numerical results presented below allow us to characterize the structure of the
obtained optimal control policy, u*(x, e, α) (see Figure 2), for small discretization steps on the
associated state variables according to Theorem A1 in Appendix A. It is an environmental
Hedging Point Policy improvement from the pioneering work [27]. This figure shows the
manufacturing system’s production rate as a function of the stock and emissions in the
operational mode. To better understand the interpretation of the production policy, the
plan (x, e) was divided into three zones: (1), (2), and (3), as illustrated in Figure 2b.
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Due to the GHG emissions of the production system, the critical production threshold
is a function of its emission level. This critical production threshold is defined by three
thresholds, Z1, Z2(e), and Z3, given by Equations (12)–(14):

i f e < V :

u(x, e, 1) =


u1max
d i f x = Z1
0 i f x > Z1

(12)
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
i f V ≤ e < L :

u(x, e, 1) =


u2max
d i f x = Z2(e)
0 i f x > Z2(e)

(13)


i f e ≥ L :

u(x, e, 1) =


u3max
d i f x = Z3
0 i f x > Z3

(14)

Depending on the value of the emission ( e), the obtained optimal production control
policy follows distinct guidelines across three zones:

• The production must be halted (u(t) = 0) if the current inventory level exceeds the
critical threshold, Zi.

• The production rate must be adjusted to the value of the demand rate when the current
inventory level matches the critical Zi.

• The production rate must be adjusted to its maximum value, umax, if the current
inventory is below the critical threshold, Zi.

The symbol V, called the voluntary emission limit, is highlighted in Figure 2b to
illustrate the emission level to switch from the critical threshold, Z1, to the lower boundary
of the critical threshold, Z2(e), and L, the emission standard limit to switch from the upper
boundary of the critical threshold, Z2(e), to the critical threshold, Z3.

In the literature, the closest proposed policies based on [27] are characterized by two
constant critical thresholds. According to their work, if emission levels surpass a voluntary
threshold and the stock level is deemed sufficient, the critical threshold would drop from
Z1 to Z2 (Z1 > Z2). The obtained results indicate that the optimal control policy is defined
by a GHG emission-based threshold value specified in three zones: Z1, Z2(e), and Z3. The
policy recommends that the manager decreases production when approaching the limit,
L, to anticipate and mitigate excess inventory and emission costs. The proposed model is
confirmed in the following section, and the optimal control policy structure is obtained
through sensitivity analysis.

5. Sensitivity Analysis

To validate the obtained control policy structure depicted in Figure 2, extensive sensi-
tivity analysis was conducted using varying system and cost parameters. The behavior of
the critical production thresholds, Zi(i = 1, 2, 3), was analyzed depending on the emission
level and the voluntary emission limit, V, by varying the following parameters: shortage
cost, inventory cost, emission cost, and emission index. The three points, V1, V2, and V3,
represent the small, medium, and high values of the parameters observed in the sensitivity
analysis. The analyses were performed utilizing the numerical example presented in the
previous section as the basis of the study (basic case).

5.1. Effect of Shortage Cost

Figure 3 illustrates the results for three distinct values of the shortage cost, c− (75, 100,
and 125) . It shows that when c− increased, the control policy recommended increasing the
optimal production thresholds, Z. The opposite phenomenon was observed regarding the
variation in V. Indeed, when the value of c− increased, a higher value of Z was adopted,
a scenario that, therefore, resulted in more emissions. To avoid prematurely reaching the
emission limit, L, the policy recommended reducing the value of V with the increase in c−,
namely, V3 < V2 < V1, leading to a decrease in the production rate.
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5.2. Effect of Inventory Cost

Figure 4 illustrates the results for three distinct values of inventory cost, c+ (3, 5, and
8). It shows that when c+ increased, the policy recommended decreasing the optimal
production threshold, Z. Regarding the variation in V, the opposite phenomenon as that
of Z was observed. Indeed, when the value of c+ increased, a lower value of Z was
adopted, a scenario that, therefore, resulted in less emission. This behavior reduces the
risk of prematurely reaching the emission limit, L. The policy recommended increasing
the value of V with the increase in c+, namely, V1 < V2 < V3, leading to an increase in the
production rate.
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5.3. Effect of Emission Cost

Figure 5 illustrates the results for three distinct values of emission cost, ce (20, 40, and
60). It shows that when ce increased, the policy recommended decreasing the optimal
production threshold, Z. Regarding the variation in V, the same phenomenon as that of Z
was observed. Indeed, to avoid the excess costs of massive emissions after the emission
limit, L, the policy recommended reducing the value of V with the increase in ce, namely,
V3 < V2 < V1, leading to a decrease in the production rate.
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5.4. Effect of Emission Index

Figure 6 illustrates the results for three distinct values of the emission index, θ0 (1.5,
2, and 2.5). In the absence of accurate data on the emissions index, a sensitivity analysis
covering this range of possible values for this index could establish the generality of the ap-
proach and the robustness of the proposed control policy. It showed that when θ0 increased,
the policy recommended decreasing the optimal production threshold, Z. Regarding the
variation in V, the same phenomenon as that of Z was observed. Indeed, to avoid the excess
costs of massive emissions after the emission limit, L, the policy recommended reducing
the value of V with the increase in θ0, leading to more emissions and the early reaching of
the emission limit, namely, V3 < V2 < V1, leading to a decrease in the production rate.
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From Figure 2 and the sensitivity analysis illustrated in Figures 3–6, one can conclude
that the optimal control policy structure, governed by the control parameters Z1, Z2(e),
and Z3, and described by Equations (12)–(14) at the operational mode, held. In addi-
tion, the sensitivity analysis results make sense, which validates the proposed resolution
approach’s robustness.

In the next section, a comparative study is conducted, highlighting the economic
advantages of the proposed optimal control policy over those adapted from the literature.
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6. Comparative Study

This section aims to assess the economic advantage of the developed optimal control
policy compared to other policies found in the literature. To do this, the performance (total
incurred cost) when the system is controlled by the developed optimal production policy
(Policy I) is compared to the performance of those adapted from the literature.

• Policy II: This policy is that of the work presented in [27] and is characterized by
two constant production thresholds, ZBS

1 and ZBS
2 , and a voluntary emission limit,

VBS, for changing the production threshold. Thus, this two-threshold policy, given by
Equations (15) and (16), can be seen as a simplified version of the developed policy,
referred to as Policy I: 

i f e ≤ VBS

u(x, e) =


umax i f x < Z1

BS

d i f x = Z1
BS

0 i f x > Z1
BS

(15)


i f e > VBS :

u(x, e) =


umax i f x < Z2

BS

d i f x = Z2
BS

0 i f x > Z2
BS

(16)

• Policy III: This policy is that of [9], characterized by one constant production thresh-
old, ZAK. Thus, this policy, obtained without considering emissions, is given by
Equation (17):

u(x) =


umax i f x < ZAK

d i f x = ZAK

0 i f x > ZAK
(17)

The comparative analysis of the developed optimal control Policy I versus the policies
adapted from existing literature (namely, Policy II and Policy III) was performed while
varying the shortage cost, c−, the inventory cost, c+, and the emission cost, ce. The economic
performance (total incurred cost given by the value function) of Policy I was compared to
that of the other policies (i.e., Policy II and Policy III).

6.1. Comparison of Policies While Varying Backlog Unit Cost

The critical thresholds for Policies I, II, and III, along with their total incurred costs for
different values of the backlog unit cost, c−, are presented in Table 3. The lower boundary
of the critical threshold, Z2(e), and the upper boundary of the critical threshold, Z2(e),
are represented by Z2min and Z2max, respectively.

Table 3. Policies’ performances for different values of the shortage cost c−.

c− 50 100 200 300 400

Z1(P olicy-I) 47 63 81 91 99
Z2max (Policy-I) 47 63 81 91 99
Z2min (Policy-I) 41 57 73 83 91
Z3 (Policy-I) 3 17 35 45 51

ZBS
1 (Policy-II) 33 55 69 77 85

ZBS
2 (Policy-II) 1 15 33 43 51

ZAK (Policy-III) 55 71 89 99 109

Total incurred cost (Policy-I) 83,946 84,051 84,287 84,488 84,669
Total incurred cost (Policy-II) 86,434 87,367 88,193 88,675 89,024
Total incurred cost (Policy-III) 88,603 88,975 89,369 89,577 89,763
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From Table 3, when the shortage unit cost increased, the corresponding critical pro-
duction thresholds increased (the system stored more) to reduce the shortage. The total
incurred costs of the three policies (Policy I, Policy II, and Policy III) increased due to the
increasing storage and emission costs. The more the system stores, the more it produces
with the maximum production rates, which generates more emissions. Consequently, the
inventory and the emission costs increased, and so did the total incurred cost.

From Table 3 and Figure 7, Policy I had the lowest total incurred cost, compared to
that of Policies II and III for a wide range of backlog costs. Policy II stored less than Policy I,
so it underwent more backlog costs. At the same time, since Policy III stored more than
Policy I, its system produced more with maximum production rates and generated more
emissions, which increased the total cost. This explains the superiority of Policy I over
Policy II and Policy III in terms of total incurred costs.
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From Figure 7, the gap between the total incurred cost of the three policies increased as
the backlog unit cost c− increased. In fact, as c− increased, the critical production thresholds
increased. Consequently, the storage cost of Policy II increased, and the emission cost of
Policy III increased more rapidly compared to that of Policy I.

6.2. Comparison of Policies While Varying Inventory Unit Cost

The critical thresholds for Policies I, II, and III, along with their total incurred costs for
different values of the inventory unit cost, c+, are presented in Table 4. The lower boundary
of the critical threshold, Z2(e), and the upper boundary of the critical threshold, Z2(e), are
represented by Z2min and Z2max, respectively.

Table 4 shows that when the inventory unit cost, c+, increased, the corresponding
critical production thresholds decreased (the system stored less) to reduce the inventory
cost. The total incurred costs of Policies I and II increased due to the increasing backlog
costs. In fact, the less the system stores, the more it undergoes shortage and the less it
produces with the maximum production rates, which generates less emissions. In the case
of Policies I and II, the increase in shortage cost was more important than the decrease
in emission costs. That is why the total incurred cost increased. In Policy III’s case, the
increase in the shortage cost was less significant than the decrease in emission costs. That is
why the total incurred cost decreased.

From Table 4 and Figure 8, Policy I had the lowest total incurred cost compared to that
of Policies II and III for a wide range of the inventory unit cost, c+. In fact, Policy II stored
less than Policy I, so it incurred more shortage costs. At the same time, since Policy III
stored more than Policy I, its system produced more with maximum production rates and
generated more emissions. This explains the superiority of Policy I over Policy II and
Policy III in terms of total incurred costs.
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Table 4. Policies’ performances for different values of the inventory costs c+.

c+ 1 2 3 4 5

Z1 (Policy-I) 81 65 57 51 45
Z2max (Policy-I) 81 65 57 51 45
Z2min (Policy-I) 73 61 53 47 41
Z3 (Policy-I) 35 31 29 27 25

ZBS
1 (Policy-II) 69 55 45 45 37

ZBS
2 (Policy-II) 33 29 27 25 23

ZAK(P olicy-III) 89 71 61 55 49

Total incurred cost (Policy-I) 84,287 84,519 84,677 84,801 84,924
Total incurred cost (Policy-II) 88,193 88,279 88,344 88,405 88,425
Total incurred cost (Policy-III) 89,369 89,244 89,195 89,189 89,162
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From Figure 8, the gap between the total incurred costs of the three policies decreased
as the inventory unit cost, c+, increased. In fact, as c+ increased, the critical production
thresholds decreased. Consequently, the emission costs of the three policies decreased.
Reducing the emission cost is the main advantage of Policy I compared to Policies II and III
and of Policy II compared to Policy III. When this advantage was reduced, the gap between
the total incurred costs of the three policies was reduced.

6.3. Comparison of Policies While Varying Emission Unit Cost

The critical thresholds for Policies I, II, and III, along with their total incurred costs for
different values of the emission unit cost, ce, are presented in Table 5. The lower boundary
of the critical threshold, Z2(e), and the upper boundary of the critical threshold, Z2(e), are
represented by Z2min and Z2max, respectively.

Table 5. Policies’ performances for different values of the emission cost, ce.

ce 5 10 20 40 60

Z1 (Policy-I) 87 85 83 81 79
Z2max (Policy-I) 87 85 83 81 79
Z2min (Policy-I) 85 81 77 73 71
Z3 (Policy-I) 73 63 49 35 25

ZBS
1 (Policy-II) 77 73 73 69 69

ZBS
2 (Policy-II) 71 61 47 33 23

ZAK (Policy-III) 89 89 89 89 89

Total incurred cost (Policy-I) 7842 18,335 40,083 84,287 128,777
Total incurred cost (Policy-II) 9850 21,078 43,461 88,193 132,856
Total incurred cost (Policy-III) 9983 21,351 44,029 89,369 134,710
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From Table 5, when the emission unit cost, ce, increased, the corresponding critical
production thresholds for Policies I and II decreased. The system stored less to reduce
emission costs, which increased backlog costs. At the same time, the threshold of Policy III
remained unchanged since this policy was not designed to account for emission costs.
The total incurred costs of the three policies (Policy I, Policy II, and Policy III) increased
due to the rising backlog and emission costs for Policies I and II, as well as the increasing
emission costs for Policy III. In fact, the less the system stores, the more it incurs backlog
costs and the less it produces at maximum production rates, thereby generating fewer
emissions. For Policies I and II, the increase in shortage costs, coupled with the rise in
emission costs (as ce increased), significantly increased the total incurred costs.

From Table 5 and Figure 9a, it is evident that Policy I had the lowest total incurred cost
compared to Policies II and III over a wide range of emission unit costs, ce. Policy II stored
less than Policy I, leading to higher backlog costs. At the same time, since Policy III stored
more than Policy I, its system consequently produced more at maximum production rates
and generated more emissions, significantly increasing its emission costs. This explains the
superiority of Policy I over Policies II and III in terms of total incurred costs.
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From Figure 9b, the disparity in total incurred costs among the three policies expanded
as the emission unit cost, ce, increased. In fact, as ce increased, the critical production
thresholds decreased. Consequently, the backlog cost of Policy II increased, and the
emission cost of Policy III increased more rapidly compared to that of Policy I. Reducing
the emission cost is the main advantage of Policy I compared to Policies II and III and
of Policy II compared to Policy III. When this advantage was increased (as ce increased),
the gaps between the total incurred costs of the three policies increased.

Finally, the comparative study confirmed that using the developed Policy I to con-
trol unreliable manufacturing systems generating greenhouse gas (GHG) emissions and
evolving in a dynamic and stochastic context resulted in improved economic performance
compared to existing control policies. This was attributed to its enhanced ability to balance
shortages, inventory, and emission costs.

7. Discussion

Successfully implementing the developed control policy in business operations relies
on maintaining comprehensive information about the state of the manufacturing system.
Managers can effectively utilize the developed policy to control the system by monitoring
the stock level and greenhouse gas emissions. The implementation of the obtained produc-
tion policy is further facilitated by using a logical implementation diagram, which guides
decision-making. Considering the operational status of the machine and its anticipation of
the following breakdown with a stock level (x) and an emission level (e), the production
rate can be easily defined in three stages. The first is to build the safety stock to avoid
the unavailability of finished products due to breakdowns and repairs. The second stage
involves deciding when to reduce stock in accordance with voluntary emission limits,
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while the final stage determines when to further decrease the safety stock if excess emission
costs become prohibitively high. These stages are represented in intervals and delimited in
zones, as follows: e < V, V ≤ e < L, and e ≥ L (Equations (12)–(14)), and zone 1, zone 2,
and zone 3, respectively (Figure 2b). Since the second zone of the developed optimal policy
is defined by a GHG emission-based threshold value, given by Z2(e), it is challenging to
implement in practice, and a target value of Z2(e) is determined to obtain the best approxi-
mation of the theoretical and optimal control policy. The control policy to be implemented
is presented in Figure 10, taking the minimum of Z2(e) as the critical threshold in zone
2 (i.e., Z2(e) = Z2min). It approximates the optimal policy well, with a cost difference of
0.36%. The results obtained from the numerical values of the optimal parameters of the
basic case (Table 2) to be used in decision-making to facilitate the implementation of the
proposed policy are summarized as V = 46, L = 250, Z1 = 27.5, Z2 = 24.5, and Z3 = 8.5.
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Figure 10 depicts the logic chart for implementing the proposed control policy. Initially,
the decision-maker needs to monitor both the stock and emission levels. If emission levels
are lower than the voluntary threshold (46), the production machine should reach the safety
stock level (27.5 units) by producing at maximum rate (3.25). This will reduce the risk
of backlog and carbon emissions. The decision-maker should adjust the production rate
to meet demand (3) if the safety stock is built. Subsequently, if the inventory surpasses
the stock threshold, production should be halted. When emission levels are between the
voluntary limit (46) and the standard limit emission (250; respectively, is higher than the
standard limit), the system should follow the same rules of production with the safety
inventory level (24.5 units; respectively, 8.5 units).

With reasonable assumptions, the findings of this paper hold potential benefits for
various industrial sectors, including mining, material handling equipment, construction
machinery manufacturing plants, rail and aircraft assembly lines, and the automotive
industry. Possible extensions of this work could integrate maintenance to the model with
progressively deteriorating manufacturing systems and the rising emission index due to
degradation phenomena under minimal repairs after failures.
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8. Conclusions

This paper discussed the development of an optimal production control policy for a
manufacturing system subject to random failures and repairs, with a focus on controlling
greenhouse gas (GHG) emissions. The optimal control policy was derived using a stochastic
dynamic programming approach, specifically through solving Hamilton–Jacobi–Bellman
(HJB)-type equations. This control policy, termed the Environmental Hedging Point Policy
(EHPP), relies on both emission and inventory levels to determine optimal production
decisions. Numerical solutions of the HJB equations indicated that optimal production rates
adjusted dynamically to balance inventory costs and emission penalties. The sensitivity
analysis showed the robustness of the EHPP under various parameter changes, validating
the model’s adaptability and reliability. Differences in the data arose from variations in
key parameters, such as failure rates, repair times, and emission costs, demonstrating the
policy’s flexibility in diverse scenarios.

The comparative study highlighted the novelty and superiority of the EHPP over
existing policies, which often lack integrated emission control mechanisms. The EHPP
ensured production efficiency and environmental compliance, a feature absent in traditional
models. Using stochastic dynamic programming, particularly through the solution of HJB
equations, provided a systematic approach to handling uncertainties in system failures
and repairs. This method ensures that the optimal policy adapts to real-time changes in
the manufacturing environment, significantly improving the outcomes compared to static
control policies.

The significant reduction in GHG emissions demonstrated the feasibility of integrating
environmental considerations into manufacturing control systems without compromis-
ing production efficiency. The proposed policy offers practical guidelines for managers,
facilitating the implementation of environmentally conscious production strategies. The
obtained EHPP optimally balances production efficiency and emission control, providing a
robust, adaptable, and environmentally sustainable solution for manufacturing systems.
This research advances the field by integrating stochastic dynamic programming with
environmental considerations into production control.

Future research should incorporate advanced artificial intelligence (AI) and machine
learning (ML) techniques to optimize production control policies. These technologies
can enhance predictive maintenance, optimize scheduling, and improve decision-making
processes by analyzing extensive real-time data from manufacturing systems. Intelligent
scheduling and AI can help unlock energy efficiency from the equipment level to the entire
supply chain.
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umax maximal production rate of the system (product per time unit)
d rate of demand (product per time unit)
qαβ rate of transition from state α to state β
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u(· ) rate of production system (product per time unit)
x(· ) inventory level of products
e(· ) emission level of the manufacturing system
θ emission index (emission volume per product)
ξ(t) stochastic process
ρ discount rate
c− backlog unit cost (USD per product per time unit)
c+ inventory unit cost of finished products (USD per product per time unit)
L standard emission limit (emission volume)
ce penalty unit cost for emissions exceeding L (USD per emission unit per time unit)
π vector of limiting probabilities
v(· ) value function
J(· ) total cost function
g(· ) instantaneous cost function (USD per time unit)

Appendix A

Although the HJB equations generally lead to unattainable solutions, fortunately,
Boukas and Haurie [32] have successfully found an approximate solution by applying
numerical methods based on the approach of Kushner and Dupuis [31]. This Kushner
approach allows numerically solving the HJB equations by approximating v(x, e, ξ) by
a function vh(x, e, ξ), and the first-order partial derivatives of the value function ∂v(x,e,ξ)

∂x

and ∂v(x,e,ξ)
∂e by finite differences involving discretization steps, following the stock of

finished products hx and he, following the emissions of the machine. The partial derivative
approximation of the finite difference value function, v(x, e, ξ), is given as follows:

∂v(x, e, ξ)

∂x
(u − d) =

{
1
hx
(vh(x + hx, e, ξ)− vh(x, e, ξ))(u − d) i f u − d ≥ 0

1
hx
(vh(x, e, ξ)− vh(x − hx, e, ξ))(u − d) i f u − d < 0

(A1)

and
∂v(x, e, ξ)

∂e
(θ0u) =

1
he
(vh(x, e + he, ξ)− vh(x, e, ξ))(θ0u) (A2)

After a couple of manipulations, the HJB equations can be rewritten as follows:

v(x, e, α ) = min
u∈Γh(α)

 J(x, e, u, α)

Ωα
h(1 + ρ/Ωα

h)
+

1
Ωα

h(1 + ρ/Ωα
h)

 p±x (α)vh(x ± hx, ·, α) + pe(α)vh(e ± he, ·, α)
+ ∑

β∈A
pβ(α)vh(x, φe(β), e, β)

 (A3)

where Γh(α) denotes the discrete feasible control space, also referred to as the control grid,
and the remaining terms in Equation (A3) are defined as follows:

Ωα
h = |qαα|+

|u − d|
hx

+
θ0u
he

p+x (α) =

{
u−d
hxΩα

h
if u − d > 0

0 otherwise

p−x (α) =

{
d−u
hxΩα

h
if u − d ≤ 0

0 otherwise

pe(α) =
θ0u

heΩα
h

pβ(α) =
qαβ

Ωα
h

Equation (A3) represents the dynamic programming formulation for a continuous-
time decision process characterized by discrete states persisting over an indefinite time
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horizon. Considering that p+x (α) + p−x (α) + ∑β ̸=α pβ(α) = 1, the terms p+x (α), p−x (α) and
pβ(α), for all β ̸= α, can be considered as transition probabilities for a controlled Markov
chain on a discrete-state space, representing the control grid essential for the numerical
solution of HJB equations. The term 1/(1 + ρ/Ωα

h), for all αϵA, represents a positive
discount factor that remains bounded from the value of 1. The derived discrete-event
dynamic programming can be resolved through either successive approximation or policy
improvement techniques.

Using the Kushner technique, the HJB Equation (A3) can be expressed in terms of the
discrete function, vh(x, e, ξ), with step size hx and he on a discrete grid, by Equations (A4)
and (A5).

• Mode 1—machine is operational:

vh(x, e, 1) = min
u∈Γh(1)




J(x,e,u,1)
Ω1

h(1+ρ/Ω1
h)

+ 1
Ω1

h(1+ρ/Ω1
h)

(
p±x (1)vh(x ± hx, ·, 1) + pe(1)vh(e ± he, ·, 1)
+p2(1)vh(x, φe(2), e, 2)

) 
 (A4)

• Mode 2—machine is under repair:

vh(x, e, 2) =


J(x,e,0,2)

Ω2
h(1+ρ/Ω2

h)

+ 1
Ω2

h(1+ρ/Ω2
h)

(
p±x (2)vh(x ± hx, ·, 2) + pe(2)vh(e ± he, ·, 2)
+p1(2)vh(x, φe(1), e, 1)

)  (A5)

The following theorem shows that vh(x, e, ξ) converges to v(x, e, ξ) for a small step
size, h (with h = (hx, he)).

Let vh(x, e, ξ) denote a solution to HJB Equations (A4) and (A5).

Theorem 1. Assume that Cg and Kg are positive constants, such that if 0 ≤ vh(x, e, ξ) ≤
Cg

(
1+|x|Kg

)
, then lim

h→0
vh(x, e, ξ) = v(x, e, ξ).

Proof. The proof of this theorem is similar to that presented in [33], replacing x by z = (x, e)
and v(x, ξ) by v(z, ξ). Thus, there is no need to reiterate it here. Finally, it is necessary to
impose certain boundary conditions if the states approach the limits of the domain, D, to
numerically solve HJB Equations (A4) and (A5). □
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