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Simple Summary: Bladder cancer segmentation on MRI images is critical to determine if the cancer
spread to the nearby muscles. In this study, we aimed to assess the performance of three deep
learning models in outlining bladder tumors from MRI images. Using the MRI data of 53 patients,
we trained Unet, MAnet, and PSPnet models to segment tumors using different loss functions and
evaluated their performances. The results showed MAnet and PSPnet models performed better
overall in segmenting bladder tumors, especially when they used a hybrid loss function (CE+DSC).
Our findings could improve the way bladder cancer is segmented on MRI images, potentially leading
to a better choice of deep learning algorithms and loss functions for future research.

Abstract: Background: Bladder cancer (BC) segmentation on MRI images is the first step to deter-
mining the presence of muscular invasion. This study aimed to assess the tumor segmentation
performance of three deep learning (DL) models on multi-parametric MRI (mp-MRI) images. Meth-
ods: We studied 53 patients with bladder cancer. Bladder tumors were segmented on each slice of
T2-weighted (T2WI), diffusion-weighted imaging/apparent diffusion coefficient (DWI/ADC), and
T1-weighted contrast-enhanced (T1WI) images acquired at a 3Tesla MRI scanner. We trained Unet,
MAnet, and PSPnet using three loss functions: cross-entropy (CE), dice similarity coefficient loss
(DSC), and focal loss (FL). We evaluated the model performances using DSC, Hausdorff distance
(HD), and expected calibration error (ECE). Results: The MAnet algorithm with the CE+DSC loss
function gave the highest DSC values on the ADC, T2WI, and T1WI images. PSPnet with CE+DSC
obtained the smallest HDs on the ADC, T2WI, and T1WI images. The segmentation accuracy overall
was better on the ADC and T1WI than on the T2WI. The ECEs were the smallest for PSPnet with FL
on the ADC images, while they were the smallest for MAnet with CE+DSC on the T2WI and T1WI.
Conclusions: Compared to Unet, MAnet and PSPnet with a hybrid CE+DSC loss function displayed
better performances in BC segmentation depending on the choice of the evaluation metric.

Keywords: bladder cancer; segmentation; MRI; deep learning; loss function; Unet; MAnet; PSPnet;
cross-entropy; focal loss; expected calibration error

1. Introduction

Artificial intelligence (AI) applications are being adapted for medical imaging in
radiology. AI models, more specifically deep learning (DL) convolutional neural networks
(CNN), have illustrated remarkable success in the interpretation of medical images with
computer-aided detection and localization of imaging abnormalities. However, clinicians
not understanding the novel methods may fail to incorporate the technology into daily
practice and accept computer-aided interpretation. Using multi-parametric magnetic
resonance images (mp-MRI) of bladder cancer (BC), this work illustrates how incorporating
DL models benefits the diagnosis and evaluation of BC.
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BC is the 10th predominant cancer in the world according to the World Cancer Research
Fund International [1]. Risk factors are smoking, parasitic infections (schistosomiasis), and
toxic chemicals such as aromatic amines (occupational exposure) and arsenic (drinking
water). BC is the fourth most common cancer among elderly men in the US [2]. The
American Cancer Society estimates that there will be 83,190 new cases of bladder cancer
and 16,840 deaths from bladder cancer in 2024 [3]. Early bladder cancer diagnosis, accurate
staging, and surgical treatment reduce the morbidity and mortality of bladder cancer.
With the advances in surgical techniques, chemotherapy, immunotherapy, and diagnostic
imaging options, bladder cancer mortality has had a declining trend in the last 5 years [4].

The determination of muscle invasion in BC guides proper risk stratification and
therapy [5–8]. Currently, the gold standard of bladder cancer staging is transurethral resec-
tion of the bladder tumor (TURBT). TURBT enables the pathologic diagnosis and staging
of muscle-invasive bladder cancer (MIBC). However, up to 30% of TURBT specimens
are inaccurate, and the staging of bladder cancer changes in a repeat TURBT. Accurate,
non-invasive imaging of bladder cancer could help eliminate the shortcomings of this
staging surgical procedure. From its initial description in 1962 [9], this surgical procedure
has evolved little with potential complications and limitations. Recent clinical outcome
data indicate that a high-quality TURBT requires experience, clinical judgment, precise
tumor resection technique, or sometimes repeating the TURBT. A TURBT has up to 6.7%
complications, including bladder perforation and uncontrolled bleeding risk [10]. While
repeat resection detects residual cancer in 26 to 83% of patients [11], occult locally advanced
(extravesical) cancer cannot be detected by repeat TURBT. In fact, cross-sectional imaging
is recommended in the follow-up of patients who are managed only with TURBT to rule
out locally growing extravesical disease processes.

mp-MRI is an evolving tool for bladder cancer staging [12]. mp-MRI imaging allows
for high soft tissue contrast resolution and multiplanar imaging, enabling radiologists
to predict the depth of tumor invasion (Figure 1) [13–15]. Detecting the presence or
absence of MIBC is the critical step in risk stratification and therapy of bladder cancer [6].
Utilizing DL potentially would improve the accuracy and automate bladder cancer mp-MRI
segmentation [12].
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Figure 1. A bladder cancer case is depicted. An axial T2-weighted MRI shows an abnormal signal
in the bladder (left). Post-contrast image reveals focal enhancement in the arterial phase (middle),
while the ADC diffusion map indicates a low signal consistent with a high-grade tumor (right).

However, current mp-MRI requires improvements in the accuracy, efficiency, and
consistency of BC staging. It lacks reliable discrimination of muscle invasion [15–18]. Slice-
by-slice MRI evaluations are tedious, and the effectiveness depends upon the experience of
the radiologist. Accurate interpretation of mp-MRI images can be complicated by motion
artifacts, bladder wall inflammation, and degrees of bladder distension.

Similar to PI-RADS for the prostate and BI-RADS for the breast, vesicle imaging
reporting and data systems (VI-RADS) have been implemented for bladder imaging. VI-
RADS standardizes MRI interpretation to detect MIBC. When using VI-RADS scores for
mp-MRI, the first parameter evaluated is diffusion-weighted/apparent diffusion coefficient
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images (DWI/ADC), followed by contrast-enhanced T1-weighted (T1WI) and T2-weighted
images (T2WI). DWI/ADC is the most important sequence for BC staging [15]. However,
DWI images are susceptible to artifacts; hence, T1WI and T2WI are relied upon to determine
MIBC. Due to inflammation in the bladder wall or fibrosis on T2WI, there can also be false
positive MIBC [19]. The T1WI sequence may not be useful in this setting. The DWI
distinguishes fibrosis from tumor invasion. Besides these limitations, VI-RADS does not
provide validation for patient risk stratification, therapy selection, and the monitoring of
therapeutic response [20].

Segmentation of bladder cancer on mp-MRI is the first step to non-invasively iden-
tifying bladder tumors and then evaluating muscle invasiveness and tumor stage. DL
algorithms utilizing CNN have achieved remarkable success in the image segmentation
field [21]. Three-dimensional deep CNN models have the potential to automate gross
tumor volume (GTV) contouring on mp-MRI. However, there are some challenges with
tumor contouring. The accuracy could depend on the radiologist’s experience, tumor
heterogeneity, and whether tumor-to-normal tissue interference is poor or not.

Motivated by this need, in this work, we evaluate emerging segmentation algorithms
and compare their efficiency to each other to advance the bladder cancer mp-MRI efficiency.

2. Materials and Methods
2.1. Patients

This study was approved by the Institutional Review Board. We queried the insti-
tution’s medical records to obtain all patients who underwent mp-MRI for the diagnosis
of bladder cancer between October 2015 and February 2023. We identified 217 cases and
enrolled 53 patients in the study. The inclusion criteria were patients with pathologically
confirmed bladder masses and pelvic imaging with a 3T MRI scanner. Exclusion criteria
were no detectable tumor, insufficient MR images, severe imaging artifacts, and artificial
devices in the imaging field.

2.2. Magnetic Resonance Imaging

Patients underwent MRI at one of three clinical scanners (Vida, Trio, or Skyra; Siemens
Erlangen, Germany). The pelvic mp-MRI protocol encompassed high-resolution multiplane
T2-weighted imaging (T2WI) with fat suppression, axial diffusion-weighted imaging (DWI),
and axial T1-weighted contrast-enhanced (T1WI) sequences before and after contrast
injection. Table 1 shows the sequence parameters used in the MRI protocol. T2WI used
turbo spin echo acquisition. The DWI sequence used echo planar imaging (EPI) acquisition
with b values = 0 and 500 s/mm2. Apparent diffusion coefficient (ADC) maps were
automatically generated by the scanner software using all b-values. The T1-weighted
imaging utilized a volumetric interpolated breath-hold examination (VIBE) sequence. A
gadolinium-based contrast agent (DOTAREM, Bayer Pharma, and Berlin, Germany) was
injected at a dose of 0.1mm/kg. Contrast-enhanced images were acquired in the following
phases: arterial, venous, and delayed (3 min).

Table 1. MRI parameters for the used sequences.

T2WI (Axial) T1WI DCE (Axial) DWI (Axial)

Repetition Time (TR), ms 5970 2.96 TR = 4600

Echo Time (TE), ms 86 1.18 TE = 84

Field of View (FOV), mm 199 × 199 240 × 240 220 × 260

Matrix 448 × 448 256 × 256 136 × 160

Slice Thickness (ST), mm 3 3 4

b-value, s/mm2 - - 0 and 500
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2.3. Image Segmentation

A fellowship-trained abdominal radiologist and MRI scientist with more than 10 years
of experience manually segmented bladder tumors on each slice of the T2WI, ADC, and
arterial phase T1WI images using ITK-SNAP 3.8.0 software (www.itksnap.org, USA, ac-
cessed on 1 February 2024) (Figure 2) [22]. Three masks were created for each patient. The
segmentations were made in consensus by the investigators and considered as the ground
truth, which means the AI models aimed to predict the segmentations during training
and validation.
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Figure 2. Axial T2-weighted image of a patient with bladder cancer and manual contouring of the
tumor (red) on the right.

2.4. Deep Learning Models: Training and Evaluation

We trained three existing models (MAnet, PSPnet, and Unet) to perform bladder tumor
segmentation on mp-MRI images [23]. Unet is considered the backbone of medical image
segmentation [24]. PSPnet and MAnet have gained popularity for image segmentation
for scene understanding and improved contextual features, respectively [25]. These deep
networks have encoding and decoding components. The encoding contracting component
learns the visual localizing features, and then the decoding expanding pathway adaptively
integrates local features with their global dependencies [24] (Figure 3).
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multiple levels. Unlike Unet, which simply aggregates the features, the attention blocks learn how to
merge more important regions, guided by the attention mechanisms.
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Models were given a single MRI slice as input and trained to segment tumors based
on manually drawn masks. Each model was trained on T2WI, ADC, and T1WI images
separately. The epoch was set to 70.

Loss functions are a measure of how well an AI model’s prediction matches the true
value. It quantifies the difference between the predicted value and the actual value. We used
three popular loss functions during training: cross-entropy (CE), dice loss (DSC), and focal
loss (FL) [26–28]. In the context of this work, let us introduce the following notation. Let
X ∈ RW×H×D be a 3D input image, whose spatial dimension is width (W), height (H) and
depth (D), and Y ∈ {0, 1}W×H×D×K its corresponding ground truth mask, with K being the
total number of classes. The segmentation network is a function parameterized by θ, whose

last layer is a SoftMax function producing the segmentation results ˆY ∈ {0, 1}W×H×D×K.
Thus, the cross-entropy loss, which measures the similarity between the ground truth and
probabilistic prediction distributions, for a given image, can be defined as follows:

LC = − 1
D× H ×W

D

∑
d=1

H

∑
i=1

W

∑
j=1

K

∑
k=1

(k)
y
dij

log
ˆ

y(k)dij

The dice similarity coefficient (DSC) compares volumes based on their overlaps be-
tween the ground truth and the predicted image. During training, dice loss is leveraged to
achieve a perfect match of DSC 1.0 [29], which resorts to minimizing the following loss:

LDc = 1−
2∑D

d=1 ∑H
i=1 ∑W

j=1 ∑K
k=1 y(k)dij

ˆ
y(k)dij

∑D
d=1 ∑H

i=1 ∑W
j=1 ∑K

k=1 y(k)dij + ∑D
d=1 ∑H

i=1 ∑W
j=1 ∑K

k=1
ˆ

y(k)dij

Last, focal loss aims to address the class imbalance on the image by increasing the
focus of the model on the selected class, which is a tumor in this case [27]. This loss is
formally defined as follows:

LF = − 1
D× H ×W

D

∑
d=1

H

∑
i=1

W

∑
j=1

K

∑
k=1

(
1− ˆ

y(k)dij

)γ

y(k)dij log
ˆ

y(k)dij

where γ controls the rate at which easy samples (i.e., voxels) are down-weighted.
To evaluate the segmentation performance, we resorted to two popular metrics in

the medical image segmentation literature, the dice similarities coefficient (DSC) and
Hausdorff distance (HD), whereas we used the expected calibration error (ECE) to measure
the calibration performance of the different models [30,31].

Due to the limited dataset size, we used a 4-fold validation strategy to validate the
models’ performance. For each fold, we trained the models with 40 patients and tested
them on the remaining 13 patients. The final validation metrics are the average of those for
each fold.

3. Results

The patient ages ranged from 36 to 97 with a mean of 66.7 years. A total of 24 patients
out of 53 had MIBC. Table 2 presents DSC, HD, and ECE values on T1WI, T2WI, and ADC
testing datasets, obtained by evaluating different deep learning models, MAnet, PSPnet,
and Unet, with different learning objectives: cross-entropy (CE), cross-entropy plus dice
loss (CE+DSC), and focal Loss. These results show that, in terms of DSC values, MAnet
with CE+DSC provided the highest DSC on T1WI, T2WI, and ADC images.
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Table 2. Tumor segmentation performance of the three models (MAnet, PSPnet, and Unet), which
were trained using three loss functions (CE, CE+DSC, and FL), were evaluated based on DSC, HD,
and ECE on the T2WI, ADC, and T1WI images.

Tumor

DSC HD ECE

Model Modality
Loss ADC T1 T2 ADC T1 T2 ADC T1 T2

MAnet LCE 0.4550 0.3175 0.2875 47.54 67.62 76.91 0.0200 0.0200 0.0350
LCE + LDSC 0.5925 0.5600 0.4650 23.92 27.52 41.23 0.0150 0.0075 0.0100

LFL 0.3700 0.2575 0.2450 46.83 72.58 74.64 0.0525 0.1025 0.1125

PSPnet LCE 0.4200 0.4500 0.2700 52.84 56.28 78.27 0.0175 0.0250 0.0325
LCE + LDSC 0.5650 0.5075 0.4175 10.71 21.94 31.34 0.0150 0.0175 0.0200

LFL 0.3825 0.3925 0.2600 47.26 45.68 80.85 0.0125 0.0150 0.0250

Unet LCE 0.4950 0.2900 0.2750 39.21 87.53 85.57 0.0200 0.0200 0.0250
LCE + LDSC 0.5825 0.5250 0.4525 33.86 46.09 57.34 0.0150 0.0075 0.0150

LFL 0.3850 0.2725 0.2100 36.32 85.04 82.97 0.0475 0.0925 0.1275

Figure 4 illustrates the evolution of DSC and the accuracy of both Unet (CE + DSC) and
MAnet (CE+DSC) on a training validation set for tumor segmentation on T1WI. Figure 5
illustrates the performance of the models on a case in comparison to the manual segmenta-
tions (ground truth).
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can observe that variants integrating the compound CE+DSC loss not only reach higher dice scores
but also converge faster than the models using only CE as a loss function.

In terms of distance similarity, i.e., HD, PSPnet with CE+DSC obtained the smallest
HD distances on the tumor segmentation across all modalities.

The expected calibration errors were the smallest for PSPnet with FL on the ADC
images, whereas they were the smallest for MAnet with CE+DSC on T2WI and T1WI, which
indicates that this model yields the most reliable predictions among the analyzed ones.
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Overall, the models achieved better segmentation on the ADC and T1WI than on
the T2WI.

4. Discussion

In this study, we trained the Unet, PSPnet, and MAnet networks with three loss func-
tions to segment bladder cancer on the mp-MRI images and assessed their performance [24].
MAnet with CE+DSC gave the best DSC values on all images. On the other hand, PSPnet
with CE+DSC achieved the smallest HD distances on all images. These results indicate that
compared to Unet, MAnet and PSPnet showed better performances in BC segmentation
depending on the choice of the loss function and evaluation metrics.

Loss functions are used to quantify the error between the predicted and actual data.
For bladder segmentation, we studied the three most commonly used loss functions: CE,
CE+DSC, and FL. Among them, we observed that CE+DSC provided the best training when
DSC was used as an evaluation metric. These experiments show that hybrid loss functions
such as CE+DSC can be more effective than single ones. This can be attributed to better
handling of the class imbalance problem [30,32]. Class imbalance refers to an unequal distri-
bution of foreground and background elements in the image. This is a big issue in bladder
MRI where a tumor is too small compared to the rest of the image [27]. Overall, these
results highlight the careful selection of loss functions in training segmentation algorithms.

When it comes to choosing evaluation metrics, compared to ECE, both DSC and HD
are more commonly used in performance evaluations of DL models in medical image
segmentation. DSC is a popular metric that assesses the similarity (overlapping) between
the model-predicted area and the reference area [26]. On the other hand, HD is a distance-
based metric that shows how far two contours are from each other [30]. We observed that
DSC and HD favored different models in BC segmentation. While MAnet gave better DSC
scores, PSPnet gave lower HD values. We also evaluated the confidence of the models
using ECE. ECE indicates how reliable a model is by comparing the model predictions with
the true outputs [31]. A low ECE value denotes a better-calibrated model. Our experiments
demonstrated that PSPnet with FL had the lowest ECE on the ADC images, whereas MAnet
with CE+DSC had the smallest ECEs on the T1WI and T2WI. This could indicate that
combined metrics such as CE+DSC in the training step could reduce calibration errors
as well.
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Notably, the DL models consistently achieved better tumor segmentation on the ADC
and T1WI than on the T2WI images, which could be explained by contrast differences
among these sequences. The gadolinium-based contrast agent enhances tumor signal on
T1-weighted images, while DWI results in hypointensity on the ADC images in case of
diffusion restriction. These contrast mechanisms allow a clear distinction of tumors on
these sequences. On the other hand, the contrast on T2WI relies on T2 relaxation of tissues,
which results in a low tumor signal compared to background tissue. The contrast to noise
ratio (CNR) based on T2 relaxation might not be as distinctive as the CNRs on the T1WI
and ADC mechanisms.

In the literature, Dolz et al. (2018) conducted one of the earlier works on the segmen-
tation of BC on MRI. They demonstrated the feasibility of fully automated segmentation
of the bladder mass, inner wall, and outer wall on T2-weighted images. [33]. Dolz et al.
introduced progressive dilated convolutions in each convolutional block to increase the
receptive fields for the first time. Later, Yu et al. proposed the Cascade Path Augmentation
Unet (CPA-Unet) network, which mines multiscale features [34]. They showed effective
segmentation of the bladder tumor, inner wall, and outer wall on T2-weighted images.
Recently, Moribate et al. used a modified Unet model to segment tumors on DWI (b0
and b1000) and ADC images [35]. They tested the b0, b1000, ADC, and multi-sequence
(b0-b1000-ADC) images as input in their model. They reported the highest dice similar-
ity coefficient for multi-sequence images as input. Compared to these studies, our work
presents new findings in the following aspects: First, while previous work focused on
the segmentation of tumors on a single MRI sequence such T2WI or ADC, we report
the segmentation results for three sequences in the mp-MRI protocol: T2WI, T1WI, and
ADC. Second, rather than a single DL model, we present comparative performances of
three prominent DL models in medical image segmentation. Lastly, we report the seg-
mentation accuracies based on three loss functions and two evaluation metrics along with
calibration errors.

Although the models compared in this study yielded promising results in segmenting
bladder tumors, the overall accuracy was less than previously reported MRI studies and
the accuracies in other modalities such as computed tomography (CT). We believe this
arises from mainly the small sample size. Fifty-three patients are relatively small in DL
training; hence, our results can be considered preliminary. Moreover, the segmentation of
the bladder mass on mp-MRI is challenging. The human bladder is a hollow distensible
organ, presenting a variety of volumes, shapes, and positions. This is a challenge, as the
model needs to learn a large variety of features to train properly. Tumor variability with
its various shapes and sizes produces another set of variabilities. To capture all of these
variabilities, many clinical cases are needed. Also, it is common to have various artifacts
on mp-MRI images due to urine flow, magnetic field inhomogeneities, etc., which makes
segmentation difficult compared to CT [36–39].

This preliminary study has several limitations. First, the sample size was small
and only from a single institution, limiting the models from learning the high variability
of bladder tumors. Second, the MRI datasets were only from 3T scanners, limiting the
generalizability of the results to other magnetic field strengths. Third, we tested the models
separately on each sequence. Future work will encompass inputting the images from
three sequences at the same time to the models. We will also study predicting the muscle
invasiveness of tumors based on segmented MRI images in future studies.

5. Conclusions

In conclusion, MAnet and PSPnet models could show promising success in the auto-
matic segmentation of bladder tumors, which constitutes the first step toward determining
muscle invasiveness. However, the accuracy of the models also relies on the careful selec-
tion of loss functions during training and the right choice of evaluation metrics. Among
the three MRI sequences, the segmentation accuracy was better on the ADC and T1WI
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compared to T2WI. To evaluate the true potential of these networks in segmenting BC on
mp-MRI images, larger datasets from multiple institutions are needed.
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