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Abstract: A novel combination of three control systems is presented in this paper: an adaptive
control system, a type-two fuzzy logic system, and a super-twisting sliding mode control (STSMC)
system. This combination was developed at the Laboratory of Applied Research in Active Controls,
Avionics and AeroServoElasticity (LARCASE). This controller incorporates two methods to calculate
the gains of the switching term in the STSMC utilizing the particle swarm optimization algorithm:
(1) adaptive gains and (2) optimized gains. This methodology was applied to a nonlinear model of
the Cessna Citation X business jet aircraft generated by the simulation platform developed at the
LARCASE in Simulink/MATLAB (R2022b) for aircraft lateral motion. The platform was validated
with flight data obtained from a Level-D research aircraft flight simulator manufactured by the CAE
(Montreal, Canada). Level D denotes the highest qualification that the FAA issues for research flight
simulators. The performances of controllers were evaluated using the turbulence generated by the
Dryden model. The simulation results show that this controller can address both turbulence and
existing uncertainties. Finally, the controller was validated for 925 flight conditions over the whole
flight envelope for a single configuration using both adaptive and optimized gains in switching terms
of the STSMC.

Keywords: type-two fuzzy system; super-twisting sliding-mode control; adaptive control; particle
swarm optimization; Cessna Citation X; lateral motion; flight control system; fuzzy logic system;
Dryden turbulence

1. Introduction

Artificial intelligence-based control systems have become the main topic of much
research. The recent developments in aircraft systems have increased pilots’ workload; our
primary motivation in this paper is to reduce that workload and ease flight procedures for
pilots, especially in critical conditions such as atmospheric turbulence. This objective could
help to reduce aircraft accidents. As claimed in [1], 80% of aircraft accidents are caused by
human errors rather than system failures. The novel methodology proposed here benefits
from the advantages of the approximation capability of the Type-Two Fuzzy Logic System
(T2FLS) while facing existing uncertainties, the robustness of super-twisting sliding-mode
control (STSMC), and the characteristics given by adaptation laws to update approximated
functions by a T2FLS during the lateral motion simulation of the Cessna Citation X aircraft
in cruise. The gains in the switching control term designed in the STSMC were determined
by two different methodologies: one uses adaptation laws, and the other uses the Particle
Swarm Optimization method, both of which are discussed in more detail later in this paper.

Concerning the selected methodologies in this article, a brief discussion of the pre-
vious studies is presented in this section to provide some essential background. These
methodologies have been used for different applications in aerospace and aeronautics.
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Satisfying the stability and maneuverability of an aircraft with a control system is
essential to guarantee flight safety and passengers’ comfort. These problems have been
addressed by a wide range of control techniques and methodologies, as detailed next.

Previously, conventional methodologies showed their compatibility and precision
for various types of air vehicles. Idir et al. [2] introduced a novel methodology using a
combination of an optimal reduced-order fractional proportional–integral–derivative (PID)
controller with the Harris Hawks Optimization Algorithm to control the pitch angle of an
aircraft using the Matsuda and the Oustaloup approximation methods. Although these
control methodologies have shown superior performance in terms of transient response
analysis and the signal characteristics of the pitch angle compared to other controllers, it is
necessary to add a robust controller to guarantee the boundedness of the control system,
especially in the presence of a load disturbance. To control the pitch of a general aviation
aircraft, Deepa and Sudha [3] suggested using tuning methods such as the Zeigler–Nichols,
modified Zeigler–Nichols, Tyreus–Luyben, and Astrom–Hagglund methods to find the
gains of a PID controller. Based on the presented performance analysis, the Zeigler–Nichols
method found more appropriate gain values to remove drastic oscillations, which can be
used for both linearized and nonlinear aircraft models. Wilburn et al. [4] developed a new
Genetic Algorithm (GA) to optimize the performance of several controllers, including a
PID, a Nonlinear Dynamic Inverse (NLDI), and an adaptive PID. The enhanced GA used in
this paper benefits from excessive normalization, proposing a mutation operator matrix,
varying parameter bounds, and initializing the GA population with predefined values.
This study demonstrated that this novel GA algorithm can be used with other controllers,
such as artificial immune system-based PID control systems, with the aim of improving
the robustness and trajectory tracking performance of an Unmanned Aerial Vehicle (UAV).
Moreover, the efficiency of an optimized bio-inspired adaptive control approach with a GA
was evaluated in [5] to compensate for aircraft failures. In addition to addressing these
failures, that study highlighted the ability of the proposed method to significantly improve
aircraft handling qualities. The proposed adaptive immunity-based controllers acted as
model-referenced baseline control systems to generate control inputs for the angular rates.
This baseline control system and a nonlinear dynamic inversion (NLDI) approach were
developed to deal with nonlinearities. Compared with an adaptive neural network system,
the combination of the adaptive immunity-based controllers and NLDI provided better
results in nominal and abnormal pilot-in-the-loop simulations.

In [6], extensive studies were conducted to evaluate the performance of Linear
Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG), and nonlinear methods for
controlling the pitch angle of a UAV. Among these control methods, the LQG successfully
attenuated the disturbance, and the LQR performed better under ideal flight conditions. In
contrast, the nonlinear control system outperformed both the LQR and LQG methods in
terms of smoothness of the response, robustness, and speed of convergence to the reference
signal. Further exploration by Vishal and Ohri [7] showed that a Genetic Algorithm (GA)
can effectively adjust the parameters of LQR and PID controllers, offering better results in
terms of pitch angle control of an aircraft compared to its parameters manual adjustments.
Between the GA-based PID controller and the GA-LQR combination, the GA-LQR offered
better signal characteristics, such as rise time, settling time, and peak overshoot. In addition,
the steady-state error obtained for the GA-LQR was smaller than that of the GA-based PID
method. Qi et al. [8] developed a Modified Uncertainty and Disturbance Estimator (MUDE)
for achieving accurate attitude-tracking performance in quadcopters using a precise actua-
tion model. This method was compared with cascaded PID and conventional uncertainty
and disturbance estimator-based controllers. This comparison revealed that the MUDE-
based controller performs better in reducing both tracking and disturbance estimation
errors. Furthermore, to solve the path-following problem and attain asymptotic stability for
a minimum of three quadrotors, a Robust Load Priority (RLP) control system was proposed
in [9]. In this article, a nonlinear control system was developed by leveraging Kane’s
method with the direct Lyapunov method to convert the position and attitude errors into a
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virtual lift control input. This control input helps the quadrotors to rotate and manipulate
their loads. On the other hand, a UDE-based robust controller was proposed for a single
quadrotor to achieve path-tracking control performance while lifting a suspended payload
under disturbances. A two-loop control system was implemented to address external dis-
turbances, such as turbulence, on fixed-wing UAVs flying at low altitudes [10]. It included
an LQR and H∞ and a Luenberger observer serving as a full-state estimator. In addition
to mitigating the effects of disturbances, this control method ensured the safety margin
of the UAVs with respect to the ground by tuning the reference altitude. The L1 adaptive
control system is another methodology, which was applied in [11] as a fault-tolerant con-
trol system to address the challenges caused by actuation failures and turbulence. This
control mechanism enhanced the functionalities of a linear controller, and an extended
NLDI control system was developed to reduce the distance error with respect to the de-
sired flight path of the West Virginia University Unmanned Aerial Vehicle (UAV). To deal
with parameters uncertainties, disturbance, and coupled dynamics in quadrotors, Labbadi
et al. [12] have developed super-twisting proportional–integral–derivative sliding-mode
control (STPIDSMC) methodologies based on the fractional-order control methodology
for each of the position and attitude control systems. This combination offered a highly
robust and accurate tracking performance under various scenarios in comparison with
fractional-order backstepping sliding-mode control and nonlinear internal control systems
by considering their Integral Absolute Error (IAE) values. In addition, to satisfy the 3D
trajectory tracking performance of quadcopters, a group of six second-order sliding-mode
control (SMC) systems using the super-twisting algorithm within two separate controller
mechanisms, one for attitude and altitude of the quadcopters and the other one for the
position of the quadcopters, was proposed by Matouk et al. [13]. Compared to a conven-
tional SMC and a fuzzy sliding-mode control system, this control methodology provided
improved model robustness to parametric variations, uncertainties, and disturbances and
gave more accurate tracking performance without undesired chattering.

In recent years, the evolution of control methodologies has seen a significant shift from
conventional approaches to AI-based techniques, demonstrating a broad spectrum of very
good adaptability and precision. As an AI-based control system, Deep Recurrent Neural
Networks (DRNNs) were used to control highly nonlinear hypersonic vehicles [14], offering
very high adaptability to time-varying trajectories and robust performance in the presence
of aerodynamic uncertainties. The DRNNs were equipped with gated recurrent units at
the hidden neurons to enhance long-term learning and avoid the gradient decay problem.
This paper showed that the proposed DRNN-based controller could perform better than
the gain-scheduled LQR control approach. This study, among many others, highlights a
significant shift from traditional control methods toward exploiting the adaptive capabilities
of neural networks. An Aggregated Multiple Reinforcement Learning System (AMRLS)
with multiple Reinforcement Learning (RL) algorithms and Cerebellar Model Articulation
Controller (CMAC) techniques was proposed in [15] to solve the problem of the exponential
increase of dimensionality due to the excessive size of continuous state space equation
form used for the pitch control of a B747 aircraft. This control algorithm accelerated the
convergence rate and reduced the steady-state pitch error. Furthermore, Andrianantara
et al. in [16,17] explored advanced control strategies for the pitch rate control of the Cessna
Citation X (CCX) business jet. In [16], a linear PID control system was combined with
an adaptive neural network (ANN) and dynamic inversion (DI) methodology to achieve
tracking performance and to ensure aircraft stability without prior knowledge of aircraft
dynamics. This control methodology gave better results than single PID, PID-DI, and
PID-NN control systems. With the same objectives, Andrianantara et al. [17] integrated an
adaptive neural network system with an online Recursive Least Square (RLS)-based Model
Predictive Controller (MPC) to control the CCX pitch rate under different flight conditions.

According to [18], different controllers, such as PID, fuzzy PID, and sliding-mode
control systems, might be chosen for controlling the pitch rate of an aircraft in the presence
of unpredicted conditions such as external disturbances. In this article, although the fuzzy
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PID control system showed the best signal characteristics in terms of tracking performance,
besides its ability to update the control parameters during the simulation, the SMC systems
worked perfectly in terms of both rise and settling times among all the presented methods.
Nair et al. [19] studied the performance of a Linear Quadratic Controller (LQR) system and a
Fuzzy Logic Controller (FLC) based on their time response characteristics in controlling the
aircraft yaw rate. This study revealed that both methods have specific steady-state errors
and overshoots; however, the LQR controller converges to the given desired signals faster
than the FLC system. With the aim of achieving a robust automatic landing system in the
presence of coupling effects and uncertainties, a proportional–derivative fuzzy logic control
system was developed for the nonlinear six-degree-of-freedom models of a medium-sized
aircraft. The performance analysis illustrated that this control methodology was appropriate
in terms of the stability and steady-state error criteria [20]. Jiao et al. [21] focused on the
stability of quadrotor Unmanned Aerial Vehicles (UAVs) equipped with a 2-degree-of-
freedom robotic arm and a combination of Sliding-Mode Extended State Observer (SMESO)
and a Fuzzy Adaptive Saturation Super-Twisting Extended State Observer (FASTESO) that
updated observer gains for the accurate attitude control in the presence of disturbances.
In addition, an adaptive super-twisting sliding-mode methodology was developed by
Humaidi and Hasan in [22] to control a two-axes helicopter with uncertainties in its model
to achieve tracking performance while reducing the chattering on the control input. This
control model was equipped with the Particle Swarm Optimization (PSO) algorithm to find
the best values for the design parameters.

Dealing with uncertainties is another challenging issue for aircraft control. Hashemi
and Botez [23] suggested using a robust adaptive T-S fuzzy logic control system for the
Hydra Technologies UAS-S4 Ehécatl to handle various uncertainties, such as unknown
parameters in the control system, modelling errors, and disturbances. To minimize energy
consumption, improve tracking performance, and maintain stability in a chaotic environ-
ment in a Click Mechanism Flapping Wing (CMFW) of an insect-inspired Nano Air Vehicle
(NAV), which was defined by T-S fuzzy rules, the authors in [24] proposed using a fuzzy
controller integrated with a state feedback control system. In this methodology, the gains
of the fuzzy logic-based control system were updated using several adaptive control laws
derived from the Lyapunov theorem.

Yu et al. [25] validated the performance of a fault-tolerant control method for UAVs to
maintain their attitude with the occurrence of failures in the actuation system while dealing
with the existing model uncertainties. This control system employed a fractional-order-
based control system based on an adaptive fuzzy neural network system to approximate
the uncertainties due to the failures in the follower UAV actuation systems. In addition,
distributed sliding-mode systems were designed to estimate the attitudes of the leader
UAVs to ensure attitude-tracking performance and to achieve a safe formation. As another
fault-tolerant control system for UAVs, a new event-triggered methodology was included
using fractional-order calculus and interval type-2 fuzzy neural network systems to satisfy
attitude-tracking performance and stability [26]. The stability of the UAVs was demon-
strated by analyzing their performance at different attitudes while tracking the issued
reference signals. These control systems have reduced the communication load while
improving the fault tolerance properties in this application. Moreover, it was suggested
in [27] to apply a combination of fixed-time performance functions, fractional calculus, and
sliding-mode surfaces, enhanced by recurrent fuzzy neural networks, to keep the tracking
errors within certain bounds and improve fault tolerance characteristics of the UAVs in the
presence of actuators faults.

Continuing the investigations outlined for the longitudinal motion of a Cessna Cita-
tion X using fuzzy logic-based control systems in [28,29] and a model reference adaptive
recurrent neural network control system in [30], this study aims to explore their compati-
bility with the lateral motion of the aircraft, which is more complex than the longitudinal
motion due to the coupling between the roll and yaw motions. Therefore, this paper mainly
contributes to the application of an artificial intelligence methodology with the Type-Two
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Adaptive Fuzzy Logic System (T2AFLS) combined with a nonlinear super-twisting sliding-
mode control (STSMC) system for the lateral motion of aircraft, as detailed below:

• Previously, most studies were devoted to designing an AI-based controller for the
longitudinal motion of aircraft. However, this article presents a new combination of
control systems comprising T2AFLS and STSMC methodologies for the lateral motion
of the Cessna Citation X aircraft. This methodology addresses two main challenges in
the control of an aircraft: (1) the issues that arise with structured uncertainties, such
as variations of flight conditions, and unstructured uncertainties, such as unmodeled
parameters, and (2) aircraft stabilization in the presence of turbulence. We used
the Dryden turbulence model to generate a moderate-intensity turbulence profile,
which has not been used before with the considered methodology in the paper. This
controller benefits from an improved uncertainty handling offered by the T2FLS, while
the adaptation laws determined based on the Lyapunov theorem help to continuously
update the approximated function by the fuzzy logic system. Enhanced robustness
and stability were achieved using a nonlinear super-twisting sliding-mode control
(STSMC). Two methodologies were employed to fine-tune the gains in the STSMC term:
(1) adaptive control laws (calculated by the Lyapunov theorem) presented later in this
paper [31,32], and (2) the Particle Swarm Optimization (PSO) algorithm. Although
the adaptation laws used for the switching control term in this paper were designed
based on the methodology proposed in [32], our new method suggests combining the
T2AFLS-based approximator with the adaptive super-twisting sliding-mode control,
a considerable contribution to the theory. The performances of these approaches are
compared to each other to help the reader understand the advantages of each method
in this particular application. The validation process was conducted across the entire
flight envelope (over 925 flight conditions covering the whole flight envelope) to
ensure its reliability and effectiveness with and without turbulence.

• The super-twisting sliding-mode control system (STSMC) has been studied for dif-
ferent aircraft types alone and with other control systems [21,22]. The methodology
proposed here is novel according to several features; for example, in [21], the authors
combined the Type-One Adaptive Fuzzy Logic System (T1AFLS) with the STSMC,
where the T1AFLS was employed to approximate the gain in the switching control
term, whereas the proposed Type-Two Adaptive Fuzzy Logic System (T2AFLS) in our
paper was used to approximate the unknown dynamics of the aircraft. Furthermore,
our controller employs two methodologies to find the gains in the switching control
term formulated based on the super-twisting algorithm, the adaptive switching term,
and the optimized switching term by using the PSO algorithm. Although the authors
in [22] applied the PSO algorithm to optimize those gains, our methodology offers
some improvement. Our paper proposes a different cost function to optimize three
parameters, which could reduce the computational burden regarding the number of it-
erations and the swarm population compared with the one used in [22] for optimizing
eight parameters.

• We validated our new methodologies using a highly accurate nonlinear simulation
platform designed with actual flight data derived from a Level-D Research Aircraft
Flight Simulator (RAFS) for Cessna Citation X business aircraft. We believe this simula-
tion platform can precisely represent the dynamics of Cessna Citation X aircraft at each
flight phase. This paper is thus among the pioneer articles that applied this methodol-
ogy to a business aircraft containing much more nonlinearities and complexity than the
Unmanned Air Vehicles (UAVs) [21], helicopter models [22], Teledyne Ryan BQM-34
(Firebee) aircraft used in [32], quadrotors [12,13], and hypersonic aircraft [20].

The rest of this article is organized as follows: Section 2 begins with a description
of the lateral aircraft model, followed by a detailed explanation of the applied control
methodology in Section 2.2. Next, Section 3 discusses the simulation results for each control
approach, including a comparison of their performances. This paper will be concluded in
Section 4.



Aerospace 2024, 11, 549 6 of 27

2. Methodology

This section explains the methodology for developing a Super-Twisting Adaptive
Type-Two Fuzzy Sliding-Mode Control (STAT2FSMC) system. This control system inte-
grates the robustness of a super-twisting control system with the adaptive approximation
capability of a Type-Two Adaptive Fuzzy Logic System (T2AFLS). The super-twisting
sliding-mode control system (STSMC) is an enhanced type of sliding-mode control system
commonly used for mitigating chattering (unwanted oscillations with finite frequency and
amplitude) [33].

The nonlinear aircraft model is described in Section 2.1. This model contains un-
known dynamics that can be approximated by an Adaptive Type-Two Fuzzy Logic System
(AT2FLS). The adaptive characteristic of this approximator is that it fine-tunes the ad-
justable parameters in real time in order to acquire optimal performance under various
flight conditions. A Particle Swarm Optimization (PSO) method was utilized to find the
appropriate values for the design parameters of this controller.

2.1. Aircraft Mathematical Model

This article uses a nonlinear model of the Cessna Citation X business jet aircraft. The
aircraft is represented by a state-space model to provide adequate understanding and
prediction abilities for its response of an aircraft to control inputs and external disturbances.
For this purpose, a simulation platform was employed to reproduce the nonlinear lateral
dynamics of the Cessna Citation X. This simulation platform was developed at the LAR-
CASE laboratory and validated with flight data obtained from a Level-D Research Aircraft
Flight Simulator (RAFS), as shown in Figure 1. Level D is the highest degree of qualification
issued by the Federal Aviation Administration (FAA) for research flight simulators [34].
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Figure 1. The Level-D RAFS for the Cessna Citation X business jet aircraft.

The state vector for the aircraft lateral model typically includes variables such as
sideslip angle β, roll rate p, roll angle φ, and yaw rate r. These state variables are the most
pertinent for describing the variations of the aircraft dynamics in lateral motion. The main
objective of this research is to control the roll rate p and to stabilize the yaw rate r indirectly
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by controlling the sideslip angle β. Therefore, the state-space representation can be written
in a standard form with its nth order of time derivative, as given in [35]:

x(n) = h(x) + g(x)u + d(t) (1)

where x = [β, p, φ, r]T is the state vector, h(x) and g(x) are the unknown nonlinear func-
tions to be approximated for the purpose of this research, d(t) represents the unknown
disturbance, and u denotes the control inputs, such as the ailerons uail and rudder urud
command signals.

Practically, g(x) represents the control effectiveness. This function exhibits minimal
variations in business jets such as the Cessna Citation X during cruise, in which stable
and smooth maneuvers are crucial. This aspect was observed during simulation. Thus, to
reduce the complexity of the control system design and to focus on the aircraft’s dominant
nonlinearities in the presence of uncertainties and turbulence, in this methodology, g(x)
was approximated to be equal to 1, (g(x) ≈ 1), and h(x) was approximated by the Type-Two
Adaptive Fuzzy Logic System (T2AFLS) using the methodology presented in Section 2.2.1.

2.2. Control System Design

Two control systems are designed here, one for the roll rate and the other one for
the yaw rate. The roll rate control system that produced the aileron command signal
was designed using a Type-Two Adaptive Fuzzy Super-Twisting Sliding-Mode Control
(T2AFSTSMC). In addition, an integral (I) controller was employed to stabilize the yaw rate
using the sideslip angle error (the rudder command).

The first step to designing the roll rate control system is to provide the details of the
applied Type-Two Fuzzy Logic System, presented next in Section 2.2.1.

2.2.1. Type-Two Fuzzy Logic System as an Approximator

Fuzzy logic systems have emerged as a practical approach to control nonlinear systems
in many studies. Unlike conventional control systems, which are designed for crisp input
and output values, a fuzzy logic system relies on the linguistic qualification of the input and
output values, thus akin to human reasoning, which operates on a spectrum of possibilities.

For the methodology proposed here, the Type-Two Fuzzy Logic system was selected
due to its ability to handle uncertainties and variations in aircraft dynamics. The Type-Two
Fuzzy Logic System consists of the following 5 components [36]: (1) Fuzzifier, (2) Inference
Engine, (3) Fuzzy Rule Base, (4) Type Reducer, and (5) Defuzzifier. A simplified architecture
of a Type-Two Fuzzy Logic System is illustrated in Figure 2.
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Figure 2. A simple Type-2 Fuzzy Logic System architecture.

Initially, the inputs must be fuzzified by a membership function showing the mem-
bership degree of an input value to a fuzzy set. In this Type-Two Fuzzy Logic System,
for each input variable, such as the roll rate p and its reference signal pre f , lower µ and
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upper µ membership functions were defined to compose a region called a “Footprint of
Uncertainty (FOU)”, as shown in cyan and red colours in Figure 3. The definition of these
membership functions improves the handling of uncertainties compared to the single
membership function used in Type-One Fuzzy Logic Systems [37].
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In normal flight conditions, the roll rate varies between −1 and 1 degree per second.
However, moderate-intensity turbulence can cause significant fluctuations, resulting in
much higher roll rates. To handle this wide range of uncertainties and to ensure smoother
maneuvers while maintaining passenger comfort and flight safety, the roll rate linguistic
variables were defined between −10 and 10 degrees per second. This range was selected
based on standard operational specifications of the CCX aircraft.

The membership functions shown in Figure 3 were selected using five Gaussian
membership functions formulated in Equation (2). The parameters of these membership
functions are presented in Table 1 with the linguistic terms for each constructed fuzzy set
(constructed with upper and lower membership functions). The values of the an and bn
given in Table 1 were found on a trial-and-error basis.

µn
i (xi) = exp(− (xi − an)

2

2b2
n

) (2)

Table 1. Linguistic terms and parameter values of the membership functions.

Linguistic Terms for p Linguistic Terms for pref Membership Functions an bn

High Left Roll (HLR) Critical Left Roll (CLR) µ1 −10 0.5
µ1 −10 0.05

Small Left Roll (SLR) Moderate Left Roll (MLR) µ2 −5 0.5
µ2 −5 0.05

Balanced (B) Stable (S) µ3 0 0.5
µ3 0 0.05

Small Right Roll (SRR) Moderate Right Roll (MRR) µ4 5 0.5
µ4 5 0.05

High Right Roll (HRR) Critical Right Roll (CRR) µ5 10 0.5
µ5 10 0.05

The relationship between the membership functions can be defined using the IF–THEN
rules described in Equation (3):

Rules(r): If x1 is µn
1 (x1) and x2 is µn

2 (x2) . . . and . . . xi is µn
i (xi) then ĥ is Y(r) (3)
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where x = [x1, x2, . . . , xi] are the inputs of the T2FLS, µn
1:i are the membership functions

defined for each input, ĥ is the output of the T2FLS, and Y(r) is a singleton fuzzy set for the
rth rule. In this equation, i is the number of the inputs, r is the number of fuzzy rules, and n
is the number of membership functions defined for each input variable [38].

To approximate the aircraft dynamics for its lateral motion, two variables were selected
as the inputs of the fuzzy logic system: the roll rate p and its reference signal pre f . For each
value of roll rate signal p and its reference signal pre f , five Gaussian membership functions
(n = 5), calculated with Equation (2), were uniformly distributed between [−10,10] degrees
(this range was determined through a process of trial and error based on the obtained
results). The fuzzy rules were defined in Table 2 using the linguistic terms explained in
Table 1.

Table 2. Selected fuzzy rules using the linguistic variables of the roll rate p and the roll rate refer-
ence pre f .

p:HLR p:SLR p:B p:SRR p:HRR

pre f :CLR Y(1)
up,lo Y(2)

up,lo Y(3)
up,lo Y(4)

up,lo Y(5)
up,lo

pre f :MLR Y(6)
up,lo Y(7)

up,lo Y(8)
up,lo Y(9)

up,lo Y(10)
up,lo

pre f :S Y(11)
up,lo Y(12)

up,lo Y(13)
up,lo Y(14)

up,lo Y(15)
up,lo

pre f :MRR Y(16)
up,lo Y(17)

up,lo Y(18)
up,lo Y(19)

up,lo Y(20)
up,lo

pre f :CRR Y(21)
up,lo Y(22)

up,lo Y(23)
up,lo Y(24)

up,lo Y(25)
up,lo

The singleton fuzzy outputs denoted by Y(r=1:25)
up,lo in Table 2 create the adjustable

parameters vectors shown by θup and θlo in Equation (4). It should be noted that these
vectors were initialized with random numbers between [0, 1]. Therefore, the output of the
T2FLS can be calculated as follows:

ĥup = θT
upΨup(x) and ĥlo = θT

loΨlo(x) (4)

In Equation (4), θup =
[
Y(1)

up , . . . , Y(r)
up

]T
and θlo =

[
Y(1)

lo , . . . , Y(r)
lo

]T
contain the single-

ton fuzzy outputs named as adjustable parameters which are updated during the simulation

using the adaptation laws given in Equation (12). In addition, Ψup(x) =
[
Ψ1

up, . . . , Ψr
up

]T

and Ψlo(x) =
[
Ψ1

lo, . . . , Ψr
lo

]T
are the Fuzzy Basis Functions calculated with Equation (5).

Having five membership functions for the roll rate p and five membership functions for
the roll rate reference pre f , and using the product inference engine, there will be 25 fuzzy

rules, as
(

∏i
1 µn=1:5

p × µn=1:5
pre f

∈ R5×5
)

; therefore, r = 25.

Ψup(x) =

(
∏i

1 µn
i,up

)
∑r

1

(
∏i

1 µn
i,up

)
Ψlo(x) =

(
∏i

1 µn
i,lo

)
∑r

1

(
∏i

1 µn
i,lo

)
(5)

To obtain the output of the T2FLS, the Nagar–Bardini (NB) algorithm was selected, as
it combined the operations of the type reduction with the Defuzzifier components [39,40].
Thus, the output can be calculated as follows Equation (6). In this fuzzy logic system, at
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each time, there is at least one active fuzzy rule during simulation, as shown above in
Equation (4) [38].

ĥ(x, θ) =

(
ĥup + ĥlo

)
2

= θTΨ(x) (6)

The approximated function ĥ(x, θ) obtained in Equation (6) will be used in the devel-
oped Adaptive Type-Two Fuzzy Super-Twisting Sliding-Mode Control System, which is
explained in Section 2.2.2.

2.2.2. Adaptive Type-Two Fuzzy Super-Twisting Sliding Mode Control System

Based on the contributions explained before in Section 1, we selected the sliding-mode
control (SMC) system as a nonlinear control methodology to meet the robustness criteria
and lead the aircraft dynamics to reach its equilibrium. Super-twisting sliding-mode control
is an improved version of the conventional SMC that can compensate for the turbulence
and may more effectively improve control system robustness. The sliding surface Sl can
be defined as a function of the tracking error, and its first-time derivative is expressed as
follows [41]:

ep = p− pre f (7)

Sl = Cep +
.
ep (8)

where C > 0 is a design parameter.
Taking the first-time derivative of the sliding surface in Equation (8), and then replac-

ing
..
p = h(x) + u + d(t), written based on Equation (1) with x = p as the selected state

variable and n = 2 as the time-derivative order, yields the following:

.
Sl = C

.
ep +

..
ep = C

.
ep +

..
p− ..

pre f = C
.
ep + h(x) + u− ..

pre f + d(t) (9)

By setting
.
Sl = 0 in Equation (9), the equivalent control law ueq can be formulated as

shown in Equation (10). In this equation, the unknown function h(x) was replaced with its
approximation ĥ(x, θ), calculated by the T2AFLS in Equation (6).

ueq = −C
.
ep − h(x) +

..
pre f + d(t) = −C

.
ep − ĥ(x, θ) +

..
pre f + d(t) (10)

The switching control term usw in Equation (11a) was selected as proposed in [31],
where h(x) is an unknown function. Therefore, the aileron control law can be written as
given in Equation (11b):

usw = −L1

√
|Sl |sat(Sl)−

∫ L2

2
sat(Sl)dτ (11a)

u = uail = ueq + usw (11b)

where sat(.) denotes the saturation function. In contrast with the control input presented
in [42] that used sign(.), in Equation (11a), we opted to use the saturation function because
of its potential to reduce chattering.

In Equation (11a), L1 and L2 are two positive constants whose values were determined
using two different approaches. Initially, we employed an adaptive control methodology
to continuously adjust its parameters during the simulation. In this approach, the two
parameters were increased until the aircraft state variables reached the sliding surface,
and then they decreased over time [31]. The second approach is to employ the Particle
Swarm Optimization (PSO) algorithm to find optimal values for L1 and L2, as well as C in
Equations (10) and (11a).

In the equivalent control law ueq proposed in Equation (10), the term h(x) is un-
known, while d(t) is not measurable in practice. Therefore, the unknown function (h(x))
can be replaced with the approximated function as in Equation (6) with the expression
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ĥ = θTΨ(x). As described earlier, θT =
[
θT

lo, θT
up

]
can be computed using the adaptation

law in Equation (12):
.
θup =

1
2

Sl NupΨup

.
θlo =

1
2

Sl NloΨlo

(12)

where Nup = 0.0001 and Nlo = 0.0001.
To ensure the stability and the boundedness of the proposed control law, the Lyapunov

theorem was used, as explained below:

Proof of Stability. As follows, a comprehensive proof of the stability and boundedness
of this control system is presented using the well-known Lyapunov theorem. We propose
a Lyapunov candidate Vt as a combination of two terms denoted by Vf uzzy for the Type-
Two Adaptive Fuzzy Sliding-Mode Control [36] and Vsw for the super-twisting switching
control [31]. Therefore, the Lyapunov candidate Vt can be written as follows:

Vt = Vf uzzy + Vsw (13)

where
Vf uzzy =

1
2

Sl
2 +

1
2Nlo

φT
lo φlo +

1
2Nup

φT
up φup (14)

In Equation (14), Nlo, Nup > 0 are two positive constants. Moreover, to prove the
stability of the presented supertwisting control law, using the Lyapunov candidate denoted
by Vsw in Equation (15), it was suggested in [31] to use new state vectors T =

[
T1 T2

]T as
expressed later in Equation (25).

As demonstrated in [31], if λ > 0, the matrix P =

[
λ + 4ξ2 −2ξ
−2ξ 1

]
will be positive

definite. On the other hand, Λ1 and Λ2 are also two positive constants. Thus, the Lyapunov
candidate for the switching control law will be [31]

Vsw(T1, T2, L1, L2) = V0(T) +
1

2Λ1

(
L1 − L1

*
)2

+
1

2Λ2

(
L2 − L2

*
)2

V0(T) =
(

λ + 4ξ2
)

T1
2 + T2

2 − 4ξT1T2 = TT PT
(15)

where ξ is a real number, and L1
* and L2

* are two positive constants. In the developed
control law given in Equation (10), we know that h(x) is unknown, and it was approximated
by ĥ = θTΨ(x). For each of the elements in the vector of the adjustable parameter θ, there
is an optimal value, which can be defined as follows:

θ* = argmin
x∈Rn

[
sup
∣∣∣ĥ(x, θ*

)
− h(x)

∣∣∣] (16)

According to [36,43,44], the unknown functions h(x) and d(t) are assumed to be bound
to positive constants, such as Xh and Fd, respectively, (|h(x)| ≤ Xh and |d(t)| ≤ Fd). As
presented in [43], for the adjustable parameter θ, there will be U = {θ ∈ Rn : ∥θ∥ ≤ Fh},
which means that θ is bound to a finite positive constant, such as Fh. In Equation (16),
θ* is not a real parameter; it is only used to demonstrate the Lyapunov proof. Using
the minimum approximation error given by ϵ = h(x)− ĥ

(
x, θ*) [45], and the triangular

inequality, we obtain [46]

|ϵ| ≤
∣∣∣h(x)− ĥ

(
x, θ*

)∣∣∣ ≤ |h(x)|+
∣∣∣ĥ(x, θ*

)∣∣∣ ≤ |h(x)|+ ∥θ∗∥∥Ψ(x)∥ ≤ Xh + Fh ≤ τ

|ϵ| ≤ τ
(17)
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The time derivative of the sliding surface was calculated in Equation (9). Therefore, it
can be rewritten such that

.
Sl = h(x)− ĥ

(
x, θ*)+ ĥ

(
x, θ*)+ u− ..

pre f + C
.
ep + d(t)

= ϵ + ĥ
(
x, θ*)+ u− ..

pre f + C
.
ep + d(t)

= ϵ + ĥ
(
x, θ*)+ ĥ(x, θ)− ĥ(x, θ) + u− ..

pre f + C
.
ep + d(t)

(18)

Furthermore, it can be assumed that φ = θ − θ* and then
.
φ =

.
θ, so that φTΨ(x) =

ĥ(x, θ) − ĥ
(

x, θ*) from [47]. By substituting ĥ
(
x, θ*) = ĥ(x, θ) − φTΨ(x) and u = ueq +

usw = −C
.
ep − ĥ(x, θ) +

..
pre f + usw in Equation (18) (in Equation (10) h(x) and d(t) are

unknown, so h(x) was then replaced with its approximation denoted by ĥ(x, θ) in the
expression of the equivalent control law (ueq), the following relationship can be obtained:

.
Sl(t) = ϵ− φTΨ(x) + d(t) + usw (19)

Proving the stability and boundedness of the system requires calculation of the time
derivative of the Lyapunov candidate denoted by Vf uzzy in Equation (14) and Vsw in

Equation (15). It must be noted that to explain the demonstrations more clearly for
.

V f uzzy,

we considered that
.

Sl(t) = ϵ− φTΨ(x) + d(t) in Equation (20) and the stability of the usw
will be separately proved by the related Lyapunov candidate Vsw later in this section using
Equation (15):

.
V f uzzy = Sl

.
Sl +

1
Nlo

φT
lo

.
φlo +

1
Nup

φT
up

.
φup = Slϵ− Sl φTΨ(x) + Sld(t) + 1

Nlo
φT

lo
.
φlo+

1
Nup

φT
up

.
φup = Slϵ− 1

2 Sl φT
upΨup − 1

2 Sl φT
loΨlo + Sld(t) + 1

Nlo
φT

lo
.
φlo+

1
Nup

φT
up

.
φup = Slϵ + Sld(t) + 1

Nlo
φT

lo

[ .
φlo − 1

2 SlNloΨlo

]
+ 1

Nup
φT

up

[ .
φup−

1
2 SlNupΨup

]
(20)

Since
.
φ =

.
θ, we can adopt the adaptation laws designed for θup and θlo in Equation (12) into

the final expression of
.

V f uzzy in Equation (20). Moreover, as indicated in Equation (17), |ϵ| ≤ τ,
and the turbulence was assumed to be bound such that |d(t)| ≤ Fd. Therefore, Equation (20) can be
reformulated as follows:

.
V f uzzy = Slϵ + Sld(t) ≤ |Sl ||ϵ|+ |Sl ||d(t)| ≤ τ|Sl |+ Fd|Sl | (21)

The expression
.

V f uzzy in Equation (21) was calculated based on the selected Lyapunov candidate
for the equivalent control law in the designed Type-Two Adaptive Fuzzy Sliding-Mode System
denoted by Vf uzzy in Equation (13) (Vt = Vf uzzy + Vsw). In addition, to verify the stability of the
proposed control methodology, the stability of the switching control term must also be proved by the
related Lyapunov candidate introduced by the term Vsw(T1, T2, L1, L2) in Equation (15) [31,42]. In

the super-twisting adaptive sliding-mode control system, it must be considered that
(

Sl ,
.
Sl

)
→ 0

in a specific time limit in the presence of bounded perturbation. Within this consideration, The
finite-time convergence and stability of the adaptive switching control law u_sw were discussed
in detail in [31,32]. According to [31,32], it was explained that

.
Sl = ∂Sl

∂t + ∂Sl
∂x h(x) + ∂Sl

∂x g(x)u =
L1(x, t) + n(x, t)u with the following expressions for the L1(x, t) and n(x, t):

L1(x, t) =
∂Sl
∂t

+
∂Sl
∂x

h(x) = m1(x, t) + m2(x, t) (22a)

where
|m1(x, t)| ≤ |Sl |

1
2 δ1∣∣ .

m2(x, t)
∣∣ ≤ δ2

n(x, t) =
∂Sl
∂x

g(x) = n0(x, t) + ∆n(x, t) (22b)
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where δ1 and δ2 are arbitrary positive finite boundaries and n(x, t) ∈ R is an uncertain function.
As proposed in [31,42], it was assumed that n1(x, t) = 1 +

∆n(x,t)
n0(x,t) using the expression given for

n(x, t) in Equation (22b), where n0(x, t) is positive function and ∆n(x, t) shows a bounded perturba-
tion with unknown boundaries [31,32]. With these expressions, and considering Z = n0(x, t)u,

.
Sl

becomes [31,32] .
Sl = L1(x, t) + n1(x, t)Z (23)

Now, it is possible to rearrange usw in Equation (11a) as follows [42]:

Z = −L1

√
|Sl |sat(Sl) + o

.
o = − L2

2
sat(Sl)

(24)

where L1 and L2 are the adaptive gains of switching control law. For the proof of stability, we should
define new state vectors, as shown below regarding the methodology presented in [31]:

T =

[
T1
T2

]
=

[
|Sl |

1
2 sat(Sl)
Z∗

]
.
Z
∗
= − L2

2
n1(x, t)sat(Sl) +

.
m2(x, t) +

.
n1(x, t)o

(25)

Calculating the time derivative of Equation (25), we can write the following:

.
T =

[ .
T1.
T2

]
=

1
2|T1|

[
−L1n1 1
L2n1 0

][
T1
T2

]
+

1
2|T1|

[
1 0
0 2|T1|

][
m1(x, t)

.
B(x, t)

]
(26)

In Equation (22a), we stated that |m1(x, t)| ≤ |Sl |
1
2 δ1 and

∣∣ .
m2(x, t)

∣∣ ≤ δ2; as stated earlier,

δ1 and δ2 are positive finite boundaries. In addition, it was assumed in [31] that
∣∣∣ .
B(x, t)

∣∣∣ ≤ δ4.

Therefore, L1(x, t) = σ1(x, t)|Sl |
1
2 sat(Sl) = σ1(x, t)T1, and

.
B(x, t) =

.
m2(x, t)+

.
n1(x, t)o. Accordingly,

Equation (26) can be reformulated as follows [31]:[ .
T1.
T2

]
=

1
2|T1|

[
−(L1n1 − κ1(x, t)) 1
−(L2n1 − κ2(x, t)) 0

][
T1
T2

]
κ1(x, t) =

m1
T1

as 0 < κ1 < δ1

κ2(x, t) =
2

.
B(x, t)
|T1|

T1 as 0 < κ2 < 2δ4

(27)

where δ4 are unknown bounds [31,42]. Then, the time derivatives of V0 and Vsw given in Equation (15)
become [31]

.
V0(T) =

.
T

T
PT + TT P

.
T ≤ − 1

T1
TTQT (28a)

.
Vsw(T1, T2, L1, L2) =

.
T

T
PT + TT P

.
T + 1

Λ1
ξL1

.
L1 +

1
Λ2

ξL2

.
L2

≤ − 1
T1

TTQT + 1
Λ1

ξL1

.
L1 +

1
Λ2

ξL2

.
L2

(28b)

where Q =

[
Q11 Q12
Q21 4ξ

]
, as Q11 = 2λL1n1 + 4ξn1(2ξL1 − L2)− 2

(
λ + 4ξ2)κ1 + 4ξκ2, Q12 = Q21 =(

L2n1 − 2ξL1n1 − λ− 4ξ2), and λ, ξ > 0. Thus, in [31], it was concluded that
.

Vsw becomes

.
Vsw(T1, T2, L1, L2) ≤ −DV0

1
2 + 1

Λ1
ξL1

.
L1 +

1
Λ2

ξL2

.
L2

= −DV0
1
2 + 1

Λ1
ξL1

.
L1 +

1
Λ2

ξL2

.
L2 − r1√

2Λ1
|ξL1 | −

r2√
2Λ2
|ξL2 |

+ r1√
2Λ1
|ξL1 |+

r2√
2Λ2
|ξL2 | ≤ −χ

√
Vsw(T1, T2, L1, L2) + η

(29)

where
χ = min(D, r1, r2)

η = −|ξL1 |
(

1
Λ1

.
L1 −

r1√
2Λ1

)
− |ξL2 |

(
1

Λ2

.
L2 −

r2√
2Λ2

)



Aerospace 2024, 11, 549 14 of 27

where D =
ξλ

1
2
min(P)

λmax(P) , and r1, r2 > 0. In [31], it was suggested to use the following adaptation laws to
update the gains of the switching control law, as shown in Equation (30), as follows:

.
L1 =

{
r1

√
Λ1
2 sat(|Sl | − H) if L1 > Lm

N if L1 ≤ Lm

L2 = 2ξL1

(30)

For the stability proof and to achieve the finite time convergence, it was explained in [31] that

for obtaining η = 0 in Equation (29),
.
L1 = r1

√
Λ1
2 . Moreover, in Equation (30), it was shown that

L2 = 2ξL1; therefore, by differentiating L2 and choosing ξ = r2
2r1

√
Λ2
Λ1

, it yields

.
L2 = 2ξ

.
L1 = 2

(
r2

2r1

√
Λ2
Λ1

)(
r1

√
Λ1
2

)
= r2

√
Λ2
2

(31)

Having Equation (31) for
.
L2, and with

.
L1 = r1

√
Λ1
2 , then η in Equation (29) becomes zero and

.
Vsw(T1, T2, L1, L2) ≤ −χ

√
Vsw(T1, T2, L1, L2), proving that the sliding surface Sl and its derivative

.
Sl converge to zero in finite time.

In addition, as shown in the expression of
.
L1 in Equation (30), there is a term sat(|Sl | − H)

that acts as a detector. This term ensures that when |Sl | exceeds the threshold H, the gains L1 and
L2 dynamically increase to correct the system trajectory [31]. Conversely, if |Sl | remains below
the threshold H, then L1 and L2 start decreasing. This technique also helps reduce the chattering
phenomena. In Equation (30), N was used to prevent L1 from becoming zero. More details regarding
the stability proof and finite time convergence for the adaptation laws introduced in Equation (30)
are discussed in [31,32].

Consequently, in [31], it was proven that the following adaptation laws are bound and that the

aircraft dynamics are driven to the sliding surface in a finite time t ≤
2
√

Vsw(t0)

χ . Hence, using the
proposed Lyapunov candidate Vt = Vf uzzy + Vsw and its expression given in Equations (21) and (29),
the following equation can be obtained:

.
Vt ≤ τ|Sl |+ Fd|Sl | − χ

√
Vsw(T1, T2, L1, L2) + η ≤ −χ

√
Vsw(T1, T2, L1, L2) + ηT

ηT = (τ + Fd)|Sl |+ η
(32)

Therefore, it can be concluded that using the final control law shown in Equation (33), Sl
approaches zero in finite time, which means that the aircraft is stable, and the error tends to zero
while remaining bound within a certain region around the equilibrium. □

With this respect, using the control laws expressed in Equations (10) and (11a) and its adaptive
gains L1 and L2 calculated by Equation (30), the final form of the aileron control law uail becomes

uail = −C
.
ep − ĥ(x, θ) +

..
pre f − L1

√
|Sl |sat(Sl)−

∫ L2
2

sat(Sl)dτ (33)

However, as another approach, we also used the PSO algorithm instead of these adaptation
laws to find the optimum values of L1, L2, and C in Equation (33), as explained in Section 2.2.3.

2.2.3. A Particle Swarm Optimization (PSO) Algorithm
Here, we explain our application of a PSO optimization algorithm to find the design parameters

used in the proposed control system.

Description of the PSO Algorithm
Particle Swarm Optimization (PSO) is a computational method that iteratively finds an optimal

solution that minimizes or maximizes a given cost function. The algorithm mimics the behaviour
of a set of particles moving in a swarm, each representing a potential solution. In this context, the
particles move through a search space to find the optimal solution, using their individual and global
experiences. In addition, each particle shares several attributes with the other particles, such as
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position and velocity, which are updated at each iteration. This strategy enables progressive and
efficient convergence toward the optimal solution [48].

The principle of the PSO algorithm can be described with Equation (34); in this algorithm, each
particle searches for the best solution using its personal best Pbr and the global best Gb [48] solutions:

Pbj
q = y∗j

∣∣∣O(y∗j
)
= min

s = 1 : q
J = 1 : j

{
O
(

yq
j

)}

Gb
q = yq

∗
∣∣∣O(yq

∗
)
= min

s = 1 : q
J = 1 : j

{
O
(

yq
j

)} (34)

where J = 1 : j is the total number of swarm population; s = 1 : q is the undergoing iteration; O
is the objective or cost function, which must be minimized; and y is a vector of possible solutions
(positions).

Based on the definition of the personal best Pbj
q and the global best Gb

q in Equation (34), the
velocity Vj and position yj of a given particle j can be updated by applying the following rules [48,49]:

Vq+1
j = wdamp ×Vq

j + c1 × r1 ×
(

Pbj
− yq

j

)
+ c2 × r2 ×

(
Gb − yq

j

)
(35a)

yq+1
j = yq

j + Vq+1
j (35b)

where
{

Vq+1
j , yq+1

j

}
are the new velocity and position of the particle, respectively; wdamp is the

damping inertia; c1 and c2 are learning coefficients (known as acceleration coefficients); and r1 and r2
are random numbers between 0 and 1. The PSO algorithm is presented in Algorithm 1 [48].

Definition of the Cost Function
In the PSO, the cost function plays an essential role as the objective function that the algorithm

tries to optimize. Each PSO particle navigates the search space, recording its personal experience with
the aim of minimizing or maximizing the given cost function, depending on the specific problem to
be solved. For the PSO algorithm designed in this article, a particular cost function has been selected
to find the optimal values of the parameters of the control system (C in Equation (10) and L1 and L2
in Equation (11a)) proposed in Section 2.2.2. This cost function is given in the following equation:

O
(

yq
j

)
= 0.5×

τ

∑
0

(
ep
)2 (36)

where ep = p− pre f .

2.2.4. Integral Controller as a Yaw Rate Stabilizer
The interaction between the yaw and roll motions in an aircraft is a crucial aspect that influences

the stability and maneuverability of an aircraft. This article highlights the coupling effects between
roll and yaw dynamics. The yaw rate variations directly affect the roll rate. Despite the controllers
being distinct and decoupled, the aircraft dynamics remain coupled due to aerodynamic interactions
between roll and yaw rate dynamics. To minimize the effect of the variations of the yaw rate, we
began by using a proportional–integral–derivative (PID) control technique, which has not provided a
satisfactory result for the scope of this research. We determined that the integral (I) controller could
perform better than the others at this task. Therefore, we focused on using the sideslip angle and
its reference signal to indirectly stabilize the yaw rate signal. Specifically, the control input signal
urud given in Equation (38) for the rudder of the Cessna Citation X aircraft (which is controlled with
an electrical actuator) was generated based on the error shown in Equation (37) between the actual
sideslip angle β and a reference value βre f (e.g., equal to zero):

eβ = βactual − βre f (37)

urud = ki

∫
eβdt (38)
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where ki = −0.0002 is a constant gain; this small gain was selected since large gain values led to
instability in the aircraft.

Algorithm 1. General Particle Swarm Optimization (PSO) Algorithm.

INPUTS:

• Number of iterations (s)
• Number of particles (J)
• Lower bound for the position of the particles (ylo)
• Upper bound the position of the particles (yup)
• Damping Inertia (wdamp)
• Personal Acceleration (c1)
• Social Acceleration (c 2)

OUTPUT:

• Best Solution Result (Gb)

START:

1. Initialize the swarm
2. For J = 1→ j
3. Initialize the position of each particle randomly (from ylo to yup)
4. Initialize the velocity of particle:

Vup = ks ×
(
yup − ylo

)
; where, ks = 0.2 as the Scaling factor

Vlo = −Vup;

5. Initial personal best
6. End
7. For s = 1→ q
8. For J = 1→j

9. Vq+1
J ← Apply Equation (35a)

10. yq+1
J ← Apply Equation (35b)

11. If O
(

yJ
q

)
< O

(
PbJ

q−1
)

12. O
(

PbJ
q
)
← O

(
yJ

q

)
13. End if

14. If O
(

PbJ
q
)
< O(Gb)

15. O(Gb)← O
(

PbJ
q
)

16. End if
17. End for
18. Save Gb as global best solution.
19. End for

END

This section presented a detailed explanation of the applied methodologies, whose block
diagram is shown in Figure 4. The simulation results obtained with this methodology are discussed
for the Adaptive Type-Two Fuzzy Super-Twisting Sliding-Mode Control System using both PSO-
based and adaptive switching control terms in the next section.
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3. Results
To evaluate the performance of the proposed control system, the nonlinear model of the Cessna

Citation X business jet presented in Section 2.1 was used. For this purpose, a total of 925 different
flight conditions were selected by varying aircraft weight (lbs), center of gravity position (%) of the
chord, altitude (ft), and calibrated airspeed (kts), as shown in Table 3. These 925 flight conditions
were selected to cover the entire flight envelope of the Cessna Citation X aircraft.

Table 3. Parameter values to generate 925 flight conditions.

Altitudes (ft) CAS (kts) Weight (lbs) Center of Gravity (%)

8000 150 26,000 24
10,000 200 27,000 26
15,000 230 28,000 28
20,000 250 29,000 30
25,000 300 30,000 32
30,000 330
35,000
40,000
45,000

In the first step, as they are the inputs of the fuzzy system, the roll rate and roll rate reference
signals must be fuzzified by the membership function given in Equation (3), whose parameters are
defined in Table 3 (these values were found on a trial-and-error basis with respect to the tracking
performance of the controller). For each variable, five membership functions were distributed
uniformly over the interval of [−10,10] degrees for both upper and lower membership functions for
each variable, p and pre f , as shown in Table 1.

We decided to follow two different approaches to select the best parameter values used in the
sliding-mode switching control term (1) by using the adaptation laws in Equation (30) to find L1 and
L2 (the optimal values for the other parameters were chosen by the designer, taking into account the
tracking performance) and (2) by using the PSO algorithm described in Section 2.2.3 to find C, L1,
and L2 in Equation (33), returning the values presented in Table 4. To find the best values for each
of these parameters, we tried different numbers of iterations and population sizes, and it revealed
that increasing the number of iterations did not change the results significantly; therefore, the PSO
algorithm was designed using the parameters given in Table 4 for both ideal and turbulent flight
conditions.
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Table 4. Particle Swarm Optimization configuration.

Parameters Values

Acceleration coefficient (c1) 2
Acceleration coefficient (c2) 2

Inertia damping coefficient
(

wdamp

)
0.9

Size of the swarm (population) (N) 500
Total number of iterations (s) 2

Lowest decision variables bound (ylo) 0.1
Highest decision variables bound

(
yup
)

500

It should be noted that the bounds ylo and yup were selected to optimize all three parameters, C,
L1, and L2, at the same time. Accordingly, the design parameter values are presented in Table 5 for
the T2AFSTSMC with both methodologies, the adaptation laws and the PSO algorithm, as follows.
The PSO algorithm was used to determine the values of C, L1, and L2 in an offline process, and they
remained fixed during the simulation across all flight conditions.

Table 5. Parameters of the control system design.

T2AFSTSMC with Adaptive
Switching Term

T2AFSTSMC with PSO-Based
Switching Term

Parameters Value Parameters Value

C 599.82 C 15
r1 30.38 L1 200
Λ1 350.82 L2 190
H 685.29
N 198.29
ξ 1

Lm 0.01

The parameter values of the control system design are given in Table 5. Based on the simulation
results for 925 flight conditions, the suggested controller could perform adequately in ideal and
turbulent conditions. In addition to the signal analysis provided for the obtained results in this
section, a more detailed evaluation will be presented next using two tracking error metrics: the Mean
Absolute Error (MAE) in Equation (39) and the Max Absolute Error, which is calculated for each flight
condition to understand better the performance achieved by each control system. These assessments
will be presented later in this section.

MAE =
1

2n ∑
∣∣ep
∣∣ (39)

As shown in Figure 5, the controller with both types of switching terms could meet the tracking
performance, as the roll rate could follow the reference signal. However, the T2AFSTSMC, equipped
with an adaptive switching term, could perform slightly better than the PSO-based T2AFSTSMC in
tracking the roll rate reference signal. This better performance of the adaptive switching term was
achieved because the adaptation laws were able to stabilize the aircraft more effectively by updating
the gain values during the simulation rather than by using the fixed parameters found by the PSO.
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As indicated in Figure 5, the results seem to be similar. Therefore, to determine which method
performed better in the control of the roll rate of the Cessna Citation X aircraft, another evaluation is
presented in Figure 6, based on the reference signal tracking. This figure shows that the T2AFSTSMC
with adaptive switching control can perform better than the PSO-based one in ideal flight conditions,
as the Mean Absolute Error (MAE) values (in black) were negligible and consistently smaller than
those obtained with the PSO algorithm.
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Figure 6. Mean absolute error for the T2AFSTSMC with adaptive switching control term (black) and
the PSO algorithm (red) for each flight condition in ideal condition.

In addition, the performance of the control system was assessed in terms of roll angle variations,
as shown in Figure 7. This figure clearly indicates that the aircraft is turning with the roll rate
commanded from zero to five degrees. However, there is a discrepancy between the actual roll angle
and its reference values after 6 s. Such an issue can be expected since the aircraft was experiencing
some residual yaw that was induced by the motion of the aircraft. The difference between the roll
angle and its reference signal in the controller with adaptive switching terms was slightly smaller
than the PSO-based one. This study required a high level of roll rate tracking performance, which
was successfully achieved.
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Figure 7. Roll angle variations for the T2AFSTSMC with (a) adaptive switching control term and
(b) PSO algorithm (The black dashed line represents the reference signal).

Designing a control system to generate a smooth control input signal is crucial for several
reasons, primarily in terms of passenger safety and comfort and to ensure that commands will
not damage the actuation system. Sudden or abrupt maneuvers could lead to structural damage
to the airframe and to accelerated wear and tear. In addition, from the flight dynamics approach,
smooth commands help to maintain the stability and maneuverability of an aircraft. Our goal was to
design a control system that produced a control input signal for ailerons with the most negligible
high-frequency oscillations. As shown in Figure 8, both control methodologies could satisfy this
criterion. However, the controller with the adaptive switching control term was smoother than the
one with PSO, especially during the first seconds of the simulation, as some abrupt changes (in some
flight conditions) can be seen between t = 0 to 2 s.
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As shown in Figure 9, to stabilize the yaw rate, we used an integral controller to reduce the
steady-state error between the sideslip angle and its trim value (which usually equals zero—black
dashed line). By maintaining the sideslip angle close to its trim value, it would be possible to ensure
that the yaw rate is stable, as any variations in the sideslip angle can change the yaw rate.
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As illustrated in Figure 10, the use of an integral feedback for the sideslip angle allowed the yaw
rate variations to be maintained in a reduced range close to zero. These results validate the proposed
strategy and demonstrate the effectiveness of the complete control system proposed in this paper.
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One of the main objectives of this research was to design a control system for minimizing the
effects of turbulence as a common critical condition during the cruise. To evaluate such systems, we
used the Dryden turbulence model available in the Simulink Aerospace Blockset to obtain the effects of
turbulence on the performance of Cessna Citation X aircraft equipped with the proposed T2AFSTSMC
controllers. To achieve the objectives of this research, we selected the moderate probability for
exceedance of high-altitude intensity (equal to 10−3) in accordance with the specifications given in
MIL-F-8785C [50].

Earlier in this section, we analyzed the performance of control methodologies under ideal
conditions, demonstrating their efficiency and reliability. However, a test of the robustness and
adaptability of an aircraft control system lies in its ability to handle real-world phenomena such
as turbulence while maintaining the aircraft stability. This analysis highlights the capabilities of
the designed control systems and provides precious insights to ensure optimal performance under
operational conditions.

As represented in Figure 11, the tracking performance was achieved with both control system
methods handling the turbulence effects with a minimum amplitude variation.
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Figure 11. Time variations of the roll rate for T2AFSTSMC with (a) adaptive switching control term
and (b) the PSO-based one (The black dashed line represents the reference signal).

The simulation results in Figure 11 are numerically compared with those shown in Figure 12
at each flight condition, revealing that the MAE values varied in almost the same range using the
T2AFSTSMC with an adaptive switching term and with a PSO-based switching term. The trend of
these variations shows that as the altitude increased, the MAE values consistently decreased (the
first flight condition had the lowest altitude (8000 ft), and the 925th flight condition had the highest
altitude (45,000 ft)), indicating that the controller could operate better at higher altitudes than at lower
altitudes.
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Figure 12. MAEs for T2AFSTSMC using an adaptive switching term (black) and a PSO-based
switching term (red) for each flight condition with turbulence.

While the trends of MAE variations are presented in Figure 12, it was not obvious which
method could operate better in the presence of turbulence. To investigate any possible differences,
the distribution of the MAEs across all flight conditions was assessed, as shown by the histogram
in Figure 13. This evaluation showed that the controller with a PSO-based switching term operated
better than the one with an adaptive term, as the MAE values for all flight conditions were less than
0.06 degrees per second. However, the maximum MAE for the controller with an adaptive switching
term was very close to this value at less than 0.07 deg/s.
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Figure 13. Distribution of the MAEs for T2AFSTSMC using an adaptive switching term (UP) and a
PSO-based switching term (down) under turbulence in 925 flight conditions.

As shown in Figure 14, the aircraft equipped with both switching terms attempted to achieve
the commanded roll angle of 5 degrees. However, due to the erratic effects of the turbulence, the roll
angle deviated from its reference roll angle, and the aircraft could not remain stable at the targeted 5
degrees. These challenging variations imposed on the maneuverability of the aircraft have occurred
in both control methodologies.
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As shown in Figure 15, the produced aileron control input signals had minimum abrupt oscilla-
tions (without high amplitude) in the presence of turbulence. This characteristic was successfully
achieved with both methods since the imposed effects of the turbulence forced the control system to
change the position of the ailerons very rapidly within a restricted deviation range.
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4. Conclusions
In this work, an enhanced Type-Two Adaptive Fuzzy Super-Twisting Sliding-Mode Control

system was developed and validated with the nonlinear lateral model of the Cessna Citation X
business jet aircraft. In this control system, the Type-Two Fuzzy Logic System approximated the
unknown function in the state-space model of the aircraft with no prior knowledge of its parameters.
This approximated function could be updated during the simulation using the adaptation laws
derived from the Lyapunov theorem. This methodology helped to handle the uncertainties and
parameter variations effectively. Both robustness and stability were achieved using the proposed
super-twisting sliding-mode control system for the Cessna Citation X aircraft. Principally, in the
sliding-mode control, the control law consisted of an equivalent control law based on the concept
of the proposed Type-Two Adaptive Fuzzy System and the switching control law. Two methods
were employed to choose the best gains values in the switching control law: one with the adaptation
laws developed for the gains by the Lyapunov theorem and the other with the gains found by the
PSO algorithm. The simulation results revealed that both control approaches were able to guarantee
the robustness and stability of the aircraft in the presence of turbulence with a moderate intensity(
10−3). Furthermore, the tracking performance of the roll rate was excellent while producing the

aileron control input with minimum high-frequency oscillations to avoid mechanical damage to the
aircraft actuation system. Regarding the tracking performance analyzed for the aircraft roll rate, it
was found that the controller equipped with a PSO-based switching control term operated better
than the adaptive one, with a maximum Mean Absolute Error (MAE) value equal to 0.06 degrees
per second in the presence of turbulence. Finally, this controller could be applied for any aircraft
model, as no knowledge regarding the aircraft model or the dynamic parameters is required, and the
Adaptive Type-Two Fuzzy Logic System can update the aircraft dynamics in real time with only a
measured state variable, such as the roll rate and its reference signal.
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Nomenclature

h(x) Unknown dynamics function
d(t) Atmospheric turbulence
uail Aileron command signal (degree)
urud Rudder command signal (degree)
x Aircraft state vector
β Sideslip angle (degree)
p Roll rate (degree per second)
pre f Roll rate reference (degree per second)
r Yaw rate (degree per second)
µn

i (xi) Fuzzy membership function
ĥ(x) Approximated dynamics function
θT

up, θT
lo Fuzzy adjustable parameters vector

Ψup(x), Ψlo(x) Fuzzy Basis Functions (FBFs)
ep Roll rate tracking error
Sl Sliding surface for the lateral motion
C, Nup, Nlo Positive design parameters
ueq Equivalent control law
usw Switching control law
L1, L2, r1 Positive gains in the super-twisting switching control law
Vt Proposed Lyapunov candidate
Vf uzzy Lyapunov term for the Type-Two Adaptive Fuzzy System
Vsw Lyapunov term for the adaptive super-twisting switching control law
ϵ Minimum approximation error
Λ1, H, N, Lm, ξ Positive design parameters
Pbr Personal best in the PSO algorithm
Gb Global best in the PSO algorithm
m1, m2, n(x.t) Uncertain functions
δ1, δ2 Arbitrary positive finite boundaries for m1 and m2
T Assumed state vector
Ch, Cd, Fh Positive constants
s Iterations in the PSO
J Number of swarm particles
ylo, yup Lowest and highest bounds of decision variables
wdamp Damping inertia in the PSO
c1 Personal acceleration in the PSO
c2 Social acceleration in the PSO
ks Scaling factor for the particle’s velocity in the PSO
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