
Alexandria Engineering Journal 108 (2024) 436–444

A
1
B

Contents lists available at ScienceDirect

Alexandria Engineering Journal

journal homepage: www.elsevier.com/locate/aej

Original article

DDANF: Deep denoising autoencoder normalizing flow for unsupervised
multivariate time series anomaly detection
Xigang Zhao a, Peng Liu a,∗, Saïd Mahmoudi b, Sahil Garg c,d, Georges Kaddoum c,
Mohammad Mehedi Hassan e

a School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
b Computer Science Department, Faculty of Engineering, University of Mons, Mons, 7000, Belgium
c École de technologie supérieure, Montreal, H3C 1K3, Canada
d Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
e Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia

A R T I C L E I N F O

Keywords:
Anomaly detection
Normalizing flow
Time series
Autoencoder

A B S T R A C T

In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors
across various critical infrastructures such as power plants, service monitoring systems, space and earth
exploration missions, and water treatment facilities have resulted in the generation of vast quantities of
multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet
challenging problem in time series research, necessitating machine learning models capable of identifying rare
anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning
representations of primary patterns within sequences and detecting deviations through reconstruction errors.
However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns
inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail
to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial
criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised
method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central
to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the
model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized
flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies
and improving detection accuracy. Experimental validation conducted on two large-scale public datasets
demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its
superior performance.
1. Introduction

With the rapid advancement of Internet of Things (IoT) technology,
various real-world systems ranging from large industrial machinery
to intelligent robots and IT servers are increasingly equipped with
sensors capable of capturing extensive multivariate time series data.
This data serves as a valuable resource for predicting future trends,
identifying patterns, and analyzing historical operational conditions.
Of particular significance in time series analysis is anomaly detection,
which plays a crucial role in enhancing operational efficiency and
security. Effective anomaly detection not only helps mitigate equipment
wear and tear but also enables timely detection of external threats.
This capability is critically needed across diverse applications including
mechanical fault diagnosis, network intrusion detection, and financial

∗ Corresponding author.
E-mail address: perryliu@hdu.edu.cn (P. Liu).

fraud prevention. Thus, the development of robust anomaly detection
methods remains a pressing priority in leveraging IoT data for improved
system performance and resilience in various domains.

Due to the vast scale of time series data and the infrequent oc-
currence of anomalies within them, detecting anomalies in time series
poses a significant challenge due to its highly imbalanced nature.
Moreover, the manual annotation of such voluminous time series data is
prohibitively expensive and impractical. Consequently, research in time
series anomaly detection has predominantly focused on unsupervised
learning approaches. In recent decades, a plethora of classical methods
have emerged to address this challenge [1]. Machine learning tech-
niques, including density-based local outlier factor (LOF) [2], distance-
based K-nearest neighbors algorithm [3], clustering-based One-Class
vailable online 2 August 2024
110-0168/© 2024 The Authors. Published by Elsevier B.V. on behalf of Faculty of E
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.aej.2024.07.013
Received 24 April 2024; Received in revised form 18 June 2024; Accepted 4 July 2
ngineering, Alexandria University. This is an open access article under the CC

024

https://www.elsevier.com/locate/aej
https://www.elsevier.com/locate/aej
mailto:perryliu@hdu.edu.cn
https://doi.org/10.1016/j.aej.2024.07.013
https://doi.org/10.1016/j.aej.2024.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2024.07.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
Support Vector Machine (OC-SVM) [4], and label estimation meth-
ods [5], have demonstrated promising results in terms of accuracy and
computational efficiency. However, these methods often encounter the
curse of dimensionality, particularly when applied to high-dimensional
data [6]. This issue escalates in today’s information-rich society where
high-dimensional time series data is prevalent across various domains.
Addressing these computational challenges remains imperative for ad-
vancing the effectiveness of anomaly detection methods in real-world
applications. In recent years, the rapid advancement of deep learning
and neural networks has significantly enhanced the capability to handle
high-dimensional data beyond the capacity of traditional methods.
Deep learning techniques are increasingly prevalent in the realm of
anomaly detection in time series data, leveraging innovations such as
autoencoders [7] and deep generative models [8]. These methods share
a fundamental premise: normal data can be more accurately recon-
structed or generated from latent representations compared to anoma-
lous instances [9]. However, research has uncovered challenges specific
to these approaches, notably autoencoders’ susceptibility to overfitting,
which can lead to diminished reconstruction errors for anomalies [9].
Moreover, as autoencoders scale in complexity, they risk memorizing
rather than truly learning the underlying data structure, compromising
anomaly detection accuracy. Similarly, methods based on generative
adversarial networks (GANs) confront issues such as training instability
and mode collapse [10], necessitating meticulous model tuning efforts
by researchers. Additionally, multivariate time series data distinguishes
itself from univariate counterparts by encompassing multiple variables
or channels with intricate interdependencies, which anomalies may
disrupt. Regrettably, most existing anomaly detection methods do not
explicitly account for these inter-variable relationships. Addressing
these challenges is crucial for advancing anomaly detection capabilities
in complex real-world applications.

In this paper, we introduce a novel method for detecting anomalies
in multivariate time series data, termed Deep Denoising Autoencoder
Normalizing Flow (DDANF). DDANF is a reconstruction model based on
autoencoders. However, unlike conventional autoencoders, it utilizes
Normalizing Flow and denoising methods to escape the dilemma of
overfitting inherent in autoencoders. Additionally, the model is trained
unsupervised exclusively on normal data, which effectively reduces the
cost of data acquisition. Furthermore, the channel shuffling mechanism
endows DDANF with the capability to learn the associations between
channels or variables. One distinctive feature of DDANF is its utilization
of Normalizing Flow within the autoencoder’s bottleneck layer. This
integration constrains the latent space, preventing the autoencoder
from merely replicating input data and ensuring that anomalies can-
not be accurately reconstructed. Moreover, Normalizing Flow enables
DDANF to assess anomaly likelihoods based on perceptual features,
enhancing the model’s interpretability at a semantic level. Additionally,
DDANF incorporates a novel channel shuffling and sequential infor-
mation embedding module. This module enhances the model’s ability
to discern relationships and dependencies among different channels or
variables explicitly. By shuffling channels, DDANF learns to capture
intricate inter-variable associations, which are critical for accurate
anomaly detection in complex multivariate datasets. As with many
unsupervised methods, DDANF underscores its practicality by relying
exclusively on normal data for training, aligning with real-world sce-
narios where labeled anomaly instances are sparse. This approach not
only improves computational efficiency but also enhances the model’s
robustness in anomaly detection tasks across various domains. Overall,
DDANF represents a significant advancement in multivariate time series
anomaly detection, leveraging deep learning techniques to address key
challenges and offering promising prospects for practical application in
real-world settings.

The rest of this paper is organized as follows. Section 2 discusses
related work on unsupervised time series anomaly detection. Section 3
is a detailed description of the proposed solution, and Section 4 presents
the experiments results and detailed analysis. Finally, Section 5 con-
437

cludes the paper.
2. Related work

The field of unsupervised time series anomaly detection can be
systematically categorized into three distinct approaches based on their
foundational implementation principles: representation and reconstruc-
tion methods, prediction-based methods, and probability distribution-
based methods.

2.1. Based on representation and reconstruction

The method based on representation and reconstruction refers to
learning the representation of normal and abnormal data or only the
representation of normal data by optimizing the model, and then using
it to reconstruct the input, judging anomalies based on the differences
between representations and reconstruction errors. The key aspect of
this type of approach is that the model is forced to capture some
underlying patterns in the data that can be used as a discriminator of
normal and abnormal. Reconstruction-based method is a widely used
unsupervised time series anomaly detection setting, and there have
been many methods designed in this lineup [6,11–17]. For example,
USAD [6] employs a two-level autoencoders architecture and uses
adversarial training to balance these two parts of the architecture. Its
motivation is to reduce the reconstruction error of normal data while
increasing the reconstruction error of anomalies, playing a minimax
game between these objectives. Similar to USAD, TSAE [11] builds
a two-stage autoencoders structure that decomposes time series into
a long-term component and a short-term component, and then re-
constructs each part separately. The reconstruction method based on
autoencoders is characterized by its clear principle and simple struc-
ture. However, it is prone to the pitfalls of overfitting and mechanically
memorizing data. Some methods are based on deep generative model,
such as TAnoGAN [12], MadGAN [13], and MARU-GAN [15], these
methods are inspired by either AnoGAN [18] or EGBAD [19]. They
train a generative adversarial network on normal data, learning how
to transform between two data domains. This transformation is later
used to reconstruct samples, and data with large reconstruction errors
are considered anomalous. However, these methods are also affected
by unstable training and mode collapse.

Similarly, normalizing flow [20] is a popular generative model for
simplifying complex data distributions into more manageable forms,
such as the standard normal distribution, through a series of invert-
ible and differentiable transformations. Normalizing flow has been
effectively applied in various fields [21–23], including anomaly de-
tection, where they excel at identifying deviations from normal pat-
terns. Recent developments in anomaly detection leveraging normaliz-
ing flow have shown remarkable performance on industrial datasets.
Approaches like Differnet [22] and CFLOW-AD [23] use deep learn-
ing to extract features and apply normalizing flow to estimate the
likelihood of data, flagging anomalies based on statistical thresholds.
However, these methods may overlook the structural nuances of the
data. Incorporating autoencoders with normalizing flow overcomes this
by establishing a mapping that captures the intrinsic structure of the
data, thereby enhancing anomaly detection capabilities of the models.

2.2. Based on prediction

The prediction-based approach [24–27], typically utilizes sequential
representation networks or autoregressive methods to forecast sub-
sequent data, such as long short-term memory (LSTM) [24], gated
recurrent units (GRU) [28], and transformer [29], etc. The network
needs to learn and understand the temporal dependencies within a
sequence length to make better prediction. The error between pre-
diction and actual can be used to detect anomalies. Using LSTM to
detect spacecraft anomalies was presented in [24], which modeled
predictable normal events while distinguishing unanticipated anoma-

lies, demonstrating the feasibility of LSTM in predicting telemetry

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
Fig. 1. The architecture of DDANF.
data of spacecraft. The first anomaly detection framework using future
frame prediction network was proposed in [25], which also came
with temporal and spatial constraints to achieve accurate prediction
and detection. Due to the divergent objectives between time series
forecasting and anomaly detection, models predicated on forecasting
may be susceptible to the impact of such inconsistency.

2.3. Based on probability distribution

The goal of the probability distribution-based approach [30–32] is
to model the probability distribution of time series. DAGMM [30] first
maps the samples to a low-dimensional space, and then uses an estima-
tion network to evaluate the energy of the samples in the framework
of Gaussian mixture models [30]. By jointly optimizing the mapping
model and the mixture model, the balance between reconstruction
error and density estimation of latent representations is achieved,
making the model less likely to fall into local optima. Motivated by
real anomaly data and use cases commonly found in monitoring cloud
services, a method for directly modeling the probability distribution
of time series is proposed in [31] for detecting the status of network
microservices and cloud resources, which can be used for anomaly
detection in streaming data. Given the complexity of time series data,
accurately modeling their data distribution is often quite challenging.
Furthermore, as time progresses and the environment evolves, models
typically require retraining to adapt to the new data distribution.

3. DDANF

We propose a multivariate time series anomaly detection method
that effectively combines the differences between the original time
series and the reconstructed sequence with the likelihood of sequence
feature distribution. The proposed model comprises multiple compo-
nents, primarily consisting of three modules: an encoder, a normalizing
flow, and a decoder. Additionally, we add an auxiliary module before
the encoder, namely, channel shuffling and sequential information
embedding module. Specifically, the input is first added to the noise,
which is intended to increase the difficulty of network training, achieve
a certain regularization effect, and reduce overfitting. The added noise
follows a Gaussian distribution with a mean of 0 and a variance of 0.5,
and its dimensions are consistent with the dimensions of the model’s
input sequence. The input sequence, which is contaminated with noise,
undergoes a random channel shuffling process and is then passed
through the encoder along with additional embedding information in
a sequential manner. The input sequence is subsequently processed
through multiple encoding blocks, wherein each block extracts features
438
from the preceding block’s output. After passing through the final
encoding block, the input data flow is given as output to a normalizing
flow network immediately following the encoder. The normalizing flow
is composed of multiple layers of affine coupled transformations, and its
output is further fed into the decoder after being contracted by triplet
loss. Next, the decoder will output the reconstructed time series. The
overall loss function considers both the reconstruction loss of the initial
input sequence and the output sequence at the low-level semantic level,
as well as the likelihood of the sequence feature distribution at the high-
level perceptual level. Finally, we calculate the anomaly score of the
sequence through the flow loss and reconstruction error in the inference
process.

The overall pipeline of the proposed method is illustrated in Fig. 1,
and we will provide detailed explanations of these modules in the
following sections. This section is organized as follows: we first define
the problem to be addressed in Section 3.1, followed by a necessary
introduction to normalizing flow in Section 3.2 for better comprehen-
sion of subsequent parts. Finally, in Section 3.3, we delve into the
description of each module beyond the flow.

3.1. Problem statement

Formally, a time series can be represented as a collection of multiple
data points,

 = {𝑋1, 𝑋2,… , 𝑋𝑇 }, 𝑋 ∈ R𝑚, (1)

where each data point 𝑋𝑡 represents an observation at time 𝑡 with 𝑚
features. Typically, a time series is constructed as a collection of data
points ordered by their observation time, with equal intervals between
each observation. For multivariate time series, 𝑚 > 1, otherwise it is a
univariate time series. In this paper, we mainly focus on multivariate
time series. To simplify the description, we have 𝑚 > 1 unless otherwise
specified in the following context.

For unsupervised anomaly detection in time series, the object is
to identify outlier data points that deviate significantly from the ma-
jority of observations without any prior labeled information. In the
scenario where serves as the training input, the model needs to
fully utilize the characteristics of input data 𝑋𝑡, mine the temporal
correlation and variables (or channels) association therein, and learn
a well-reconstructed representation of the input. For input data 𝑋𝑡, 𝑡 ≠
𝑇 , the model should provide an anomaly scoring function , where
(𝑛𝑜𝑟𝑚𝑎𝑙) < (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙) for all normal and anomalous data.

Due to typically vast size of time series data in the real world, estab-
lishing complete temporal associations can be extremely challenging.

In most existing time series anomaly detection algorithms, a sliding

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
Fig. 2. Conceptual diagram of the latent space, from the unknown latent (light green)
to the predefined latent space (dark green). The model restricts the encoding to the
defined latent space as much as possible, as shown by the red circles in the figure.
Points outside the latent space (white dots) will not be encoded and decoded accurately.

window approach is employed, whereby the time series is partitioned
into windows of a certain step, so that a window can be expressed as

𝑡 = {𝑋𝑡−𝑠+1,… , 𝑋𝑡−1, 𝑋𝑡}, (2)

where 𝑠 denotes the stride. The original time series is divided into
different time windows, and anomaly detection is performed on a
window-wise basis. To facilitate subsequent metric calculations, we
assign a binary label 𝑦 ∈ {0, 1} to unseen windows based on the
magnitude of their anomaly scores, with a label of 1 assigned to 𝑡 that
is determined to be anomalous, and a label of 0 assigned otherwise.

3.2. Normalizing flow

The encoder–decoder architecture is prone to the issue of the model
mechanically memorizing input rather than truly understanding the
characteristics of the input data, resulting in accurate reconstruction
of anomalous data and leading to suboptimal results [33]. The unre-
stricted potential space is a significant factor behind this reason. There-
fore, in this paper, we utilize a special generative model—normalizing
flow [34], to transfer the unrestricted undefined latent space formed
by the encoder into a restricted predefined latent space, as described in
Fig. 2. In this way, a constraint is imposed on the potential threshold
layer of the model such that it has a significant gap to normal and
abnormal reconstructions.

The flow-based model is a type of deep generative model composed
of a series of invertible transformations, which utilize the rule of change
of variables to achieve reversible mapping from a complex distribution
 to a simple distribution . Formally, we denote 𝑓𝜃 as an invertible
transformation function from ∈ R𝑑 to ∈ R𝑑 , which can be realized
in the real world using affine coupling network. As such, we can obtain
a combination of affine coupling layers:

𝑓𝜃 = 𝑓𝐿◦𝑓𝐿−1◦… ◦𝑓1, (3)

where 𝜃 represents the learnable parameters of the coupling layers,
and 𝐿 denotes the total number of layers. The d-dimensional input
and output features of the normalizing flow model can be defined as
𝑦0 = 𝑥 ∈ , 𝑦𝐿 = 𝑧 ∈ . Thus the latent variables can be expressed
as 𝑦𝑙 = 𝑓𝑙(𝑦𝑙−1), and the remaining layers {𝑦𝑙}𝐿−1𝑙=1 are considered as
the output results of the intermediate latent layers. After obtaining the
overall coupling transformation, we can estimate the distribution 𝑝(𝑥)
of the initial input through a predefined prior distribution with the help
of the change of variables:

𝑝 (𝑥) = 𝑝 (𝑧)
|

|

𝑑𝑧 |
| = 𝑝 (𝑓 (𝑥))

|

|

𝑑𝑓 (𝑥) |
| , (4)
439

𝑥 𝑧 |

|
𝑑𝑥 |

|

𝑧 |

|
𝑑𝑥 |

|

taking the logarithm and adding multiple coupling layers,

log 𝑝𝜃(𝑥) = log 𝑝(𝑓𝜃(𝑥)) +
𝐿
∑

𝑙=1
log ||

|

det 𝑓𝑙 (𝑦𝑙−1)
|

|

|

, (5)

the item can be expressed as a Jacobian matrix under the condition
of multi-layer transformation, where det represents the determinant of
the matrix. The training objective of the normalizing flow is to contin-
uously approximate the true target distribution 𝑝(𝑥) through 𝑝𝜃(𝑥). The
set of parameters, 𝜃, is obtained by optimizing the log-likelihood of 𝑝(𝑥)
as follows:

𝜃∗ = argmin
𝜃∈𝛩

E𝑥∼𝑝

[

− log 𝑝𝜃(𝑥)
]

. (6)

For the majority of real-world scenarios, it is appropriate to use
a normal distribution (Gaussian distribution) for description. Similar
to [35], we adopt the normal distribution (𝜇,Σ) as the defined prior
distribution. Therefore, given that 𝑝(𝑧) follows a multivariate normal
distribution, according to the formula (5), we can obtain:

𝑝(𝑧) =(2𝜋)
− 𝑑

2 det(𝛴− 1
2) exp(

−1
2
(𝑧 − 𝜇)𝑇𝛴−1(𝑧 − 𝜇)),

(7)

where 𝜇 denotes the mean of the multivariate Gaussian distribution
and 𝛴 denotes the covariance. For simplicity, we further assume that
the prior distribution obeys the standard Gaussian distribution (0, 𝐈).
Consequently, we can derive the following result according to formula
(7):

𝑝(𝑧) = (2𝜋)−
𝑑
2 exp(−1

2
𝑧𝑇 𝑧). (8)

Therefore, the optimization objective in (6) can be further expressed
as:

𝜃∗ = argmin
𝜃∈𝛩

E𝑥∼𝑝

[𝑑
2
log(2𝜋) + 1

2
𝑓𝜃(𝑥)𝑇 𝑓𝜃(𝑥)−

𝐿
∑

𝑙=1
log ||

|

det 𝑓𝑙 (𝑦𝑙−1)
|

|

|

]

.
(9)

Ultimately, the maximum likelihood loss function used for optimiz-
ing the normalizing flow can be defined as the following equation:

𝑓𝑙𝑜𝑤 = E𝑥∼𝑝

[𝑑
2
log(2𝜋) + 1

2
𝑓𝜃(𝑥)𝑇 𝑓𝜃(𝑥)−

𝐿
∑

𝑙=1
log ||

|

det 𝑓𝑙 (𝑦𝑙−1)
|

|

|

]

.
(10)

Intuitively, when training the standardized flow solely on normal
sequences, the encoding of normal sequences will be mapped to the
high-density region of the prior Gaussian distribution, while the en-
coding of anomalous sequences will gravitate towards the low-density
region due to their lack of exposure during training. As a result, the
decoder will be unable to accurately reconstruct the input time series.

3.3. Module design of DDANF

Channel shuffle and embedding. Multivariate time series not only con-
tain the association information of the temporal dimension, but also
the association information of multiple features (or channels), which
is a significant difference from univariate time series. Each feature or
channel of a multivariate time series represents a unique series, i.e., a
univariate time series. There may exist strong or weak dependency
relationships between these time series, which cannot be discerned
from the data itself. In terms of anomalies, the manifestation of an
anomaly on one channel often affects other channels due to the exis-
tence of such dependencies. Therefore, if the model is able to recognize
the differences between different channels as well as the potential
correlations between channels, it will have additional evidence for
more optimal anomaly detection. In contrast, assuming these channels

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
Fig. 3. The abstract concept diagram of channel shuffling and sequential information embedding. In the diagram, the numbers represent the indices of different channel positions,
while the embedding layer is responsible for embedding the randomly shuffled index sequence into the input sequence.
are independent of each other will degrade the data into univariate
data, which will prevent the model from leveraging the advantages
of multivariate time series and hinder accurate anomaly detection.
The model commences with a channel shuffling and embedding mod-
ule, constructing data that incorporates channel information, which is
subsequently fed into the encoder.

For the given multivariate time series, each variable is regarded as
a channel, with the index of the variable serving as the channel’s index.
During the channel shuffling operation, the model randomly rearranges
the indices of these channels. Concurrently, to enable the model to
better recognize the relative positions between channels, we process the
sequence of channel indices through an embedding layer, embedding
the order information of the channels into the model’s input. To be
specific, as shown in Fig. 3, when the input sequence processed by noise
enters the channel shuffling module, the channel of the input sequence
will be randomly shuffled and reorganized to form a new sequence.
Meanwhile, this sequence will be embedded with channel sequential
information through an embedding layer network. Subsequently, the
sequence will be feature-extracted in the encoder.

Encoder. The encoder is responsible for receiving input sequences
containing channel information, extracting features through multiple
layers of encoding blocks, and finally passing the resulting encoding
to the normalizing flow. More specifically, the encoder of the model
is composed of multiple stacked encoding blocks, with four blocks
selected in this paper. Each encoding block first extracts information
through convolutional operations, followed by batch normalization and
activation layers, and finally undergoes the above operations again for
downsampling. This is the standard process for one encoding block.
Each time the sequence passes through an encoding block, its length
decreases and the number of channels increases.

Implementation of normalizing flow. The architecture of the normalizing
flow adopts an invertible neural network, and the affine coupling layer
is the most important part of the flow architecture. In this paper, we use
a Resnet-type [36] network structure as the coupling layer, and design
a two-layer convolution, batch normalization, and activation process
inside it, so as to realize a coupling layer sub-network. Finally, multiple
sub-networks are stacked to form a normalizing flow that receives the
output code from the encoder and outputs the latent code after a series
of coupling transformations.

Decoder. The latent representations from normalizing flow will be con-
tracted and converged under the influence of the triplet loss function.
It further restricts the latent space of the normalizing flow, making it
more likely that abnormal latent codes will fall outside the latent space,
which in turn makes it more difficult for the decoder to accurately
reconstruct these anomalies due to the fact that the model has only
440
been trained and learned within the latent space. Therefore, the ability
of the model to distinguish between normal and abnormal instances is
further enhanced. The triplet loss learning method used in this paper
is a self-supervised method for learning latent representations, which
enables the threshold layer of the model to produce more discrimina-
tive embeddings. For each latent variable 𝑧, its positive counterpart
𝑧+ is obtained by adding random noise while its negative counterpart
𝑧− is obtained through randomly selecting an instance. The triplet loss
function can then be formulated as follows:

𝑡𝑟𝑖𝑝𝑙𝑒𝑡(𝑧) = max
{

0, 𝐷+ −𝐷− + 𝜀
}

, (11)
𝐷+ = 𝐷𝑖𝑠𝑡(𝑧, 𝑧+),
𝐷− = min

{

𝐷𝑖𝑠𝑡(𝑧+, 𝑧−), 𝐷𝑖𝑠𝑡(𝑧, 𝑧−)
}

,

where 𝜀 represents the marginal parameter, and 𝐷𝑖𝑠𝑡 denotes the
method used to calculate the distance between a pair of instances. The
representation with triplet loss applied is fed to the decoder as input.
The structure of the decoder is similar to that of the encoder but in
reverse order, except that the decoder uses deconvolution.

Overall objective function. In the training phase, the overall loss func-
tion of the model consists of the flow loss 𝑓𝑙𝑜𝑤 as shown in formula
(11), the reconstruction loss 𝑟𝑒𝑐 for the input and output sequences at
the semantic level,

𝑟𝑒𝑐 = ‖𝑋 −𝑋′
‖

2, (12)

and the triplet loss 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 as shown in formula (10). The overall
objective function is as follows:

 = 𝛼𝑓𝑙𝑜𝑤 + (1 − 𝛼)𝑟𝑒𝑐 + 𝑡𝑟𝑖𝑝𝑙𝑒𝑡, (13)

where 𝛼 is a trade-off coefficient that controls the importance of
different terms.

Anomaly score. The anomaly scoring function utilized in the inference
stage consists of two components, with one being the mathematical
expectation of log-likelihoods of flow. Specifically, the log likelihood
log𝑝 under the standard Gaussian prior can be obtained according to
formula (5), which can be converted to exponential form for the con-
venience of calculating the anomaly score. And since the anomaly score
measures the likelihood of anomalies, the first term of the anomaly
scoring function is:

 (𝑥) = 1 − exp(log 𝑝(𝑥)). (14)

The other item is the reconstruction loss of the input sequence 𝑋
and the output sequence 𝑋′ at the semantic level, and in the inference
stage we use the Dynamic Time Warping (DTW) approach to calculate
the reconstruction loss. Ultimately, the anomaly scoring function has
the following form:

(𝑋) = (𝑧) +𝐷𝑇𝑊 (𝑋,𝑋′). (15)

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.

f
o

4

w
m
n
d
A

Table 1
Quantitative results for different methods.

Datasets Methods Precision Recall F1 score

SWaT

FB 10.17 10.17 10.10
KNN 12.28 11.75 12.01
EncDec-AD (2016) [37] 11.40 68.25 19.53
EGAN (2018) [19] 23.27 67.37 34.59
SSL (2022) [38] 38.64 74.06 50.79
LSTM-AD (2015) [39] 43.45 82.13 56.83
MAD-GAN (2019) [13] 58.10 65.37 61.52
MARU-GAN (2020) [15] 48.93 85.01 62.11
IF (2008) [40] 72.43 59.05 65.06
DAGMM (2018) [30] 80.18 67.29 73.17

Ours 89.44 64.53 74.97

WADI

KNN 9.00 7.75 8.33
FB 10.05 8.55 9.24
EGAN (2018) [19] 11.27 52.92 18.58
EncDec-AD (2016)[37] 11.40 68.25 19.53
DAGMM (2018) [30] 22.28 19.76 20.94
SSL (2022) [38] 99.34 14.95 25.99
MAD-GAN (2019) [13] 22.78 59.13 32.89
LSTM-VAE (2018) [41] 46.19 32.12 37.89
OA (2019) [42] 26.52 97.99 41.74

Ours 37.70 50.80 43.28

For these metrics, a higher value indicates a better performance. The best F1 score is shown in bold.
The aforementioned baselines are arranged in ascending order according to the F1-score.
4. Experiments and analysis

4.1. Datasets

Two public datasets are used in the experiments of this paper. The
following is a detailed description of these datasets.

SWaT: SWaT is the Safe Water Treatment dataset [43], which is
composed of data collected from 51 sensors on a scaled-down indus-
trial water treatment testbed. This dataset provides continuous sensor
observations for 11 days, with the first 7 days consisting of only normal
observations, and the following 4 days injecting multiple anomalies
into the data using various attack methods.

WADI: The WADI dataset, short for water distribution dataset [44],
was obtained by running an urban water distribution system. The sys-
tem was operated continuously for 16 days and collected observations
from 123 sensors. During these days, data was collected under normal
operating conditions for the first 14 days, while the remaining time
included observations with anomalies.

4.2. Evaluation metrics

In this paper, we use precision (P), recall (R) and F1 score (F1) as
metrics to evaluate the detection performance of the model:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (16)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝐹1 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅

,

where 𝑇𝑃 stands for true positive, 𝐹𝑃 for false positive, and 𝐹𝑁
or true negative. In the experiment, positive means the label is 1,
therwise the label is 0.

.3. Overall performance

To assess the performance of the DDANF model, we compared it
ith several popular unsupervised anomaly detection methods. These
ethods include: the Isolated Forest (IF) approach [40]; K-nearest
eighbors (KNN); Feature Bagging (FB); EncDec-AD [37]: an anomaly
etection method that utilizes the encoder–decoder model; LSTM-
D [39]: anomaly detection using the LSTM structure; generative
441
detection methods: Efficient GAN (EGAN) [19], MAD-GAN [13] and
MARU-GAN [15]; DAGMM [30]: an anomaly detection method that
utilizes a Gaussian mixture model; LSTM-VAE [41]: an anomaly de-
tection method that combines LSTM and variational autoencoder;
OmniAnomaly (OA) [42]: time series anomaly detection using random
recurrent neural networks; BEATGAN [45]: a model detects anomalies
using the adversarially generated time series; SSL [38]: a framework
consists of two augmentation techniques in time series that capture
two different patterns of original samples before feeding them to the
classifier.

In our experiments, the window size was set to 32, and the number
of encoding and decoding blocks (i.e., the number of model layers)
was uniformly set to 3. Additionally, the batch size was set to 256,
and the learning rate was set to 1.0 × 10−3. The deep learning frame-
work utilized for the experiment was PyTorch 2.0.0, employing the
Adam [46] optimizer, and the experiments were conducted on two
NVIDIA Tesla 16 GB GPUs. The detection results of these mainstream
methods and our method are presented in Table 1. The first column
of the table indicates the datasets on which these methods perform
anomaly detection, while the second column lists the name of different
detection methods. The rightmost three columns represent the P, R, and
F1 score, respectively. We use F1 score as the final evaluation metric,
which is consistent with the choice of most popular anomaly detection
methods, and the F1 score of the best performing method is highlighted
in bold. The results of these detection methods used as comparisons
are obtained from [6,15] and the reproductions of the corresponding
algorithms, and their average values are taken for fairness.

By analyzing the results in Table 1, it can be observed that tradi-
tional machine learning methods, such as KNN and FB, have relatively
lower F1 score compared to other mainstream methods, and perform
worse on the WADI dataset. In fact, the number of features in the
WADI dataset is greater than that of the SWaT dataset, which suggests
that one possible reason for this phenomenon is that these traditional
methods are unable to adapt to time series with a larger number of
channels or features. Furthermore, the table also shows that DDANF
has better evaluation metrics compared to methods based on generative
adversarial networks, such as MAD-GAN.

MAD-GAN searches for latent variables corresponding to subse-
quences of the input time series by multiple iterations during training
so that the sequences generated from the latent variables are close

enough to the input. Therefore, one reason for the inferior performance

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
Table 2
AUC-ROC metrics.

Methods SWaT WADI

USAD (2020) [6] 0.7903 –
SSL (2022) [38] 0.7301 0.5076
BEATGAN (2023)[45] 0.8192 0.5643

Ours 0.8784 0.7824

Fig. 4. Effect of parameters.

of MAD-GAN is that the latent variables and generated sequences do not
always correspond one-to-one, and the selected latent variables may not
fully represent the inputs. The reason why DDANF outperforms other
methods is that DDANF distinguishes and learns channel knowledge
effectively, while the explicit channels shuffling mechanism serves as a
form of regularization. Additionally, by imposing strict constraints on
the latent space of the model, shortcuts such as directly copying inputs
are avoided, preventing complete reconstruction of anomalies.

In addition to commonly used evaluation metrics such as Precision,
Recall, and F1 score, we also report in Table 2 the area under curve
(AUC) of DDANF and three anomaly detection models within the past
three years, which is the area enclosed with the coordinate axis under
the receiver operating characteristic (ROC) curve.

As time series anomaly detection can be considered as an extremely
imbalanced classification problem, F1 score is easily influenced by
imbalanced data samples and cannot accurately reflect the performance
of the method, while AUC is robust to imbalanced samples. Moreover,
compared with threshold-independent metrics like AUC, F1 score is
more dependent on the selection of classification thresholds. However,
for the real-world problem of time series anomaly detection, finding
a suitable threshold is not easy and does not reflect actual situations,
requiring some expert experience and an appropriately sized dataset.
As can be seen in Table 2, our method outperforms recent time series
anomaly detection methods.
442
Fig. 5. Impact of different modules.

4.4. Model analysis

Dividing the complete time series into different subsequences using
a sliding window is a commonly used approach in unsupervised time
series anomaly detection methods, which is also adopted in this paper.
Therefore, the selection of sliding window size is crucial for anomaly
detection. A small sliding window may cause problems such as model
non-convergence and unstable detection, as the model cannot learn
the temporal dependencies of the complete time series through short
subsequences. In contrast, a large window usually achieves better
detection performance, but a larger sliding window is not always better.
A window that is too large would lose its practical application signif-
icance in real-world scenarios, as it requires collecting enough data
to form a window after the attack signal is emitted before detection
can be performed. The best results that DDANF can achieve with four
exponentially growing windows are shown in Fig. 4(a), with window
sizes 𝑠 taken as 16, 32, 64 and 128. It can be observed that the detection
performance no longer increases with increasing window size beyond
32, so the model is robust to windows of different sizes. A sliding
window of size 32 was chosen for our experiments.

Another concern of our investigation is the effect of the number of
layers of the encoder and decoder on the detection results. The encoder
and decoder of the model are generally symmetric, i.e., the number of
layers of the encoder and the number of layers of the decoder are equal.
When there are fewer layers, the number of model parameters is also
reduced, allowing the model to complete detection more quickly. How-
ever, the layers of the encoding block affects the extraction of sequence
information features by the model, so too few layers may result in the
encoder failing to extract effective information. As the number of layers
in the model increases, the number of model parameters also increases,
resulting in longer detection times and the extraction of redundant
information. Additionally, increasing the number of layers in the model
may lead to slow convergence due to gradient vanishing.

Fig. 4(b) summarizes the results obtained by DDANF using four
different layer depths (2, 3, 4, 5). The results show that a stable
performance can be maintained when the number of layers in the model
is greater than or equal to 3, and adding more layers is futile.

To validate the role of each module within the DDANF, we con-
ducted a detailed ablation study on the same dataset as previously
discussed. As depicted in Fig. 5, the horizontal axis of the figure rep-
resents the different datasets and the vertical axis represents the AOC
values obtained for the different model variants. We established three
variants based on the DDANF: w/o noise, w/o flow, and w/o triplet.
These variants represent the model without added noise, the model
without the normalization flow module, and the model without the
triplet loss, respectively, with all other parameters remaining constant.

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.

t

It can be observed from Fig. 5 that the removal of any module from the
model leads to a degree of performance degradation. Notably, among
the three different model variants, the degradation caused by w/o flow
is significantly more severe than the other two, revealing the pivotal
role of the normalization flow in the DDANF model.

5. Conclusions

In this study, for the multivariate time series anomaly detection
problem, we propose Deep Denosing Autoencoder Normalizing Flow
(DDANF), an unsupervised anomaly detection method based on denois-
ing autoencoder and normalizing flow. In this method, we introduce
a channel shuffle and sequential information embedding module to
explicitly make the model aware of the existence of channels and learn
the differences and complex dependencies between different channels.
Deep sequence features are extracted by an encoder and tight restric-
tions are imposed on the latent space of sequences using normalizing
flow and triplet loss, making the generation and reconstruction of
the decoder more purposeful. The model is shown to be robust to
different parameters through analysis of the model. Our experimental
results on two large public datasets show that the proposed method
DDANF outperforms other mainstream unsupervised anomaly detection
methods, confirming the effectiveness of the method.

For subsequent research endeavors, several directions can be con-
sidered: Firstly, existing detection methods largely rely on fixed-length
time series data as input. However, in practical applications, it may not
be feasible to ensure the availability of time series data of fixed lengths.
Expanding anomaly detection algorithms to naturally accommodate
variable-length inputs is a research direction worthy of exploration.
Secondly, deep learning techniques are highly data-dependent. The
current scale of time series anomaly detection datasets and the types
of anomalies are somewhat lacking, potentially failing to reveal the
true performance of algorithms. Future research could focus more
on enhancing the quality of datasets. Thirdly, due to the rarity of
anomalies, time series anomaly detection is an extremely imbalanced
problem. The commonly used F1-score metric is not particularly well-
suited for such issues. Yet, beyond this, there is no widely accepted
unified metric. To accurately measure the performance of algorithms,
there is a need to explore more robust and targeted evaluation metrics.

CRediT authorship contribution statement

Xigang Zhao: Writing – original draft, Formal analysis, Conceptu-
alization. Peng Liu: Writing – original draft, Methodology, Investiga-
ion, Formal analysis. Saïd Mahmoudi: Validation, Methodology. Sahil
Garg: Writing – review & editing, Resources, Project administration.
Georges Kaddoum: Writing – review & editing, Validation, Project ad-
ministration. Mohammad Mehedi Hassan: Writing – review & editing,
Supervision, Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by National Natural Science Foundation of
China (No. 62172134). The authors are grateful to King Saud Univer-
sity, Riyadh, Saudi Arabia for funding this work through Researchers
443

Supporting Project Number (RSP2024R18).
References

[1] M. Gupta, J. Gao, C.C. Aggarwal, J. Han, Outlier detection for temporal data: A
survey, IEEE Trans. Knowl. Data Eng. 26 (9) (2013) 2250–2267.

[2] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based
local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, 2000, pp. 93–104.

[3] W.A. Chaovalitwongse, Y.-J. Fan, R.C. Sachdeo, On the time series 𝑘-nearest
neighbor classification of abnormal brain activity, IEEE Trans. Syst. Man Cybern.
A 37 (6) (2007) 1005–1016.

[4] J. Ma, S. Perkins, Time-series novelty detection using one-class support vector
machines, in: Proceedings of the International Joint Conference on Neural
Networks, 2003., Vol. 3, IEEE, 2003, pp. 1741–1745.

[5] S. Baek, D. Kwon, S.C. Suh, H. Kim, I. Kim, J. Kim, Clustering-based label
estimation for network anomaly detection, Digit. Commun. Netw. 7 (1) (2021)
37–44.

[6] J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised
anomaly detection on multivariate time series, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 3395–3404.

[7] P. Wei, B. Wang, X. Dai, L. Li, F. He, A novel intrusion detection model for
the CAN bus packet of in-vehicle network based on attention mechanism and
autoencoder, Digit. Commun. Netw. 9 (1) (2023) 14–21.

[8] A. Oussidi, A. Elhassouny, Deep generative models: Survey, in: 2018 International
Conference on Intelligent Systems and Computer Vision, ISCV, IEEE, 2018, pp.
1–8.

[9] G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection:
A review, ACM Comput. Surv. (CSUR) 54 (2) (2021) 1–38.

[10] H. Li, Y. Li, Anomaly detection methods based on GAN: a survey, Appl. Intell.
53 (7) (2023) 8209–8231.

[11] S. Naito, Y. Taguchi, K. Nakata, Y. Kato, Anomaly detection for multivariate time
series on large-scale fluid handling plant using two-stage autoencoder, in: 2021
International Conference on Data Mining Workshops, ICDMW, IEEE, 2021, pp.
542–551.

[12] M.A. Bashar, R. Nayak, Tanogan: Time series anomaly detection with genera-
tive adversarial networks, in: 2020 IEEE Symposium Series on Computational
Intelligence, SSCI, IEEE, 2020, pp. 1778–1785.

[13] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.-K. Ng, MAD-gan: Multivariate anomaly
detection for time series data with generative adversarial networks, in: Artificial
Neural Networks and Machine Learning–ICANN 2019: Text and Time Series:
28th International Conference on Artificial Neural Networks, Munich, Germany,
September 17–19, 2019, Proceedings, Part IV, Springer, 2019, pp. 703–716.

[14] Y. Li, X. Peng, J. Zhang, Z. Li, M. Wen, DCT-gan: dilated convolutional
transformer-based gan for time series anomaly detection, IEEE Trans. Knowl.
Data Eng. (2021).

[15] C. Maru, I. Kobayashi, Collective anomaly detection for multivariate data
using generative adversarial networks, in: 2020 International Conference on
Computational Science and Computational Intelligence, CSCI, IEEE, 2020, pp.
598–604.

[16] Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, C. Yan, Fast wireless sensor
for anomaly detection based on data stream in an edge-computing-enabled smart
greenhouse, Digit. Commun. Netw. 8 (4) (2022) 498–507.

[17] B. Weinger, J. Kim, A. Sim, M. Nakashima, N. Moustafa, K.J. Wu, Enhancing IoT
anomaly detection performance for federated learning, Digit. Commun. Netw. 8
(3) (2022) 314–323.

[18] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs, Unsuper-
vised anomaly detection with generative adversarial networks to guide marker
discovery, in: Information Processing in Medical Imaging: 25th International
Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings,
Springer, 2017, pp. 146–157.

[19] H. Zenati, C.S. Foo, B. Lecouat, G. Manek, V.R. Chandrasekhar, Efficient
gan-based anomaly detection, 2018, arXiv preprint arXiv:1802.06222.

[20] D.P. Kingma, P. Dhariwal, Glow: Generative flow with invertible 1x1
convolutions, Adv. Neural Inf. Process. Syst. 31 (2018).

[21] G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshminarayanan,
Normalizing flows for probabilistic modeling and inference, J. Mach. Learn. Res.
22 (57) (2021) 1–64.

[22] M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised
defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2021, pp. 1907–1916.

[23] D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly
detection with localization via conditional normalizing flows, in: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp.
98–107.

[24] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding, in:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 387–395.

[25] W. Liu, W. Luo, D. Lian, S. Gao, Future frame prediction for anomaly detection–a
new baseline, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 6536–6545.

http://refhub.elsevier.com/S1110-0168(24)00734-8/sb1
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb1
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb1
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb2
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb2
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb2
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb2
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb2
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb3
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb3
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb3
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb3
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb3
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb4
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb4
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb4
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb4
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb4
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb5
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb5
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb5
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb5
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb5
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb6
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb7
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb7
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb7
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb7
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb7
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb8
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb8
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb8
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb8
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb8
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb9
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb9
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb9
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb10
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb10
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb10
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb11
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb12
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb12
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb12
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb12
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb12
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb13
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb14
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb14
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb14
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb14
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb14
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb15
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb16
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb16
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb16
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb16
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb16
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb17
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb17
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb17
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb17
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb17
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb18
http://arxiv.org/abs/1802.06222
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb20
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb20
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb20
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb21
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb21
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb21
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb21
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb21
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb22
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb22
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb22
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb22
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb22
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb23
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb24
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb25
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb25
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb25
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb25
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb25

Alexandria Engineering Journal 108 (2024) 436–444X. Zhao et al.
[26] Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani, Deep-distributed-
learning-based POI recommendation under mobile-edge networks, IEEE Internet
Things J. 10 (1) (2022) 303–317.

[27] J. Pan, N. Ye, H. Yu, T. Hong, S. Al-Rubaye, S. Mumtaz, A. Al-Dulaimi, I. Chih-
Lin, AI-driven blind signature classification for IoT connectivity: A deep learning
approach, IEEE Trans. Wireless Commun. 21 (8) (2022) 6033–6047.

[28] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent
neural networks on sequence modeling, 2014, arXiv preprint arXiv:1412.3555.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[30] B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep
autoencoding gaussian mixture model for unsupervised anomaly detection, in:
International Conference on Learning Representations, 2018.

[31] F. Ayed, L. Stella, T. Januschowski, J. Gasthaus, Anomaly detection at scale: The
case for deep distributional time series models, in: Service-Oriented Computing–
ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite
Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings,
Springer, 2021, pp. 97–109.

[32] Y. Xiao, K. Xia, H. Yin, Y.-D. Zhang, Z. Qian, Z. Liu, Y. Liang, X. Li, AFSTGCN:
Prediction for multivariate time series using an adaptive fused spatial-temporal
graph convolutional network, Digit. Commun. Netw. (2022) http://dx.doi.org/
10.1016/j.dcan.2022.06.019.

[33] A. Tong, G. Wolf, S. Krishnaswamyt, Fixing bias in reconstruction-based
anomaly detection with lipschitz discriminators, in: 2020 IEEE 30th International
Workshop on Machine Learning for Signal Processing, MLSP, IEEE, 2020, pp. 1–6.

[34] L. Dinh, D. Krueger, Y. Bengio, Nice: Non-linear independent components
estimation, 2014, arXiv preprint arXiv:1410.8516.

[35] Y. Zhao, Q. Ding, X. Zhang, AE-FLOW: Autoencoders with normalizing flows for
medical images anomaly detection, in: The Eleventh International Conference on
Learning Representations, 2023.

[36] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.
444
[37] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, LSTM-
based encoder-decoder for multi-sensor anomaly detection, 2016, arXiv preprint
arXiv:1607.00148.

[38] D.H. Tran, V.L. Nguyen, H. Nguyen, Y.M. Jang, Self-supervised learning for time-
series anomaly detection in industrial internet of things, Electronics 11 (14)
(2022) 2146.

[39] P. Malhotra, L. Vig, G. Shroff, P. Agarwal, et al., Long short term memory
networks for anomaly detection in time series, in: ESANN, Vol. 2015, 2015,
p. 89.

[40] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth Ieee
International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[41] D. Park, Y. Hoshi, C.C. Kemp, A multimodal anomaly detector for robot-assisted
feeding using an lstm-based variational autoencoder, IEEE Robot. Autom. Lett.
3 (3) (2018) 1544–1551.

[42] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection
for multivariate time series through stochastic recurrent neural network, in:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 2828–2837.

[43] J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the
design of secure water treatment systems, in: Critical Information Infrastructures
Security: 11th International Conference, CRITIS 2016, Paris, France, October
10–12, 2016, Revised Selected Papers 11, Springer, 2017, pp. 88–99.

[44] C.M. Ahmed, V.R. Palleti, A.P. Mathur, WADI: a water distribution testbed for
research in the design of secure cyber physical systems, in: Proceedings of the 3rd
International Workshop on Cyber-Physical Systems for Smart Water Networks,
2017, pp. 25–28.

[45] S. Liu, B. Zhou, Q. Ding, B. Hooi, Z. Zhang, H. Shen, X. Cheng, Time series
anomaly detection with adversarial reconstruction networks, IEEE Trans. Knowl.
Data Eng. 35 (4) (2022) 4293–4306.

[46] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

http://refhub.elsevier.com/S1110-0168(24)00734-8/sb26
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb26
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb26
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb26
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb26
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb27
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb27
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb27
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb27
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb27
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb29
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb29
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb29
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb30
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb30
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb30
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb30
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb30
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb31
http://dx.doi.org/10.1016/j.dcan.2022.06.019
http://dx.doi.org/10.1016/j.dcan.2022.06.019
http://dx.doi.org/10.1016/j.dcan.2022.06.019
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb33
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb33
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb33
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb33
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb33
http://arxiv.org/abs/1410.8516
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb35
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb35
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb35
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb35
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb35
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb36
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb36
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb36
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb36
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb36
http://arxiv.org/abs/1607.00148
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb38
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb38
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb38
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb38
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb38
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb39
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb39
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb39
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb39
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb39
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb40
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb40
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb40
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb41
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb41
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb41
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb41
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb41
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb42
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb43
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb44
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb45
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb45
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb45
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb45
http://refhub.elsevier.com/S1110-0168(24)00734-8/sb45
http://arxiv.org/abs/1412.6980

	DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection
	Introduction
	Related work
	Based on representation and reconstruction
	Based on prediction
	Based on probability distribution

	DDANF
	Problem Statement
	Normalizing Flow
	Module design of DDANF

	Experiments and analysis
	Datasets
	Evaluation metrics
	Overall performance
	Model analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

