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Abstract: Modern condition monitoring and industrial fault prediction have advanced to include
intelligent techniques, aiming to improve reliability, productivity, and safety. The integration of
ultrasonic signal processing with various machine learning (ML) models can significantly enhance
the efficiency of industrial fault diagnosis. In this paper, ultrasonic data are analyzed and applied
to ensemble ML algorithms. Four methods for reducing dimensionality are employed to illustrate
differences among acoustic faults. Different features in the time domain are extracted, and predictive
ensemble models including a gradient boosting classifier (GB), stacking classifier (Stacking), voting
classifier (Voting), Adaboost, Logit boost (Logit), and bagging classifier (Bagging) are implemented.
To assess the model’s performance on new data during experiments, k-fold cross-validation (CV)
was employed. Based on the designed workflow, GB demonstrated the highest performance, with
less variation over 5 cross-folds. Finally, the real-time capability of the model was evaluated by
deployment on an ARM Cortex-M4F microcontroller (MCU).

Keywords: classification; ensemble learning; signal processing; industrial fault diagnosis; ultrasonic
sensor; feature extraction; boosting

1. Introduction

The current manufacturing and industrial landscapes have witnessed significant
growth, fostering the pervasive adoption of automated processes and a heightened need for
sophisticated equipment and machinery. With the rise of industrial automation, motors and
pipelines spare parts have become integral to machine maintenance. Condition monitoring
for fault detection is essential for the safety of the environment, energy conservation,
and human health [1,2]. The interdependence of motors and pipelines in industrial settings
is crucial for overall system efficiency and safety. In industries like chemical processing,
motors drive pumps that circulate fluids through pipelines. A fault in either component
can disrupt the process, affecting efficiency and safety. Identifying faults in both motors
and pipelines allows for a comprehensive approach to predictive maintenance, preventing
downtime, optimizing maintenance schedules, and enhancing reliability. Failures in motors
and pipelines are often interconnected; for example, a pipeline blockage can increase the
motor load, leading to overheating and failure. Conversely, motor failure can cause pressure
build-up in pipelines. This interdependence is critical in sectors like oil and gas, where
component failure can lead to significant production losses and environmental hazards.
Compliance with safety standards requires monitoring all critical components, as seen in
the pharmaceutical industry, where motor and pipeline integrity is vital for product quality.
Examples from the food and beverage industry show that faults in these components
can cause contamination and safety hazards, highlighting the need for integrated fault
detection systems [3,4]. This study explores prevalent issues in industrial pipes and motors,
focusing on using ultrasonic methods to detect and assess problems like leaks, blockages,
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and flaws in underground pipes. Pipes are vital for fluid transport over various distances.
The vast networks of pipelines stretching for kilometers consist of pipe sections connected
by joints. External pressures such as traffic and surface loads can stress these pipes and
joints, possibly causing leaks and bursts.

The increase in pipeline defects such as cracks, cavitation, corrosion, and various
mechanical damages is a major concern for the safety and functionality of pipeline sys-
tems. These defects can compromise the integrity of pipelines, leading to potential hazards
and disruptions to operations [5,6]. Mechanical components, particularly in rotor-bearing
systems, are prone to wear and failure, often due to bearing faults. These faults can lead
to significant machinery downtime and require maintenance or replacement to ensure
continued operation [7]. Indeed, diagnosing faults in industrial systems is a crucial aspect
of condition-based maintenance. Maintenance engineers focus on this to prevent severe
breakdowns, ensuring the systems’ safety and reliability. Timely identification and re-
pair of such faults can avert disastrous failures and maintain operational continuity [8,9].
In addition, ultrasonic fault detection offers high sensitivity for early issue identification,
versatility in various applications, and non-destructive testing capabilities [10].

Various studies are conducted for the detection of industrial faults. Acoustic analysis
and temperature sensing are long-standing technologies used in monitoring industrial
equipment for faults. By effectively preventing equipment failures, these technologies can
greatly lower maintenance expenses and reduce periods of inactivity, enhancing overall
operational efficiency [11].

The research by Avendano et al. [12] combined the dyadic Wavelet transform with the
Welch–Bartlett periodogram for effective feature extraction from noisy signals. Lin et al. [13]
used FFT techniques to analyze vibration signals in unbalanced rolling bearings, revealing
characteristic fault frequencies. Vishwendra et al. [14] applied a K-nearest neighbor (KNN)
method to detect rolling element bearing faults using kurtosis and envelope spectrum
analysis. Patil et al. [15] used dimensional analysis and a central composite rotatable
design to identify faults in nonlinear rotating systems, focusing on the influence of bearing
clearance and external defects on vibration characteristics.

A comprehensive study on leak detection and localization in oil and gas pipelines was
presented in [16], reviewing various methods, their benefits, limitations, and effectiveness.
The authors reviewed different methods, evaluating their advantages, drawbacks, and ef-
fectiveness in detecting and pinpointing leaks within pipeline systems. Korlapati et al. [17]
evaluated multiple leak detection methods, discussing their strengths, weaknesses, and
areas for future improvement. Rai et al. [18] tackled the issue of the limited historical
pipeline failure data in AI methods by introducing a health index approach integrating
the Kolmogorov–Smirnov test, multiscale analysis, and a Gaussian mixture model (GMM).
In another experiment, Wang et al. [19] classified defects in pipeline welds using the total
focusing method (TFM) based on ultrasonic phased arrays, improving defect detection
and characterization. They applied the HOG–Poly–SVM algorithm with ten-fold cross-
validation for defect classification. In [20], we presented a method for detecting industrial
faults using ultrasonic signals by stacking an ensemble of classifiers.
Raišutis et al. [21] presented a technique using ultrasonic guided waves (UGW) with
helical wave modes to detect corrosion-type defects in steel pipes. They demonstrated that
phase delay differences in wave signal peaks can effectively identify defects with minimal
transducers and measurements. Norli et al. [22] presented an experimental study on de-
tecting stress corrosion cracks (SCC) in gas pipelines using guided waves and broadband
ultrasound. The study successfully demonstrated the feasibility of an ART-scan-based
setup for detecting SCC in a submerged pipe section, showing significant signal differences
for cracks with depths of around 35% of the pipe wall thickness. Wei et al. [23] introduced a
method combining a fractional Fourier transform (FRFT) and variational modal decompo-
sition (VMD) to detect pipeline defects using ultrasonic signals. The method significantly
improved feature extraction and classification accuracy, achieving 89.1% for experimen-
tal signals. Yu et al. [6] presented the application of acoustic and ultrasonic methods to



Appl. Sci. 2024, 14, 6397 3 of 18

detect leaks, blockages, and defects in buried water and sewerage pipes. They reviewed
various sensors, including accelerometers, hydrophones, and fiber optics, and explored the
potential of autonomous robotics for deploying these sensors. The paper also highlighted
data-driven techniques and machine learning for enhancing the accuracy and efficiency
of pipe condition assessments. Cai et al. [24] presented a method to carry out pipeline
declination inspections using amplitude reduction analysis of ultrasonic echo signals. This
method enhanced the detection accuracy, identifying declinations with a maximum error
of 0.137° within a 2° range.

However, these works faced limitations related to environmental influences, computa-
tional time, and accuracy. These limitations highlight the ongoing need for advancements
in ultrasonic inspection techniques to enhance their reliability and practical applicability in
diverse and real-world conditions. This work improves upon the limitations of previous
studies by offering a higher accuracy, better computational efficiency, and practical real-time
deployment in ultrasonic fault detection for industrial applications. This research covers ten
unique fault types in both pipelines and rotating machinery. We compare dimensionality
reduction techniques and ensemble classifiers to find the best model for real-time fault
detection on an MCU. To address the challenge of high-dimensional data, statistical fea-
tures are extracted. Subsequently, several well-established classification models including
voting, logit, GB, Adaboost, stacking, and bagging are implemented. For further inves-
tigation, dimensionality reduction techniques like principal component analysis (PCA),
linear discriminant analysis (LDA), independent component analysis (ICA), and uniform
manifold approximation and projection (UMAP) are analyzed. These techniques can sim-
plify complex datasets by reducing the number of variables under consideration, while still
preserving the essential structures within the data. Finally, two different approaches for
MCU implementation are investigated. While previous studies have explored ultrasonic
fault detection, few have integrated real-time processing on resource-constrained devices
like the ARM Cortex-M4F MCU used here.

The remainder of the paper is structured as follows: Section 2 provides a description
of the ultrasonic fault diagnosis methodology, and details the preprocessing, feature ex-
traction, and used methods. Sections 3 and 4 present the experimental results and the
conclusions, respectively.

2. Ultrasonic Fault Detection Methodology

This section describes the methodologies and tools used to achieve the study’s objec-
tives. Figure 1 provides an overview of the proposed methodology, which consists of seven
main steps. Our process starts with gathering raw ultrasonic data using a microphone
array module for classification analysis. Following refinement through preprocessing steps
like filtering and scaling, we then extract features to generate a concise and informative
feature vector. This research uses various time-domain and static-domain features based
on the mean, variance, zero crossing, envelope, crest factor, shape factor, maximum num-
ber of peaks, time of peak, skewness, and kurtosis extracted from the refined ultrasonic
profile. The details of these features are illustrated in Table 1. To address the issue of
high dimensionality in raw data, which can hinder predictive modeling for ML models,
dimensionality reduction techniques are applied. Finally, an ML classification algorithm
is used to categorize the data. The train–test split procedure with k-fold CV is used to
evaluate the performance of ensemble learning algorithms by assessing their predictions
on unseen data during model training. Finally, the model can be deployed on an MCU.

High dimensionality can refer to datasets with a large number of features and classes,
where numerous characteristics are derived from each signal. By increasing the number of
features, the dimensionality can increase, and the complexity of the model also increases,
which may lead to longer training times and higher computational resource requirements.
Furthermore, with higher dimensions, models can become more prone to overfitting, es-
pecially if the number of samples is relatively small compared to the number of features.
Proper dimensionality strikes a balance between retaining sufficient information for accu-
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rate predictions and reducing complexity to enhance learning efficiency. Techniques like
PCA, LDA, ICA, and UMAP are employed to achieve this balance, to effectively capture
the essential structure of the ultrasonic signals while reducing dimensionality.

Table 1. Feature definitions and their details.

Features Details Definition

Mean

Mean Average of the data.

Median The middle value of the signal.

RMS (Root Mean Square) The square root of the mean of the squares of the signal values.

Variance

Standard Deviation The square root of the variance.

Range The difference between the maximum and minimum values of the signal.

Interquartile Range (IQR) The difference between the 75th and 25th percentiles of the signal.

Zero Crossing

Number of Peaks The total count of peaks in the signal.

Number of Valleys The total count of valleys in the signal.

Peak-to-Peak Distance The average distance between consecutive peaks.

Envelope

Envelope Mean The mean value of the signal envelope.

Envelope Variance The variance of the signal envelope.

Envelope Energy The sum of the squared values of the signal envelope.

Crest Factor

Form Factor The ratio of the RMS value to the mean absolute value.

Peak-to-RMS Ratio The ratio of the maximum value to the RMS value of the signal.

Margin Factor The ratio of the maximum value to the RMS value.

Shape Factor

Normalized Energy The energy normalized by the length of the signal.

Energy Entropy The logarithm of the energy of the signal.

Impulse Factor The ratio of the maximum value to the mean of the absolute values of
the signal.

Number of Peaks

Number of Positive Peaks The count of positive peaks in the signal.

Number of Negative Peaks The count of negative peaks in the signal.

Peak Amplitude The amplitude of the highest peak in the signal.

Time of Peak

Time of First Peak The time at which the first peak occurs.

Time of Last Peak The time at which the last peak occurs.

Time of Median The time index of the median value.

Skewness

Absolute Skewness Skewness calculated on the absolute values of the signal.

Skewness of Positive Values Skewness calculated only for the positive values of the signal.

Skewness of Negative Values Skewness calculated only for the negative values of the signal.

Kurtosis

Absolute Kurtosis Kurtosis calculated on the absolute values of the signal.

Kurtosis of Positive Values Kurtosis calculated only for the positive values of the signal.

Kurtosis of Negative Values Kurtosis calculated only for the negative values of the signal.

Ensemble learning is an ML approach aimed at improving predictive performance
by aggregating predictions from multiple base models. Ensemble classifiers may be more
advantageous than deep learning models in situations where factors such as interpretabil-
ity, limited data, computational resources, model complexity, robustness to overfitting,
result reliability, lower memory occupation, and domain expertise are crucial considera-
tions [25,26]. These fields of study have led to numerous specialized techniques including
bagging, stacking, and boosting approaches.
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Figure 1. Study workflow diagram for ultrasonic fault diagnosis.

2.1. Boosting Technique

A boosting classifier is an ensemble technique that improves model accuracy by com-
bining multiple learners. It sequentially trains each learner to correct the errors of the
previous ones [27]. The algorithm starts by initializing a model, then iteratively computes
residuals, fits new weak learners, determines optimal step sizes, and updates the model.
After all iterations, the final boosted model is produced, yielding a high accuracy and
robustness against overfitting. Boosting is robust to overfitting and versatile for various
applications [28]. Adaboost, GB, and Logit are investigated in this paper. Adaboost em-
phasizes misclassified instances by adjusting their weights. GB uses gradient descent
to minimize a chosen loss function, focusing on residuals. Logit targets logistic regres-
sion, minimizing logistic loss for improved classification. The algorithm is summarized
in Figure 2.
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Figure 2. Boosting algorithm.

Where n is the number of observations, m is the number of features, F is the set of m
features, c is the predicted faults, yi is the actual value for observation i, ρ is the parameter
for initialization, G0(·) is the initial model which minimizes the loss function over all
observations, L(·) is the loss function which measures the error between the actual value yi
and the predicted value G(·), ỹi(·) the residuals computed for each observation i at step k,
h(·) is the fitted model, αk is the model parameter at step k, ρk is the gradient step size at
step k, and Gk(·) is the regression model at step k.
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2.2. Bagging Technique

A bagging (bootstrap aggregating) classifier is an ensemble learning technique de-
signed to improve the accuracy and robustness of machine learning models by reducing
variance and preventing overfitting. The process involves creating multiple versions of a
predictor by training each on a random subset of the data, then combining their predictions
to form a final output. The bagging method addresses the bias and variance trade-off and
mitigates the variance of the final prediction model, thereby reducing the risk of overfitting,
particularly in the context of ultrasonic data [29]. The algorithm is summarized in Figure 3.

 

Inputs:  

  Number of observations: n 

 Set of m features: F = {f1. ..., fm} 

    

Outputs: 

  Predicted faults:  c  

Code:  
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  {  
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  Combine individual classifiers' outputs for the most accurate prediction. 

  } 

Figure 3. Bagging algorithm.

2.3. Stacking Technique

A stacking classifier is an ensemble learning technique that improves predictive
performance by combining multiple base models and a meta-model. Base classifiers are
trained on the same dataset and their predictions are used to train a meta-classifier. This
meta-classifier learns to optimally combine the base classifiers’ outputs. Stacking leverages
model diversity, improving the accuracy and robustness [30]. The algorithm is summarized
in Figure 4.
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Figure 4. Stacking algorithm.
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Where D is the dataset, and T is the number of base level classifiers.

2.4. Evaluating Estimator Performance Using k-Fold Cross-Validation

The effectiveness of the algorithm is evaluated using k-fold cross-validation (k-fold
CV), also known as rotation estimation, to verify the generalizability of the results in
industrial fault detection analysis [31]. This method is used to assess a model’s performance
by splitting data into k subsets. It trains the model on k − 1 subset and validates it on the
remaining subsets, repeating this k times to ensure a thorough evaluation. The steps for
k-fold CV are outlined in Figure 5.

Figure 5. k-fold CV algorithm structure to evaluate the ultrasonic diagnosis.

To determine the optimal value of k, it is important to note that reducing the value
of k decreases the size of the training dataset and increases the size of the test dataset
(e.g., k = 3 results in a 66% training dataset). This reduction can hinder the model’s ability
to learn effectively. Conversely, increasing the value of k decreases the sizes of the test
sets (e.g., k = 10 results in a 10% test dataset), potentially increasing the variance of the
accuracy [32,33]. In this study, the optimized split is considered as k = 5 for k-fold CV.

2.5. Ultrasonic Dimensionality Reduction and Visualization Techniques

Dimensionality reduction in ML is a technique used to reduce the number of input
features or variables in a dataset. This process simplifies the dataset by transforming it
into a lower-dimensional space, while preserving as much of the important information as
possible. The main reasons for using dimensionality reduction includes improving model
performance, reducing overfitting, and enhancing data visualization [34,35]. Methods
include the following:

• Principal component analysis (PCA) reduces the dimensionality of a dataset by trans-
forming it into a set of orthogonal components. These components capture the most
variance from the original data [36].

• Independent component analysis (ICA) separates a multivariate signal into indepen-
dent non-Gaussian components, assuming statistical independence. ICA excels in
identifying independent sources and handling non-Gaussian data, making it useful
for noise reduction, feature extraction, and source separation [37].

• Uniform manifold approximation and projection (UMAP) preserves the local and
global data structure by optimizing a low-dimensional graph to reflect the high-
dimensional graph. It is computationally efficient and scalable, suitable for large
datasets [38].

• Linear discriminant analysis (LDA): This is a statistical method used in supervised
classification problems. LDA aims to find a linear combination of features that best
separates industrial faults. It projects high-dimensional acoustic data onto a lower-
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dimensional space by maximizing the distance between the means of different classes
and minimizing the variance within each class [39].

By applying these algorithms, we can gain insights into the patterns and relationships
within the ultrasonic signals, which can be crucial for identifying anomalies or understand-
ing the underlying physical phenomena.

2.6. Evaluation Metrics

In order to measure the performance of the proposed framework in fault detection, we
employ typical quality metrics of precision, recall, F-measure, and accuracy as follows [40]:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-measure = 2 · Precision · Recall
Precision + Recall

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP, FN, TN, and FP are true-positive, false-negative, true-negative, and false-positive
respectively. Receiver operating characteristics (ROC) plots are visually appealing and
provide an overview of a classifier’s performance across a wide range of specificities.
For further investigation in this research, the classifiers are also evaluated with ROC plots.

3. Results

As discussed in the introduction, bearing and pipe faults in industrial mechanisms are
often caused by a variety of factors.

The dataset used in this study was obtained from UE Systems Co. [41] with 10 cate-
gories: 4 bearing conditions and 6 pipeline conditions. The dataset of 20,000 samples was
split into 80% for training and 20% for testing, enhanced by applying a sliding window
with data augmentation including rotating, flipping, and adding noise to the original data.

Ultrasonic signals, like many types of real-world data, often exist in high-dimensional
spaces and can benefit greatly from dimensionality reduction. This process simplifies the
data without losing significant information, making it more manageable and useful for
analysis and processing. Dimensionality reduction and feature visualization are crucial for
interpreting high-dimensional data. Techniques such as PCA, LDA, ICA, and UMAP offer
valuable insights into the data structure by projecting it into two dimensions. PCA captures
the most variance by identifying principal components in unlabeled data, making it useful
for general data analysis. LDA is tailored for supervised classification, maximizing class
separability. ICA excels in identifying statistically independent components, uncovering
hidden patterns. UMAP preserves both the local and global data structures, making it
effective for visualizing clusters or groups. Figure 6 shows the 2D visualizations of the
ultrasonic data using PCA, LDA, ICA, and UMAP, highlighting the distinctions revealed
by each method.

The outcomes were evaluated using several algorithms including voting, Logit, GB,
AdaBoost, stacking, and bagging. To optimize the hyperparameters of the different clas-
sifiers, we employed a systematic method (i.e., grid search). This method involved an
exhaustive search over specified parameter values to identify the best combination that
enhances the model’s performance. Among the hyperparameters, the “number of estima-
tors” proved to be the most sensitive. Increasing this number generally improve accuracy
but also increases the training time. Based on our experiments, we found that using an
estimator count of 100 provided a good balance between achieving high accuracy and
maintaining a reasonable computation time. In addition, for Logit, regularization strength
and the optimization function were selected as 0.9 and ‘lbfgs’, respectively. For voting, the
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’hard’ function was used. For GB, the learning rate and depth of regression estimators were
selected as 0.1, and 3, respectively. For bagging, the maximum number of samples was
selected as 1000. For Adaboost, the learning rate was selected as 1.

Figure 6. Two-dimensional representations of the ultrasonic data for the different dimensionality
reduction methods evaluated: (a) PCA, (b) ICA (c) LDA, and (d) UMAP.

As shown in Figure 7, a confusion matrix was used to assess the classification effective-
ness, revealing the notably high accuracy of the GB model. The confusion matrix illustrated
the algorithms’ ability to classify various ultrasonic fault states such as low lubrication,
over-lubrication, slow speed, steam cavitation, motor boating, reciprocating, thermostatic,
healthy pipe, and healthy motor. The main diagonal of the confusion matrix consists of the
TP and TN. Higher values on this diagonal indicate better model performance. This tool
allowed for quick evaluation of the model’s predictions and highlighted potential areas of
error in the ultrasonic dataset.

In addition, in classification tasks, the ROC curve is an important tool for evaluating
classifiers. It visually depicts the trade-off between the true positive rate (TPR) and the
false positive rate (FPR), helping to determine a classifier’s effectiveness in distinguishing
between positive and negative instances. Essentially, a larger area under the ROC curve
indicates a higher likelihood of correctly identifying true cases over false ones. As shown in
Figure 8, the area under the ROC curve for each category of the dependent variable in GB
consistently exceeded 0.99, demonstrating a high level of predictive precision. The ROC
curve measures separability, indicating the models’ ability to differentiate among fault
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classes. It summarizes the trade-off between TPR and FPR for a predictive model across
various probability thresholds.

Figure 7. Confusion matrix for different ensemble classifiers including the voting, Logit, GB, Ad-
aboost, stacking, and bagging algorithms.

To thoroughly examine and qualitatively evaluate our simulated outcomes across
various models, we utilized the k-fold CV technique. This method enabled us to illustrate
the differences in classification effectiveness, as shown in Figure 9. It displays the pro-
portion of correct predictions made by each model out of the total number of predictions
during 5-fold data splitting. The visual representation helps highlight the comparative
strengths and weaknesses of each model, ensuring a comprehensive analysis. Figure 9 also
demonstrated that the GB model had a higher proportion of correct predictions compared
to the other ensemble methods, indicating its superior efficiency.
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Figure 8. ROC curves for the voting, Logit, GB, Adaboost, stacking, and bagging algorithms.

Figure 9. Accuracy analysis of the models using k-fold CV.
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Figure 10 displays a boxplot showing result variations during cross-validation across
different folds. This allows for an easy comparison of the accuracy. The boxplot provides a
five-number summary: minimum, first quartile, median, third quartile, and maximum. The
whiskers extend to depict the rest of the distribution, excluding outliers. As evident, the GB
model exhibited the highest accuracy and precision with the lowest distribution range.
The stacking classifier indeed showed promising results, ranking second in performance
after the GB classifier among the various algorithms tested.

Figure 10. Boxplot of the accuracies for the six classifiers.

Evaluation metrics of the classifiers are shown as a bar plot in Figure 11 and the
overall evaluation results are shown in Figure 12. When focusing solely on the precision
metric, the bagging classifier exhibited a marginally superior average than GB. Additionally,
the voting classifier demonstrated commendable performance relative to the rest. Upon ex-
amining the average evaluation metrics such as accuracy, recall, precision, and F1-measure,
it is evident that the GB model surpassed the other classifiers in overall performance.
Among the classifiers, the GB algorithm’s average accuracy (94.2%) was about 2% higher,
average recall (86.5%) was about 6% higher, and average F1-measure (87.2%) was about 4%
higher than the stacking classifier.

GB iteratively builds an ensemble of trees, effectively capturing complex data patterns,
handling noise, and dynamically weighing features. In comparison, Adaboost struggles
with noisy data and outliers, while bagging, although reducing variance, fails to capture
intricate patterns as effectively. Voting aggregates multiple models but falls short when
individual models differ significantly in performance, and stacking’s reliance on a strong
meta-classifier cannot surpass GB’s individual strength. Logistic regression, being a linear
model, cannot handle the non-linear complexities of ultrasonic data, making GB’s non-
linear approach superior [29].

To further explore the effectiveness of dimensionality reduction techniques, we in-
corporated them as input features for the GB model. As mentioned before, the methods
we examined included PCA, LDA, ICA, and UMAP. For a comprehensive understanding,
Tables 2–5 provide an in-depth presentation of the respective results, including accuracy,
recall, precision, and F1-measure metrics. The experimental data indicate that ICA was
superior to the alternative dimensionality methods in terms of performance when used
with the GB model.
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Figure 11. Barplot of 5-fold CV for different ensemble classifiers based on the (a) accuracy, (b) recall,
(c) precision, and (d) F1 measure.
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Figure 12. Evaluation results for the four metrics including accuracy, recall, precision, and F1-measure
for different ensemble classifiers.

Table 2. Accuracy of the GB model using various dimensionality reduction techniques including
PCA, LDA, ICA, and UMAP.

PCA LDA ICA UMAP

Fold_1 0.802173 0.872826 0.905434 0.726086
Fold_2 0.810869 0.891304 0.929347 0.735869
Fold_3 0.803261 0.875435 0.898913 0.727173
Fold_4 0.797826 0.859782 0.905434 0.713043
Fold_5 0.822826 0.885869 0.928267 0.759782

Average 0.807391 0.876956 0.913478 0.732391

Table 3. Recall of the GB model using various dimensionality reduction techniques including PCA,
LDA, ICA, and UMAP.

PCA LDA ICA UMAP

Fold_1 0.739130 0.543478 0.815217 0.528541
Fold_2 0.760869 0.663043 0.793478 0.489130
Fold_3 0.771739 0.543478 0.641304 0.467391
Fold_4 0.752961 0.597826 0.771739 0.576086
Fold_5 0.739130 0.608695 0.758061 0.535028

Average 0.752173 0.591304 0.754347 0.506521

Table 4. Precision of the GB model using various dimensionality reduction techniques including
PCA, LDA, ICA, and UMAP.

PCA LDA ICA UMAP

Fold_1 0.704225 0.809523 0.824175 0.511728
Fold_2 0.685393 0.843373 0.935897 0.584415
Fold_3 0.746268 0.788306 0.880597 0.632352
Fold_4 0.647058 0.741935 0.835294 0.638554
Fold_5 0.643678 0.809523 0.851851 0.547619

Average 0.685324 0.798649 0.865563 0.582810
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Table 5. F1-measure of the GB model using various dimensionality reduction techniques including
PCA, LDA, ICA, and UMAP.

PCA LDA ICA UMAP

Fold_1 0.613496 0.772727 0.819672 0.505494
Fold_2 0.674033 0.872065 0.858823 0.532544
Fold_3 0.628930 0.780219 0.742138 0.537514
Fold_4 0.621468 0.745945 0.802259 0.605714
Fold_5 0.625698 0.772803 0.797687 0.522717

Average 0.632725 0.774324 0.804116 0.540796

According to the results depicted in the tables, ICA outperformed the other methods
in terms of enhancing the GB model’s accuracy. The high performance of the GB classifier
with ICA suggests that this combination expertly captured the underlying structure of the
ultrasonic signals.

Implementation
Deploying the model on an MCU enables real-time fault detection, reducing the

need for manual inspections and minimizing downtime. In this section, two approaches
for MCU deployment are investigated: direct classification based on calculated features,
and an alternative approach utilizing a dimensionality reduction method as the input to
the classifier, as illustrated in Figure 13.

Figure 13. Diagram of the two deployed approaches.

The ICA method exhibiting a higher accuracy (based on Tables 2–5) was selected for
implementation of the second approach. ICA was computed using the FastICA function
and then the ’components’ and ’mixing’ matrices were extracted and converted to C
array format using the skit-learn library in Python. The models were deployed on a
64 MHz ARM Cortex-M4F MCU. An LA104 Logic Analyzer with 4 channels and a sampling
rate of up to 100 MSa/s along with Saleae Logic software were employed for the timing
measurements. The first approach, with feature computation on the MCU, took 9.48 ms,
while the second approach, with ICA computation on the MCU, took 315.44 ms. Both
included 6.54 ms for data sampling and differed in their computation and prediction times,
as shown in Figures 14 and 15. The first method was faster with a higher accuracy (94.2%
compared to the second method with 91.35%) for our dataset, but the second method
had more adaptability for diverse types of data due to the use of the ICA dimensionality
reduction model. The choice of approach can vary based on the user’s criteria. Additionally,
using ICA before the GB model can lead to better noise reduction and feature extraction,
improving the robustness of the classifier in varying conditions. This also enhances the
interpretability of the model by separating independent sources within the data, potentially
revealing hidden structures in the data and improving the performance of the classifier on
new, unseen data by reducing overfitting.
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Figure 14. Execution time for the first approach deployed —direct classification.

Figure 15. Execution time for the second deployed approach—ICA dimensionality reduction prior
to classification.

4. Conclusions

This paper presented a comprehensive model for ultrasonic industrial fault detec-
tion, targeting diverse applications such as bearings and pipelines using contact sensors.
The model’s capability to evaluate and monitor the health of industrial equipment was
assessed by detecting and classifying ten different ultrasonic signal conditions. Various
dimensionality reduction techniques, including PCA, LDA, ICA, and UMAP, were ex-
plored, with ICA being selected for its superior performance. Ensemble classifiers such
as voting, logistic regression, gradient boosting, Adaboost, stacking, and bagging were
tested, demonstrating the effectiveness of the GB classifier based on performance metrics,
confusion matrix, and ROC curves.

The k-fold CV technique was employed to rigorously evaluate the models’ perfor-
mance, ensuring robustness and generalizability. Experimental results confirmed that
the GB classifier outperformed the other models in terms of accuracy, precision, recall,
and F1-measure. Our results suggest that using ICA for dimensionality reduction can
improve model robustness for different faults.

Advanced techniques like filtering, scaling, dimensionality reductions, and k-fold CV
for ensuring evaluation can improve the signal quality for automatic defect recognition, re-
ducing the reliance on skilled operators. Additionally, a data augmentation method is used,
which helps improve the model’s ability to generalize and perform well on unseen data.

Furthermore, the model’s real-time applicability was demonstrated through deploy-
ment on an ARM Cortex-M4F MCU, showcasing its potential for practical industrial
applications. In our study, we explored two approaches: The direct classification method
proved to be quicker and more precise, whereas the ICA-based method offered greater
adaptability due to its signal-dependent nature and independence from specific features.
Based on the results, integrating ultrasonic signal processing with ensemble machine learn-
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ing techniques improves the efficiency of industrial fault diagnosis. This study not only
provides a robust framework for fault detection but also emphasizes the importance of di-
mensionality reduction and real-time deployment in industrial settings. However, the ICA
computation time on the MCU was significantly longer than direct classification, and the
dataset could be expanded for better generalizability. The focus on bearings and pipelines
limited the scope of the study. Future work could expand to a greater diversity of industrial
data classes, explore further optimization of MCU deployment for faster processing times,
as well as developing an optimized PCB board and integrating with IoT for comprehensive
fault monitoring management.
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