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A B S T R A C T

Digital Twins (DTs) developments are still in the pilot stages of deployment in supply chain management (SCM),
and their full integration with real-time synchronization and autonomous decision-making poses many chal-
lenges. This paper aims to identify these common challenges and provide a conceptual framework for estab-
lishing a Digital Twin (DT) system to improve supply chain management performance. The paper presents a
systematic literature review of 129 research papers on DT applications for SCM improvement. The selected
papers were reviewed and classified into three categories: manufacturing and production, supply chain, and
logistics. The development of digital technologies such as the Internet of Things (IoT), Radio Frequency Iden-
tification (RFID) devices, cloud computing, cyber-physical systems (CPSs), cybersecurity (CS), and simulation
modeling has increased the opportunities to explore the creation of supply chain DTs. However, there are lim-
itations and various challenges due to the complexity of most systems. The results indicate that DT for SCM
should include external links (i.e. suppliers, distributors) and internal links (i.e. procurement, production, lo-
gistics) to deal with any disruption through data-driven modeling with real-time synchronization. Based on the
review findings, this study proposes a three-layered conceptual framework to improve supply chain management
performance. The proposed framework provides future directions for DT research in SCM. It provides a holistic
and integrated approach to DT implementation, the common DT technologies, and data analytics techniques for
improved supply chain performance.

1. Introduction

Digital transformation and the integration of digital technology into
all business areas are still at its evolution stage. Over the years, tech-
nology has transformed into digitalization in several aspects. Industry
3.0 made modest progress in manufacturing technology, incorporating
computers, automation, and PLCs. Industry 4.0 utilizes significantly
more advanced technologies such as the Industrial Internet of Things
(IIoT), Blockchain, cloud computing, augmented reality, and robotics
[1–3]. The development of digital systems has enabled researchers to
identify the potential of real-time data access for evaluating the current
state of systems (known as prognosis diagnosis) [4]; [5]. Thus, the rise of
digitalization improved connectivity and better overall performance
through intelligent systems [6,7]. For instance, modern machines and
systems have advanced with technology, leading to better control with

cyber-physical systems (CPSs) and less human interaction [8]. The
cyber-physical system (CPS) is a real-time convergence of physical and
virtual systems.

One of the most significant technological advancements currently is
the creation of an integrated digital twins (DTs) system. This system
enables the precise monitoring and replicating its physical counterpart,
making it highly valuable in various industrial and research applica-
tions. The concept of Digital Twin (DT) was first introduced in 1970
when NASA created a digital model of Apollo 13 after its oxygen tank
exploded [9]. In 2003, Michael Grieves introduced DT for Product
Lifecycle Management at the University of Michigan [10]. NASA defined
DT as “A comprehensive multi-physical, multi-scale, probabilistic simulation
system for vehicles or systems. It uses the best physical model to describe the
historical use of equipment to reflect the life of its corresponding physical
equipment”[9]. Since 2014, many leading engineering companies and
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scholars have conducted detailed research on DT technology and
explored its definition [9]. DT enables digital capture of a component or
system’s physical state, allowing for real-time interaction from physical
to digital and vice versa. This comprehensive performance evaluation
includes diverse stakeholders, making DT a vital player in the system
lifecycle, particularly connecting multiple “sub-systems” [11]. A digi-
tally integrated system with DT attributes can provide intelligent
interaction and synchronization to reduce time, improve quality, and
improve real-time optimization [12]. Fig. 1 illustrates the evolution of
DT, showcasing its remarkable growth since 2017. The maturation of
Industry 4.0 technologies like Internet of Things (IoT), big data, and CPS
has paved the way for technological advancements that unlock the po-
tential for DT to be used in various industrial applications. As a result,
different digital models and conceptual frameworks have emerged in the
development phase. Moreover, digital shadows have been observed,
where information flows solely from the physical to the digital compo-
nents [13].

DT has many applications, including in manufacturing systems and
supply chains (SCs) [14,15]. By utilizing real-time data acquisition,
simulation techniques, data analytics, Artificial Intelligence (AI), and
machine learning (ML), DT can investigate current or historical prob-
lems, monitor the system’s current state, and identify future decisions.
Constructing an informed decision support system for organizations is
made easier with the help of DT. By utilizing innovative information
technologies [16], DT can significantly improve production planning,
logistics, and manufacturing processes by implementing smart
manufacturing practices [13,17,18]. For instance, improved data
acquisition practices in additive manufacturing have led to the devel-
opment of a process framework on DT [19]. DT’s significant integration
with technology in the construction industry offers "data-centric con-
struction management" [20]. High-level intelligent DT systems with
semantic characteristics and Cognitive Digital Twin (CDT) capability
have recently been reported [21]. Efforts have been made to integrate
DT with Supply Chain Management (SCM) systems Studies on
Human-Robot Collaboration (HRC) in integrated DT systems have also
been reported [22].

Great efforts have been made to integrate DT with SCM systems [23].
With digitalization and technology adoption in SCM, improved inter-
active communication is observed to deal with unforeseen events such as
epidemics or pandemic situations and provide more resilient supply
chain (SC). The COVID-19 pandemic has heightened concerns about the
resilience of SCs. Shortages of disinfecting and janitorial products for
sanitization [24], disruptions in the supply of SARS-CoV-2 vaccines, and
interrupted supply and rising costs of personal protective equipment

(PPE) have all been reported [25,26]. To address these challenges, the
digitalization of SCM has gained noteworthy attention [27]. DT-based
intelligent systems have the potential to provide more resiliency to SC
processes with digital informational technologies automating
manufacturing processes and interoperability between technologies,
offering better monitoring and decision support [7]. This transformation
in technology is growing, and the new era of digitalization will offer
proactive measures to manage risks and interruptions in the SC,
achieving more resiliency with considerable economic benefits [8]. As
reported by experts, strategic research in DT models exhibits tremen-
dous potential in SCM [28,29]. DT provides real-time performance
measurement capabilities lacking in traditional SC performance evalu-
ation systems. This system enables users to track and manage critical
factors such as resource utilization, performance flexibility, and output
management [30], using evaluation metrics designed for this purpose
[31].

The importance of DT in SCM has been growing in various industries
in the past five years, as evidenced by the amount of research conducted
[32]. However, DT is still developing, and more opportunities are
available for further research. Interestingly, the amount of research
done for DT in manufacturing and production is more than that for SCM.
Nevertheless, most of the reported work is based on the conceptual
framework and partially integrated DT, such as [13] and [33].

Advancements in technology have enabled researchers to develop
DT, although with certain limitations due to the challenges they face
[34]. Developing a comprehensive DT model involves the coordination
between virtual and physical entities [35]. This intricate interplay is
challenging for a virtual system, requiring constant real-time moni-
toring, analysis, and simulation [12]. A digitally enabled SCM system
can achieve high performance by communicating in an interactive
environment and leveraging emerging technologies like IoT and Block-
chain. Table 1 provides an overview of recent studies that primarily
explore Industry 4.0 DT-enabled technologies and their impact on
manufacturing SC sustainability.

However, it is vital to understand the integration methodology of the
DT systems for SCM, the components, and the applications that require a
scientific approach to enhance the SCM performance, which is missing
from the review studies. Therefore, this study is conducted to address
the following research questions.

RQ1) What are the common DT-enabled technologies and data an-
alytics techniques used for DT integration to enhance SC performance?

RQ2) What are the common challenges associated with integrated
DT for SCM, and how could those challenges be addressed?

RQ3) How can a conceptual framework for DT SCM be developed

Fig. 1. Evolution of DT.
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with DT-enabled technologies and data analytics by overcoming asso-
ciated challenges for better SC performance?

This study aims to address various research inquiries by identifying
the current state of research in integrating DT into SCM. Specifically,
this study aims to explore DT-enabled technologies and integration
techniques for SCM and associated challenges and develop an integrated
conceptual framework for DT SCM to address the integrated data flow
and management between each SC element and SCM network. A sys-
tematic literature review (SLR) is conducted to achieve these objectives.
The review focuses on using emerging technologies and data analytics
techniques to measure the overall effectiveness and efficiency of the SC
system, providing flexibility and responsiveness at all levels. The study is
structured as follows. Section 2 details the review methodology. Section
3 presents the results and analysis. Section 4 discusses the main chal-
lenges. Section 5 proposes a conceptual framework, and Section 6
concludes.

2. Review methodology

According to [43], a systematic literature review can build the
foundation of a successful content analysis. The significance of the
literature review in offering practical guidelines for comprehending the
conceptual framework and theory for the research contents was high-
lighted by [44]. [4] indicated in their state-of-the-art review that the
hybrid simulation can address the complexity of DT. Another literature
review stated that DT provides optimal control over SC processes [45].
Additionally, [7] reviewed DT for the sustainability of manufacturing
SCs.

This study uses a methodological review based on SLR to identify the
essential aspects of the reported research in detail. it also evaluates the
research methods used by the researchers to identify future research
directions in DT SCM. As described by [7], a typical SLR uses a

methodological approach to investigate the research on a particular
topic. For the use of SLR for future research, [46] mentioned that it
should have all the essential details to identify and support the cause. In
addition, an SLR is also prominent as a method for identifying and
assessing reporting research and studies [47].

Similarly, this study is conducted to search for answers to the
research questions mentioned earlier by undertaking the SLR. The
objective is to evaluate the current research on DT in SCM to identify the
challenges in developing a fully integrated DT for SCM. In addition, this
will also identify future research directions by assessing various research
methodologies and applications of new and improved technologies. The
review strategy of this study is in line with the guidelines provided by
[48], which was also followed by [7]. A schematic view is presented in
Fig. 2 to provide the SLR process overview.

Phase 1 includes the study’s objective, the selection of the electronic
database, the creation of inclusion and exclusion criteria, and the review
protocol. The inclusion and exclusion criteria were defined and listed in
Table 2.

Phase 2 follows an SLR strategy, which is provided in Fig. 3. In the
first step, the literature search was conducted on Web of Science (WoS)
and Scopus databases because these databases are core article indexes
for science and provide quality research coverage [49].

Two search strings were used to identify the most relevant and
quality studies for the review objective (see Table 3). The main purpose
of selecting these keywords and combinations was to assess the signifi-
cant research conducted in DTs applied or related to SC, manufacturing
or production, and logistics streams. This was the reason all closely
related keywords were used to search the papers. Peer-reviewed work
plays a main role in research communication [43]. Thus, the initial
search process excludes non-refereed work (e.g., industrial reports,
dissertations, white papers, book reviews, and theses). All papers are
exported to Endnote 20 to combine in a single database. Since papers
were searched in two electronic databases, they were checked for
duplication from Endnote 20>Library>Find Duplicates. All duplicated
papers were eliminated from the database.

The articles were filtered out in the next step by screening the titles,
abstracts, and keywords. The appropriateness of the papers was studied
by reading titles, abstracts, and keywords, and then any non-relevant
papers were excluded. To ensure a high-quality search, we review the
abstract and conclusion of each paper. Further, in some cases, a thor-
ough study of the full paper was done to identify its relevance to SCM. A
bibliography of papers was also reviewed to select the most relevant
studies. The citation-chaining procedure was also used to identify and
gather comprehensive details for the review to add more relevant
research papers for this study. After conducting a thorough study of
various papers to determine their relevancy with DT-SCM, 69 papers
were omitted in the final stage. The papers were excluded if they did not
discuss DT in the context of SCM or if they discussed topics such as
mechanical design or chemical simulation. As a result, 129 papers were
selected for the SLR. We also include relevant conference papers for this
review. The search period was selected from 2017. The growth of
Internet Communication Technologies (ICTs) envisioned DTs prospects
in research started in 2011[32], and the evolution of DT (as also stated
in Fig. 1) started gaining some significant research directions in 2017
[35].

3. Results and analysis

In Phase 3, the review is presented with qualitative and quantitative
analyses, with results presented in the following sections.

3.1. Quantitative analysis

The review analysis is done to understand the multi-perspective view
of the research conducted in DT SCM. Out of 129 papers, there are 98
journal articles representing 45 journals and 31 conference papers, as

Table 1
Overview of recent review studies on DTs.

Author Review objectives

[36,
37]

This study outlines the concept and traces the evolution and development
of DT. The study also reviews the essential technologies that enable them,
identifies the Industrial Internet of Things (IIoT) as the foundation of DTs,
examines current DT trends, highlights significant challenges, and
explores their applications in Industry 4.0.

[38] This study carried out a systematic review to study the potential of DT for
COVID− 19-related issues. It provides an analysis to identify the trends,
limitations, and future research directions. Moreover, a DT-based smart
pandemic city concept was proposed for future pandemic situations.

[39] The authors conducted a review to study the impact of COVID− 19 on SC.
The paper provides a comprehensive analysis of SC disruptions, resilience,
and sustainability impacts. It further discusses the quantitative approaches
and data-driven research potential with I4.0 and DT for SC sustainability.

[40] Presented a comprehensive review of DT industrial application with merits
and limitations. The authors acknowledged diverse prospects of DT
implementation. However, they mentioned limitations such as lack of
standardization, information integration in complex systems, and
practical implementation.

[41] The authors discussed and identified DT potential in production logistics
(PL). They presented merits and limitations in numerous PL applications
such as transportation, packaging, warehousing, and distribution. The
review highlights simulation modeling as one of the potential future
research directions in PL systems.

[42] A reviewwas conducted to evaluate the potential of AI inWarehouse DT to
examine the use of technology, integration methods, and associated
challenges. The authors identified better warehouse management, SC
optimization, and operational efficiency as potential gains in this review.

[7] A systematic literature review of 98 papers from 2015 to 2021 to address
current research and future trends in manufacturing SC sustainability. The
authors emphasized the technological advancements in DTs-enabled
technologies.

[23] A systematic literature review of 96 papers from 2010 to 2021 to identify
the barriers and scope of data-driven simulationmodeling in DT for SC and
logistics. Focused on decision support systems through reinforced ML.
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shown in Table 4 and Table 5a, respectively.
Nearly 83 % of publications selected for this review were published

after 2020, indicating significant research growth in the area of DT and
providing research potential and opportunities. The annual distribution
of publications is presented in Fig. 4, which describes an increasing
research trend and further validates the earlier statement.

As mentioned above, ample conference papers appeared during the
review search, and some were also selected for this study. The selected
conference papers accounted for 24 %, as shown in Fig. 5. One reason is
that DT is a relatively new area of research, and scholars are investi-
gating its integration with various systems, as reported by [51–53];

Fig. 2. SLR phases for DT SCM.

Table 2
Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

- Studies that have keywords are mentioned in Table 3. - Non-relevant papers.
- Research papers published in the English language. - Eliminate duplication
- Selection of research papers based on title, abstract, and
keywords.

- Eliminate non-refereed
articles.

- Review the abstract and conclusion of the selected
studies and, if necessary, the full content reading to
filter the relevant studies further.

Fig. 3. Phase 2 SLR strategy.
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hence, it is considered important to include quality conference papers by
reviewing their integration methodology.

The country-wise research contribution is shown in Fig. 6, which
provides a holistic approach to the study to consider papers published in
different countries. China, with 28, and Germany, with 13 publications,

are leading the list that indicates these countries’ approach towards
intelligent digital reality.

The selected publications were reviewed carefully to identify the
application of DT in each paper. After careful review, all papers were
divided into three categories. The categories are: a) Manufacturing &
Production, b) Supply Chain Management (SCM), and c) Logistics. The
papers that discussed the application of DT in manufacturing or pro-
duction were placed in the manufacturing and production category.
Papers that discussed the application of DT in strategic SCs were placed
in SCM. Finally, the papers that discussed the application of DT in
transportation, production, and logistics were placed in the logistics
category. Fig. 7 shows the highest percentage (49 %) of publications in
manufacturing and production, meaning the researchers have expressed
interest in this category. This is also due to the digitalization with the
industry 4.0 perspective that has modernized the industry. SC and lo-
gistics shared 26 % and 25 %, respectively, indicating a potential to
investigate the integration of DT applications in these categories. To
provide a detailed analysis of the selected literature, the research find-
ings are presented in the following section with respect to the selected
categories.

Table 3
Search protocol.

Search protocol Data type

Electronic Database Web of Science and Scopus
Keywords and
combination 1

"Digital twins" and "Supply chain” and “Manufacturing” or
“Production” and "Cyber-physical systems"

Keywords and
combination 2

"Digital twins" and "Logistics" or "Transportation" and
"Warehouse" and “Cyber-physical systems”

Search fields Title, abstract, and keywords
Period From 2017 to December 2023
Document type Article OR Proceeding Paper

Table 4
Journal representation of selected articles.

S.
No.

Journal Name No. of
Articles

1 Academy of Strategic Management Journal 1
2 Applied Sciences 9
3 Competition & Change 1
4 Computational Intelligence and Neuroscience 1
5 Computer Communications 1
6 Computers in Industry 2
7 Computers & Industrial Engineering 6
8 Environmental Progress & Sustainability Energy 1
9 Environmental Science and Pollution Research 1
10 Electronics 1
11 Frontiers in Artificial Intelligence 1
12 Frontiers in Blockchain 1
13 IET Collaborative Intelligent Manufacturing 3
14 Industrial Marketing Management 1
15 International Journal of Computer Integrated

Manufacturing
2

16 International Journal of Human-Computer Studies 1
17 International Journal of Industrial Engineering and

Management
1

18 International Journal of Interactive Design and
Manufacturing

1

19 International Journal of Precision Engineering and
Manufacturing

1

20 International Journal of Production Economics 2
21 International Journal of Production Research 4
22 Journal of Food Engineering 1
23 Journal of Industrial Information Integration 1
24 Journal of Manufacturing Systems 3
25 Journal of Mechanical Design 1
26 Journal of Physics 1
27 Logistics-Basel 2
28 Machines 5
29 Manufacturing Letters 2
30 Manufacturing Technology 1
31 Mathematical Problems in Engineering 1
32 Mobile Information Systems 1
33 Mobile Networks and Applications 1
34 Nature 1
35 Processes 5
36 Research 1
37 Resources Conservation and Recycling 1
38 Robotics and Computer Integrated Manufacturing 3
39 Sensors 7
40 Supply Chain Analytics 3
41 Supply Chain Management-an International Journal 1
42 Sustainability 4
43 The International Journal of Advanced Manufacturing

Technology
4

44 Transportation Research Part E-Logistics and
Transportation Review

1

45 Trends in Food Science & Technology 2
Total 97

Table 5a
Selected conference papers.

S.
No.

Conference Name No. of
Papers

1 7th Conference on Learning Factories, CLF 2017 2
2 CIRP Annals-Manufacturing Technology 2
3 CIRP Conference on Intelligent Computation in

Manufacturing Engineering
2

4 IEEE International Workshop on Metrology for Industry 4.0
& IoT

3

5 IFAC International Federation of Automatic Control 2022 3
6 Miscellaneous (See Appendix A for details) 19

Total 31

Fig. 4. Annual distribution of publications.

Fig. 5. Distribution of journal and conference papers.
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3.2. Qualitative analysis

This section provides the analysis and extracted results on the
selected literature for the categories in Fig. 7. The selected articles were
reviewed and placed in three categories.

3.2.1. Manufacturing and production
In this section, manufacturing and production are considered inter-

changeable terms and are used specifically to address the reported work
from the research papers selected for this category. The digitization of
manufacturing systems has modernized the industry, focusing on inno-
vative technologies to propose and create digital integration of pro-
duction systems to implement DT. Similarly, smart shopfloor and smart
production are also gaining interest due to the use of digital
technologies.

[50] explored this opportunity with a 5-dimensional (geometry,
physics, behavior, rule, and data) modeling approach for shop-floor DTs
(SDT). The objective was to propose a DT-based virtual monitoring and
prediction system (DT-VMPS) and to verify the practical effectiveness
with a case study. In an effort, [51] developed an innovative digital
shop-floor management system. The system was equipped with
DT-enabling technologies (RFID and vision systems) to implement an
integrated DT to demonstrate its effectiveness in cyber-physical
machining. [52] studied digital lean principles to reduce
non-value-added tasks with an Industry 4.0 perspective. The study was
conducted at data, information, and knowledge levels for a CNC
(Computer Numerical Control) machine to predict the machine health of
the data by analyzing it in real-time.

[53] developed a DT reference model from an Industry 5.0

perspective with multi-agent systems in intelligent DT and internet of
DT (IoDT) characteristics for a smart manufacturing system. Other
research studies emphasized predictive analysis to optimize the pro-
duction capacity for a smart factory by using collaborative
manufacturing [54,55]. [56] also emphasized the importance of
autonomous communication in smart factories by using IoT and RFID
(Radio Frequency Identification) and proposed a hidden Markov model
for optimal autonomous manufacturing in real-time. [57] introduced a
framework to collect and analyze data from DT-based production sys-
tems for performance measurement with respect to the identified Key
Performance Indicators (KPIs) for production monitoring processes. The
authors also emphasized using IoT sensors and data transformation
devices to collect real-time performance data for physical machines.
[58] introduced a model to integrate reliability-centered maintenance,
with Industry 4.0 as a perspective for sustainable manufacturing using a
data-driven approach. The integrated model with IoT and cloud
computing offers smart maintenance to provide information on KPIs for
efficient performance evaluation.

In another research, [14] presented a virtual model for a 3-axis
vertical milling machine. The virtual model was developed with the
help of sensory and data acquisition systems to assist in diagnosis and
prognosis. Researchers also proposed DT-driven flexible production
systems for decision-making. To address this challenge, [59] proposed a
framework to evaluate the system’s flexibility by including all elements
in the production system. The authors discussed the problems in flexi-
bility evaluation for decision-making and emphasized dynamic predic-
tion, data analytics, and simulation-based modeling. [60] proposed a
DT-based reconfigurable manufacturing system equipped with intelli-
gent sensing for manufacturing sustainability.

Semantic data models are also tested to provide digital continuity in
manufacturing. Integrating real-time data between physical and digital
counterparts has given simulation prominence in DT applications, such
as [61], which created a digital simulation model to compare the results
with the specific production data for a brake caliper plant. To address
the importance of real-time simulation applications in DT, [62] dis-
cussed using Discrete Event Simulation (DES) for automated
manufacturing systems. They proposed an autonomous real-time simu-
lation model of a physical system with minimal manual intervention.
Also, [4] investigated the simulation potential from an Industry 4.0
perspective and reported an increasing trend in research for hybrid
simulation and modeling in DT.

[63] proposed inferring a simulation model of DT by ML to automate
the DT process for complex systems. The authors focused on discrete
event system specifications through DES models andML to automate the
process; however, this approach is only valid for some manufacturing

Fig. 6. Country-wise publication of journal and conference papers.

Fig. 7. Distribution of research papers according to categories.
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systems. [64] also emphasized simulation modeling and ML interfaces
for high-fidelity virtual models in manufacturing. [65] proposed twins
learning based on DT and reinforcement learning for real-time sched-
uling. [66] also presented a DT-based data model for CNC (Computer
Numerical Control) machining equipped with sensors.

The work demonstrates the use of a simulation tool for the avail-
ability of real-time production data. [67] proposed a DT framework with
3D visualization for real-time data interaction with integrated simula-
tion modeling for production systems. The approach was also validated
for flexible manufacturing systems, and the benefits of real-time simu-
lation with the potential for cost reduction were determined. To address
the re-manufacturing difficulties, [68] demonstrated an IoT-enabled
flexible simulation framework for engine re-manufacturing process
planning, analysis, and optimization. [69] emphasized real-time syn-
chronization by integrating IIoT-device-based sensor data with com-
mercial microcontrollers to update the digital system with real-time
information for DES simulation. [70] utilized multi-agent-based DES for
autonomous production control in a smart factory environment. The
simulation study proved that the distributed manufacturing control
approach could be useful without specialization network topology.

Some scholars also reported DT integration in specific manufacturing
processes. [17] proposed a CPS system for data integration in production
planning by parsing stations or robots for body-in-white (BIW) pro-
duction. They highlighted the requirements for DT integration planning
for BIW plants. [71] discussed the CyberFactory#1 ITEA project and
emphasized CPS’s secure formation and integration in DT. To a further
extent on CPS, [72] provided a systematic framework for web-based DT
for CPS and demonstrated a prototype on a 3D printing machine. [73]
also proposed a DT-based CPS for personalized production to improve
manufacturing performance. [74] reviewed the necessary tools and
techniques to obtain the required information from CPS and further
explored how to protect a CPS system from any risk and failure in an
automated production environment. [75] developed a CPS focussed on
physical identification, information collection, and transmission to
improve integration, interaction, and collaboration of physical entities
for a case assembly facility.

The embedded semantic modeling in DT to provide cognition capa-
bilities is a new concept known as Cognitive Digital Twins (CDT). To
investigate the vision of CDT, [76] summarized key features, challenges,
and opportunities in constructing the CDT interface. [77] also explored
the CDT concept from a systems engineering approach and provided a
framework with enabling tools and technologies. [78] also explored the
self-learning cognitive capabilities with augmented reality to offer
resilience in production systems. [79] reviewed cognitive architecture to
develop a framework with an integrated AI for CPS and give prominence
to online ML algorithms for high-precision performance in
manufacturing systems. The paper also highlights the challenges due to
the lack of standardized interfaces that make human intervention
necessary.

Another important aspect of digital integration is synchronizing the
system’s components, where [80] identified factors causing difficulties
in acquiring DT-based manufacturing in Indian industries. They
explored real-time synchronization, technology integration, informa-
tion, and data-driven attributes of DT, which are the most critical factors
in acquiring DT in manufacturing.

[81] investigated the synchronization for a cutting tool manufacturer
and developed a four-layered framework (physical space, DT data,
digital space, and cloud services). The proposed layers were subjected to
integration with the Industrial Internet of Things (IIoT) to create an
intelligent manufacturing system. [82] discussed essential components
of real-time integration for intelligent manufacturing systems such as
IoT devices, data networks and communication, data applications, and
cloud manufacturing. The intelligent factory demonstration was done
with a digitally integrated drilling process. [83] explored the impact of
DT-enabled technologies on the manufacturing sector with an Industry
5.0 perspective. The authors discussed key technologies and modeling

techniques used in DT architectures for real-time processing,
data-driven, and efficiency improvements. [84] studied the importance
of IoT devices for production monitoring and data transmission across
cloud and edge computing. The role of Industry 4.0 with respect to
DT-enabled technologies was discussed by [85]. The authors suggested
that the use of IoT can assist manufacturing companies in avoiding or
recovering from unforeseen situations such as the recent pandemic. The
interoperable data model for practical DT application was demonstrated
by [86] for the Korean automotive industry. The emphasis was given to
sharing information in real-time by using IoT, sensors, and 3D visuali-
zation data.

[87] presented an Industry 5.0 survey and addressed the importance
of enabling technologies like cloud computing, IoT, and blockchain in
various manufacturing sectors. [88] highlighted the problem of inade-
quate monitoring in labor-intensive manufacturing sectors and proposed
an intelligent monitoring and control framework using a configurable
virtual workstation that provides a real-time flow of information
through IoT and sensors from warehouse and production lines. [89]
proposed a standard framework that collects data offline to train online
systems to avoid real-time production failures. Their effort is to stan-
dardize the data, information, and interfaces for production processes.
[35] proposed a 5-dimensional layer for the DT model based on physical
and virtual services, DT data, and dynamic connections between the
components of the systems. Emphasis was placed on adopting a common
model approach to support the implementation of DT in multiple fields
of manufacturing applications. Regarding product design, the applica-
tion of DT is tested to a certain extent, where [90] investigated the
potential gaps and proposed a functional-based modeling approach for a
COVID-19 breathalyzer. The study perspective establishes a product DT
for design, manufacturing, and service for the product lifecycle.

Some assembly production lines are required to identify the human-
machine interaction (HMI) for intelligent operations. The concentration
of this interface is to provide real-time communication for smart as-
sembly. [22] described HMI as a key technology for a product life cycle
and proposed a 5-dimension DT-enhanced HMI framework. The
framework identifies the crucial aspects in each dimension between
physical and virtual domains, from design to product life cycle service.
Another similar aspect of the HMI environment is HRC, which combines
human experience and robot precision to obtain high productivity. [91]
explored the human robot interaction HRI concept by using AI for
intelligent manufacturing. They identified key characteristics such as
complementarity, shared knowledge/goals, bounded autonomy, mutual
trust, and benevolence for a human-centered integration in a complex
CPS for manufacturing. In interesting research, [92] presented a model
to converge DT and virtual reality (VR) for operators training for higher
visual and realistic learning. The proposed digital platform was experi-
mented on operating an industrial robot that significantly improved
operator training. Further, [93] discussed the importance of a
human-centered approach concerning complex socio-technical issues in
integrated CPS. [94] proposed a digital framework to monitor human
skills and measure operators’ performance by incorporating human
factors in DT. [95] investigated this complex and dynamic HRC envi-
ronment for a linear actuator sub-assembly with object-oriented even-
t-based simulation. The virtual models were developed to understand
the potential of an integrated DT assembly operation. [96] analyzed the
maximum possible integration between the manufacturing execution
system and simulation modeling for real-time simulation of production
processes. They also offered various levels of HMI in CPS by using
real-time simulation.

The growing research on DT may lead to some misconceptions since
the opportunities for DT model implementation increase with the
amount of research in this area. To an extent, [18] addressed the
misconception about DTs by creating a generalized 4 R framework for
DT applications for any machine or system. They categorized the 4Rs as
Representation, Replication, Reality and Relational. The study empha-
sized the importance of DTs maintaining continuous communication
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with physical systems to represent an actual system accurately.

3.2.2. Logistics
The varied needs of customers and environmental limitations

necessitate sustainable practices in logistics., which requires the high
monitoring of logistic elements. To review the requirements, [97] con-
ducted a qualitative analysis based on current and future needs for
sustainable logistics with an industry 4.0 technology perspective.

The focus on CPS systems in logistics has provided a reason to
explore more opportunities for DT integration in logistic networks.
Stochastic modeling, dynamic programming, and ML algorithms can
support this integration. To extend this, [98] proposed a methodology to
organize the physical distribution DT model to manage trade networks.
They aimed at real-time data collection and using stochastic and
mathematical modeling to find optimal solutions. [99] also proposed a
CPS-integrated DT to automate the logistic system for a warehouse fa-
cility with the support of digital technologies for data collection and ML
algorithms. [100] conducted a study with a Logistics 4.0 vision and
proposed a data-driven DT embedded with simulation to offer adapt-
ability and resilience for product-on-pallet distribution. [33] developed
a framework with an adaptive modeling approach for urban logistics to
support better planning. [101] utilized design, science, and research
methodology (DSRM) to develop a DT implementation strategy for
German rail transport.

The concept of a Physical Internet (PI) hub offers efficient and
structured transportation of goods by transforming closed networks into
open networks for better relocation of physical goods using DT-based
synchronization with the use of IoT devices and supported by ML, as
described by [102] can provide optimization in logistics. [103] also
proposed a DT framework for a composite container to identify hubs’
loading and unloading phases. Based on IoT and blockchain technology,
[104] proposed an optimized warehouse locational method for intelli-
gent transportation. [105] also proposed a conceptual framework based
on blockchain and DT-enabled technologies for DT-integrated analytics
and improved logistics performance. Similarly, [106] presented the
logistics-based DT platform supported by big data technology for better
planning and optimizing logistics processes. [107] also proposed an
IoT-enabled blockchain framework to present the trade-in strategies for
disassembly-to-order systems. Similarly, [108] proposed an IoT-based
framework for SC logistics. [109] presented the use of RFID devices
and DES for a non-stacking warehouse. The results showed that the
applied DT has the potential to assist in making quick adjustments in the
physical layout for non-stacking warehouses. Considering IoT as a key
technology in warehouse management, such as loading, unloading,
distribution, and processing, [110] reviewed the importance and ap-
plications of IoT technology for smart logistics. To address the intelligent
logistics for cold chain applications, [111] proposed battery-powered
IoT for temperature monitoring and a framework consisting of a dash-
board for continuous monitoring with an IT (Information Technology)
support system that identifies and reports anomalies. [112] used the DT
concept for an intelligent container to track the ocean transport of ba-
nana fruit. [113] emphasized the benefits of DT for horticultural pro-
duce. [114] identified the opportunities to improve food logistics from
the perspective of Industry 4.0 technologies. The authors also addressed
the challenges of transportation, planning, warehouse management, and
data security. [115] discussed the critical problems in global fresh
produce for the reefer market related to temperature control and uni-
formity, sustainability issues due to greenhouse gas emissions, and the
potential of digital feed twins to address key bottlenecks. The authors
emphasized using a data-driven approach integrated with sensors to
control the reefer atmosphere for better energy saving and food quality.

Production Logistics (PL) plays a significant role in improving the in-
house productivity of any production system. An intelligent PL system
can support an efficient material flow that generates a high-quality
output with high profits. [116] analyzed spatial-temporal values of a
production system through deep NN and proposed a dynamic

special-temporal knowledge graph (DSTKG) enabled with DT. [117]
identified the problems in PL and proposed a DT control framework
coupled with emerging technologies and optimization algorithms for
synchronization between production and storage. In another study,
[118] proposed a DT framework for synchronizing production service
systems under a highly dynamic interface. [119] developed a small-scale
demonstrator to demonstrate the IoT-driven CPS system for production
logistics. A dashboard was used to visualize the data chain for acquiring
and processing a conveyer testbed.

Because of collaborative environments in PL, [120] proposed a
contact system method to identify the location of autonomous mobile
robots (AMR) in a production system with the help of a mathematical
model that identifies objects with six degrees of freedom to calculate the
deviation between AMRs. [121] presented EtherCAT model and Twin-
CAT HMI server for AGVs (automated guided vehicles) operations in a
smart warehouse to provide potential collaboration between virtual
reality and physical space. DT modeling and simulation have enhanced
PL systems’ adaptability and disruption response as [122] presented an
intelligent workshop DT-based design of multi–Automatic Guided Ve-
hicles (AGV) simulation for optimization of paths in the aerospace
industry.

[123] produced a simulation model by utilizing reinforcement
learning to simulate factory operations and optimize storage for pro-
duction logistics. The proposed method proved promising for storage
optimization tasks in complex production logistics systems. [124] also
presented a virtual model for AGVs (automated guided vehicles) fleet
management. The study indicated a need for more research in DT for
AGVs (automated guided vehicles) and proposed to develop an
ecosystem for a fleet management system to enhance the collaboration
between factory layout modeling and AGV control. [125] investigated
the validity of simulation systems in implementing DT and the auto-
matic generation of simulation models. [126] developed a
simulation-based intelligent framework for in-house logistics decision
support. [13] created a digital model for a physical testbed to perform
several scenario-based experiments to evaluate digitalization in PL.
[127] investigated how cognitive DT can optimize logistics operations
planning by automating freight parking management system and pro-
posed a four-layered architectural framework integrated with enabling
technologies, including agent-based simulation, property graphs, web
ontology language, and web of things. The work manifests the potential
of enhanced resource utilization and collaboration with improved lo-
gistics efficiency. [128] proposed a universal CPS to simulate production
processes to optimize production logistics. The simulation model could
reproduce a physical workspace to perform with real conditions for
production simulation. [129] identified the current problems in pro-
duction and distribution (PD) logistics and proposed a linkage-oriented
decision-making platform based on DT.

3.2.3. Supply chain management
Sustainability in distributing products and commodities plays a vital

role in managing disruptions due to unforeseen situations such as the
recent COVID-19 pandemic. As mentioned previously, DT can improve
SC performance. This study also analyzed various scholars who have
used DT-enabled technologies to establish frameworks to support SC
performance. [130] investigated the benefits and challenges of Industry
4.0 technologies in improving SC performances and integrated the
findings into a framework for future research opportunities. Similarly,
[131], [132], [133] and [134] identified and described the use of
emerging technologies for DT integration in SC. [135] also examined the
implementation of DT in SC disruption to identify the challenges. In
another research [136] studied the impact of DT on the sustainability of
SCs by examining the hypothesis utilizing least square structural equa-
tion modeling after collecting surveys and interviews with top man-
agement of manufacturing companies in India. The authors concluded
that DT can significantly improve SC performance and resiliency. [137]
discussed the SC business eco-system for zero-waste value chains and
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provided a framework with key enabler technologies for effective and
secure quality data transmission for end-to-end data traceability. [138]
provided an investment conceptual model to assess the essential
DT-enabling technologies for SC systems. Important parameters con-
cerning the applicability to different companies were evaluated for in-
vestment purposes.

Another research described DT’s potential for assisting decision-
makers and investigated the SC disruption for a single FMCG product
during the recent pandemic [139,140]. The inventory and financial
problems were analyzed, and a framework integrated with ML and DES
was proposed to counter the SC disruption. Likewise, [28] also presented
a SC resilience model based on DES to address the food retail supply
disruptions during the pandemic in Germany. Further, [39] in a study on
the impacts of COVID-19 in SCM, emphasized the use of dynamic
simulation models, empirical methods, and data-driven techniques to
identify the short and long-term effects. [141] proposed DES to monitor
the quality of transport goods with the help of a digital model. They
relied on sensory data for simulation modeling to reduce the safety stock
levels for automotive SCs.

[23] discussed the importance of the data-driven DT with reinforced
ML and simulation for decision support in SC. [142] presented an idea to
use Systems Applications and Products (SAP) for real-time data inte-
gration and developed virtual space on AnyLogic software for real-time
simulation. The emphasis was on using sensors, RFID, and IoT to flow
data efficiently to ERP (Enterprise Resource Planning) systems and
simulation models. [29] discussed N95 medical protective mask supply
disruption during the COVID-19 outbreak in China and provided a nu-
merical and simulation-based DT resilience model. Further, [143] pro-
posed a DT system based on simulation modeling coupled with sensors
and data-interoperable devices to mitigate SC disruptions on the pro-
duction shop floor. The proposed framework for the FMCG domain
addressed a potential solution to manage disruptions. [144] defined DT
framework based on data, domain, analytics, and outcome elements to
optimize SCs. AI and simulation are considered the core of the imple-
mentation of DT. [145], [15] studied technology evolution and sug-
gested the technology implementation layers for DT SC systems. The
study suggested that synchronization and simulation modeling are key
elements for implementation layers. To address the demand and forecast
prediction, [146] designed a prediction model based on a convenience
store’s BP NN supported by IoT devices. Simulation tools and data an-
alytics with an online dashboard for performance monitoring were
proposed as an integrated interface. [147] addressed the importance of
ML in SCM and proposed a ML regression algorithm to predict the
severity of late supplier delivery for the German machinery industry.

Another aspect of DT in SC is using emerging technologies in the food
SC. The research in this area indicates a real potential to measure food
quality from postharvest to retailers. The focused study by [148] on the
DT transformation of agrifood indicated the potential for improvement
in SC performance. [149] also discussed in detail the use of advanced
technologies to identify food quality loss during packaging, storage, and
transportation. The study emphasizes the integrated DT coupled with
the technology for real-time biodegradation monitoring. Similarly,
[150] delivered a mechanistic modeling-based DT to simulate and
quantify the biochemical degradation for the cultivar Kent mango. After
collecting temperature-dependent data during the transport, the model
was designed and later simulated in multiphysics software. [151] also
developed a physics-based DT for mapping and optimizing postharvest
SCs for fruits and vegetables. Both [150] and [151] reported significant
quality losses and recommended using real-time data integration for the
cold SC. The literature review for this study also identified the use of
Blockchain technology with regional database management systems
(RDMS) systems for SC mapping. To reduce food waste in agribusiness,
[152] proposed a risk mitigation matrix integrated with multi-objective
binary linear programming (GMLOP). An event-based modeling frame-
work was reported by [153] to support the decentralized transportation
of coffee.

3.3. Summary of results and implications

After thoroughly analyzing the existing literature, it becomes evident
that DTs hold tremendous potential across various systems. Researchers
have advocated for multilayered frameworks, digital technologies, and
digital models of physical systems, underscoring the critical role of real-
time connectivity and synchronization. The ultimate aim is to develop a
CPS featuring a real-time data interface and virtual layers that accu-
rately mirror the physical system. A pivotal insight from this review is
the significance of data-driven frameworks in bolstering resilience for
efficient operations. Achieving synchronization between every compo-
nent of the physical and digital layers is crucial for facilitating intelligent
operations. To realize these objectives, Industry 4.0 technologies,
alongside advanced data analytics techniques such as simulation
modeling, NN, AI, ML, and numerical modeling (Num.), are vital in the
development and implementation of DT.

After conducting a thorough analysis of the findings, it is evident that
substantial research has been dedicated to proposing various sub-DT
systems for different components and processes within SCM. However,
there is a discernible requirement for a systematic approach to explore
the integration of existing sub-DT systems (sub-systems/building blocks)
in order to develop a comprehensive DT system for SCM. In addition,
this study’s findings have substantial implications for manufacturing,
logistics, and SC (SC) performance. A comprehensive overview of DT-
enabling technologies and data analytics techniques, as discussed by
various authors in the papers selected for this review, is provided in
Table 6 (see Appendix B). Additionally, Table 6 maps each implication
to the selected studies as indicated by the authors, highlighting SCM
performance as a particularly promising area for further research.
Moreover, the use of DT-enabled technologies and data analytics tech-
niques is compared, with respect to their implications, in Fig. 8(a, b, c).
This comparison shows that IoT and RFID, as DT-enabled technologies,
together with simulation and ML in data analytics, are most prevalent in
the selected studies. This indicates that simulation and AI technologies
will play a crucial role in data analytics for DT integration, facilitating
dynamic modeling and predictive analysis for real-time performance
measurement.

The comprehensive analysis of current literature underscores a
pressing need for a conceptual framework tailored to DT-SCM. This
framework will be critical for harnessing DT’s full potential to revolu-
tionize various systems through enhanced real-time connectivity, syn-
chronization, and the integration of CPS. It would systematically address
the integration process, leveraging DT’s capabilities to improve SCM
performance.

The analysis of a literature review demonstrates great progress in the
development of sub-DT for each SC component. Most authors addressed
the importance of DT at the sub-level due to a better practical implica-
tion or to reduce complexity. However, the literature doesn’t provide
any proposed framework at the sub-DT and SCM network levels. The
sub-DT approach in SCM is a focused and refined application of DT
technology. It targets specific sub-components or processes (sub-sys-
tems) within the broader SC. This approach helps organizations manage
complex systems better by breaking them down into smaller, more
manageable processes. Given the significance of DT-enabling technolo-
gies and data analytics techniques enabling resilient and efficient op-
erations, such a framework would outline the essential components and
their interactions within the SCM.

As identified through the review, it would also guide the adoption
and implementation of industry 4.0 technologies, including IoT, RFID,
simulation modeling, NN, AI, and ML. This conceptual framework is not
just a theoretical necessity but a practical blueprint for advancing SCM
performance, emphasizing the strategic role of DT in enabling dynamic
modeling, predictive analysis, and real-time performance measurement.
The evidence suggests that developing such a framework is imperative
for leveraging DT technologies to pave the way for more intelligent,
efficient, and resilient SC operations.
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To establish a conceptual framework for DT-SCM, a diverse approach
comprised of a real-time performance dashboard, an effective SCM
measurement system, and strategies for SCM optimization are manda-
tory requirements for elevating SC performance. This integrated
approach enables the transformation of DT with industry 4.0 technolo-
gies and advanced data analytics to foster a seamless, interconnected,
and intelligent SC ecosystem. The real-time performance measurement
requires a digital model to be connected with the operational model,
which identifies the main strategies for the SC ecosystem, such as SC
strategy, policies, sourcing, and procurement. A real-time performance
dashboard offers immediate insights and transparency across the SC,
facilitating swift decision-making and operational excellence. At the
same time, a robust SC performance measurement system, grounded in
DT capabilities, enables quantifying and analyzing KPIs, ensuring a data-
driven strategy for continuous improvement. Optimization efforts are
further enhanced through the strategic application of AI, ML, and
simulation modeling, which refine operational efficiencies and predict
future trends, allowing for preemptive adjustments. Collectively, these
elements exemplify the practical implementation of the proposed con-
ceptual framework, steering SCM towards unparalleled efficiency,
resilience, and competitive advantage in a dynamically evolving SC
system.

3.4. Common components of DT identified for SCM digital twins

3.4.1. DT-Enabled Technologies
IoT technology has grown significantly to provide real-time con-

nectivity for machine-to-machine or human-to-machine interfaces. The
International Telecommunication Unit (ITU) defines IoT as “A global
infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies” [154].
Applying IoT in data collection for various operations in physical spaces
is beneficial for SCM DT integration. Using IoT in applications such as
manufacturing, SC, and logistics can maximize the overall efficiency and
productivity of the system. RFID devices are smart devices connected to
IoT networks and assist in monitoring the product’s lifecycle by tracking
it through QR codes and Unique Identifiers (UID) [155]. This study also
identifies some challenges to integrating IoT, such as heterogeneity,
dynamic, and spontaneous communication for IoT interoperability
[154]. To solve this, various Application Programming Interfaces (APIs)
have been developed to address IoT compatibility. IoT protocols play a
prominent role in networking physical devices and providing interop-
erability in the IoT network. These protocols include Open platform
communication (OPC), OPC unified architecture (OPC UA), trans-
mission control protocol (TCP/IP), and message querying telemetry
transport (MQTT) and Zigbee [156]. The majority of IoT devices have
limited capacity to store data, and these devices depend on the struc-
tured architecture used for DT integration. Therefore, cloud technology
is an essential component in DT-integrated system.

Data storage, management, and security are other central aspects of

DT integration due to the large amount of data and information. Cloud
computing provides high-speed, secure, limitless data collection and the
sharing of resources to and from the physical and digital spaces. More-
over, cloud computing is a mature technology, and organizations such as
Microsoft, IBM, Amazon, and Google all provide cloud services. The data
can be collected in the cloud from IoT devices to use further with cloud
applications. However, if the data comes through many IoT devices and
is based on a large region, fog or edge computing technology can provide
a network node to store and process the regional data [157]. SCM sys-
tems sometimes require data access from various remote locations.
Hence, integrating cloud/fog/edge computing can provide data visibil-
ity for a decentralized decision support system [158]. However, cloud
implementation in a conventional SCM system is a challenge that de-
mands a layer-by-layer implementation to collect data from IoT devices
and store it securely for further processing [7].

An integrated DT system with a large amount of data flowing from
various components and elements requires impeccable cyber protection
and data privacy. IoT devices and cloud services provide secure data
transactions in the network for internal and external stakeholders. Large
information networks such as SCM networks comprised of cyber-
physical systems connected with business facilities and logistics per-
forming operational functions require mutual efforts between stake-
holders to protect the informational network for trade uniqueness and
cyber-attacks.

CPS is an intelligent interconnectivity of physical elements with the
digital space of the system for real-time data collection and monitoring.
It is also necessary to distinguish CPS from the architecture of IoT, as
described by [157]. CPS is a system that connects IoT, RFID (Radio
Frequency Identification), and sensors as the primary technologies
sourcing this connectivity with digital spaces. [82] defined CPS as “The
combination of physical and virtual spaces is referred to as cyber-physical
systems (CPSs), and it aims to create a communicative interface between
the digital and physical worlds by integrating computation, networking, and
physical assets”. CPS is a mandatory component for DT integration. As
identified in this study, many researchers addressed the CPS in
manufacturing and production systems. However, the scalability of CPS,
including sustainability and life cycle, is yet to be addressed fully. CPS
integration in traditional SCM systems is a challenge. It is a convergence
of physical and digital spaces for advanced computing to achieve dy-
namic modeling and decision making for SCM systems. This includes
hardware such as sensors, actuators, machines, men and software for
communication, networking and control. The challenge is to automate
the system with real-time data collection, execution and interoperability
for various heterogeneous systems and data analytics for decision
support.

3.4.2. Data analytics
Simulation plays a crucial role in integrating DTs for optimization,

operational planning, and the design of intelligent production systems.
It enables the testing of engineering solutions bymimicking the behavior
of complex production systems in a real-world environment before

Fig. 8. Potential of DTs in SC.

S.A.H. Zaidi et al. Supply Chain Analytics 7 (2024) 100075 

10 



making investments. Leading software companies, such as Siemens,
have developed practical solutions to integrate simulation into Industry
4.0, thereby enhancing production efficiency by creating factory twins
that incorporate IoT and simulation. [144]. This review identifies
simulation as a commonly used tool for DT integration in manufacturing
and SCM, discussing methods like discrete event simulation, system
dynamics, and agent-based modeling. Additionally, some researchers
have explored hybrid modeling, which combines two or more simula-
tion methods. [159] proposed using simulation alongside big data
technologies for SCM applications, indicating that data-driven DT sys-
tems with real-time simulation modeling could advance DT integration
within CPS environments. [160] and [161] also covers simulation-based
control for systems engineering approaches, proposing simulation-based
experimental DT for virtual testbeds, and [145] discussed the impor-
tance of simulation in process optimization, cause analysis, and
decision-making within DT systems. [67] Implemented
simulation-based frameworks for flexible production management and
[126] proposed decision support in production logistics highlight the
value of simulation. The importance of FMUs-supported simulation
models is also discussed by [34]. Some studies, such as [4,114] further
acknowledges the integration of AI, NN, and ML with simulation
modeling for adaptive behavior and self-optimization alongside the use
of numerical (e.g., MATLAB) and Multiphysics modeling e.g., FEA
(Finite Element Analysis), such as ANSYS, COMSOL) in DT applications.
Researchers have evaluated the need for numerical modeling by col-
lecting real-time data to investigate further the quality degradation over
time in SC and logistics [150].

Recent advancements in autonomous digital data analytics through
simulation, AI, ML, reinforcement learning, and NN are highlighted,
underscoring the potential of AI-trained models in real-time data ana-
lytics within SCM systems. [158,162] demonstrated the concept of in-
tegrated AI and ML approaches for DT-SCM applications. [163]
conducted a detailed analysis of DT analytics and emphasized onML and
AI smart data analytics for DT integration. Similarly, [164]evaluated the
possibility of AI integration with the simulation tool anyLogistix. [165]
also explored AI for generative modeling, optimization, and predictive
analysis to determine better decision-making. [166] discussed
self-taught ML algorithms for DT analytics. [65] proposed reinforcement
learning for real-time scheduling. [86] highlighted the importance of ML
and deep learning in real-time data-driven architecture for big data. [64]
viewed ML approaches for high-fidelity DT models for a cyber-physical
factory. [105] discussed ML in an intelligent distributed manufacturing
system for accurate predictions. In another study, [128] proposed ML
algorithms for production optimization in a CPS environment. Several
researchers, such as [7,23,116,146], also proposed frameworks based on
AI, reinforcement learning, and deep NN for SCM.

The review highlights the major potential in data-driven simulation
modeling in real-time with the support of AI integration. Moreover, the
integration of AI with simulation offers hybrid solutions for data ana-
lytics, paving the way for multimethod and multi-agent-based modeling
as the future of DT data analytics. To suffice data-driven modeling, the
digital layer of the DT-framework must be connected with informational
model of the SC that also provides KPIs for performance analytics.
Further, a performance model in a digital layer plays a role to store and
provide visual performance of the KPIs for better analysis and control.
These models will assist digital modeling of physical spaces and real-
time communication between physical and virtual entities for data-
driven simulation and performance measurement via an online dash-
board presents realistic solutions for enhancing SCM resilience.

4. Main challenges

The development and implementation of DT are sophisticated pro-
cesses where all system components are connected and share informa-
tion in real-time. The system requires various technologies to replicate a
physical system in a virtual world. The emergence of Industry 4.0 and

the development of key-enabled technologies have seemingly given a
wide range of prospects to build a DT-integrated platform. The review
conducted in this study finds conceptual frameworks, digital models,
and digital shadow integrated with Industry 4.0 technologies that
indicate DT is still in its infancy.

Most authors have proposed a DT conceptual framework after
investigating the particular system for integration, such as [167] and
[81]. This also indicates the importance of DT at the sub-level to create
sub-DTs for various SC processes to enhance the visualization and con-
trol for complex systems. The focused sub-DT provides detailed insights
and analysis for better integration at SCM network level. Similarly, it
helps each SCM process design, test, and optimize before integration
into a larger system. However, the creation of sub-DT also posses several
challenges at technical and organizational levels, and its practical
implementation still needs to be addressed in detail. The complexity of
DT infrastructure that needs high volume data, seamless transmission,
technology integration with compatibility, scalability, high cost, use of
resources, maintenance, and sustainability at the sub and network level
are significant challenges.

In addition, the digital shadow of the actual physical system is also
presented after collecting real data to simulate the physical space, as
demonstrated by [13]. Several other authors [150,168] also used real
data to simulate a digital model. This indicates the lack of real-time
integration and synchronization between physical and virtual models.
Table 7 (see Appendix B) provides some of the common challenges
highlighted during this study. Another aspect is to investigate the use of
suitable DT-enabled technologies for the architecture and complexity of
the system. The challenge is understanding each system element to
establish real-time interconnectivity to create an integrated DT. It re-
quires the investigation of all relationships and an understanding of
dependency at all levels of the design. Several researchers have pro-
posed multiple layers in their DT framework to describe that perfect
synchronization is gradual.

The heterogeneous data sources and formats pose data integration
challenges in DT. Real-time data processing requires an uninterrupted
flow of high-quality data to integrate with different sources for reliable
operations. The consistency of data accuracy and quality can contribute
to real-time simulation modeling to produce real-world behavior of the
physical model. Simulation models can be highly dynamic depending on
the nature of the physical system. Therefore, data integration and scal-
ability are challenges requiring particular focus and attention.

Further, scalability is also a challenge in DT models due to the large
volume of data collected over time, which also requires high computa-
tional capabilities. Data privacy and cyber security are other main
challenges in DT due to the probability of cyber-attacks, and companies
take this matter seriously to protect critical information. Interoperability
is another critical factor that needs attention for intelligent connectivity
among smart devices for system integration. This smart connectivity
could be problematic if the system’s existing components are incom-
patible with establishing an interface with data or information exchange
devices. Since the internal and external flow of information plays a
prominent role in intelligent operations, the data quality or information
flow also needs maturity and a collaborative approach between
stakeholders.

Integrating information systems (e.g., Enterprise Resource Planning -
ERP) allows data-driven modeling for decision support and prediction.
These models are required to digitalize to support different decision
scenarios at decentralized levels. Another aspect is investigating DT
adoption in various enterprise-level infrastructures such as
manufacturing plants, SCs, or logistic facilities. Authors have proposed
the use of big data analytics and deep neural networks. However, these
also require heavy computation and appropriate infrastructure
resources.

Implementing DT also raises the need for training and skills due to
introducing digital technologies to employees. Companies require a
holistic approach to embrace DT bymeasuring its success and harvesting
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it in its culture to deal with any resistance. It demands strong leadership
support that devises strong policies after assessing the risks of digital
transformation.

5. Proposed conceptual framework

During this review, challenges pertinent to the integration of DT
within SCM were identified. This critical analysis laid the foundation for
developing a conceptual framework predicated on the synergy between
DT-enabling technologies and complex data analytics. The evolution of
IoT, RFID, and smart sensors has markedly expanded the capacity for
handling voluminous datasets, a development that is quintessential for
constructing CPS that synergizes IoT devices. Such integration facilitates
a seamless integration of physical systems with their digital
counterparts.

Furthermore, incorporating cloud computing into existing systems is
a pivotal strategy for enhancing data quality and bolstering cyberse-
curity measures. Given the intrinsic nature of DT as a data-intensive
system, it necessitates an infrastructure characterized by seamless con-
nectivity, high-fidelity data transmission, and system-wide compati-
bility. Herein lies the critical role of interoperability, bridging the gap
between the physical and digital realms and harnessing the power of
real-time data analytics for synchronous monitoring.

Technological interventions, including simulation, ML, AI, and NN,
have profound potential in offering analytical solutions that aid in de-
cision support, predictive analytics, and the timely identification of
systemic disruptions. The deployment of data analytics avails hybrid
solutions conducive to continuous systemic adaptations, thereby aug-
menting SC performance.

The conceptual framework proposed herein is designed to be applied
across various components of SCM. Fig. 9 demonstrates the use of sub-
DT at different levels of the SC, from individual components to overall
strategic planning in an SCM network. This model highlights the
importance of incorporating DTs at every stage of the SC to enhance
efficiency and decision-making capabilities. Each SCM component fea-
tures a sub-digital twin (sub-DT) that captures and processes informa-
tion in real-time from its physical counterparts. This allows for detailed
monitoring, analysis, and optimization of operations at a granular level.

Integrating these sub-DTs forms a comprehensive DT network, of-
fering a detailed view of the SC. This integrated perspective enables
well-informed strategic decision-making and holistic management of SC
operations. Moreover, this level of integration equips the system with
advanced features, such as predictive analytics, network optimization,
and strategic planning. The harmonization and optimization across the
SC boost overall performance and strengthen resilience.

The proposed framework in Fig. 10 advocates for integrating real-
time data collection devices within physical systems, facilitating direct
data transmission to simulation modeling tools. This approach enables
real-time simulations that critically assess system performance. Addi-
tionally, the framework allows for the real-time evaluation of processes
to identify bottlenecks and empower stakeholders to make informed
decisions. This research underscores the indispensability of a robust,
technology-driven approach to SCM, promising enhanced efficiency,
resilience, and adaptability in the face of evolving market demands and
operational challenges.

Figs. 9 and 10 collectively demonstrate a complete SCM CPS, where
physical operations are mirrored by sub-DTs for each component, and
advanced analytics and services are used to optimize and manage the
overall SC effectively. The sub-DTs integrate into a cohesive network,
allowing for comprehensive monitoring and management of the entire
SC. The DT network ensures that the data from all DTs are synchronized
and can be analyzed collectively for optimization.

5.1. Physical layer

This layer consists of the elements or components of the SCM in a
physical system, such as things, machines, and humans. Things and
machines are referred to as products, facilities, equipment, worksta-
tions, and freight. The physical layer can be defined further as internal
and external physical layers. Internal layer terms within the same system
and the external layer include suppliers, vendors, and other stakeholders
within the SCM network. To create a CPS, the physical layer elements
are embedded or equipped with DT-enabled technologies, including IoT
devices, RFID (Radio Frequency Identification), sensors, cloud
computing, software resources, and cybersecurity. The technology col-
lects, stores, and transmits the real-time operational and surrounding
data of elements in a cyber-secure environment to the digital layer of the
DT framework. Identifying the physical components required to embed
with what type of sensors to collect the data is essential. Table 8 provides
an overview of DT-enabled technology applications in the physical
layer.

5.2. Information processing layer

This layer in the framework is tailored specifically to enhance SCM at
the sub-DT level. By breaking down the data journey into distinct pha-
ses, this model ensures that information flows smoothly and securely,
supporting critical decisions throughout the SC. Data collection begins
with the collection of raw data, which flows in from various points, such
as IoT devices and sensors actively monitoring the daily operations
across the SC. This stage involves capturing critical data in real time,
ensuring no valuable data slips through the cracks. Data mapping is an
important aspect of DT in which collected data is carefully organized
and assigned to specific models or parameters. This step is like setting up
a library system, ensuring each piece of information is where it should
be and making it easy to find and use later. Data is stored in secured
databases such as cloud-based data systems for future use. Data pro-
cessing at the sub-DT level transcends efficient data handling; it involves
converting data into a strategic asset that enhances SC agility, respon-
siveness, and efficiency. Running parallel to these stages is the CS, which
protects the integrity and confidentiality of large amounts of data
throughout its lifecycle. CS plays a key role in preventing threats and
ensuring compliance with regulations. The information processing layer
systematically transforms raw data into actionable intelligence that
supports enhancements in SC effectiveness and security.

5.3. Digital layer

The digital layer comprises a digital model of a physical system. It is
an exact replication of the physical elements in a virtual model. This
layer operates at the sub-DT level and SC Network level and isFig. 9. Levels in Sub-DTs for DT SCM network.
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Fig. 10. Proposed Conceptual Framework for DT SCM.
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instrumental in synthesizing data, strategies, and operational insights to
optimize SC performance. The digital layer will be integrated with the
physical layer with real-time interconnectivity to create a CPS interac-
tion. The real-time interface will be developed with the help of enabled
technologies such as IoT devices and cloud computing. This layer sup-
ports bidirectional data connectivity to create a DT. While creating a
digital layer, detailing is required to establish the real-time connectivity
and synchronization of each element in this layer for a SC system. Dy-
namic data collection from multiple sources in the physical layer and
high-quality virtual modeling and simulation are the main attributes of
the digital layer. A change in a physical state, updates automatically in
the digital layer. Therefore, intelligent data connectivity is required to
support an adaptive data-driven process consistently. The digital layer
also attains capabilities to receive real-time data from local and cloud-
based repositories. The architecture of this layer effectively manages
the bidirectional flow of large amounts of information. A performance
dashboard is proposed in this layer to provide continuous monitoring of
the system’s performance. This layer’s primary functions are to support
and maintain real-time operational data, ERP system updates, infor-
mational and performance analysis, monitoring, and control.

5.3.1. Operational model
It will define the process flow for SC operations, such as demand

planning, strategic sourcing, and procurement. This model defines the
main operational elements, particularly the SC strategy, policies, risk
management, network design and sourcing/procurement, inventory
management, and logistics. In addition, this model defines the in-
teractions and processes between various SC elements and resources. It
defines the roles and responsibilities of each element and identifies key
strategies for the overall SC ecosystem.

5.3.2. Informational model
The informational model develops the data structure, supporting

decision-making and data accuracy in SC. This model comprises product
and supplier relationships, process flow, inventory, and order processing
data. It holds order information from origin to customer. Informational
models may have details such as.

a) Supplier information with product specifications and delivery
schedules.

b) Resource location and utilization data.
c) Data storage from sensors and actuators.
d) Energy consumption data collection.
e) Information systems, such as ERP systems and product details with

inventory levels and locations, means a complete database such as a
Bill of Material (BOM).

f) Performance levels of various actors in SC such as entities, resources,
locations and variables for progress tracking.

g) KPIs for performance analytics.

The KPIs lead the development of a dashboard for performance

measurement in informational models. A performance dashboard with
real-time data integration for KPIs can provide SC with an efficient de-
cision support system.

5.3.3. Performance model
This model stores and provides a visual indication of the system’s

progress with respect to the identified and defined key metrics in the
informational model. It will be based on a dashboard outlining and
monitoring the system’s real-time performance. Some examples of
monitoring KPIs are as follows.

a) Order picking and fulfillment time and accuracy.
b) Supplier lead time.
c) Resource utilization.
d) Energy consumption.
e) Efficiency and overall productivity.
f) Flexibility and responsiveness

5.3.4. Analysis and Control
It supports the visual examination of performance metrics by iden-

tifying trends and control limits per the standards set to determine the
difference between performance and goals. It provides statistical anal-
ysis, root cause analysis, and structured performance analysis. Any de-
viation will predict future scenarios, allowing implementation control
measures to avoid failure and provide system resilience.

5.4. Supply chain analytics (SCA) layer

The proposed SCA analytics layer is pivotal in enhancing system
resilience and optimizing performance for an SCM network. This layer
receives real-time data from the digital layer. It performs digital analysis
to support resilience using advanced tools such as simulation modeling,
AI, ML, self, and reinforcement learning to interpret data and generate
actionable insights. These technologies collectively optimize the SC by
analyzing the system’s current state and predicting future behaviors to
counter disruptions. This prediction and optimization are facilitated by
maintaining an uninterrupted real-time connection between the digital
and SCA layers, ensuring efficient interconnectivity. The SCA layer ex-
tends its support for performance optimization, where it links with a
real-time performance dashboard to monitor trends, patterns, and real-
time performance metrics (KPIs) within the SC processes.

Moreover, integrating the SCM performance measurement system
into the data analytics aims to comprehensively evaluate the overall SC
performance, filling a notable gap in DT-based performance measure-
ment. This layer’s significance is magnified by the broad integration of
digital technologies across SC, enabling extensive data collection and
analytics. Such capabilities allow complex simulation modeling and
dashboard analyses, contributing to DT performance measurement
systems’ effectiveness. Additionally, this layer is instrumental in
improving quality and optimizing resources by providing performance
data for scenario analysis, risk assessment, and predictive analysis, thus

Table 8
Various applications of some DT-enabled technologies in DT-frameworks.

IoT devices data collection RFID data
collection

Cloud computing models Cybersecurity measures CPS delivers

Environnemental (e.g., temperature, humidity,
noise)

Authentication Software as a Service
(SaaS)

Data protection, malware, phishing
protection

Convergence of physical and
digital layers

Geographical (e.g., proximity, GPS, GIS, traffic
status)

Timestamp Platform as a Service
(PaaS)

Security such as firewalls,
encryption

Maintain Real-time
synchronization

Industrial production (e.g., energy, operations,
equipment health)

Identification Infrastructure as a Service
(IaaS)

Protect misuse of access privileges Maintain Data-driven modelling

Utilization (e.g., patterns) Locational IoT services Protect social engineering Interoperable communication
network

Security and surveillance Sensor Big data and analytics Compliance on data and security
regulations

Efficiency and optimization
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offering autonomous decision support. By providing a collaborative
platform for real-time communication and continuous learning and
adaptation. The SCA analytics layer cements itself as a critical compo-
nent of the DT ecosystem, bringing enhanced resilience to SCM.

5.5. Service layer

The service layer within the SC network highlights its division into
real-time services and optimization services. This layer is pivotal in
enhancing the SC’s operational efficiency and strategic adaptability.

5.5.1. Real-time services
The real-time services segment focuses on the SC’s immediate

operational needs. Following are some of the key features of the service
layer.

• Performance Dashboard: This tool offers a real-time graphical rep-
resentation of crucial metrics, enabling managers to monitor the SC
health and quickly address any emerging issues.

• Key Performance Indicators (KPIs): These metrics are essential for
assessing the operational success of the SC against pre-set strategic
targets, providing a clear measure of performance.

• Resilience: This aspect emphasizes the ability of SC to anticipate,
respond, and recover from disruptions promptly. Access to real-time
data underpins this resilience, facilitating rapid decision-making to
mitigate risks.

5.5.2. Optimization services
The optimization services are strategically split into some short-term

and long-term initiatives. Short-term services are listed below.

• Inventory Optimization: Manages stock levels to balance demand
fulfillment with cost-effectiveness, avoiding overstocking or
shortages.

• Transport Management: Optimizes the movement of goods and ma-
terials to maximize efficiency and minimize costs.

• Production Scheduling: Aligns production activities with demand
forecasts and resource availability to streamline operations.

Following are some long-term optimization services.

• Supplier Relationship Management: Aims to cultivate robust re-
lationships with suppliers to secure a reliable SC and favorable
procurement terms.

• SC Network Design: Strategic planning of the SC configuration to
enhance performance and cost efficiency.

• Technology Integration: Incorporates cutting-edge technologies to
bolster SC capabilities and operational efficiency.

• Risk and Resilience Planning: Focuses on identifying potential long-
term risks and developing strategies to enhance the SC’s overall
resilience.

The interplay between real-time and optimization services enables a
balanced approach to the SCM network, merging immediate data-driven
actions with comprehensive strategic planning. This synergy is crucial
for sustaining a competitive edge and ensuring a robust SC capable of
navigating present challenges and future uncertainties.

5.6. DT performance benefits

This study identified the associated challenges in Table 6 and further
provided the mapping of those challenges with DT technologies in
Table 7. This assisted in developing the conceptual framework by
focusing on the common DT enabling and data analytic technologies.
The technological development in IoT, RFID, and smart sensors has
brought the capability to communicate with large volumes of data. This

is also significant for constructing a CPS system that embeds IoT devices
to help bridge the physical system with digital models. Cloud computing
can also be integrated with conventional systems to manage data quality
and cybersecurity. DT is an extensive data-driven system with signifi-
cant connectivity, high-quality data transfer, and compatibility. This is
why interoperability plays a vital role between physical and digital
models and DT, enabling data analytics technologies for real-time
monitoring and synchronization. Simulation, AI, and ML have a high
potential to provide analytical solutions for decision support, predictive
analysis, and identification of disruptions. Data analytics can provide
hybrid solutions for continuous adaptations to enhance SC performance.
The provided conceptual framework can be implemented in SCM com-
ponents such as warehouses. Physical systems can be embedded with
real-time data collection devices, and information can be transmitted
directly to a simulation modeling tool for real-time simulation to eval-
uate the system’s performance. In addition, several processes such as
order picking, Human-Robot Collaboration, and kitting can be assessed
in real-time to identify the bottlenecks and make informed decisions.

6. Conclusion

This study presents a systematic literature review on the application
of DT to evaluate the research methods used by the researchers and
determine future research directions in DT SCM. This review shows
significant growth in the development of DT systems for SCM, specif-
ically during the last five years. The review findings are categorized
(refer to Section 3) to understand the application of DT in various fields.
This study attempted to answer three research questions (RQ1, RQ2, and
RQ3) by identifying the common DT-enabled technologies, data ana-
lytics techniques, and main challenges in DT integration. Finally, the
review proposes a novel conceptual framework for a fully integrated DT
for SCM applications, which capitalizes on the foundation of SCM DT
based on previous sub-DT systems. Following are the responses to all
three research questions:

RQ1) What are the common DT-enabled technologies and data an-
alytics techniques used for DT integration to enhance SC performance?

This study reviewed the emerging DT-enabled technologies and data
analytics techniques addressed in manufacturing, production, SC, and
logistics. The qualitative analysis in Section 3.2 and Table 6 identified
the common technologies discussed by various scholars in DT integra-
tion. This study recognizes IoT, RFID, cloud computing, CPS, and CS as
the most enabled technologies. Further, this review determines that
simulation modeling, AI, ML, and NN were common data analytics
techniques in DT integration. Simulation modeling is the most widely
used data analytics reported in this study.

RQ2) What are the common challenges associated with integrated
DT for SCM, and how could those challenges be addressed?

In response to RQ2, this review outlined the main challenges in DT
integration, as stated in Section 4. Table 6 summarizes these challenges
involving interoperability, data-driven modeling, real-time synchroni-
zation, and ERP integration. Based on the analysis, a fully integrated DT
in SCM with a data-driven and synchronization approach can enhance
SC performance. However, a fully integrated DT is a complex repro-
duction of a physical system in a CPS environment. A mapping is pro-
vided in Table 7 to address these challenges for an integrated DT in SCM.

RQ3) How can a conceptual framework for DT SCM be developed
with DT-enabled technologies and data analytics by overcoming asso-
ciated challenges for better SC performance?

In addressing Research Question 3 (RQ3), this study delineates a
comprehensive conceptual framework for integrating DT within SCM, as
detailed in Section 5. This integration is pivotal, offering a unique
capability for real-time operational monitoring and the ongoing evalu-
ation of SC process performance. The framework supports a decision-
support model that operates effectively at decentralized levels, reflect-
ing the complexities and dynamic nature of modern SCM. The proposed
framework merges the functionalities of prevalent DT-enabled
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technologies with advanced data analytics techniques to address the
primary challenges SCM systems face today.

Central to the framework is the sub-DT network (DT for SCM) prin-
ciple, coupled with data-driven modeling techniques aimed at refining
and optimizing the multifaceted functions inherent in SCM operations.
Furthermore, the discourse within the framework extends to the critical
issue of interoperability among the various hardware and software
components that constitute an integrated DT system. This aspect is
essential for facilitating seamless real-time communication across the
diverse layers of DT integration, ensuring that data flows efficiently and
actions are coordinated across the entire SC network. Thus, this frame-
work proposes not just a theoretical model but a pragmatic approach
designed to enhance SCM’s resilience, efficiency, and adaptability
through the strategic application of DT technologies.

6.1. Theoretical contribution

The theoretical aspect of this review is to answer some fundamental
questions, such as why this review was necessary and if the qualitative
analysis presented in this review comprehends the research questions.
This review’s qualitative analysis contributes to exploring DT integra-
tion by identifying the common components of DT architecture. More-
over, the qualitative analysis provides an understanding of the complex
structure of DT embedded with technologies and its associated chal-
lenges. This review provides an all-important theoretical scientific study
with a guided conceptual framework for a DT SCM system development.

6.2. Implications

This review outlines the significant implications of DT in SCM sys-
tems by providing real-time performance monitoring and optimization.
Several researchers addressed this significance and provided conceptual
frameworks. However, this review first identifies the common DT-
enabled technologies and data analytics techniques. Then, it addresses
the main challenges to overcome before establishing a fully integrated
DT for improved performance. This review’s attempted proposed con-
ceptual framework comprehends the enhanced performance for overall
SCM. It gives managers a realization of applications of enabled tech-
nologies and data analytics for a decentralized decision support model.
This study also identifies the significance of hybrid data analytics
combining simulation technology with AI and ML algorithms. The
framework also recognizes the potential of technology integration to
improve SCs. It gives managers a realization of applications of enabled
technologies and data analytics for a decentralized decision support
model. Increased visibility of operations allows real-time tracking and
monitoring that helps identify predictions ahead of the event. Moreover,
better risk management can be planned for efficient operations and
optimization. DT is also significant in providing customized SCs based
on the market demand and needs. An enhanced integrated DT connected
with external suppliers and resources can create a synchronized
collaborative environment for dynamic processing to adjust fluctuations
and mitigate risk on time. Further, continuous improvement and
refinement of operations at each level offer better responsiveness in the
SCs.

6.3. Future research direction

Based on the systematic literature review findings, multiple future
research opportunities exist; few are highlighted in this section.

a) The proposed framework in this review stated various important
components of DT. A future aspect is to validate the proposed
framework with industry experts. This will allow further refinement
by incorporating real-world experience with enhanced applicability.
In addition, this study identified five future research directions

(Table 9) to comprehend the impact of Industry 4.0 technologies in
transforming SCM systems in DT integration.

b) Another future direction of this study is to test the framework with a
real case study. The lack of empirical testing needs to be addressed
for validation. A proposed DT architecture must be constructed with
enabled technologies in a SC setting to capture the dynamic nature of
the framework. Assessing how various technologies can converge to
build a digital environment for a physical SC system is important.
Then, the application of selected data analytics, such as simulation
modeling, AI, or a combination of multiple data analytics, will be
tested to identify the applicability for enhanced SC performance.

Although this research offers diverse contributions, it also highlights
some limitations. Firstly, the authors may have introduced some bias by
selecting specific studies related to DTs in SCs and potentially missing
out on related studies during the search process. Moreover, the authors
may have inadvertently excluded relevant studies or included studies
that align with their preconceptions during the selection process.

Secondly, the paper focuses on "Unlocking the Potential of Digital
Twins in Supply Chains," which is considered a system view. Therefore,
the proposed framework may not be generalizable to other specific
domains with less complexity, such as object/process twin, where we
require a digital representation of a basic part or component/process
within a system. Similarly, the framework may not be applicable in
domains that have high complexity, where multiple system/process
twins operate in a business-defined environment. In such cases,
modeling the highest order of systems is necessary to provide a macro-
view of the environment.

Table 9
Future research directions.

Research direction Specific topics

Integration of Cyber-Physical
system

• High volume of data synchronization through
various devices and entities in internal and
external resources of the system.

• Integration of IoT devices, sensors, simulation,
data analytical models for real-time decision
support.

• Interoperability challenges to address
heterogeneity due to the use of diverse
technologies and standards.

• Cybersecurity and privacy to maintain secure
communication networks.

Data analytics for DTs • Specialized data infrastructure to use Big Data
analytics for processing of large amount of
data.

• Role of Industry 4.0 technologies such as
simulation, AI, ML, NN in processing data
analytics in complex infrastructure.

• Role of hybrid simulation modeling in quality
data analytics for complex systems.

Simulation modeling in DTs • Integration of simulation tools with DT-
enabled technologies such as IoT, cloud
computing for real-time data-driven modeling.

• Real-time decision support and optimization
for various SCM application.

Cognitive digital twins (CDT) • Explore CDT architecture and framework for
SCM with the help of Industry 4.0
technologies.

Human-Centered Approach
Industry 5.0 and
Sustainability

• Focused approach and conceptualization on
human cantered Industry 5.0 to expedite more
research on HMI and human social factors.

• Impact of collaborative technologies in SCM in
various dimensions such as social factors,
human factors, sustainability, and
transformation.

• Impact on economic, social, and
environmental performance goals for SC
sustainability.
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Appendix A

Table 5b
Miscellaneous Conference Name

S. No. Miscellaneous Conference Name No. of Papers

1 IEEE International Workshop on Factory Communication Systems (WFCS) 1
2 11th CIRP Conference on Industrial Product-Service Systems 1
3 2018 International Conference on Smart Grid and Electrical Automation 1
4 23rd International Conference on Control Systems and Computer Science 1
5 2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing 1
6 3rd International Conference on Industry 4.0 and Smart Manufacturing 1
7 45th SME North American Manufacturing Research Conference 1
8 4th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) 1
9 53rd CIRP Conference on Manufacturing Systems 1
10 6th International Conference on Smart Sustainable Technologies 1
11 8th International Conference on Information Technology and Quantitative Management 1
12 IEEE International Conference on Model Driven Engineering Languages and Systems Companion 1
13 IEEE Transactions on Cybernetics 1
14 IEEE Transactions on Engineering Management 1
15 IFIP International Conference on Advances in Production Management Systems 1
16 International Conference on Industrial Engineering and Engineering Management IEEM 1
17 International Symposium on System Integration (SII) 1
18 Proceedia Manufacturing 1
19 Springer Nature 8th International Conference LDIC 2022 1

Total 19

x = Discussed

Appendix B

Table 6
DT enabling technologies and data analytic techniques

References Focused Area DT Enabling Technology Data Analytics Implications

IoT RFID Cloud CS CPS Sim. NN AI ML Num. Manufacturing
Performance

SC
Performance

Logistics
Performance

[144] Framework x x x x x x x x x
[69] Simulation Modelling x x x x x
[134] Resilient SC and I4.0

Technologies
x x x x x x x x x x

[82] CPS integrated DT x x x x x
[169] DT predictive

diagnosis Elman-IVIF-
TOPSIS

x x x x x x

[109] DT warehouse
optimization

x x x x x

[111] Cold chain
transportation

x x x x x

[138] DT supply chains x x x x x x x x
[136] Sustainable supply

chains
x x x x x x

[80] Real-time
synchronization

x x x x x

[57] DT-Framework x x x x x
[79] AI based DT

Framework
x x x x x x x

[52] Digital lean
framework

x x x x

(continued on next page)
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Table 6 (continued )

References Focused Area DT Enabling Technology Data Analytics Implications

IoT RFID Cloud CS CPS Sim. NN AI ML Num. Manufacturing
Performance

SC
Performance

Logistics
Performance

[88] Intelligent
monitoring & control
framework

x x x x x x

[91] Intelligent
manufacturing

x x x x x x x x

[58] Data-driven approach x x x x x
[92] DT & virtual reality

framework
x x x x x x x

[120] Autonomous mobile
robots

x x x

[170] Resource allocation
framework

x x x x x x

[53] Industry 5.0 x x x x x x x x
[137] Zero-waste value

chains
x x x x x x x

[171] Knowledge-based
system

x x x x x

[93] Industry 5.0 x x x x x x x x x x x
[94] Framework to

monitor human skills
x x x x

[70] Multi-agent-based
modeling

x x x x x x

[74] Framework on
autonomous
production

x x x x x x x

[127] Cognitive DT x x x x x x x x
[121] Smart warehouse x x x x x x x
[115] Data-driven approach x x x x x
[123] Simulation modeling x x x x
[96] Real-time simulation x x x x x x x x
[172] Smart production x x
[89] DT framework x x
[173] Smart production x x x
[75] CPS framework x x x x x x
[174] DT flexible

production
x x x

[67] DT Flexible
Manufacturing
System

x x x x x x x x

[86] DT integrated
monitoring

x x x x

[85] Industry 4.0
Technologies

x x x x x x x x x x

[64] CPS integrated DT x x x x x x x
[87] Industry 5.0 x x x x x x x x x x
[84] CPS integrated

Production
Monitoring

x x x x x x

[175] DT Flexible
Manufacturing
System

x x x x x x

[104] Intelligent
Transportation

x x x x

[145] DT Implementation
and Technology

x x x x x x x

[90] Functional based
modelling

x x x x x x x x

[59] Conceptual
Framework

x x x

[18] Framework x x x x x x x
[77] CDT framework x x x x x x x x
[65] Reinforcement

learning DT
x x x x x x

[60] DT reconfigurable
manufacturing

x x x x x x x

[176] Self-learning
cognition

x x x x

[139] Framework x x x x x
[131] Emerging

technologies
x x x x x x x

[151] Mapping &
optimization

x x x x x x

(continued on next page)
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Table 6 (continued )

References Focused Area DT Enabling Technology Data Analytics Implications

IoT RFID Cloud CS CPS Sim. NN AI ML Num. Manufacturing
Performance

SC
Performance

Logistics
Performance

[153] Simulation
modelling

x x x x

[130] Investigated Industry
4.0 challenges

x x x x x x x x x x

[29] Simulation modelling x x x x
[177] DT implementation x x x x x x
[148] DT implementation x x x x x
[97] Sustainable logistics x x x x x x x x x
[99] CPS integrated DT x x x x x
[129] Decision-making DT

platform
x x x x x x x

[102] Synchronization x x x x x x x x x
[112] Concept of intelligent

container
x x x x x

[149] Proposed DSTKG x x x x x x x x
[157] Ecosystem for FMS x x x x x
[178] ADR methodology. x x x x x x x
[125] Investigated

simulation
x x x x

[179] Data-driven DT
framework

x x x x x x x

[121] Implementation of
CDT operational
model

x x x x x x x x x

[61] DT automated
manufacturing
system

x x x x x x

[143] DT manufacturing
shop floors

x x x x x

[180] DT Implementation x x x x x
[142] Blockchain

empowered DT
x x x x x x x

[144] IoT applications in
smart logistics

x x x x x x x

[145] Food logistics 4.0 x x x x x x x x
[147] DT for fresh

horticultural produce
x x x x x

[15] 5D framework x x x x x x x x x x
[51] 5D framework x x x x
[55] Optimize production

line
x x x x x x

[71] Universal CPS system x x x x x
[87] 4 layered framework x x x x x
[11] Investigated CDT

vision
x x x x x x x x

[46] Automate DT process x x x x x
[51] Simulation modelling x x x x
[162] Framework x x x x x x x x
[119] Emerging

technologies
x x x x x x x

[114] Real-time integration x x x x x x x x
[121] Cognition modelling x x x x x x
[131] DT platform x x x x x x
[133] DT platform x x x x x x x x
[135] Data-driven DT with

simulation
x x x x x x

[36] Framework x x x x x
[103] DT framework x x x
[150] DT framework x x x x x x
[155] Intelligent workshop x x x
[160] Simulation based

framework
x x x x x x

[13] Digital model for a
physical testbed

x x x x x x x

[152] CPS performance
monitoring

x x x x x x

[61] Simulation modelling x x x
[4] Hybrid simulation x x x x x x x x x
[74] DT personalized

manufacturing
x x x x

[56] Autonomous
manufacturing

x x x x x

[72] Web-based DT x x x x x

(continued on next page)
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Table 6 (continued )

References Focused Area DT Enabling Technology Data Analytics Implications

IoT RFID Cloud CS CPS Sim. NN AI ML Num. Manufacturing
Performance

SC
Performance

Logistics
Performance

[151] 6 layered framework x x x x x x x x x
[17] Synchronization x x x
[156] Physics modelling x x x x x x x
[107] IoT-enabled

framework
x x x x x x x x x

[118] Synchronization
framework

x x x x x

[36] Simulation modelling x x x x
[25] 5D framework x x x
[102] Framework x x x x
[19] Framework x x x x
[75] Flexible framework x x x x x x
[157] Physics modelling x x x x x x x
[71] Cybersecurity in CPS

integration
x x x x x x

[143] Simulation modelling x x x x
[149] Neural network

framework
x x x x

[69] Shop management
system

x x x x x x x

[16] Cyber physical
manufacturing

x x x x

Table 7
Common challenges in DT integration

Cat. References Challenges

Interoperability Data-driven Real-time synchronization ERP integration

Manufacturing and Production [88] x x
[90] x x
[55] x x
[66] x
[57] x
[84] x x
[64] x x
[96] x x
[98] x x
[58] x x
[99] x x
[52] x x
[53] x x
[95] x x
[100] x x
[101] x x
[89] x x
[67] x x
[135] x x
[103] x x
[77] x x
[97] x x
[78] x x
[68] x x
[79] x x
[63] x x x
x = Discussed [93] x
[92] x x x x
[62] x x x
[94] x x x x
[91] x x
[65] x x
[80] x x
[85] x x
[20] x x
[87] x x x x
[73] x x
[83] x x x x
[23] x x x x
[76] x x x
[60] x x

(continued on next page)
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Table 7 (continued )

Cat. References Challenges

Interoperability Data-driven Real-time synchronization ERP integration

[146] x x x
[14] x x x
[50] x x x
[54] x x
[70] x
[86] x x x
[61] x
[18] x x x x
[59] x x
[74] x x x
[56] x x
[72] x x x
[4] x x x x
[36] x x
[25] x x
[102] x
[19] x x x
[75] x x
[71] x x
[69] x

Supply Chain [147] x x x x
[153] x x x x
[154] x x x x
[148] x x x
[138] x x
[139] x x
[140] x x x
[15] x x x
[174] x x x
[160] x x x
[136] x x x
[31] x x
[137] x x
[155] x x
[152] x x x x
[30] x x x
[169] x x x x
[150] x x x
[145] x x x x
[151] x
[17] x x x
[156] x x x
[157] x x x
[143] x x

Logistics [117] x
[120] x x x
[127] x x
[128] x x
[122] x x
[130] x x
[115] x x x
[104] x x x x
[108] x x
[110] x x
[112] x x x
[114] x x x
[123] x x
[131] x
[133] x x x x
[132] x x
[111] x x x
[116] x x x
[118] x x x
[119] x x x
[121] x x x
[105] x x
[107] x x x
[109] x x x
[35] x x x x
[113] x x
[124] x x x
[129] x x
[134] x x x
[12] x x x

(continued on next page)
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Table 7 (continued )

Cat. References Challenges

Interoperability Data-driven Real-time synchronization ERP integration

[126] x x x
[106] x x
[125] x x
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